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Abstract. We consider the problem of minimizing a polynomial on the hypercube [0, 1]n and
derive new error bounds for the hierarchy of semidefinite programming approximations to this prob-
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1. Introduction. In this paper we study the problem:

pmin,Q := min {p(x) | x ∈ Q} , (1.1)

of minimizing a polynomial p over the unit hypercube Q = [0, 1]n. When p is
quadratic, this problem includes e.g. the maximum cut problem in graphs. Indeed, for
a graph G = (V,E), the size of the maximum cut is given by the quadratic program

max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x− e)TL(2x− e), (1.2)

where e ∈ RV denotes the all-ones vector and L ∈ RV×V is the Laplacian matrix of G,
with Lii being the number of nodes adjacent to i ∈ V and Lij = −1 if ij ∈ E, Lij = 0
otherwise, for i �= j ∈ V . For the maximum cut problem there is a celebrated 0.878-
approximation result due to Goemans and Williamson [7], and related approximation
results for quadratic optimization over the hypercube were given by Nesterov et al.

[20]. On the negative side, the maximum cut problem cannot be approximated within
16/17 ≈ 0.941 [10].

Another example is the maximum stable set problem in graphs. Recall that a
stable set in a graph is a subset of vertices such that no two vertices in this subset
are adjacent. The cardinality of the largest stable set in a graph G = (V,E) is called
the stable set number of G, and is usually denoted by α(G). One may show that

α(G) = max
x∈[0,1]|V |



1

2
xTLx−

|V |�

i=1

�
1

2
di − 1

�
xi



 ,

where di denotes the degree of vertex i, and L the Laplacian matrix of G, as before. It
is known that there does not exist a fixed � > 0 such that one can always approximate
α(G) to within a factor |V |1−� in polynomial time, unless P=NP [9, 29].
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A recent approach to approximate a polynomial optimization problem like (1.1) is
to use sums of squares representations for polynomials positive on the feasible region,
which can then be computed efficiently using semidefinite programming. Some error
bounds for the approximations obtained from the Positivstellensätze of Schmüdgen
[26] and of Putinar [24] have been derived by Schweighofer [27] and by Nie and
Schweighofer [21]. These bounds involve some constants that depend on the given
data and are generally hard to compute. Practical error bounds (not involving un-
known constants) are known only in sporadic cases, most notably for polynomial op-
timization over the standard simplex [1, 3]. In this paper we derive explicit (stronger)
error bounds for the hierarchy of semidefinite programming relaxations obtained from
Schmüdgen’s Positivstellensatz for optimization over the hypercube. Our approach
is elementary and relies on using Bernstein approximations. Moreover it provides
explicit positivity certificates for positive polynomials on the hypercube.

The paper is organized as follows. In the introduction, we introduce the Posi-
tivstellensätze of Handelman and of Schmüdgen, we present the bounds of Schweighofer
[27], and we summarize our main results; in the last section, we recall some basic facts
on Bernstein approximations which will play a central role in our approach. Sections
2 and 3 contain our new degree and error bounds for optimization on the hypercube.
In our analysis, we will distinguish between quadratic polynomials (Section 2) and
higher degree polynomials (Section 3) — the quadratic case is of independent interest
due to its applications, its treatment is simpler, and sharper bounds may be obtained
than for the general case.

Some notation. For an integer n ≥ 1, we set [n] := {1, . . . , n}, [n]0 :=
{0, 1, . . . , n}, and e1, . . . , en denote the standard unit vectors in Rn. R[x] = R[x1, . . . , xn]
denotes the ring of multivariate polynomials in n variables, and R[x]m the subspace of
polynomials with degree at mostm. Monomials in R[x] are denoted as xk = xk1

1
· · ·xkn

n

for k ∈ Nn, with degree |k| :=
�n

i=1
ki, and we set k! := k1! · · · kn!. For a polynomial

p =
�

k pkx
k ∈ R[x], deg(p) = maxk|pk �=0 |k| (set to −∞ if p = 0) and we set

L(p) := max
k

|pk|
k!

|k|! . (1.3)

Given a subset S ⊆ Rn, we say that p is positive on S when p(x) > 0 for all x ∈ S.
Given g1, . . . , gs ∈ R[x] and k ∈ Ns, we often the use the notation gk = gk1

1
· · · gks

s ,
with g0 := 1.

1.1. Positivity certificates and relaxations for polynomial optimization
problems. Problem (1.1) falls in the general class of polynomial optimization prob-
lems, where the hypercube Q is replaced by an arbitrary compact basic closed semi-
algebraic set

S := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , s} , (1.4)

and gj ∈ R[x] are given polynomials. We find the hypercube S = Q when considering
the s = 2n (linear) polynomials

g1 = x1, g2 = 1− x1, . . . , g2n−1 = xn, g2n = 1− xn. (1.5)

The general problem is to minimize a polynomial p over S, i.e., to compute

pmin,S := min{p(x) : x ∈ S}. (1.6)
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In the last few years there has been significant interest in designing tractable approx-
imations for this problem, following the seminal works [13, 22] (see e.g. [18] for an
overview). The starting point is to reformulate pmin,S as

pmin,S = min
x∈S

p(x) = sup {t | p(x)− t > 0 ∀x ∈ S} .

Then the strategy is to use a Positivstellensatz (i.e. some result describing positive
polynomials on S) to replace the positivity condition, which is hard to test, by some
easier condition. When the set S is a polytope, we may use the following result of
Handelman.

Theorem 1.1 (Handelman [8]). Let p ∈ R[x] and let S be a polytope, as defined

in (1.4) where all gj are linear polynomials. If p is positive on S, then p admits a

representation

p =
�

k∈Ns

λkg
k

for some scalars λk ≥ 0. (1.7)

A constructive proof is given by Powers and Reznick [23], who use a reduction
to optimization over the simplex together with a result by Pólya. When S is a
general compact basic semi-algebraic set, we can use the following Positivstellensatz
of Schmüdgen.

Theorem 1.2 (Schmüdgen [26]). Let p ∈ R[x] and let S be as in (1.4) assumed

to be compact. If p is positive on S, then p admits a representation

p =
�

k∈{0,1}s

σkg
k

where σk are sums of squares of polynomials. (1.8)

Schweighofer [27] gives a proof which moreover provides explicit bounds on the degree
of the representation as well as an error analysis; both are recalled in Theorem 1.3
below. The maximum degree: maxk|λk �=0 deg(g

k) in the representation (1.7), or
maxk|σk �=0 deg(σkgk) in (1.8), is called the maximum degree of the representation. For
an integer r ≥ 1, it is convenient to introduce the following sets1:

Hr(g) :=
� �

k∈Ns

λkg
k | deg(λkg

k) ≤ r, λk ∈ R+

�
, (1.9)

that corresponds to the Handelman representation (1.7), and

Tr(g) :=
� �

k∈{0,1}s

σkg
k | deg(σkg

k) ≤ r, σk sums of squares of polynomials
�
,

(1.10)
that corresponds to the Schmüdgen representation (1.8). Obviously, Hr(g) ⊆ Tr(g).
Indeed, if k ∈ Ns and λk > 0 then, by pulling out all squares in gk, we can write
λkgk = σgk

�
, where k� ∈ {0, 1}s, k�i = 1 precisely when ki is an odd integer, and σ is a

sum of squares of polynomials (in fact, a single square). We can define the following
lower bounds on pmin,S :

p(r)
han,g := sup

�
t | p− t ∈ Hr(g)

�
, (1.11)

1
Hr(g) is known as the truncated preprime and Tr(g) as the truncated preordering generated by

g1, . . . , gs.
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and

p(r)
sch,g := sup

�
t | p− t ∈ Tr(g)

�
, (1.12)

which satisfy

p(r)
han,g ≤ p(r)

sch,g ≤ pmin,S . (1.13)

Getting explicit tight error bounds for the parameters p(r)
han,g and p(r)

sch,g is the main
motivation of this paper.

Theorem 1.1 implies directly that the bounds (1.11) converge asymptotically to
pmin,S (as r goes to ∞) when S is a polytope, and the asymptotic convergence of the
bounds (1.12) to pmin,S follows directly from Theorem 1.2. For fixed r, the bound
(1.11) can be computed via a linear program in the variables λk, obtained by equating
the coefficients of the polynomials on both sides of the equality p− t =

�
k λkgk. For

fixed r, the bound (1.12) can be computed via a semidefinite program. Indeed, as
is well known, testing whether a polynomial σ of degree 2d is a sum of squares of
polynomials amounts to testing whether there exists a positive semidefinite matrix M
of order

�n+d
d

�
satisfying σ(x) = [x]Td M [x]d, where [x]d = (xk)k∈Nn,|k|≤d. Similarly,

testing for membership in the set Tr(g) can be reformulated as a semidefinite program

involving 2s positive semidefinite matrices of order
�n+r/2

r/2

�
. Although the bounds

(1.11) of Handelman type might appear to be simpler than the sums of squares bounds
(1.12) as they can be computed via LP instead of SDP, they have several drawbacks as
pointed out by Lasserre [15]. In particular, no decomposition of the form p−pmin,S =�

k λkgk with λk ≥ 0, exists when p attains its minimum at an interior point of the
polytope S; in other words, in that case, there cannot be finite convergence of the
bounds (1.11) to pmin,S . However, if we allow sums of squares as multipliers instead
of nonnegative scalars, then finite convergence can be proved for several problem
instances (e.g. in the finite variety case [14, 17], for optimization over the gradient
variety [6], or in the convex case [16]).

Given an integer d ≥ 1, by minimizing the polynomial p over the set

Q(d) := {x ∈ Q | dx ∈ Nn} =

�
k

d

���� k ∈ [d]n
0

�

of rational points with denominator d in the hypercube Q, we obtain the following
upper bound

pmin,Q(d) := min
x∈Q(d)

p(x) ≥ pmin,Q (1.14)

for the minimum of p over Q.
It turns out that our approach – based on Bernstein approximations – will produce

representations of Handelman type for positive polynomials on the hypercube and

error bounds for the lower approximations of pmin,Q by the parameters p(r)
han,g and

p(r)
sch,g. Moreover, it will also give error bounds for the upper approximations pmin,Q(d).

1.2. Error analysis for sums of squares representations. We recall the
result of Schweighofer [27] which gives quantitative information about the sums of
squares representation of Schmüdgen for positive polynomials on S, namely degree
bounds for the representation (1.8) and an error analysis for the approximation of

pmin,S by the parameters p(r)
sch,g.
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Theorem 1.3 (Schweighofer [27]). Let S be as in (1.4) and assume that S ⊆
(−1, 1)n. Then there exist integer constants c, c� > 0 satisfying the following proper-

ties.

(i) Every polynomial p of degree m which is positive on S belongs to Tr(g) for some

integer r satisfying

r ≤ cm2

�
1 +

�
m2nm L(p)

pmin,S

�c�
.

(ii) For every polynomial p of degree m and for all integers r ≥ c�mc�nc�m
, we have

p−pmin,S+
c�m4n2m

c�
√
r

L(p) ∈ Tr(g), and thus, pmin,S−p(r)sch,g ≤ c�m4n2m

c�
√
r

L(p).

(1.15)
The bounds in Theorem 1.3 depend on three parameters: the constants c and c�

(which depend only on the description of S by the polynomials gj), the degree m of p,
and the quantity L(p)/pmin,S (which measures how close p is to having a zero on S).
Schweighofer [27] shows that c� = (4c)c is a valid choice and notes that the constant
c could in principle be deduced from his proof, although the analysis would probably
be too tedious (cf. [27, Remark 10]). It thus remains a nontrivial task to compute the
constants explicitly for concrete sets S. In this note we show – using simple direct
arguments – that c = c� = 1 are (roughly speaking) suitable choices in the case of the
hypercube S = [0, 1]n.

More precisely, we show the following results.
Theorem 1.4. Let S = Q = [0, 1]n be described by the polynomials gj from (1.5),

and let p be a polynomial of degree m.

(i) If p is positive on Q, then p ∈ Hr(g) ⊆ Tr(g) for some integer r ≤ n
�

L(p)
pmin,Q

�m+1

3

�
nm

�
.

(ii) For any integer d ≥ 1, we have

p−pmin,Q+
L(p)

d

�
m+ 1

3

�
nm ∈ Hr(g) ⊆ Tr(g) for some integer r ≤ max(dn,m).

(iii) For any integer d ≥ m, we have

max
�
pmin,Q − p(dn)sch,g, pmin,Q − p(dn)han,g, pmin,Q(d) − pmin,Q

�
≤ L(p)

d

�
m+ 1

3

�
nm.

This is our main result, which will follow from Theorem 3.4; sharper bounds are
given in Theorem 2.1 in the quadratic case m = 2. This result thus adds to the
small number of explicit error bounds that are known for semidefinite programming
approximations of polynomial optimization problems.

We conclude with a brief comparison with the results of Theorem 1.3 applied
to the hypercube S = Q. We show in Table 1.1 the order of magnitude for the
degree bounds (of positivity certificates on the hypercube) and for the error bounds
obtained for the approximations based on Schmüdgen type representations (Theorem
1.3), compared to our results from Theorem 1.4 for the general case m = deg(p) ≥ 1
and from Theorem 2.1 for the quadratic case m = deg(p) = 2. We see that, in the
case of optimization over the hypercube, we can choose the constants c = c� = 1 in
Theorems 1.3. Our bounds improve the bounds in this theorem (except we lose a
factor n with respect to the degree bound of Theorem 1.3 for general degree m ≥ 1).
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Theorem 2.1 Theorem 1.4 Theorem 1.3
m = 2 m ≥ 1 with c = c� = 1

degree bound n2 L(p)
pmin,Q

m3nm+1

6

L(p)
pmin,Q

m4nm L(p)
pmin,Q

error bound nL(p)
d

m3nm

6

L(p)
d m4n2m−1 L(p)

d
at order r = nd for d ≥ 2 for d ≥ m for d ≥ mnm−1

Table 1.1
Comparing degree and error bounds for optimization over the hypercube

1.3. Bernstein operators on the hypercube. We recall here some basic re-
sults on Bernstein approximations of functions on [0, 1]n. We will indeed use the
Bernstein operator as a crucial ingredient for constructing positivity certificates and
approximating polynomials on the hypercube.

In the univariate case, the Bernstein basis for the space of univariate polynomials
of degree at most d consists of the polynomials

pd,k :=

�
d

k

�
xk(1− x)d−k (k = 0, . . . , d). (1.16)

Then the Bernstein approximation of a function f ∈ C[0, 1] is the polynomial Bd(f) ∈
R[x]d defined by

Bd(f) :=
d�

k=0

f

�
k

d

�
pd,k.

It is well known that Bd(f) converges uniformly to f as d → ∞ (see e.g. [19]).
Clearly, Bd is a linear operator and Bd preserves positivity, i.e., f > 0 on [0, 1] implies
Bd(f) > 0 on [0, 1]. We will use the Bernstein approximations Bd(xm) of monomials
xm (m ∈ N). Clearly, Bd(1) = 1 and Bd(x) = x, and thus Bd preserves linear
polynomials. Moreover,

Bd(x
2) = x2 +

1

d
x(1− x). (1.17)

Closed form expressions for Bd(xm) (m > 2) are given in [12, Theorem 4.1]2; in
particular,

Bd(x
m) =

1

dm

m�

i=0

bm,id
ixi (1.18)

where di = d(d − 1) · · · (d − i + 1), and bm,i is the number of ways to partition a
m-elements set into i nonempty subsets; thus bm,1 = bm,m = 1 and bm,i > 0. (The
numbers bm,i are known as Sterling numbers of the second kind.)

In the multivariate case, the n-variate Bernstein polynomials are defined by

Pd,k :=
n�

i=1

pd,ki(xi) =
n�

i=1

�
d

ki

�
xki
i (1− xi)

d−ki (k ∈ [d]n
0
= {0, 1, . . . , d}n), (1.19)

2The paper [12] deals with higher moments of the binomial distribution, and the polynomial
d
m
Bd(xm) evaluated at x = a is precisely themth moment of a binomial distribution with parameters

a and d.
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where pd,ki are the univariate Bernstein polynomials as in (1.16). Then, Bd := {Pd,k |
k ∈ [d]n

0
} forms the so-called Bernstein basis of the space R[x]d,...,d, consisting of of

the n-variate polynomials having degree at most d in each variable xi. A simple useful
fact is that the Bernstein polynomials sum up to 1; namely,

d�

k=0

pd,k = 1 (in the univariate case),
�

k∈[d]n0

Pd,k = 1 (in the multivariate case).

(1.20)
The Bernstein approximation of order d of a function f ∈ C([0, 1]n) is the poly-

nomial (of degree dn)

Bd(f) :=
d�

k1=0

. . .
d�

kn=0

f

�
k1
d
, . . . ,

kn
d

�
Pd,k.

It follows from the definition that the Bernstein operator is multiplicative when ap-
plying it to functions that are products of functions in disjoint sets of variables. In
particular,

Bd(x
k1
1

· · ·xkn
n ) =

n�

i=1

Bd(x
ki
i ) for k ∈ Nn, thus Bd(x

k) = xk for k ∈ {0, 1}n.

(1.21)

Any polynomial p ∈ R[x]d,...,d can be written in the basis Bd as p =
�

k∈[d]n0
b(d)k Pd,k

for some scalars b(d)k , called the Bernstein coefficients of p. Let

p(d)
Ber

:= min
k∈[d]n0

b(d)k (1.22)

denote the smallest Bernstein coefficient of p in the basis Bd. Using (1.20), we see
that the polynomial

p− p(d)
Ber

=
�

k∈[d]n0

(b(d)k − p(d)
Ber

)Pd,k (1.23)

has nonnegative coefficients in the basis Bd. Therefore, this polynomial is nonnegative

on Q, which implies p(d)
Ber

≤ pmin,Q. Moreover, as each Pk,d belongs to the set Hdn(g)
(introduced in (1.9), where g stands for the polynomials xi and 1−xi for i = 1, . . . , n),

(1.23) shows that p− p(d)
Ber

∈ Hdn(g). This implies

p(d)
Ber

≤ p(dn)
han,g

and thus, combined with (1.13) and (1.14),

p(d)
Ber

≤ p(dn)
han,g ≤ p(dn)

sch,g ≤ pmin,Q ≤ pmin,Q(d). (1.24)

Our approach will produce bounds on the quantity pmin,Q(d) − p(d)
Ber

, which thus also

implies bounds for the approximation of pmin,Q by p(dn)
han,g or p(dn)

sch,g.
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2. Results for quadratic polynomials. Here we consider a quadratic poly-
nomial of the form p = xTAx + bTx + c, where A ∈ Rn×n, b ∈ Rn and c ∈ R.
Set

I+ := {i ∈ [n] | Aii > 0}, I− := {i ∈ [n] | Aii < 0}. (2.1)

Fix an integer d ≥ 1. Then the Bernstein approximation of order d of p takes the
form

Bd(p) = p+
1

d

n�

i=1

Aiixi(1− xi) (2.2)

(which follows directly from the linearity of the Bernstein operator and (1.17), (1.21)).
As we now see, it can be used to derive various information about the minimum of p
over the hypercube Q. Indeed (2.2) implies:

p = Bd(p) + p−Bd(p) = Bd(p)−
1

d

n�

i=1

Aiixi(1− xi)

= Bd(p)−
1

d

�

i∈I−

Aiixi(1− xi) +
1

d

�

i∈I+

Aii

�
(xi − 1)2 + xi

�
− 1

d

�

i∈I+

Aii,

where we used the identity −xi(1−xi) = (xi − 1)2 +xi − 1 for the last equality. This
gives the identity:

p−pmin,Q = Bd(p−pmin,Q)+
1

d

�

i∈I−

|Aii|xi(1− xi)

� �� �
:=q1

+
1

d

�

i∈I+

Aii

�
(xi − 1)2 + xi

�

� �� �
:=q2

− 1

d

�

i∈I+

Aii

� �� �
:=C(d,p)

.

(2.3)

Here, Bd(p − pmin,Q) =
�

k∈[d]n0

�
p
�

k
d

�
− pmin,Q

�
Pd,k ∈ Hdn(g), q1, q2 ∈ H2(g), and

the constant C(d, p) = 1

d

�
i∈I+

Aii depends only on p and on the order d of the
Bernstein operator.

Theorem 2.1. Let p = xTAx + bTx + c be a quadratic polynomial, where A ∈
Rn×n

, b ∈ Rn
and c ∈ R, let I+ be as in (2.1), and let g be as in (1.5).

(i) For any integer d ≥ 1, p − pmin,Q + 1

d

�
i∈I+

Aii ∈ Hr(g) for some integer r ≤
max(dn, 2).

(ii) If p is positive on the hypercube Q, then p ∈ Hr(g) for some integer r ≤
max(ndp, 2), where dp :=

��
i∈I+

Aii

pmin,Q

�
.

(iii) For any integer d ≥ 2,

pmin,Q(d) − p(d)Ber ≤
1

d

�

i∈I+

Aii (2.4)

and thus, pmin,Q − p(dn)han,g ≤ pmin,Q − p(d)Ber ≤ 1

d

�
i∈I+

Aii.

(iv) For any integer d ≥ 2,

pmin,Q(d) − pmin,Q ≤ 1

4d

�

i∈I+

Aii. (2.5)
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Proof. (i) follows directly from (2.3); the same for (ii) after choosing for d the
smallest integer making the constant pmin,Q − 1

d

�
i∈I+

Aii nonnegative.

(iii) We verify that q1 + q2 has nonnegative Bernstein coefficients in the basis Bd.
Indeed each of x2

i − xi + 1 and xi(1 − xi) has nonnegative coefficients in Bd, which
follows directly from the fact that

x2

i + 1− xi = ((1− xi)
2 + xi(1− xi) + x2

i )(xi + (1− xi))
d−2

�

j∈[n],j �=i

(xj + (1− xj))
d,

xi(1− xi) = xi(1− xi)(xi + (1− xi))
d−2

�

j∈[n],j �=i

(xj + (1− xj))
d,

and that, when expanding in the basis Bd, all coefficients remain nonnegative. Hence
q1 + q2 =

�
k∈[d]n0

akPd,k for some ak ≥ 0 and thus

p = Bd(p) + q1 + q2 − C(d, p) =
�

k∈[d]n0

�
p
�k
d

�
+ ak − C(d, p)

�
Pd,k.

This implies p(d)
Ber

≥ pmin,Q(d) − C(d, p) which, combined with (1.24), shows (iii).
To show (iv), use again the identity p = Bd(p) + q1 + q2 − C(d, p), together with
Bd(p) ≥ pmin,Q(d), q1 ≥ 0 and q2 ≥ 3

4
C(d, p) on Q, which follows from the fact that

(xi − 1)2 + xi ≥ 3

4
on [0, 1]. ✷

Compared to the results from Theorem 1.4 for the general case m ≥ 1, note
that we gain a factor n in the quadratic case m = 2. To see this, use the fact that
Aii ≤ L(p) for all i, thus implying

�
i∈I+

Aii ≤ nL(p). We refer to Table 1.1 for a
comparison with the results of Theorem 1.3.

We conclude this section with comparing our bound (2.5) with another bound
that can be derived from the following known result for the minimization of quadratic
forms (i.e. homogeneous polynomials) over the simplex.

Proposition 2.2 (cf. the proof of Theorem 3.2 in [1]; see also Theorem 3.2 in
[3]). Let q ∈ R[x] be a form of degree 2, d ≥ 1 an integer, qmin,∆ := minx∈∆ q(x), and
qmin,∆(d) := minx∈∆(d) q(x), where

∆ :=

�
x ∈ Rn,

n�

i=1

xi = 1, xi ≥ 0 (i = 1, . . . , n)

�
, ∆(d) := {x ∈ ∆ | dx ∈ Nn}.

are, respectively, the standard simplex and the set of rational points with denominator

d in ∆. Then,

qmin,∆(d) − qmin,∆ ≤ 1

d

�
max

i=1,...,n
q(ei)− qmin,∆

�
.

One may apply Proposition 2.2 to the hypercube Q, by viewing Q as the convex
hull of its vertices, i.e. by mapping Q to a simplex ∆N in RN (N := 2n).

Corollary 2.3. Let p = xTAx+ bTx+ c be a polynomial of degree 2. Then,

pmin,Q(d) − pmin,Q ≤ 1

d

�
max

x∈{0,1}n
p(x)− pmin,Q

�
.
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Proof. Consider the linear mapping φ that maps y = (yI)I⊆[n] ∈ RN to φ(y) =�
I⊆[n] yIχ

I ∈ Rn, where χI ∈ {0, 1}n denotes the incidence vector of the subset

I ⊆ [n]. Define the polynomial q in the variables y = (yI)I⊆[n] by q(y) = φ(y)TAφ(y)+
(
�

I yI)b
Tφ(y) + c. Thus q(y) = p(φ(y)) for y ∈ ∆N . Moreover, φ(∆N ) = Q. Indeed,

φ(∆N ) ⊆ Q is obvious. Conversely, if x ∈ Q with say 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, then

x = x1χ
[n] + (x2 − x1)χ

[n]\{1} + . . .+ (xn − xn−1)χ
[n]\{1,...,n−1} + (1− xn)χ

∅,

showing x ∈ φ(∆N ). This also shows φ(∆N (d)) = Q(d). Therefore, pmin,Q = qmin,∆N

and pmin,Q(d) = qmin,∆N (d). Thus the corollary follows from Proposition 2.2, as
maxI⊆[n] q(eI) = maxx∈{0,1}n p(x). ✷

We now show that our new bound (2.5) dominates the bound from Corollary 2.3.
Proposition 2.4. Let p = xTAx+ bTx+ c be a polynomial of degree 2. Then,

1

4

�

i∈I+

Aii ≤ max
x∈{0,1}n

p(x)− pmin,Q.

Proof. Assume first that I+ = [n]. Let x ∈ {0, 1}n be a global maximizer of p over
{0, 1}n and set S := {i ∈ [n] | xi = 1}, T = [n] \ S. Then, p(x − ei) ≤ p(x) for all
i ∈ S and p(x+ ei) ≤ p(x) for all i ∈ T . This implies Aii − bi − 2xTAei ≤ 0 for i ∈ S
and Aii + bi + 2xTAei ≤ 0 for i ∈ T . Summing over S and over T we obtain:

�

i∈S

Aii − bTx− 2xTAx ≤ 0,
�

i∈T

Aii + bT (e− x) + 2xTA(e− x) ≤ 0.

Summing these two relations implies
�

i∈[n] Aii ≤ 4xTAx+ 2bTx− bT e− 2xTAe and
thus

1

4

�

i∈[n]

Aii ≤ xTAx+
1

2
bTx− 1

4
bT e− 1

2
xTAe

� �� �
:=RHS

.

One can verify that RHS= 1

4
p(e − x) + 3

4
p(x) − p(e/2), which implies RHS≤ p(x) −

pmin,Q and concludes the proof in the case when I+ = [n]. Suppose now I+ ⊆ [n].
Define the polynomial q in the variables y = (xi | i ∈ I+) by q(y) := p(y, 0, . . . , 0) =
yTA+y + bT

+
y, where A+ is the principal submatrix of A indexed by I+ and b+ :=

(bi | i ∈ I+). The above argument shows that 1

4

�
i∈I+

Aii ≤ maxy∈{0,1}I+ q(y) −
q
min,[0,1]I+ . The result now follows after observing that maxy∈{0,1}I+ q(y) ≤ maxx∈{0,1}n p(x)

and miny∈[0,1]I+ q(y) ≥ minx∈[0,1]n p(x). ✷

3. Results for polynomials of higher degree . We now show how the results
from the preceding section for quadratic polynomials extend to polynomials with an
arbitrary degree m ≥ 1. The basic idea is the same; namely we will establish an
identity analogous to (2.3) using Bernstein approximations. The technical details
are however a bit more involved and we will only work with bounds on the constant
C(d, p) appearing in (2.3), not an explicit expression as in the quadratic case.

We start with an easy, but useful result, which shows how to express any term
−λxh(1− x)k with λ > 0 and of degree t, as −λ+ q for some q ∈ Ht(g).

Lemma 3.1. For any h, k ∈ Nn
, −xh(1 − x)k + 1 ∈ Ht(g), where t := |h + k| =

deg(xh(1− x)k). Proof. The proof is by induction on the number n of variables.
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First we show the result in the univariate case n = 1; say x = x1 is a univariate
variable. We use induction on h+k. If h+k = 0 there is nothing to prove. Let h+k ≥
1. If h ≥ 1, then−xh(1−x)k = −x·xh−1(1−x)k = (1−x)·xh−1(1−x)k−xh−1(1−x)k =
xh−1(1− x)k+1 − xh−1(1− x)k and we can conclude using the induction assumption
applied to the term −xh−1(1−x)k. If h = 0, then −(1−x)k = −(1−x) · (1−x)k−1 =
x(1 − x)k−1 − (1 − x)k−1 and again conclude using induction applied to the term
−(1 − x)k−1. We now consider the multivariate case n ≥ 2. We have just proved
that −xh1

1
(1 − x1)k1 = −1 +

�
r1,s1∈N|r1+s1≤h1+k1

λr1,s1x
r1
1
(1 − x1)s1 with λr1,s1 ≥

0. Hence −xh(1 − x)k = −
�n

i=2
xhi
i (1 − xi)ki +

�
r1,s1|r1+s1≤h1+k1

λr1,s1x
r1
1
(1 −

x1)s1
�n

i=2
xhi
i (1−xi)ki and the result follows using the induction assumption for the

case n− 1. ✷

As in the quadratic case, our strategy is now to write p as

p = Bd(p− pmin) + q + pmin,Q − C(d, p), (3.1)

where q ∈ Ht(g) (for some suitable t), and C(d, p) is a constant which depends only
on p and d. It is useful to consider first the univariate case, whose treatment will be
used afterwards in the multivariate case.

3.1. The univariate case. We first establish some facts on the Bernstein ap-
proximation of monomials. Recall the Bernstein approximation of a monomial: Bd(xk) =
1

dk

�k
i=0

bk,idixi, from property (1.18), where di = d(d − 1) · · · (d − i + 1), bk,i > 0
and bk,k = 1. Moreover,

1

dk

k�

i=0

bk,id
i = 1, (3.2)

which follows from the fact that Bd(f)(1) = f(1) = 1 for f(x) = xk.
Lemma 3.2.

(i) dk = dk−
�k
2

�
dk−1+

�k−2

i=0
(−1)k−iγ(k)

i di, for some scalars γ(k)
i satisfying γ(k)

i ≥ 0

and 1−
�k
2

�
+
�k−2

i=0
(−1)k−iγ(k)

i = 0.

(ii) Bd(xk) = xk +
�k

i=0
a(k)i xi

, for some scalars a(k)i satisfying − 1

d

�k
2

�
≤ a(k)k ≤ 0,

0 ≤ a(k)i for i ≤ k − 1, and
�k−1

i=0
a(k)i ≤ 1

d

�k
2

�
.

Proof. (i) follows by expanding the univariate polynomial x(x− 1) · · · (x− k + 1).

(ii) By construction, we have a(k)i = di

dk bk,i > 0 for i ≤ k − 1, and a(k)k = dk

dk bk,k − 1 =
dk

dk − 1. Using (3.2) combined with (i), we obtain: 1 =
�k

i=0
bk,i

di

dk =
�k−1

i=0
a(k)i + dk

dk ,

and thus
�k−1

i=0
a(k)i = −a(k)k = 1 − dk

dk = 1

d

�k
2

�
− 1

dk

��k−2

i=0
(−1)k−iγ(k)

i di
�
. Hence

it suffices now to verify that
�k−2

i=0
(−1)k−iγ(k)

i di ≥ 0. Using again (i), we find that
�k−2

i=0
(−1)k−iγ(k)

i di = dk−dk+
�k
2

�
dk−1, which can be easily verified to be nonnegative

using induction on k. ✷

Let p =
�m

k=0
pkxk be a univariate polynomial of degree m. Then, we have

p−Bd(p) =
m�

k=0

pk(x
k −Bd(x

k)) = −
m�

k=0

k�

i=0

pka
(k)
i xi.
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Now we split the sum depending on the signs of pk and of a(k)i (negative for i = k and
positive for i ≤ k − 1) and we use Lemma 3.1 to write

p−Bd(p) = q −
� �

k≥1|pk≥0

pk

k−1�

i=0

a(k)i +
�

k≥0|pk<0

|pk||a(k)k |

� �� �
:=C(d,p)

�
,

where q ∈ Hm(g). Next, since |pk| ≤ L(p) and, by Lemma 3.2 (ii), |a(k)k |,
�k−1

i=0
a(k)i ≤

1

d

�k
2

�
, we can bound C(d, p) as follows:

C(d, p) ≤ 1

d
L(p)

m�

k=0

�
k

2

�
=

1

d
L(p)

�
m+ 1

3

�
. (3.3)

Thus we have shown:
Proposition 3.3. Let p be a univariate polynomial of degree m, Q = [0, 1], and

g stand for the polynomials x, 1− x. For any integer d ≥ 1, we have

p = Bd(p− pmin,Q) + q + pmin,Q − C(d, p), (3.4)

where q ∈ Hm(g), Bd(p−pmin,Q) ∈ Hd(g), and C(d, p) is a scalar satisfying C(d, p) ≤
1

dL(p)
�m+1

3

�
. If p is positive on [0, 1] and if d ≥

�
L(p)

pmin,Q

�m+1

3

��
, then pmin,Q−C(d, p) ≥

0 and thus (3.4) is a decomposition of Handelman type with degree d.

3.2. The multivariate case. In the multivariate case we have to deal with the
terms xk − Bd(xk), where xk =

�n
i=1

xki
i is a multivariate monomial and Bd(xk) =�n

i=1
Bd(x

ki
i ). For this we use the identity:

a1 · · · an − b1 · · · bn =
n�

j=1

b1 · · · bj−1aj+1 · · · an(aj − bj)

and write:

n�

j=1

x
kj

j −
n�

j=1

Bd(x
kj

j ) =
n�

j=1

Bd(x
k1
1
) · · ·Bd(x

kj−1

j−1
)x

kj+1

j+1
· · ·xkn

n (x
kj

j −Bd(x
kj

j )).

Let p =
�

k∈Nn||k|≤m pkxk be a polynomial of degree m. Fix an integer d ≥ 1. We
have:

p−Bd(p) =
�

k||k|≤m

pk(x
k−Bd(x

k)) =
�

k||k|≤m

pk
� n�

j=1

Bd(x
k1
1
) · · ·Bd(x

kj−1

j−1
)x

kj+1

j+1
· · ·xkn

n� �� �
:=qk,j

(x
kj

j −Bd(x
kj

j ))
�
.

Here, each polynomial qk,j has degree |k| − kj and belongs to the set H|k|−kj
(g).

Moreover, in view of (3.2), each qk,j can be written as
�

h,k λh,kxh(1− x)k for some
λh,k ≥ 0 satisfying

�
h,k λh,k = 1. Next, applying Lemma 3.2 (ii), we can reformulate

each x
kj

j −Bd(x
kj

j ) and write:

p−Bd(p) = −
�

k||k|≤m

pk
� n�

j=1

qk,j
� kj�

ij=0

a
(kj)

ij
x
ij
j

��
.
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As in the univariate case, we split the sum depending on the signs of pk and of a
(kj)

ij
.

Then, using Lemma 3.1 and the fact that each qk,j can be written in H|k|−kj
(g) with

coefficients summing up to 1, we obtain:

p−Bd(p) = q −
�

k|pk<0

|pk|
� n�

j=1

|a(kj)

kj
|
�
+

�

k|pk>0

pk
� n�

j=1

kj−1�

ij=0

a
(kj)

ij

�

� �� �
:=C(d,p)

, (3.5)

where q ∈ Hm(g). We now bound the constant C(d, p). As in the univariate case,

we use the fact that |a(kj)

kj
|,
�kj−1

ij=0
a
(kj)

ij
≤ 1

d

�kj

2

�
, combined with |pk| ≤ L(p) |k|!k! , to

derive:

C(d, p) ≤ L(p)

d

� �

k||k|≤m

|k|!
k!

� n�

j=1

�
kj
2

��
.

Next, using the fact that
�n

j=1

�kj

2

�
≤

�|k|
2

�
and

�
k∈Nn||k|=l

|k|!
k! = nl, we obtain:

�

k||k|≤m

|k|!
k!

� n�

j=1

�
kj
2

��
≤

m�

l=0

nl

�
l

2

�
≤ nm

m�

l=0

�
l

2

�
= nm

�
m+ 1

3

�
.

Therefore,

C(d, p) ≤ L(p)

d

�
m+ 1

3

�
nm. (3.6)

Hence we have obtained a decomposition of the form (3.1), where q ∈ Hm(g) and
C(d, p) is a constant which is bounded as in (3.6). We can now formulate our main
result, the analogue of Theorem 2.1 for the quadratic case.

Theorem 3.4. Let p be a polynomial of degree m, Q = [0, 1]n, and g as in (1.5).

(i) For any integer d ≥ 1, p − pmin,Q + L(p)
d

�m+1

3

�
nm ∈ Hr(g) for some integer

r ≤ max(dn,m).

(ii) If p is positive on Q, then p ∈ Hr(g) for some integer r ≤ n
�

L(p)
pmin,Q

�m+1

3

�
nm

�
.

(iii) For any integer d ≥ m, max(pmin,Q − p(d)Ber, pmin,Q(d) − pmin,Q) ≤ pmin,Q(d) −
p(d)Ber ≤

L(p)
d

�m+1

3

�
nm.

Proof. (i) follows directly from (3.5), (3.6), and (ii) follows by chosing for d the

smallest integer for which pmin,Q − L(p)
d nm

�m+1

3

�
≥ 0. The proof for (iii) is similar to

that of Theorem 2.1 (iii) and is thus omitted. ✷

4. Concluding remarks. We have seen how Bernstein approximations can be
used for obtaining stronger degree and error bounds for the semidefinite program-
ming approximations obtained by applying Schmüdgen’s Positivstellensatz to the hy-
percube. This approach via Bernstein approximations is also suited for optimization
over the simplex and, although not explicitly mentioned there, it underlies some of
the results of de Klerk et al. [3]. One of the main results of [3] is that the prob-
lem of computing the minimum of an n-variate form q over the simplex ∆ admits a
polynomial time approximation scheme when fixing the degree m of q. This PTAS
is provided simply by computing the minimum qmin,∆(d) of q over the set of rational
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points in ∆ with given denominator d. Indeed, the following inequality is shown in
[3]: For any integer d ≥ 1,

qmin,∆(d) − qmin,∆ ≤ 1

d
cm(qmax,∆ − qmin,∆), (4.1)

where cm is a constant depending only on the degreem of q, and qmax,∆ := maxx∈∆ q(x);
moreover, one can compute qmin,∆(d) in polynomial time, simply by enumeration since
|∆(d)| = O(nd). Note that qmin,∆(d) is the analogue of the parameter pmin,Q(d) in-
troduced in (1.14); however, the cardinality of Q(d) is exponential in the number of
variables and computing pmin,Q(d) is a hard problem. The inapproximability results
for the maximum cut and stable set problems described in the introduction show that
no polynomial time approximation scheme can exist for polynomial optimization over
the hypercube if P �= NP. (See the recent survey [2] for the relevant definitions and
detailed complexity results.) The fact that our error bounds apply only to the SDP
relaxations of order r = Ω(n) (namely, r = dn, for d integer), should be seen in this
light.

Using the correspondence between the hypercube Q and the simplex in the space
R2

n
introduced in the proof of Corollary 2.3, one can derive directly from (4.1) the

following analogous error estimate for the parameter pmin,Q(d):

pmin,Q(d) − pmin,Q ≤ 1

d
cm(pmax,Q − pmin,Q), (4.2)

where cm is the constant from (4.1) depending only on the degree m of p. It would
be interesting to see whether there is an analogous error estimate for the parameters

p(d)
Ber

or p(r)
han,g.

As mentioned in the introduction, the semidefinite bound p(r)
sch,g based on Schmüdgen’s

Positivstellensatz can be computed by a semidefinite program involving 2s matrices
constrained to be positive semidefinite, thus it can be efficiently computed only when
fixing the order r of the relaxations and the number s of polynomial inequalities de-
scribing S. For this reason Lasserre [13] considers semidefinite approximations based
on the Positivstellensatz of Putinar [24], which claims that (under a mild assumption
on the polynomials gj describing S) every positive polynomial on S belongs to

M(g) :=
�
σ0 +

m�

j=1

σjgj | σ0, σj are sums of squares of polynomials
�
,

the quadratic module generated by the gj ’s. When bounding the degrees, i.e. when
considering the truncated quadratic module Mr(g) where deg(σ0), deg(σjgj) ≤ r, the
corresponding bound

p(r)
put,g := sup

�
t | p− t ∈ Mr(g)

�

can be computed with a semidefinite program involving only s + 1 semidefinite ma-
trices, thus efficiently when fixing the order r of the relaxation. Nie and Schweighofer
[21] give degree and error bounds for these approximations which, analogously to
those in Theorem 1.3, also depend on some unknown constant (although there is now
an additional exponential dependency). It would be very interesting to give explicit
degree and error bounds for Putinar type representations in the case of the hypercube.
In some recent work, Nie [5] gives error bounds of the form c(pmax,S − pmin,S) for the
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Putinar type approximation p(r)
put,g and S as in (1.4); for the hypercube, the constant

c is of the form Ω(nr) for r ≥ deg(p) and thus the error bounds do not tend to zero
as r → ∞.

One possible way for giving explicit degree and error bounds for Putinar type
representations on the hypercube would be to relate the quadratic module Mr(g) and
the preordering Tr(g), when considering the polynomials gi := xi − x2

i (i = 1, . . . , n)
describing the hypercube. Obviously Mr(g) ⊆ Tr(g). The reverse inclusion is not true
since the monomial

�s
i=1

xi does not belong to M(g) (for 1 < s ≤ n). However, this
monomial belongs to M(g) after adding a suitable constant. Namely, we can show
the following: For n even,

n�

i=1

xi + Cn ∈ Mn(g) (4.3)

for some constant Cn ≤ 1.
Here are two arguments why this is true. The first one relies on showing that the

polynomial

n�

i=1

xi + 1 +
n�

i=1

(x2

i − xi)x
n−2

i

is a sum of squares of polynomials (which follows directly applying [4, Corollary 2.2]).
The second argument (communicated to us by V. Powers and B. Reznick) relies on
the following identity:

n�

i=1

xi + 1 =
n�

i=1

xi +
1

n

n�

i=1

xn
i +

1

n

n�

i=1

(1− xn
i ).

Then note that the polynomial
�n

i=1
xi+

1

n

�n
i=1

xn
i is a sum of squares of polynomials

(shown by Hurwitz, see [25], or use [4, Theorem 2.1]) and note that each polynomial
1−xn

i lies in Mn(xi−x2

i ) ⊆ Mn(g), since it can be written as 1−xn
i = (1−xi)2+(xi−

x2

i )(2+xi+x2

i + . . .+xn−2

i ) where the univariate polynomial 2+xi+x2

i + . . .+xn−2

i =

1 +
xn−1
i −1

xi−1
is nonnegative and thus a sum of squares.

We conjecture that for n even the smallest constant Cn for which (4.3) holds is
Cn = 1/n(n + 2). We verified that this is true for n = 2, 4, 6 (using computer for
n = 4, 6). For n = 2 the identity

x1x2 +
1

8
=

1

2

�
x1 + x2 −

1

2

�2

+
1

2
(x1 − x2

1
) +

1

2
(x2 − x2)

2

shows C2 ≤ 1/8.
The idea is that, using (4.3), one may easily show

Bd(p− pmin,Q) + (pmax,Q − pmin,Q)Cr2
nd ∈ Mr(g) for even r ≥ nd. (4.4)

This in turn allows us to derive error bounds for the Lasserre hierarchy of approxi-
mations. For example, if p is a quadratic polynomial, we may use (2.3) and (4.4) to
obtain:

p−



pmin,Q − 1

d

�

i∈I+

Aii − (pmax,Q − pmin,Q)Cr2
nd



 ∈ Mr(g) for even r ≥ nd.
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If the conjecture Cr = 1

r(r+2)
holds, we may set r = 2nd for any given integer d ≥ 1

to obtain

p−



pmin,Q − n

log
2
r

�

i∈I+

Aii −
pmax,Q − pmin,Q

r + 2



 ∈ Mr(g) for r = 2nd, d ≥ 1.

Thus we obtain the following error bound for the Lasserre hierarchy:

pmin,Q − p(r)put,g ≤ n

log
2
r

�

i∈I+

Aii +
pmax,Q − pmin,Q

r + 2
for r = 2nd, d ≥ 1.
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