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Abstract. We consider the problem of minimizing a polynomial function on R
n, known

to be hard even for degree 4 polynomials. Therefore approximation algorithms are of
interest. Lasserre [15] and Parrilo [23] have proposed approximating the minimum of the
original problem using a hierarchy of lower bounds obtained via semidefinite program-
ming relaxations. We propose here a method for computing tight upper bounds based
on perturbing the original polynomial and using semidefinite programming. The method
is applied to several examples.
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1. Introduction

We consider the problem:

(1) p∗ := inf
x∈Rn

p(x)

of minimizing a polynomial p in n indeterminates over R
n. We may assume that p has

an even degree 2m, since otherwise p∗ = −∞. There are three possibilities: Either p has
an infinite infimum (i.e., p∗ = −∞), or p has a finite infimum (e.g., for the polynomial
p(x1, x2) = x2

1+(x1x2−1)2), or p has a minimum. Computing the infimum of a polynomial
is a hard problem, already for degree 4 polynomials. Indeed, it contains the problem of
deciding whether a matrix is copositive, known to be co-NP-hard [21]; an n× n matrix P
being copositive if p(x) :=

∑n
i,j=1 Pijx

2
i x

2
j ≥ 0 for all x ∈ R

n, i.e., if p∗ = 0. Alternatively,

problem (1) contains the problem of deciding whether an integer sequence a1, . . . , an can
be partitioned, known to be NP-complete [7]; a1, . . . , an being partitionable if there exists
x ∈ {±1}n such that aT x = 0, i.e., if the infimum of the polynomial p(x) := (aT x)2 +
∑n

i=1(x
2
i − 1)2 is equal to 0.

1.1. Some known approaches to polynomial unconstrained minimization. An
approach followed by some authors (e.g., by Hägglöf et al. [8]) is to look at the first
order conditions ∂p/∂xi = 0 (i = 1, . . . , n). Various algebraic techniques can be used for
determining the real solutions to this system of polynomial equations; e.g., using Groeb-
ner bases and the eigenvalue method, using resultants and discriminants, or homotopy
methods (see, e.g., [3]; see [25] for a discussion and comparison). However, there are sev-
eral difficulties with such an approach. It is computationally expensive (e.g., computing
a Gröbner basis may be computationally very demanding), the number of critical points
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can be infinite and, moreover, this approach applies only if the polynomial p attains its
minimum. We will come back to this type of approach later in this section.

Hanzon and Jibetean [9] (see also Jibetean [12]) propose to go around these difficulties
by considering a perturbation:

(2) pλ(x) := p(x) + λ

(

n
∑

i=1

x2m+2
i

)

of the original polynomial p for small λ > 0. Set

p∗λ := inf
x∈Rn

pλ(x).

Thus, p∗ ≤ p∗λ ≤ p∗+λ‖x∗‖2m+2 if x∗ is a global minimizer of p. The perturbed polynomial
has the following properties: pλ attains its minimum, the set of critical points of pλ is finite,
and the limit of the minima p∗λ as λ → 0 is equal to the infimum p∗ of p. Moreover, if
p has a global minimum, then the limit set as λ ↓ 0 of the set of global minimizers of
pλ is contained in the set of global minimizers of p, and each connected component of
the set of global minimizers of p contains a point which is the limit of a branch of local
minimizers of pλ. Exploiting these facts, Hanzon and Jibetean propose an exact algorithm
for computing the limit p∗ of the minima p∗λ as well as a global minimizer of p (if some
exists). Their algorithm uses algebraic techniques, some of them closely related to the
algebraic machinery developed by Basu, Pollack and Roy [1]. Hanzon and Jibetean’s
method applies to any polynomial p, i.e., no assumption is made on the existence of a
minimum. However, its computational cost is very high and the algorithm can be applied
in practice only to small instances.

Another type of approach consists of solving a convex (in fact, semidefinite) relaxation
of the original problem; see, e.g., Lasserre [15], Parrilo [22, 23], Shor [28]. The approach
applies more generally to the problem:

(3) p∗ := inf
x∈K

p(x), where K := {x ∈ R
n | h1(x) ≥ 0, . . . , h`(x) ≥ 0}

of minimizing p over a set defined by polynomial inequalities and equations (treating an
equation h(x) = 0 as two opposite inequalities: h(x) ≥ 0, −h(x) ≥ 0). Following Lasserre
[15], set di := ddeg(hi)/2e and, for any integer k ≥ max(ddeg(p)/2e, d1, . . . , d`), consider
the semidefinite program:

(4) p∗L,k := inf pT y s.t. Mk(y) � 0, Mk−di
(hiy) � 0 (i = 1, . . . , `), y0 = 1

(the moment relaxation of order k of (3)) and its dual:

(5)
ρ∗k := sup ρ s.t. p(x) − ρ = u0 +

∑`
i=1 uihi, where

u0, u1, . . . , u` are sum of squares of polynomials
and deg(u0),deg(u1h1), . . . ,deg(u`h`) ≤ 2k

(the s.o.s. relaxation of order k of (3)). Program (4) uses the variables y = (yα)α∈S2k
,

Mk(y) := (yα+α′)α,α′∈Sk
is the moment matrix of order k, Mk−di

(hiy) are localizing ma-
trices, and for an integer k, we set Sk := {α ∈ Z

n
+ | |α| :=

∑n
i=1 αi ≤ k}. Then,
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ρ∗k ≤ p∗L,k ≤ p∗, ρ∗k ≤ ρ∗k+1, and p∗L,k ≤ p∗L,k+1. Under some assumption on K, there is as-
ymptotic convergence of the parameters ρ∗k, µ∗

k to p∗. The following cases are of particular
interest for our purpose:

(I) K = {x ∈ R
n |
∑n

i=1 x2
i ≤ R2}. Then there is asymptotic convergence of ρ∗k and

p∗L,k to p∗ ([15]).

(II) K = {x ∈ R
n | h1(x) = 0, . . . , h`(x) = 0} and the polynomials h1, . . . , h` generate

a zero-dimensional ideal I (i.e., they have finitely many common complex zeros).
Then there is finite convergence of p∗L,k to p∗, and of ρ∗k when h1, . . . , h` form a

Groebner basis of I ([18]) or when I is radical ([24]).

(III) K = {x ∈ R
n | ∂p

∂xi
(x) = 0 (i = 1, . . . , n)}. Then there is asymptotic conver-

gence of ρ∗k and p∗k to p∗, and finite convergence when the ideal Igrad generated

by the polynomials ∂p
∂xi

(i = 1, . . . , n) is radical ([6]). (By Case (II) there is finite

convergence of p∗k to p∗ when Igrad is zero-dimensional.)

Henrion and Lasserre [11] give the following stopping criterion: If the optimum solution y
to (4) satisfies the rank condition:

(6) rankMk(y) = rankMk−d(y), where d := max(d1, . . . , d`),

then p∗k = p∗. See Section 2.2 for details.
For our original unconstrained minimization problem (1) (then ` = 0 and K = R

n),
we have: p∗L,k = p∗L,m ≤ p∗ for all k ≥ m, with equality: p∗L,m = p∗ if and only if p − p∗

is a sum of squares. One possible option to better approximate p∗ is to transform the
unconstrained problem (1) into a constrained problem of the form (3). This is possible if
p attains its minimum as p∗ can then be formulated as

(7) p∗ = p∗grad := inf p(x) s.t. ∂p(x)/∂xi = 0 (i = 1, . . . , n).

The equality p∗ = p∗grad does not hold in general if p does not attain its minimum; for

instance, p∗ = 0 and p∗grad = 1 for p(x1, x2) = x2
1 + (x1x2 − 1)2; p∗ = −∞ and p∗grad = 0

for p(x) = x3. If p has a minimum and if some upper bound R is known a priori on the
norm of a global minimizer, then p∗ can also be expressed as

(8) p∗ = min p(x) s.t.

n
∑

i=1

x2
i ≤ R2.

A major drawback of approaches based on formulations like (7) or (8) is that it is not
clear how to test whether a polynomial has a minimum and, for (8), how to find a ball
containing a global minimizer. We will however present in Section 2.1 a result of Marshall
[19] concerning a class of polynomials for which such a ball can be determined before hand.

1.2. Our approach. In this paper we propose the following strategy for going around
these difficulties. Following Hanzon and Jibetean [9], we consider the perturbed polyno-
mial pλ from (2). As computing the exact limit p∗ of the minima p∗λ is not a realistic
option for large problems, we set up to the less ambitious goal of computing a good upper
approximation p∗λ of p∗ for some small value of λ. As mentioned earlier, the polynomial
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pλ enjoys several properties (that p may not have in general). Namely, pλ attains its
minimum, which can thus be formulated as

(9) p∗λ = min
x∈Vλ∩Rn

pλ(x), where Vλ := {x ∈ C
n | hλ,i(x) :=

∂pλ

∂xi
(x) = 0 (i = 1, . . . , n)}

and the set Vλ is finite (|Vλ| ≤ (2m + 1)n). Moreover, one can give an explicit radius:

(10) Rλ =
nm

λ

∑

α6=0

|pα|

for a ball containing the global minima of pλ (see Corollary 3); thus

(11) p∗λ = min
x∈Bλ

pλ(x), where Bλ := {x ∈ R
n | hλ,0(x) := R2

λ −
n
∑

i=1

x2
i ≥ 0}.

By minimizing p(x) over the algebraic set Vλ ∩ R
n or over the ball Bλ, one obtains even

better bounds µ∗
λ and β∗

λ, respectively; that is,

p∗ ≤ µ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ p∗λ, p∗ ≤ β∗

λ := min
x∈Bλ

p(x) ≤ p∗λ.

As the parameters µ∗
λ and β∗

λ are expressed via constrained polynomial programs of the
form (3), a first option is to apply Lasserre’s approach for computing them. Namely, for
any integer k ≥ m + 1, consider the programs:

(12) µ∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0, Mk−m−1(hλ,iy) = 0 (i = 1, . . . , n),

(13) β∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0, Mk−1(hλ,0y) � 0.

Then,
µ∗

L,k,λ ≤ µ∗
L,k+1,λ ≤ µ∗

λ, β∗
L,k,λ ≤ β∗

L,k+1,λ ≤ β∗
λ for k ≥ m + 1.

As k goes to infinity, there is asymptotic convergence of β∗
L,k,λ to β∗

λ (recall Case (I)) and

finite convergence of the parameters µ∗
L,k,λ to µ∗

λ (recall Case (II)).
As the set Vλ is finite, another option for computing the bound µ∗

λ is to apply the
semidefinite representation result for finite varieties of Laurent [18]. Namely, µ∗

λ can be
expressed as the optimum of the semidefinite program:

(14) µ∗
λ = min pT y such that MB(y) � 0, y0 = 1,

involving a combinatorial moment matrix MB(y). Here, y = (yβ)β∈B ∈ R
B, where

B := {β ∈ Z
n | 0 ≤ βi ≤ 2m (i = 1, . . . , n)}

has the property that the set of monomials {xβ | β ∈ B} forms a basis of R[x1, . . . , xn]/Iλ,
and Iλ is the ideal generated by hλ,i = ∂pλ/∂xi (i = 1, . . . , n). The matrix MB(y) is ob-
tained from a classical moment matrix by ‘factoring’ through Iλ which, roughly speaking,
means that the equations hλ,i(x) = 0 are used for expressing any yα (α ∈ Z

n
+) in terms of

yβ (β ∈ B). As a by-product, this implies the finite convergence of the bounds µ∗
L,k,λ from

(12) to µ∗
λ; more precisely, µ∗

L,k,λ = µ∗
λ for k ≥ 2nm (by Theorem 23 in [18]).

The semidefinite program (14) is more compact than (12) (for any k ensuring finite
convergence). Indeed, the program (14) involves only one linear matrix inequality (LMI)

and |B| = (2m + 1)n variables whereas (12) involves n + 1 LMI’s and
(

n+2k
2k

)

variables.
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Moreover the size of the matrix MB(y) is |B| = (2m + 1)n, which is smaller than the

size
(

n+k
k

)

of the matrix Mk(y) for any k ≥ 2nm. Solving the semidefinite program
(14) is, however, still out of reach for large n or m. Moreover, the entries of MB(y)
are polynomial in 1/λ (and linear in y) and thus, for λ close to 0, they may be ill-
conditioned. These difficulties can be addressed in the following way. Given an integer k,
m ≤ k ≤ 2nm, consider the truncated semidefinite program obtained by considering the
principal submatrix of MB(y), denoted MBk

(y), indexed by the subset Bk := B ∩ Sk and
set

(15) µ∗
k,λ := inf pT y such that MBk

(y) � 0, y0 = 1.

Thus,

µ∗
k,λ ≤ µ∗

k+1,λ ≤ µ∗
2nm,λ = µ∗

λ.

When the optimum solution MBk
(y) satisfies the following rank condition:

(16) rankMBh
(y) = rankMBh−1

(y)

for some m ≤ h ≤ k, one can conclude that the optimum value of the truncated problem
(15) is an upper bound for the infimum p∗; that is, p∗ ≤ µ∗

k,λ ≤ µ∗
λ. Moreover, one can

extract a point x for which p∗ ≤ p(x) ≤ µ∗
k,λ, thus giving a certificate for the claimed

upper bound µ∗
k,λ on p∗ (see Corollary 19). In this way, one is (often) able to compute

a very good upper approximation of p∗ by solving a much smaller semidefinite program.
Moreover the degree in 1/λ of the entries of MBk

(y) is at most k − m (see Theorem 18)
and thus remains small for small values of k. Several examples illustrating this procedure
will be given in Section 3.2. In most cases one is able to conclude that the parameter µ∗

k,λ

from the program (15) is an upper bound for p∗ already for k = m + 1 or m + 2, in which
case the entries of MBk

(y) are at most quadratic in 1/λ and we are thus able to carry
out the computations for a small perturbation parameter λ ∼ 10−4 and sometimes even
smaller. By the results of [9], for such small λ, the extracted minimizer xλ is very close to
a global minimizer of p (if some exists); this will be verified on the examples.

Given an integer k ≥ m, the program (15) can be seen as a ‘compact’ analogue of the
program (12). We can prove the following interlacing property for their optimal values
(see Theorem 17):

(17) µ∗
k,λ ≤ µ∗

L,k+1,λ ≤ µ∗
k+1,λ

for m ≤ k ≤ 2nm, with equality µ∗
2nm,λ = µ∗

L,2nm,λ = µ∗
λ; see Examples 4, 5, 6 for a

numerical comparison. Program (12) involves matrices of size |Sk| =
(n+k

k

)

and |S2k| =
(n+2k

2k

)

variables, whereas its compact analogue (15) involves matrices of size |Bk| = |Sk∩B|
and |B2k| = |S2k ∩B| variables. For k ≤ 2m, Bk = Sk, but B2k is then already significantly
smaller than S2k. This is illustrated in the next table, which displays some values of
|S2k \ B2k| = |S2k \ B| for k = m + 1,m + 2.
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|S2m+2 \ B| |S2m+4 \ B| for m ≥ 2 |S2m+4 \ B| for m = 1
n n(n + 1) 4n + 12

(n
2

)

+ 12
(n
3

)

+ 4
(n
4

)

4n + 11
(n
2

)

+ 12
(n
3

)

+ 4
(n
4

)

n = 2 6 20 19
n = 3 12 60 57
n = 4 20 140 136
n = 5 30 280 275
n = 10 110 2860 2850

Gain in number of variables when using program (15) instead of program (12)

1.3. Contents of the paper. The paper is organized as follows. Section 2 contains
preliminaries about polynomials and about classical and combinatorial moment matrices
and their application to polynomial optimization. In Section 3, we present our method
for computing the upper approximations µ∗

λ for the infimum p∗ of a polynomial p over R
n

and, in Section 3.2, several examples on which our method has been tested.

2. Preliminaries

2.1. Polynomials. We begin with some preliminaries on ideals of polynomials. Through-
out the paper, R[x1, . . . , xn] denotes the ring of real polynomials in n indeterminates. For
an integer k ≥ 0, Sk denotes the set of α ∈ Z

n
+ with |α| :=

∑n
i=1 αi ≤ k. Write a poly-

nomial p ∈ R[x1, . . . , xn] with (total) degree at most k as p(x) =
∑

α∈Sk
pαxα, where xα

denotes the monomial xα := xα1

1 · · ·xαn

n . As usual, we identify a polynomial p of degree
at most k with the sequence of its coefficients p = (pα)α∈Sk

.
Let I be an ideal in R[x1, . . . , xn]. The set V = V (I) := {x ∈ C

n | f(x) = 0 ∀f ∈ I}
is its associated (complex) variety. The ideal I is said to be zero-dimensional if |V | < ∞.

The sets I(V ) := {f ∈ R[x1, . . . , xn] | f(v) = 0 ∀v ∈ V }, and
√

I := {f ∈ R[x1, . . . , xn] |
fk ∈ I for some integer k ≥ 1} are again ideals in R[x1, . . . , xn], which obviously contain

the ideal I. The Nullstellensatz asserts that these two ideals coincide; namely,
√

I = I(V ).

The ideal I is said to be radical when I =
√

I. Hence, by the Nullstellensatz,

(18)
I is radical ⇐⇒ the polynomials vanishing at all points of V

are precisely the polynomials in I.

The following result, relating the dimension of the quotient vector space R[x1, . . . , xn]/I
and the cardinality of V , can be found, e.g., in [2, §5.3].

(19)
|V | < ∞ ⇐⇒ dim R[x1, . . . , xn]/I < ∞,

|V | ≤ dim R[x1, . . . , xn]/I, with equality if and only if I is radical.

We now recall a result of Marshall [19] giving a sufficient condition for a polynomial to
have a minimum. Given a nonzero polynomial p, let p̃ be its highest degree homogeneous
component, defined as the sum of the terms of p having maximum degree, and set

p̃S := min
x∈S

p̃(x) where S := {x ∈ R
n |

n
∑

I=1

x2
i = 1}.

If p̃S < 0 then p has obviously an infinite infimum, i.e., p∗ = −∞. If p̃S > 0 then, following
Marshall [19], p is said to be stably bounded from below and, as the next result shows, p
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attains its minimum. On the other hand, no conclusion can be drawn when p̃S = 0; indeed,
p may have an infinite infimum (e.g., for p(x1, x2) = x2

1 +x2), or a finite infimum (e.g., for
p(x1, x2) = x2

1 + (x1x2 − 1)2), or a minimum (e.g., for p(x1, x2) = x2
1x

2
2).

Lemma 1. [19] Assume p is stably bounded from below. Given x ∈ R
n,

(20) p(x) ≤ 0 =⇒ ‖x‖ ≤ max(
1

p̃S

∑

α:|α|≤deg(p)−1

|pα|, 1).

In particular, any global minimum of p belongs to the ball centered at the origin with radius

Rp := max(1, 1
p̃S

∑

α:1≤|α|≤deg(p)−1

|pα|).

Proof. Say p has degree d and write p = p̃ + g, where all terms of p̃ have degree d
and all terms of g have degree ≤ d − 1. Let x ∈ R

n \ {0} such that p(x) ≤ 0. Thus,
p̃(x) ≤ −g(x) ≤

∑

α:|α|≤d−1 |pα||xα|. By assumption, p̃(x) = ‖x‖dp̃( x
‖x‖) ≥ ‖x‖dp̃S > 0.

On the other hand, if ‖x‖ ≥ 1 and |α| ≤ d − 1, then |xα| ≤ ‖x‖|α| ≤ ‖x‖d−1. Combining
these two facts, we find the relation (20). If x is a global minimum of p, then p(x) ≤ p(0)
and thus ‖x‖ ≤ Rp follows from (20) applied to the polynomial p − p(0).

In general, the polynomial p may not be stably bounded from below and it may not
even have a minimum. However, for any positive λ, the perturbed polynomial pλ is stably
bounded from below. Indeed, if p has degree 2m, then the highest degree homogeneous
component of pλ is equal to λ

∑n
i=1 x2m+2

i , whose minimum value over the unit sphere is

equal to λ
nm as the next lemma shows.

Lemma 2. Given an integer m ≥ 2, the minimum value taken by
∑n

i=1 x2m
i over the unit

sphere is equal to 1
nm−1 .

Proof. By evaluating f(x) :=
∑

i x
2m
i at the point x := 1√

n
(1, . . . , 1), we find that the

minimum value fS of f over the unit sphere is at most 1
nm−1 . To show the reverse inequality,

note that fS is equal to the minimum value of g(x) :=
∑n

i=1 xm
i over x ∈ R

n
+ with

∑n
i=1 xi = 1. Let x be a minimizer to this program. Applying the Karusch-Kuhn-Tucker

conditions, there exist λ ∈ R, z ∈ R
n
+ such that ∇g(x) − λe − z = 0 and xT z = 0. As

x, z ≥ 0, xizi = 0 for all i and ∂g
∂xi

(x) = λ if zi = 0. Say, z1 = . . . = zp = 0, zp+1, . . . , zn > 0

for some p ≤ n; thus xp+1 = . . . = xn = 0. For i = 1, . . . , p, ∂g
∂xi

(x) = λ = mxm−1
i . From

this follows that x1 = . . . = xp = 1
p . Now, g(x) = 1

pm−1 ≥ 1
nm−1 as p ≤ n.

Corollary 3. Given a polynomial p of degree 2m, the global minima of the perturbed
polynomial pλ(x) = p(x) + λ(

∑n
i=1 x2m+2

i ) are located in the ball Bλ with radius Rλ :=
nm

λ

∑

α6=0 |pα|.
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2.2. Moment matrices. We recall here some results about moment matrices, that we
need in the paper. Given a probability measure µ on R

n, the quantity yα :=
∫

xαµ(dx)
is called its moment of order α. A probability measure with finite support is of the form:
µ =

∑r
i=1 λiδxi

, where λi > 0,
∑r

i=1 λi = 1, xi ∈ R
n (the atoms of the measure); then µ

is said to be r-atomic. Here, δx is the Dirac measure at x ∈ R
n, having mass 1 at x and

mass 0 elsewhere.
The moment problem concerns the characterization of the sequences y ∈ RS2k (k ≥ 1)

that are the sequences of moments of some probability measure µ; in that case one also says
that µ is a representing measure for y. Given y ∈ R

S2k , its moment matrix of order k is the
matrix Mk(y) indexed by Sk with (α, β)-th entry yα+β, for α, β ∈ Sk. Given a polynomial
h(x) of degree 2d or 2d − 1, define the vector hy with entries (hy)α :=

∑

γ hγyα+γ for

α ∈ S2k−2d; Mk−d(hy) is known as a localizing moment matrix. A well known necessary
condition for the existence of a representing measure for y is the positive semidefiniteness
of its moment matrix.

Lemma 4. If y ∈ R
S2k has a representing measure µ, then Mk(y) � 0. Moreover, if the

support of µ is contained in the set {x | h(x) ≥ 0}, where h(x) is a polynomial of degree
2d or 2d − 1, then Mk−d(hy) � 0.

Proof. For p ∈ R
Sk , we have:

pT Mk(y)p =
∑

α,β∈Sk

pαpβyα+β =
∑

α,β∈Sk

pαpβ

∫

xα+βdµ(x) =

∫

p(x)2dµ(x) ≥ 0,

which shows that Mk(y) � 0. If the support of µ is contained in {x | h(x) ≥ 0}, one
can verify that pT Mk−d(hy)p =

∫

p(x)2h(x)dµ(x) ≥ 0 for all p ∈ R
Sk−d , which shows that

Mk−d(hy) � 0.

Curto and Fialkow [4, 5] prove some results showing that, under some rank condition,
the necessary conditions from the above lemma are also sufficient for the existence of a
representing measure. A key notion is that of ‘flat extension’. Let X be a symmetric
matrix and let A be a principal submatrix of X. One says that X is a flat extension of A
if rank X = rank A. Then, X � 0 ⇐⇒ A � 0.

Theorem 5. [4] Let y ∈ R
S2k . If Mk(y) � 0 and Mk(y) is a flat extension of Mk−1(y),

then y has a representing measure which is (rank Mk(y))-atomic.

The proof uses the following property of the kernel of Mk(y), which also permits to derive
Corollary 7 below.

Lemma 6. [4] Assume that Mk(y) � 0 and let f, g ∈ R[x1, . . . , xn] whose product h := fg
has degree deg(h) ≤ k − 1. Then, Mk(y)f = 0 implies Mk(y)h = 0.

Corollary 7. If Mk(y) � 0 and rank Mh(y) = rank Mh−1(y) for some 1 ≤ h ≤ k − 1,
then rank Mk−1(y) = rank Mk−2(y).

Theorem 8. ([5], see [17] for a short proof) Let y ∈ R
S2k , h1, . . . , h` ∈ R[x1, . . . , xn],

di := ddeg(hi)/2e, and d := max(d1, . . . , d`). Assume that Mk(y) � 0, Mk−di
(hiy) � 0
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(for i = 1, . . . , `), and rank Mk(y) = rank Mk−d(y). Then y has a representing measure µ
supported by the set {x | h1(x) ≥ 0, . . . , h`(x) ≥ 0}; moreover µ is (rank Mk(y))-atomic.

The above results underlie the semidefinite relaxations (4) and (5) of problem (3). In
particular, as an application of Theorem 8, one finds the stopping criterion of Henrion and
Lasserre [11]: If Mk(y) is an optimum solution to (4) satisfying the rank condition (6),
then p∗L,k = p∗. This is a very useful fact, as it permits very often in practice to conclude

that the relaxation (4) of a given order k solves the original problem (3) at optimality for
small values of k. The following two results imply the asymptotic (or finite) convergence
of the parameters ρ∗k and p∗L,k to the optimum p∗, in the cases (I) and (III) mentioned in
Section 1.1.

Theorem 9. [26] Let K = {x ∈ R
n | h1(x) ≥ 0, . . . , h`(x) ≥ 0} and M := {u0+

∑`
i=1 uihi |

u0, u1, . . . , u` are sums of squares of polynomials}. Assume that K is compact and that
there exists a polynomial u ∈ M for which the set {x ∈ R

n | u(x) ≥ 0} is compact. Then
every positive polynomial on K belongs to M .

Theorem 10. [6] Given a polynomial p, define K := {x ∈ R
n | ∂p

∂xi
(x) = 0 (i = 1, . . . , n)}

and let Igrad be the ideal generated by ∂p/∂xi (i = 1, . . . , n). If p is positive on K then p is
a sum of squares of polynomials modulo Igrad. When Igrad is radical, the same conclusion
holds if p is nonnegative on K.

2.3. Combinatorial moment matrices. Let I be a zero-dimensional ideal in R[x1, . . . , xn]
with V = V (I) as associated complex variety. With respect to a given monomial ordering,
let G be a Gröbner basis of I and let S be the associated set of standard monomials,
consisting of the monomials that are not divisible by the leading term of any polynomial
in G. Let B be the set of exponents of the standard monomials; that is, S = {xβ | β ∈ B}.
The set S is a basis of R[x1, . . . , xn]/I; that is, for every polynomial f ∈ R[x1, . . . , xn],
there exists a unique polynomial r(x) =

∑

β∈B rβxβ for which f − r ∈ I; r is called the
residue of f modulo I.

Given y = (yβ)β∈B ∈ R
B, let MB(y) be the B × B matrix whose (α, β)-th entry is

equal to
∑

γ∈B rγyγ , for α, β ∈ B, where
∑

γ∈B rγxγ is the residue of xαxβ modulo I;

MB(y) is called the combinatorial moment matrix of y. In words, MB(y) is obtained from
a classical moment matrix by expressing all entries of y in terms of those indexed by
the standard monomials using the equations defining I. For v ∈ R

n, define the vector
ζv := (vβ)β∈B ∈ R

B. It is not difficult to check that, if v ∈ V ∩R
n, then MB(ζv) = ζvζ

T
v is

positive semidefinite. Hence, MB(y) � 0 if y belongs to the cone generated by the vectors
ζv (v ∈ V ∩ R

n). Laurent [18] shows that equivalence holds.

Theorem 11. [18] Let I be a zero-dimensional ideal in R[x1, . . . , xn], let V be the associ-
ated variety, and let {xβ | β ∈ B} be the set of standard monomials with respect to some
monomial ordering. Let y ∈ R

B and MB(y) its associated combinatorial moment matrix.
Then, MB(y) � 0 if and only if y belongs to the cone generated by ζv (v ∈ V ∩R

n); that is,
y is the sequence of moments (of order α ∈ B) of a nonnegative atomic measure µ whose
support is contained in V ∩ R

n.
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2.4. Truncated combinatorial moment matrices. We assume in this section and the
next one that the ideal I is generated by n polynomials of the form:

(21) hi(x) := x2m+1
i − h̃i(x), for i = 1, . . . , n

where deg(h̃i) ≤ 2m and m ≥ 1 is a given integer. In that case, we can prove some results
about flat extensions of truncated combinatorial moment matrices, which will be useful
for our application to optimization.

The polynomials h1, . . . , hn form a Gröbner basis of the ideal I (w.r.t. a total degree
monomial ordering) (apply [2, §2.6]). Therefore, the set of standard monomials is S =
{xβ | β ∈ B}, where

(22) B := {β ∈ Z
n | 0 ≤ βi ≤ 2m ∀i = 1, . . . , n}.

It follows from (19) that the ideal I is zero-dimensional. Given an integer 1 ≤ k ≤ 2nm,
define

(23) Bk := B ∩ Sk = {β ∈ B | |β| ≤ k}.
Lemma 12. Given f ∈ R[x1, . . . , xn], let r be its residue modulo I. Then, deg(r) ≤ deg(f).

Proof. Fix a total degree monomial ordering. Then the division algorithm applied for di-
viding f by h1, . . . , hn yields a decomposition f =

∑n
i=1 uihi +r, where r(x) =

∑

β∈B rβxβ

is the residue of f , and deg(uihi) ≤ deg(f) whenever ui 6= 0 (see [2, §2.3]). Therefore,
deg(r) ≤ deg(f).

For a monomial xα, let r(α)(x) denote its residue modulo I; by Lemma 12, r(α)(x)

is of the form r(α)(x) =
∑

β∈Bk
r
(α)
β xβ if |α| ≤ k. Therefore, given a truncated sequence

y ∈ R
B2k , one can define its truncated combinatorial moment matrix MBk

(y) as the matrix

indexed by Bk whose (α, β)-th entry is yT r(α+β), for α, β ∈ Bk. We now indicate how to
extend a combinatorial moment matrix to a classical moment matrix.

Definition 13. Given y ∈ R
B2k , extend y to ỹ ∈ R

S2k by setting

(24) ỹγ := yT r(γ) for γ ∈ S2k

where r(γ)(x) is the residue of xγ modulo I.

Lemma 14. Let y ∈ R
B2k and ỹ ∈ R

S2k its extension from (24). Let f be a polynomial of
degree at most 2k and r its residue modulo I. Then fT ỹ = rT y.

Proof. Using (24), we find that fT ỹ =
∑

δ fδ ỹδ =
∑

δ fδy
T r(δ) =

∑

β,δ fδr
(δ)
β yβ , while

yT r =
∑

β rβyβ. Hence it suffices to show that the two polynomials r(x) and s(x) :=
∑

β,δ fδr
(δ)
β xβ are identical. For this, note that s(x) =

∑

δ fδr
(δ)(x) ≡

∑

δ fδx
δ = f(x) ≡

r(x) modulo I. Hence, r = s, since both r and s are polynomials using only standard
monomials.

Lemma 15. Let y ∈ R
B2k and ỹ ∈ R

S2k its extension from (24). Then Mk(ỹ) is a flat
extension of MBk

(y).
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Proof. By the definition of ỹ, the principal submatrix of Mk(ỹ) indexed by Bk coincides
with MBk

(y). Consider a column Cγ of Mk(ỹ) indexed by γ ∈ Sk \ Bk. We verify that

Cγ =
∑

β∈Bk
r
(γ)
β Cβ; that is,

ỹα+γ =
∑

β∈Bk

r
(γ)
β ỹα+β ∀α ∈ Sk.

For this consider the polynomial f(x) := xα+γ −∑β∈Bk
r
(γ)
β xα+β. As f has degree at most

2k and f ∈ I, it follows from Lemma 14 that fT ỹ = 0, which gives the desired relation.

Corollary 16. Let y ∈ R
B2k and ỹ ∈ R

S2k its extension from (24). Assume that MBh
(y)

is a flat extension of MBh−1
(y) for some 1 ≤ h ≤ k. [Then this holds for h = k or k − 1

by Corollary 7.] Then (ỹα)α∈S2h
(and thus (yα)α∈B2h

) is the sequence of moments of an
r-atomic measure µ, where r := rank MBh

(y). Moreover, if h ≥ 2m + 1, then the support
of µ is contained in V .

Proof. By Lemma 15, Mh(ỹ) is a flat extension of Mh−1(ỹ). Hence, by Theorem 5,
(yα)α∈S2h

has a r-atomic representing measure µ, where r = rank Mh(ỹ) = rank MBh
(y).

If h ≥ 2m + 1, then the polynomials hi(x) (i = 1, . . . , n) generating the ideal I belong to
the kernel of Mh(ỹ) (by the construction of ỹ). Hence, the support of µ is contained in
the set of common zeros of the hi’s, i.e., in the variety V .

2.5. Optimization and extraction of solutions. Given a polynomial p ∈ R[x1, . . . , xn],
consider the problem:

p∗ := min p(x) s.t. h1(x) = 0, . . . , hn(x) = 0

where h1, . . . , hn are as in (21). We can assume that p has degree at most 2m, else replace
p by its residue modulo the ideal I. We first compare the following two hierarchies of
lower bounds for p∗, defined for k ≥ m:

(25) µ∗
k := inf pT y such that MBk

(y) � 0, y0 = 1,

(26) µ∗
L,k := inf pT y such that Mk(y) � 0, Mk−m−1(hiy) = 0 (i = 1, . . . , n), y0 = 1

where we omit the condition Mk−m−1(hiy) = 0 when k = m. If k = m, the two programs
(25) and (26) are identical and thus µ∗

m = µ∗
L,m. Moreover, by Theorem 11 (and Theorem

23 in [18]), µ∗
2nm = µ∗

L,2nm = p∗. One can show the following interlacing property for the

parameters µ∗
k and µ∗

L,k, which implies the interlacing property (17) for the two hierarchies

of bounds from (12) and (15).

Theorem 17. µ∗
k−1 ≤ µ∗

L,k ≤ µ∗
k for all k ≥ m + 1.

Proof. Let z be a feasible solution to (26), i.e., Mk(z) � 0, Mk−m−1(hiz) = 0, z0 = 1. We
observe first that fT z = 0 for every polynomial f ∈ I with degree at most 2k−1. Indeed, as
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f ∈ I, f =
∑n

i=1 uihi where deg(uihi) ≤ deg(f) ≤ 2k−1, i.e., deg(ui) ≤ 2k−1−(2m+1) =

2k − 2m − 2 whenever ui 6= 0. Moreover, f(x) =
∑n

i=1

∑

γ,δ(ui)γ(hi)δx
γ+δ. Hence,

fT z =
∑

β

fβzβ =
∑

β

zβ

n
∑

i=1

∑

γ,δ|γ+δ=β

(ui)γ(hi)δ =
n
∑

i=1

∑

γ

(ui)γ

∑

δ

(hi)δzγ+δ.

Now,
∑

δ(hi)δzγ+δ = (hiz)γ = 0 since |γ| ≤ deg(ui) ≤ 2k − 2m− 2 and Mk−m−1(hiz) = 0.

Therefore, we find that fT z = 0. Hence, if we denote by y the restriction of z to R
B2k ,

then zγ = yT r(γ) for |γ| ≤ 2k− 1. Hence MBk−1
(y) coincides with the principal submatrix

of Mk(z) indexed by Bk−1 and thus MBk−1
(y) � 0. This implies that pT z = pT y ≥ µ∗

k−1
and thus µ∗

L,k ≥ µ∗
k−1.

Consider now a feasible solution y ∈ R
B2k to (25). Let ỹ be its extension to R

S2k from
(24). Then, Mk(ỹ) � 0 by Lemma 15. Remains to verify that Mk−m−1(hiỹ) = 0, i.e.,
that (hiỹ)α =

∑

γ(hi)γ ỹα+γ is equal to 0 for |α| ≤ 2k − 2m − 2. As the polynomial

f(x) := hi(x)xα belongs to I and its degree is at most 2k, it follows from Lemma 14 that
fT ỹ = 0, which gives the desired relation. Hence, ỹ is feasible for (26), which implies that
pT y = pT ỹ ≥ µ∗

L,k and thus µ∗
k ≥ µ∗

L,k.

Let y be an optimum solution to (25). Assume that rankMBh
(y) = rankMBh−1

(y) =: r
for some 1 ≤ h ≤ k. By Corollary 16, (yβ)β∈B2h

is the sequence of moments of a measure

µ =
∑r

i=1 λiδvi
(λi > 0,

∑

i λi = 1, vi ∈ R
n). If h ≥ m, then p∗ ≥ µ∗

k = pT y =
∑

i λip(vi) ≥ mini p(vi); moreover, v1, . . . , vr belong to V (I) and thus are global minimizers
of p over the set {x ∈ R

n | h1(x) = . . . = hn(x) = 0} when h ≥ 2m + 1. We now indicate
how to extract the points v1, . . . , vr from the matrix MBh

(y); this is analogous to the
extraction procedure in [11] (for the program (26)).

As rankMBh
(y) = rankMBh−1

(y) = r, one can find a subset A of Bh−1, |A| = r, indexing
a positive definite principal submatrix A of MBh

(y). If h ≤ 2m, let J denote the ideal
generated by the kernel of MBh

(y) and, if h ≥ 2m + 1, let J be the ideal generated by
I and the kernel of MBh

(y). Obviously, {v1, . . . , vr} ⊆ V (J). On the other hand, A is a
basis of R[x1, . . . , xn]/J (easy to verify) and thus dim R[x1, . . . , xn]/J = r, which implies
that |V (J)| ≤ r (by (19)). Therefore, V (J) = {v1, . . . , vr} and J is a zero-dimensional
radical ideal. Thus, determining v1, . . . , vr amounts to finding the commom zeros to the
polynomials in J , which can be done with the eigenvalue method, briefly described below
(see, e.g., chap. 2 §4 in [3]).

For a polynomial f , the multiplication matrix Mf is the |A| × |A| matrix whose α-th
column (for α ∈ A) contains the coefficients in the base A of the residue modulo J of
the polynomial xαf(x). If f is chosen in such a way that the values f(v) are distinct for
v ∈ V (J), then the right eigenspaces of Mf are 1-dimensional and spanned by the vectors
(vα)α∈A (for v ∈ V (J)) (Proposition 4.7 in [3]). Hence, the points v1, . . . , vr of V (J) can
be determined from the right eigenvectors of Mf .

In our extraction procedure, we construct the base A in a ‘greedy manner’; starting
from the constant monomial 1, we insert in A as many low degree monomials as possible.
Then, given an eigenvector (vα)α∈A (or a scalar multiple of it), it is easy to recover
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the components of v (in fact, immediate, if A contains the monomials x1, . . . , xn). We
determine the multiplication matrices Mxi

(for f = xi, i = 1, . . . , n) in the following
way. As before let A be the principal submatrix of MBh

(y) indexed by A and let Ui be the
submatrix of MBh

(y) with row indices A and column indices the set xiA := {xix
α | α ∈ A}.

When h ≤ 2m (which is the case considered for practical applications), Mxi
= A−1Ui.

(Indeed, given β ∈ A, let v be the column of MBh
(y) indexed by xix

β, u := (vα)α∈A the
corresponding column of Ui, and c = (cα)α∈A the unique scalars permitting to express
v as v =

∑

α∈A cαCα; Cα being the column of MBh
(y) indexed by xα. Then c = A−1u

and the polynomial xix
β −

∑

α∈A cαxα belongs to the ideal J generated by the kernel of

MBh
(y). Thus

∑

α∈A cαxα is the residue of xix
β modulo J , i.e., c is the corresponding

column of Mxi
.) Then, for an arbitrary polynomial f , its multiplication matrix Mf is

given by Mf = f(Mx1
, . . . ,Mxn

), whose eigenvectors can be used for extracting the global
optimizers.

Let us make a comment at this point. For solving our original problem of minimizing
p over the set of real points in V (I), one could follow the following strategy: Determine
all points in V (I) (using the eigenvalue method) and evaluate p at the real points. This
is however computationally expensive, as this involves computing the eigenvalues of a
multiplication matrix whose size is |B| = (2m + 1)n, thus exponential in the number of
variables. Instead, we propose to solve the relaxed convex program (25) for small values
of k. Typically it has an optimum solution of small rank r and, when the rank condition
holds, one can extract a solution by computing the eigenvalues of a much smaller matrix
of size r.

3. Application to unconstrained polynomial minimization

3.1. Our method. Let us return to the problem (1) of computing the infimum p∗ of
a polynomial p over R

n. As before, we assume that p has degree 2m and, for λ > 0,
we consider the perturbed polynomial pλ as in (2) and set p∗λ := infx∈Rn pλ(x). For
i = 1, . . . , n, let

(27) hλ,i(x) := ∂pλ(x)/∂xi = ∂p(x)/∂xi + λ(2m + 2)x2m+1
i

denote the partial derivatives of pλ(x). Let Iλ be the ideal generated by hλ,1, . . . , hλ,n

and let Vλ := V (Iλ) be its associated variety. Up to a constant factor, each hλ,i(x) is of

the form x2m+1
i + h̃i(x), where h̃i(x) has degree at most 2m − 1, and thus we are in the

situation of Section 2.4. Therefore, for λ 6= 0, the set {xβ | β ∈ B}, where B is as in
(22), is the set of standard monomials, forming a basis of of R[x1, . . . , xn]/Iλ, and Iλ is a
zero-dimensional ideal.

As pλ attains its minimum, it follows that it attains its minimum at a critical point.
That is, infx∈Rn pλ(x) = minx∈Vλ∩Rn pλ(x). If x∗ is a global minimizer of p, then p∗ ≤
p∗λ ≤ pλ(x∗) ≤ p∗ + λ‖x∗‖2m+2. As p(x) ≤ pλ(x) for all x, we have:

p∗ ≤ µ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ min

x∈Vλ∩Rn
pλ(x).
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As Iλ is a zero-dimensional ideal, we can apply Theorem 11 and compute the bound µ∗
λ

via the following semidefinite program:

(28) µ∗
λ = min pT y subject to MB(y) � 0, y0 = 1,

where B is defined in (22). Given an integer m ≤ k ≤ 2nm, one can consider the following
semidefinite program, involving truncated combinatorial moment matrices:

(29) µ∗
k,λ := inf pT y subject to MBk

(y) � 0, y0 = 1,

where Bk is as in (23). These parameters define a hierarchy of lower bounds for µ∗
λ:

(30) µ∗
m,λ ≤ . . . ≤ µ∗

k,λ ≤ . . . ≤ µ∗
2nm,λ = µ∗

λ,

where the last equality holds since B2nm = B.

Let us give some information about the structure of the matrix MBk
(y). For α, β ∈ Bk,

the (α, β)-th entry of MBk
(y) is equal to yT r(α+β), where r(α+β)(x) is the residue of xα+β

modulo the ideal Iλ. This residue is obtained by dividing the monomial xα+β by the
polynomials hλ,i from (27), forming a Gröbner basis of Iλ. Hence, the entries of MBk

(y)
are polynomial in 1/λ (and linear in y). The next result gives an estimate on the degree
in 1/λ of the entries of MBk

(y).

Theorem 18. For k = m, . . . , 2nm, the matrices MBk
(y) are polynomial matrices in 1/λ;

the maximal degree in 1/λ of the entries of MBk
(y) is at most k − m.

Proof. Consider a monomial xγ where γ ∈ Z
n
+ with |γ| ≥ 2m. We show by induction

on |γ| that the coefficients of the residue of xγ modulo the ideal Iλ are polynomial in
1/λ with degree at most d(|γ| − 2m)/2e. If γi ≤ 2m for all i = 1, . . . , n, then xγ is a
standard monomial; that is, its residue is xγ whose degree in 1/λ is 0. Suppose, e.g., that
γ1 ≥ 2m + 1. Then, xγ = x2m+1

1 xγ̃ , where γ̃1 = γ1 − 2m − 1 and γ̃i = γi for i ≥ 2. Thus,

|γ̃| = |γ| − 2m − 1 and xγ ≡ − 1
2m+2

1
λ

∂p(x)
∂x1

xγ̃ modulo Iλ. As the degree of xγ̃∂p(x)/∂x1

is at most 2m − 1 + |γ̃| = |γ| − 2, we know by induction that the degree in 1/λ of its
residue is at most d(|γ| − 2 − 2m)/2e = d(|γ| − 2m)/2e − 1. Therefore, the degree in 1/λ
of the residue of xγ is at most d(|γ| − 2m)/2e. The theorem now follows since each entry
of MBk

(y) is the residue of a monomial of degree at most 2k.

As MBm
(y) does not depend on λ, the matrix MBm

(y) coincides with the classical matrix
Mm(y). Hence, the first member µ∗

m,λ in the hierarchy (30) does not depend on λ and is

equal to p∗L,m, the Lasserre lower bound for p∗ from (4); thus,

µ∗
m,λ = p∗L,m ≤ p∗.

It is not clear a priori on which side of p∗ the parameter µ∗
k,λ is located when m < k < 2nm.

In some cases, one can derive this information with the help of the following result.

Corollary 19. Let MBk
(y) be an optimum solution to the program (29) defining µ∗

k,λ.

Assume that rank MBh
(y) = rank MBh−1

(y) for some m ≤ h ≤ k. Then, p∗ ≤ µ∗
k,λ ≤ µ∗

λ

and one can extract a point x ∈ R
n for which p∗ ≤ p(x) ≤ µ∗

k,λ. Moreover, µ∗
k,λ = µ∗

λ if
h ≥ 2m + 1.
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Proof. By Corollary 16, (yα)α∈B2h
is the sequence of moments of a probability measure

µ =
∑r

i=1 λiδvi
. Hence, µ∗

k,λ = pT y =
∑r

i=1 λip(vi) ≥ mini p(vi) ≥ p∗. If h ≥ 2m + 1, then

v1, . . . , vr ∈ Vλ and thus µ∗
k,λ = µ∗

λ.

Let us point out that, for the problem of computing the minimum p∗ of a polynomial of
the form p =

∑n
i=1 cix

2m+2
i + p0 where deg p0 ≤ 2m+1 (c1, . . . , cn ∈ R \ {0}), our method

can be applied directly to p, without any perturbation. Namely, let r be the residue of p
modulo the ideal generated by ∂p/∂xi (i = 1, . . . , n), then

p∗ = min rT y s.t. MB(y) � 0, y0 = 1,

the parameters µ∗
k from (25) are lower bounds for p∗, with equality µ∗

k = p∗ if rankMBh
(y) =

rankMBh−1
(y) for some 2m + 1 ≤ h ≤ k. See Examples 9 and 10 in the next section for

an illustration.

We now illustrate our method on two small examples; both will be revisited in the next
section.

Example 1. Consider the polynomial p(x1, x2) = x2
1+x2 and its perturbation pλ(x1, x2) =

p(x1, x2)+λ(x4
1+x4

2). Then, p∗ = −∞. One can compute explicitely the set Vλ of solutions
to the system:

∂pλ

∂x1
= 2x1(2λx2

1 + 1) = 0, ∂pλ

∂x2
= 4λx3

2 + 1 = 0.

Namely, Vλ consists of the nine points (x1, x2) with x1 = 0,±i
√

1
2λ , and x2 = − 3

√

1
4λ ,

−j 3

√

1
4λ , −j2 3

√

1
4λ (where i, j ∈ C, i2 = −1, j3 = 1). Hence, (0,− 3

√

1
4λ) is the only real

point in Vλ and thus the unique minimizer of p over Vλ. This implies that µ∗
λ = − 3

√

1
4λ .

Example 2. Consider the polynomial p(x1, x2) = (x2
1 +x2

2−1)2 whose minimum is p∗ = 0
attained at all points on the unit circle. One can verify that the set Vλ contains 25 points,
among them 9 real points, namely (0, 0) and

(i) (x1, x2) = ±(0, a), ±(a, 0), where a :=

√

−1+
√

6λ+1
3λ

(ii) (x1, x2) = (±b,±b) where b :=

√

−2+
√

6λ+4
3λ .

The minimum of p over Vλ is µ∗
λ = (2b2 − 1)2, which is attained at the points (±b,±b) in

(ii). As a = 1 + o(1) and b = 1/
√

2 + o(1), the limit as λ ↓ 0 of the real points in Vλ are
the points (0,±1), (±1, 0), (±1/

√
2,±1/

√
2) on the unit circle together with the origin.

3.2. Examples. We present here several examples on which our method has been tested.
Let p be the polynomial whose infimum p∗ is to be found and let 2m be its degree. We
compute the approximations µ∗

k,λ of p∗ provided by the program (29). The computation is

carried out for several values of λ, ranging typically from 10−1 to 10−4 (sometimes much
smaller). We solve the program (29) for increasing values of k starting from k = m. Let
MBk

(y∗) be the returned optimum solution and µ∗
k,λ the returned optimum value. At

k = m, we find the Lasserre lower bound p∗L,m for p∗.
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At each step k, we check whether the rank condition (16) holds; if not, we go to the
next step k + 1. More precisely,
If k = m, then µ∗

m,λ = p∗L,m ≤ p∗. Moreover, if rank MBm
(y∗) = rank MBm−1

(y∗), then
µ∗

m,λ = p∗L,m = p∗, i.e., the infimum p∗ has been found.

If k ≥ m + 1, and rank MBh
(y∗) = rank MBh−1

(y∗) =: r for h = k or h = k − 1, then
µ∗

k,λ ≥ p∗; moreover, one can extract r points x ∈ R
n and evaluating p at any such point

x gives a certified upper bound on p∗.
There are two phases in the resolution of the program (29): (1) Compute the entries of

the matrix variable MBk
(y) in (29); that is, compute the residue of xα+β modulo Iλ with

respect to the basis B, for each α, β ∈ Bk; and (2) Solve the semidefinite program (29).
The first phase is carried out using Mathematica 4.2 and the SDP problem is solved with
SeDuMi 1.05 (used with accuracy parameter pars.eps=0). When evaluating the rank of a
matrix we consider the eigenvalues with a precision of 10−3; that is, we ignore all decimals
starting with the 5th one.

In the tables below, at a given order k, (rk, rk−1, rk−2) is the triple consisting of the
ranks of the matrices MBk

(y∗), MBk−1
(y∗), MBk−2

(y∗), where MBk
(y∗) is the optimum

solution to (29) returned by the algorithm.
In some examples, we also compute the upper approximations µ∗

L,k,λ on p∗ obtained

from the program (12), and some other approximations obtained by minimizing p over
a ball. Then, (rk, rk−1, ..) contains the ranks of the matrices Mk(y

∗), Mk−1(y
∗),.., where

Mk(y
∗) is the optimum solution to (12) (or (4) when optimizing over a ball).

Example 1. (revisited) Consider again the polynomial p(x1, x2) = x2
1+x2 with infimum

p∗ = −∞. Then, n = 2, m = 1, |B1| = 3, |B2| = 6, |B| = 9. When computing the
Lasserre lower bound p∗L,1, GloptiPoly returns as expected that the ‘Sedumi dual may be
unbounded’. As can be seen in Table 1, our algorithm retrieves a very accurate estimate

of the minimizer (0,− 3

√

1
4λ).

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−3 2 (1,1,1) -6.2996 (0,-6.2996)
10−6 2 (1,1,1) -62.9961 (0,-62.9961)
10−9 2 (1,1,1) -629.9606 (0,-629.9606)

Table 1. Bounds µ∗
k,λ for Example 1

Example 2. (revisited) Consider again the polynomial p(x1, x2) = (x2
1 + x2

2 − 1)2 with
infimum p∗ = 0 attained at the points of the unit circle. Then, n = 2, m = 2, |B2| = 6,
|B3| = 10, |B4| = 15, |B| = 25. The Lasserre lower bound is p∗L,2 = 2.82 10−11 ≤ p∗ (with

r2 = 5, r1 = 3).
Again, one can see in Table 2 that the algorithn retrieves very accurate estimates of the

four minimizers (±b,±b) of p over Vλ. Moreover, µ∗
4,10−3 ≥ p∗ and µ∗

4,10−3 ∼ 10−7 is an

accurate estimate of p∗ = 0.
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λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−2 3 (4,4,4) 1.3854 10−5 (±0.7058,±0.7058)
10−3 3 (9,5,3) 1.3320 10−7 none
10−3 4 (4,4,4) 1.4043 10−7 (±0.7070,±0.7070)

Table 2. Bounds µ∗
k,λ for Example 2

Example 3. Consider the polynomial p(x1, x2) = (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 + x2 + 1)2.
Then, n = 2, m = 2, |B3| = 10, |B4| = 15, |B| = 25. It is known (see [15]) that
p∗ = −11.4581 is attained at the point (1.3247, 1.3247), and that the polynomial p(x)−p∗

is a sum of squares. Indeed, p∗L,2 = −11.4581 and, as r2 = r1 = 1, GloptiPoly extracts the

minimizer (1.3247, 1.3247). Nevertheless Table 3 shows the behaviour of our method on
this example.

We have also computed the bound β∗
L,k,λ from (13), computing the order k moment

relaxation for the minimum of p over the ball with radius Rλ as in (10). Here, Rλ = 56
λ .

For λ = 10−1, k = 2, Rλ = 560 and GloptiPoly returns the value β∗
L,2,1/10 = −11.4581 and

extracts the solution (1.3247, 1.3247).

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−2 3 (1,1,1) −11.4548 (1.3109, 1.3109)
10−3 3 (1,1,1) −11.4580 (1.3233, 1.3233)
10−4 3 (1,1,1) −11.4581 (1.3246, 1.3246)
10−5 3 (1,1,1) −11.4581 (1.3247, 1.3247)

Table 3. Bounds µ∗
k,λ for Example 3

Example 4. Consider the polynomial p(x1, x2) = 1/27 + x2
1x

2
2(x

2
1 + x2

2 − 1), a deho-
mogenized version of the Motzkin polynomial, considered in [11]. Then n = 2, m = 3,
|B3| = 10, |B4| = 15, |B5| = 21, |B| = 49. It is known that p has minimum p∗ = 0, attained
at (±1/

√
3,±1/

√
3), and p is not a sum of squares. As Table 4a shows, our algorithm

finds a very accurate estimate of p∗ and of its minimizers at the relaxation of order 5 when
using the perturbation λ = 10−4.

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−2 4 (11,8,6) −8.8740 10−5 none
10−2 5 (4,4,4) 2.1500 10−6 (±0.5761,±0.5761)
10−3 4 (11,8,6) −0.0060 none
10−3 5 (4,4,4) 2.1897 10−8 (±0.5772,±0.5772)
10−4 4 (11,8,6) -0.0336 none
10−4 5 (4,4,4) 1.9042 10−10 (±0.5773,±0.5773)

Table 4a. Bounds µ∗
k,λ for Example 4
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λ order k (rk, rk−1, . . . , r1) µ∗
L,k,λ extracted solutions

10−2 4 (15,10,6,3) −1.0815 none
10−2 5 (21,15,8,6,3) −0.0060 none
10−2 6 (11,4,4,4,4,3) 2.1904 10−8 none∗

10−2 7 (-,4,4,4,4,4,3) 2.1904 10−8 (±0.5772,±0.5772)
10−3 4 (15,10,6,3) −1.3072 none
10−3 5 (21,15,8,6,3) −0.0332 none
10−3 6 (11,4,4,4,4,3) 2.1993 10−10 none∗

10−3 7 (-,4,4,4,4,4,3) 2.3084 10−10 (±0.5773,±0.5773)
10−4 4 (15,10,6,3) −1.1225 none
10−4 5 (21,15,10,6,3) −0.0909 none
10−4 6 (11,4,4,4,4,3) 1.0209 10−11 none∗

10−4 7 (-,4,4,4,4,4,3) 1.498 10−11 (±0.5773,±0.5773)
Table 4b. Bounds µ∗

L,k,λ for Example 4

We have also computed the parameters µ∗
L,k,λ from (12) using GloptiPoly. Table 4b

shows the results. We have: |S4| = 15, |S5| = 21, |S6| = 28, |S7| = 36. (At the relaxation
of order 7, GloptiPoly does not return the value of the rank of M7(y) which is indicated by
‘-’ in the table.) At the relaxation of order 6, GloptiPoly does not yet extract a solution
since the stronger rank condition (6) does not hold. However, this stronger condition is
needed only to be able to claim that the extracted solution does satisfy the constraints
∂pλ/∂xi = 0 (i = 1, . . . , n). As rankMk−1(y) = rankMk−2(y) one could already extract
a solution at order 6, which permits to claim that µ∗

L,6,λ ≥ p∗. Note, however, that our
algorithm based on combinatorial moment matrices is able to find an upper bound for
p∗ at order k = 5 already. Moreover, at a given order k, the parameter µ∗

k,λ is a more
accurate approximation of p∗ than the parameter µ∗

L,k,λ.

Finally we have computed the bounds β∗
L,k,λ from (13). Here, the radius is Rλ = 24

λ .

For λ = 1/10 and k = 3, 4, 5, Sedumi reports that the ‘dual may be unbounded’. For
λ = 1, one finds β∗

L,3,λ = −3.9722 (with (r3, r2, r1) = (8, 6, 3), thus no solution extracted)
and Sedumi reports that the ‘dual may be unbounded’ for k ≥ 4.

When using the radius R = 20 (instead of Rλ), the smallest order k for which the
rank condition holds for the moment relaxation is k = 6, where we find the upper bound
8.5345 10−12 for p∗ and GloptiPoly extracts the solution (±0.5774,±0.5774).

If we use a smaller radius R = 2, then the rank condition holds already at the mo-
ment relaxation of order k = 3, where we find the upper bound 1.2561 10−13 for p∗ and
GloptiPoly extracts the solutions (±0.5774,±0.5774).

Therefore, the approach via optimization on a ball seems to work well only if one knows
a priori a small ball containing a global minimizer.

Example 5. Consider the polynomial p(x1, x2) = x2
2 + (x1x2 − 1)2. This is a classi-

cal example of a polynomial having a finite infimum, which is not attained; p∗ = 0 as
limε↓0 p(1/ε, ε) = 0. Here, n = 2, m = 2, |B2| = 6, |B3| = 10, |B| = 25. The Lasserre lower
bound is p∗L,2 = 5.4776 10−5.
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λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−2 3 (2,2,2) 0.3385 ±(1.3981, 0.4729)
10−3 3 (2,2,2) 0.2082 ±(1.9499, 0.4060)
10−4 3 (2,2,2) 0.1232 ±(2.6674, 0.3287)
10−5 3 (2,2,2) 0.0713 ±(3.6085, 0.2574)
10−6 3 (2,2,2) 0.0408 ±(4.8511, 0.1977)
10−7 3 (3,2,2) 0.0231 ±(6.4986, 0.1503)
10−8 3 (3,2,2) 0.0131 ±(8.6882, 0.1136)
10−9 3 (8,4,2) 0.0074 none
10−10 3 (7,4,2) 0.0041 none

Table 5a. Bounds µ∗
k,λ for Example 5

We have also computed the bounds µ∗
L,k,λ, shown in Table 5b. When the order k is

marked with a star (like 6∗), this means that we have rescaled the problem for Sedumi
(setting pars.scaling=[1 10]). (This is advised when the expected solutions have large
entries; see the manual [10] for GloptiPoly. Without rescaling the solution returned by
GloptiPoly is approximatively 1, which is the value of p at the point (0, 0) of Vλ, thus not
the true minimum.) Recall that |S3| = 10, |S4| = 15, |S5| = 21, |S6| = 28.

λ order k (rk, . . . , r1) µ∗
L,k,λ extracted solutions

10−2 3 (10,6,2) 0.0096 none
10−2 4 (7,2,2,2) 0.3385 none
10−2 5 (-,2,2,2,2) 0.3385 ±(1.3981, 0.4729)
10−3 3 (10,6,2) 0.0105 none
10−3 4 (7,2,2,2) 0.2082 none
10−3 5 (-,2,2,2,2) 0.2082 ±(1.9499, 0.4060)
10−4 3 (10,6,2) 0.0095 none
10−4 4 (7,2,2,2) 0.1232 none
10−4 5 (-,2,2,2,2) 0.1233 ±(2.6674, 0.3287)
10−5 5 (-,2,2,2,2) 0.0718 ±(3.6085, 0.2574)
10−6 6∗ (-,-,2,2,2,2) 0.0408 ±(4.8511, 0.1977)
10−7 6∗ (-,-,2,2,2,2) 0.0231 ±(6.4986, 0.1503)
10−8 6∗ (-,-,2,2,2,2) 0.0131 ±(8.6882, 0.1136)
10−9 6∗ (-,-,2,2,2,2) 0.0074 ±(11.6026, 0.0856)
10−10 6∗ (-,-,2,2,2,2) 0.0042 ±(15.4849, 0.0643)

Table 5b. Bounds µ∗
L,k,λ for Example 5

One can make the following observations regarding the results from Tables 5a,5b. While
our algorithm extracts the correct solutions at order k = 3, when using the moment
relaxation to the program (7) GloptiPoly needs to go to higher orders to be able to extract
solutions. We have computed (with Mathematica) the points in the gradient variety Vλ;
it turns out that there are three real points which are (0, 0) and the two points extracted
by the algorithms for the given values of λ in Tables 5a, 5b.

Example 6. Our next example is the polynomial q(z1, z2, z3, z4, z5) =
∑5

i=1

∏

j 6=i(zi−zj),
which is again an instance of a nonnegative polynomial which is not a sum of squares, due
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to Lax-Lax and Schmüdgen. More such examples can be found e.g. in [27]. Introducing
new variables xi := z1 − zi+1 (i = 1, . . . , 4), minimizing q(z) is equivalent to minimizing a
polynomial p in the four variables x1, . . . , x4. After performing this substitution, we have:
n = 4, m = 2, |B2| = 15, |B3| = 35, |B4| = 70, |B| = 625. When computing the lower
bound p∗L,2, Sedumi reports that the ‘primal problem is infeasible’ and the ‘dual problem
may be unbounded’.

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−1 3 (20,10,5) -0.0575 none
10−1 4 (5,5,5) −8.9342 10−8 ±(0.0407, 0.0445, 0.0482, 0.0520)

approx. (0,0,0,0) three times
Table 6a. Bounds µ∗

k,λ for Example 6

Table 6b gives some values of the parameter µ∗
L,k,λ. At order k = 3, for λ = 10−1, 10−2,

Sedumi reports that the ‘dual problem may be unbounded’. On this example the parameter
µ∗

L,k,λ appears to be a more accurate approximation of p∗ than µ∗
k,λ.

λ order k (r3, r2, r1) µ∗
L,k,λ extracted solutions

10−1 4 (1,1,1) 6.0249 10−15 10−8(−0.6138,−0.7014, 0.5825, 0.9606)
10−2 4 (1,1,1) 3.9252 10−14 10−8(0.0602, 0.4502,−0.0416,−0.2084)

Table 6b. Bounds µ∗
L,k,λ for Example 6

As the polynomial p is homogeneous, i.e., p(tx) = t2mp(x) for all x (m = 2 here), there
are in fact two possibilities for its infimum: Either, p∗ = 0 if p is nonnegative, or p∗ = −∞
otherwise. The parameters µ∗

k,λ and µ∗
L,k,λ are upper bounds for p∗. Hence, if for some

small λ, they are close to 0, it is then quite likely that p∗ = 0 (since µ∗
λ converges to p∗ as

λ ↓ 0) but this cannot be claimed with certitude. On the other hand, such upper bounds
will be useful for proving that p∗ = −∞. Indeed, if we find a negative upper bound for p∗,
then we can conclude that p∗ = −∞; moreover, any extracted solution gives a certificate
for this. See Example 8 for an illustration.

When p is homogeneous, one can also test its nonnegativity by computing its minimum
p∗B over the unit ball B. Indeed, either p∗B = 0 if p is nonnegative, or p∗B < 0 otherwise.
However, if p is nonnegative but not a sum of squares, then the moment relaxation (4)
of any order k is never exact, i.e., the inequality p∗L,k ≤ p∗B is always strict (and thus the

optimum matrix does not satisfy the rank condition). (Indeed, suppose that p∗L,k = p∗B = 0.

For k large enough, there is no duality gap between (4) and (5), and (5) attains its
supremum (see [15]). Hence, ρ∗k = p∗L,k = p∗B = 0, implying that p can be written

as p = u + (1 −
∑

i x
2
i )v where u, v are sums of squares. As p is homogeneous, this

implies easily that p must be a sum of squares (see [14]), yielding a contradiction.) Let
us illustrate this on our current example. Table 6c shows the values p∗L,k obtained for the

moment relaxations (4) for the minimum p∗B of p over the unit ball. Recall that |S5| = 126,
|S6| = 210.
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order k (rk, rk−1, . . . , r1) p∗L,k extracted solutions

2 (10,5) -0.0375 none
3 (25,15,5) -0.0035 none
4 (39,29,15,5) −7.7935 10−4 none
5 (55,44,29,15,5) −2.7268 10−4 none
6 (210,126,70,29,15,5) −1.1936 10−4 none

Table 6c. Bounds from optimizing over a ball for Example 6

Example 7. Consider the matrix:

P =













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













and the associated homogeneous polynomial q(x) =
∑5

i,j=1 x2
i x

2
jPij (Example 5.4 in [22]).

The matrix P is said to be copositive when q is nonnegative. Testing matrix copositivity
is a co-NP-complete problem [21]. Although some necessary and sufficient conditions
for the copositivity of a matrix are known (see e.g. [13]), their algorithmic application
is computationally too expensive. An alternative consists therefore of using numerical
algorithms for testing (non)copositivity. Parrilo [22, 23] introduced the following criterion,
useful for proving copositivity. Namely, if the polynomial (

∑n
i=1 x2

i )
rq(x) is a sum of

squares for some integer r ≥ 0, then q is nonnegative and thus P is copositive. For the
matrix P considered in the present example, it is known that this criterion is satisfied for
r = 1.

Let us nevertheless see the behaviour of our method on this example. Due to symmetry,
the polynomial q is nonnegative if and only if the (dehomogenized) polynomial p(x) :=
q(x1, x2, x3, x4, 1) is nonnegative. Then, n = 4, m = 2, |B2| = 15, |B3| = 35, |B4| = 70,
|B5| = 122, |B| = 625. The Lasserre lower bound is p∗L,2 = −1.4955 106 with (r1, r2) =

(5, 15).

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

10−2 3 (18,6,3) -1.5407 none
10−2 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)
10−3 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)
10−4 4 (9,7,5) 1.5544 10−7 none

Table 7. Bounds µ∗
k,λ for Example 7

Example 8. Let G = (V,E) be a graph with node set V = {1, . . . , n} and let AG be
its adjacency matrix, with (AG)ij = 1 if ij ∈ E and (AG)ij = 0 otherwise, for i, j ∈ V .
Consider the matrix:

P := t(I + AG) − J,

where t ∈ R, I is the identity matrix and J is the all-ones matrix, and the associated
homogeneous polynomial p(x) :=

∑n
i,j=1 x2

i x
2
jPij . By Motzkin-Straus theorem [20], p is

nonnegative (i.e., p∗ = 0) (equivalently, P is a copositive matrix) if and only if t ≥ α(G),
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where α(G) is the stability number of G, i.e., the largest cardinality of a stable set in G. In
Example 7, G is the circuit (1, 4, 2, 5, 3) on 5 nodes with α(G) = 2 and P = 2(I +AG)−J
which is therefore copositive. Consider now the case when G is the path (1, 4, 2, 5, 3) on 5
nodes and t = 2, giving the matrix

P =













1 −1 −1 1 −1
−1 1 −1 1 1
−1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













.

Then P is not copositive, as t < α(G) = 3 (note also p(1, 1, 1, 0, 0) = −3). This is
confirmed by the results about p∗ from Table 8a, where we have: n = 5, m = 2, |B1| = 6,
|B2| = 21, |B3| = 56, |B4| = 126, |B| = 3125.

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

1 3 (8,7,4) -1.3333 none
1 4 (8,8,7) -1.3333 two of the extracted solutions:

±(0.8165, 0.8165, 0.8165, 0, 0)

(0.8165 ∼
√

2/3)
10−1 3 (8,7,4) −133.3333 none
10−1 4 (8,8,7) −133.3333 two of the extracted solutions:

±(2.5820, 2.5820, 2.5820, 0, 0)

(2.5820 ∼
√

20/3)
10−2 3 (8,7,4) −1.3333 104 none

Table 8a. Bounds µ∗
k,λ for Example 8, when G is the path on 5 nodes and t = 2

Consider now the case when G is the circuit (1, 2, 3, 4, 5, 6) on 6 nodes and t = 2. Again
the corresponding matrix P is not copositive, since t < α(G) = 3. This is confirmed by the
results about p∗ from Table 8b. Because of symnmetry, we made the computations for the
polynomial p(x1, x2, x3, x4, x5, 1). Then, n = 5, m = 2, |B2| = 21, |B3| = 56, |B4| = 126.

λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

1 3 (4,4,3) -2.2660 (0,±0.9036, 0,±0.9036, 0)
10−1 3 (8,7,4) −106.6640 none
10−1 4 (8,8,7) −106.6640 -
10−2 3 (8,7,4) −1.3067 104 none

Table 8b. Bounds µ∗
k,λ for Example 8, when G is the circuit on 6 nodes and t = 2

In both instances we find a point x with p(x) < 0 (which certifies that P is not copos-
itive) at the relaxation of order 3 or 4, already for the perturbation λ = 1. The bounds
µ∗

3,λ decrease rapidly as λ goes to 0.

As last instance, consider the case when G is the circuit (1, 2, 3, 4, 5, 6, 7) on 7 nodes
and t = 2. Again, P is not copositive since t < α(G) = 3. Due to symmetry it suffices to
consider the polynomial p where we set x7 = 1. Then, n = 6, m = 2, |B2| = 28, |B3| = 84
and |B4| = 210. Table 8c shows some parameters µ∗

3,λ which again decrease rapidly as λ
becomes small.
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λ order k (rk, rk−1, rk−2) µ∗
k,λ extracted solutions

1 3 (62,24,7) -4.1114 none
10−1 3 (62,24,7) −304.7340 none
10−2 3 (66,24,7) −3.0745 104 none
10−3 3 (83,27,7) −3.0808 106 none

Table 8c. Bounds µ∗
k,λ for Example 8, when G is the circuit on 7 nodes and t = 2

Example 9. Consider the polynomial p(x) =
∑

i=1,2,3 x8
i + p0(x), where p0(x) is the

Motzkin polynomial x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3. It is known that p∗ = 0 and that p is not a
sum of squares (in fact, p is not a sum of squares modulo its gradient ideal [6]). In view of
the form of p, we can apply directly our method for computing p∗, without perturbing p.
Table 9 shows values of the parameter µ∗

k from (25); as µ∗
k ≤ p∗ ≤ 0, we can conclude that

p∗ ∼ 0 already at the relaxation of order k = 4. Here n = 3, m = 3, |B3| = 20, |B4| = 35,
|B5| = 56, |B6| = 84.

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

3 (12,2,1) -1 none
4 (4,4,4) −1.1990 10−9 ±(0.0220, 0.0440, 0.0263)

and approx. (0,0,0) twice
5 (4,4,4) −1.9880 10−10 ±(0.0160, 0.0319, 0.0274)

and approx. (0,0,0) twice
6 (4,4,4) −8.8465 10−11 ±(0.0143, 0.0285, 0.0256)

and approx. (0,0,0) twice
Table 9. Bounds µ∗

k,λ for Example 9

Example 10. Consider the polynomial p(x) = (aT x)2+
∑n

i=1(x
2
i −1)2, where a1, . . . , an are

given positive integers. As mentioned in the Introduction, the sequence a = (a1, . . . , an)
can be partitioned if and only if p∗ = 0, in which case a global minimizer is ±1-valued
and thus provides a partition of the sequence. Deciding whether an integer sequence can
be partitioned is an NP-complete problem and, more generally, computing the parameter
γ := minz∈{±1}n |aT z| (the minimum gap of the sequence a1, . . . , an) is NP-hard.

It is interesting to note1 that γ = 0 (resp., γ = 1) if p∗ ≤ 1
s2 and s :=

∑n
i=1 ai

is even (resp., odd); moreover, a partition realizing the minimum gap can be obtained
from a real point x with p(x) ≤ 1

s2 by letting z := sign(x) (with zi = 1 if xi > 0 and
zi = −1 otherwise). More generally, a similar argument permits to show that a partition
realizing the minimum gap γ can be derived from a global minimizer x to the polynomial
pC(x) := (aT x)2 + C2

∑n
i=1(x

2
i − 1)2, by letting z := sign(x), C := 1

2(maxi ai)(
∑

i ai).
Again we can apply directly our method (without perturbation) for computing the

minimum p∗ of the polynomial p. If we find a positive lower bound µ∗
k, then we can

conclude that the sequence cannot be partitioned. Although this approach can be used

1Indeed, let x ∈ R
n such that p(x) ≤ 1

s2 ; thus |aT x|, |x2

i − 1| ≤ 1

s
. Define z := sgn(x), i.e., zi := 1 if

xi > 0 and zi = −1 otherwise. Then, |aT z| ≤ |aT (x − z)| + |aT x| ≤ 1 + 1

s
< 2; indeed, |aT (x − z)| ≤

∑

i
ai|xi − zi| ≤

∑

i
ai|xi − zi||xi + zi| =

∑

i
ai|1 − x2

i | ≤
1

s

∑

i
ai = 1. As |aT z| has the same parity as

s =
∑

i
ai, aT z = 0 if s is even, and aT z = ±1 otherwise, which shows that the ±1-vector z provides a

partition of the sequence a1, . . . , an realizing the minimum gap.

23



only for sequences of small length n (where the minimum gap could in fact easily be
found directly), we consider below some sequences of length n = 5, 6, 7, 10, 11 to see the
behaviour of the method. We have: m = 1, (|B1|, |B2|, |B3|) = (6, 21, 51) (resp., (7, 28, 78),
(8, 36, 113), (11, 66, 276), (12, 78, 353)) if n = 5 (resp., n = 6, n = 7, n = 10, n = 11) and
|B| = 3n.

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (10,5,1) 2.3994 10−9 none
3 (2,2,2) 2.5072 10−10 ±(1, 1, 1,−1,−1)

Table 10a. The sequence a = (2, 2, 2, 3, 3) is partitionable
with aT x = 0 at the returned solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (12,5,1) 0.0639 none
3 (2,2,2) 0.0657 ±(1.0157, 1.0308,−0.9477, 1.0590,−0.9069)

Table 10b. The sequence a = (1, 2, 3, 4, 5) is not partitionable
as p∗ ≥ µ∗

3 ≥ µ∗
2 > 0; its minimum gap is 1, realized at ±(1, 1,−1, 1,−1),

obtained by rounding the extracted solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (2,2,1) 2.2649 10−12 ±(1, 1,−1, 1,−1)
Table 10c. The sequence a = (2, 2, 3, 4, 5) is partitionable

with aT x = 0 at the returned solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (15,6,1) −1.5649 10−8 none
3 (4,4,3) 1.3816 10−8 ±(1,−1,−1, 1, 1,−1), ±(1,−1, 1,−1,−1, 1)

Table 10d. The sequence a = (3, 3, 4, 5, 6, 7) is partitionable
with aT x = 0 at the returned solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (2,2,1) 0.0188 ±(1.0045, 1.0045, 1.0090, 1.0090, 1.0135, 1.0135,−0.9342)
table 10e. The sequence a = (1, 1, 2, 2, 3, 3, 13) is not partitionable

as p∗ ≥ µ∗
2 > 0; its minimum gap is 1, realized at ±(1, 1, 1, 1, 1, 1,−1),

obtained by rounding the extracted solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (2,2,1) 0.0628 ±(1.0073, 1.0073, 1.0145, 1.0145, 1.0215, 1.0215,−0.8736)
Table 10f. The sequence a = (1, 1, 2, 2, 3, 3, 14) is not partitionable,

as p∗ ≥ µ∗
2 > 0; its minimum gap is 2, realized at ±(1, 1, 1, 1, 1, 1,−1),

obtained by rounding the extracted solutions
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order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (2,2,1) 0.0758 ±(1.0015, 1.0029, 1.0044, 1.0282, 1.0073,
1.0087, 1.0101, 1.0144, 1.0158,−0.8580)

Table 10g. The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77) is not partitionable
as p∗ ≥ µ∗

2 > 0; its minimum gap is 12, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1),
obtained by rounding the extracted solutions

order k (rk, rk−1, rk−2) µ∗
k extracted solutions

2 (2,2,1) 0.0441 ±(1.0012, 1.0023, 1.0035, 1.0225, 1.0058,
1.0069, 1.0080, 1.0114, 1.0126,−0.8943, 1.0035)

Table 10h. The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77, 3) is not partitionable
as p∗ ≥ µ∗

2 > 0; its minimum gap is 9, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1, 1),
obtained by rounding the extracted solutions

4. Conclusions

We consider the problem of computing the global infimum p∗ of a multivariate polyno-
mial p of degree 2m. We propose a method for determining upper approximations µ∗

λ (or
µ∗

k,λ for some integer k ≥ m) for the infimum, that converge to p∗ as λ goes to 0. In the
examples on which our method was tested, a tight upper bound µ∗

k,λ for p∗ is very often

found for k small (k = m + 1 or m + 2) by solving a semidefinite program of reasonable
size, together with a real point x whose evaluation p(x) gives a certificate for the upper
bound. For small λ, p(x) is in fact very close to the infimum p∗ and x is close to a global
minimizer (if some exists), which has been confirmed on the examples.

Our method applies to any polynomial; in particular, no assumption about existence of
a minimum is needed. In fact, it works with a perturbation pλ of p, which has the property
of having a minimum as well as a finite set Vλ of critical points. Moreover, the minima µ∗

λ
of p over the set Vλ converge to p∗ as λ goes to 0. One has two options for computing the
minimum µ∗

λ: Either, apply the moment relaxations of Lasserre [15], or apply the more
compact relaxations via combinatorial moment matrices of Laurent [18] as proposed here.
A feature of this second approach is that one has to solve smaller semidefinite programs
and, moreover, one can often extract a solution (giving a certified upper bound for p∗)
at an earlier stage than in the approach based on the classical moment relaxation. In
fact, our method can be applied directly to polynomials of the form p =

∑

i cix
2m
i + p0,

where ci 6= 0 and deg(p0) ≤ 2m − 1, without perturbing p; then it gives a monotonically
nondecreasing hierarchy of lower bounds µ∗

k on the infimum. A limitation for our method
is the size of the matrix variable MBk

(y) which has to be generated and then processed
by the semidefinite solver. Thus it applies only to medium size problems.

Previous methods of Lasserre [15] and Parrilo [23] approximate the infimum of p by
giving a hierarchy of lower bounds for p∗. Thus in a sense the various methods complement
each other.

Parrilo’s method computes for an integer k ≥ 0 the parameter γ∗
k := sup γ s.t.

(
∑

i x2
i )

k(p(x) − γ(
∑

i x2
i )

m) is a sum of squares of polynomials. It is useful for prov-
ing that a homogeneous polynomial p is nonnegative, i.e., p∗ = 0; indeed, if γ∗

k ≥ 0 for
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some k, then p is nonnegative. On the other hand, our method is useful for proving that a
homogeneous polynomial is not nonnegative (e.g., for proving that a matrix is not copos-
itive). Indeed, if one finds an upper bound µ∗

k,λ < 0 for p∗, then p is not nonnegative; in

the examples such certified negative upper bounds on the infimum p∗ are (often) found
for a small order k = m + 1 or m + 2.

When applied to the unconstrained minimization of p, Lasserre’s approach gives a lower
bound p∗L,m for p∗, with equality p∗ = p∗L,m if and only if p − p∗ is a sum of squares. One
can construct a hierarchy of lower bounds converging to p∗ by considering the constrained
problem of minimizing p over its gradient variety (when p has a minimum) or over a ball
(when a ball is known a priori containing a global minimum).

Let us finally mention another method based on perturbations recently introduced by
Lasserre [16]. Given ε > 0 and an integer k ≥ 0, define the perturbed polynomial pk,ε :=

p + ε
∑k

r=0

∑n
i=1

x2r
i

r! . Lasserre [16] defines the parameter:

`∗k,ε := inf pT
k,εy s.t. Mk(y) � 0, y0 = 1

and shows that, given ε > 0, p∗ ≤ `∗k,ε for k large enough, and `∗k,ε ≤ p∗ + ε
∑n

i=1 ex2

i if x

is a global minimum of p. From the numerical results given in [16], it appears that the
bound `∗k,ε is sensitive to the parameter ε (e.g., `∗k,ε does not approximate p∗ very well for

some values of k and small ε) and `∗k,ε provides less good approximations of p∗ than when

solving a constrained program with the first order conditions (which is however allowed
only when p has a minimum).
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