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Research

Semidefinite Programming in Combina-
torial and Polynomial Optimization

In recent years semidefinite programming has become a widely used
tool for designing more efficient algorithms for approximating hard
combinatorial optimization problems and, more generally, polyno-
mial optimization problems, which deal with optimizing a polyno-
mial objective function over a basic closed semi-algebraic set. The
underlying paradigm is that while testing nonnegativity of a poly-
nomial is a hard problem, one can test efficiently whether it can be
written as a sum of squares of polynomials by using semidefinite
programming. In this note we sketch some of the main mathemati-
cal tools that underlie this approach and illustrate its application to
some graph problems dealing with maximum cuts, stable sets and
graph colouring.

Linear optimization has become a well established area of applied
mathematics that is widely and successfully used for modelling
and solving many real-world applications. It is also extensively
used for attacking integer or 0/1 linear problems, which are lin-
ear problems that arise naturally in combinatorial optimization
where the variables are additionally constrained to take integer
or 0/1 values respectively. While efficient algorithms exist for
solving linear programming problems, most problems become in-
tractable as soon as integrality constraints are added to them. Lin-
ear programming techniques are sometimes not powerful enough
for designing good and efficient approximation algorithms for
0/1 linear problems. Semidefinite programming, an extension of
linear programming where vector variables are replaced by ma-
trix variables constrained to be positive semidefinite, turns out to
be a more powerful technique for some problem classes. While
semidefinite programming is also widely used in other areas like
system and control theory (see for example [3]), we focus here on
its application to combinatorial optimization and, more general-
ly, to polynomial optimization. There is a vast amount of infor-
mation on semidefinite programming in the literature; we now
briefly introduce semidefinite programs and refer for example to
[19, 42–43] and references therein for a detailed exposition.

Semidefinite programs
Linear programming deals with optimizing a linear function over
a set defined by finitely many linear inequalities. Any linear pro-
gram (LP) can be brought into the form

max{cT x | aT
j x = b j ( j = 1, . . . , m) and x ≥ 0}, (1)

where c, a1 , . . . , am ∈ Rn and b = (b j)m
j=1 ∈ Rm are given and

x ∈ Rn is the vector variable, constrained to be nonnegative. A
semidefinite program (SDP) is the analogue of the LP (1) where
we replace the vector variable x ∈ Rn with a matrix variable
X ∈ Rn×n, constrained to be symmetric positive semidefinite. Re-
call that a symmetric matrix X ∈ Rn×n is positive semidefinite,
written as X � 0, if uTXu ≥ 0 for all u ∈ Rn or, equivalently, if
X = (vT

i v j)n
i, j=1 for some vectors v1 , . . . , vn ∈ Rn. In other words,

a semidefinite program reads

sup {Tr(CTX) | Tr(AT
j X) = b j ( j = 1, . . . , m) and X � 0}, (2)

where C, A1 , . . . , Am ∈ Rn×n and b ∈ Rm are given and X
is the matrix variable, required to lie in the cone S+

n of posi-
tive semidefinite matrices. While the feasible region of (1) is a
polyhedron, that of (2) is a convex, in general non-polyhedral,
set. Note that the SDP (2) reduces to the LP (1) when all C, A j
are diagonal matrices, and c, a j denote their main diagonals.

Given an n × n rational symmetric matrix X, one can test in
polynomial time (e.g. using Gaussian elimination) whether X is
positive semidefinite and, if not, find a rational vector u ∈ Rn for
which uTXu < 0, thus giving a hyperplane separating X from the
cone S+

n . In technical terms, one can solve the separation problem
over the positive semidefinite cone in polynomial time. Therefore,
semidefinite programs can be solved in polynomial time to any
fixed precision using the ellipsoid method (see [11]). Algorithms
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based on the ellipsoid method are however not practical since
their running time is prohibitively high. Instead, interior-point
algorithms are widely used in practice; they return an approxi-
mate optimum solution (to any given precision) in polynomially
many iterations and their running time is efficient in practice for
medium size problems.

Semidefinite programming in combinatorial optimization
We have chosen to illustrate the use of semidefinite programming
in combinatorial optimization on the following basic problems:
maximum stable sets, minimum graph colouring and maximum
cuts in graphs. For these problems, some milestone results have
been obtained in recent years that have spurred intense research
activity and results for other optimization problems; we refer to
[9, 19, 27, 30] and references therein for a detailed exposition. First
we introduce some ‘basic’ SDP relaxations and then we indicate
how to strengthen them and construct hierarchies leading to the
full representation of the combinatorial problem at hand.

Maximum stable sets and graph colouring
Consider the problem of determining the stability number α(G) of
a graph G = (V, E), i.e. the maximum cardinality of a stable set in
G, where a stable set is a set of pairwise non-adjacent vertices.
A closely related problem is the graph colouring problem, which
asks for the minimum number χ(G) of colours that are needed
for colouring the nodes in such a way that adjacent nodes receive
distinct colours. Thus χ(G) equals the minimum number of stable
sets covering the vertex set V. Note that

χ(G) ≥ ω(G), (3)

where ω(G) is the largest cardinality of a clique in G, i.e. a set of
pairwise adjacent vertices. Obviously, ω(G) = α(G), where G
is the complement of G, with the same set V of vertices and two
distinct vertices being adjacent in G precisely when they are not
adjacent in G.

For some graphs the inequality (3) is strict. For instance, it is
strict for any circuit Cn of odd length n ≥ 5, as ω(Cn) = 2 <

χ(Cn) = 3, and for the complement Cn of Cn as well. Howev-
er there are many interesting classes of graphs for which equality
ω(G) = χ(G) holds. This is the case e.g. for bipartite graphs,
line graphs of bipartite graphs, comparability graphs and chordal
graphs, and their complements as well. In fact the class of graphs
for which equality ω(G) = χ(G) holds not only for G but also
for all its induced subgraphs, i.e. all those graphs that can be ob-
tained by deleting vertices in G, turns out to be very interesting;
following Berge, graphs in this class are called perfect graphs. Thus
Cn and its complement Cn are not perfect for odd n ≥ 5. Berge
conjectured in 1962 that a graph is perfect if and only if its com-
plement is perfect, which was proved a decade later by Lovász
[28]. Berge also conjectured that a graph is perfect if and only if
it does not contain any odd circuit or its complement of length
at least 5 as an induced subgraph, which was proved only re-
cently by Chudnovsky et al. [4] and is known as the strong perfect
graph theorem. It is intriguing to determine the complexity of com-
puting α(G) and χ(G) for perfect graphs. As we indicate below
this can be done in polynomial time but to show this one has to
use semidefinite programming. Both problems of computing the

stability number α(G) and the chromatic number χ(G) are NP-
hard [7]. Lovász [29] introduced his celebrated theta number ϑ(G),
which serves as bound for bothα(G) and χ(G). The theta number
is defined via the semidefinite program

ϑ(G) := max{Tr(JX) | Tr(X) = 1,

Xi j = 0 (i j ∈ E), X � 0},
(4)

where J denotes the all-ones matrix. Hence it can be computed in
polynomial time to any fixed precision. A basic property of the
theta number is that it satisfies the so-called sandwich inequality

α(G) ≤ ϑ(G) ≤ χ(G), or equivalently,

ω(G) ≤ ϑ(G) ≤ χ(G).
(5)

Indeed if x = χS ∈ {0, 1}V is the incidence vector of a stable set
S in G (seen as a column vector) then X := xxT/|S| is feasible
for the program (4) with objective value |S|, which gives α(G) ≤
ϑ(G). On the other hand, if X is a feasible solution to (4) and
V = C1 ∪ . . . ∪ Ck is a partition into k := χ(G) cliques of G, then

0 ≤
k

∑
h=1

(kχCh − e)TX(kχCh − e)

= k2Tr(X)− keTXe = k (k− Tr(JX)) ,

where e is the all-ones vector, which implies Tr(JX) ≤ k and thus
ϑ(G) ≤ χ(G).

Hence, for perfect graphs, equality holds throughout in (5),
which implies α(G) = ϑ(G) and χ(G) = ϑ(G). As the theta num-
ber can be computed in polynomial time to any fixed precision,
the stability number and the chromatic number can be computed
in polynomial time for perfect graphs. Moreover, a maximum sta-
ble set and a minimum colouring can also be computed in poly-
nomial time for a perfect graph G (by iterated computations of
the theta number of certain induced subgraphs of G). These com-
putations thus rely on using semidefinite programming and as of
today no alternative efficient algorithm is known.

Lovász’ original motivation for introducing the theta number
was to bound the Shannon capacity of a graph G, which is defined
as

Θ(G) := lim
k→∞α(Gk)

1
k . (6)

Here Gk denotes the product of k copies of G, with vertex set Vk

and with two distinct vertices (u1 , . . . , uk) and (v1 , . . . , vk) be-
ing adjacent in Gk if uh = vh or uhvh ∈ E for each position
h = 1, . . . , k. If we view V as an alphabet and adjacent vertices
u, v ∈ V as letters that can be confounded, then α(Gk) is the max-
imum number of words of length k that cannot be confounded,
since for any two of them there is a position h where their hth let-
ters cannot be confounded. One can verify that α(Gk) ≥ α(G)k

and ϑ(Gk) ≤ ϑ(G)k, which implies

α(G) ≤ Θ(G) ≤ ϑ(G). (7)
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Therefore, when G is perfect, Θ(G) = ϑ(G) can thus be computed
via semidefinite programming. Lovász could also compute the
Shannon capacity of the circuit C5 using the theta number. He
showed that Θ(C5) =

√
5, which follows from α(C2

5) ≥ 5 (easy to
verify) and ϑ(C5) =

√
5; the latter follows e.g. from the fact that

ϑ(G)ϑ(G) = |V| when G is vertex transitive and that C5 is vertex
transitive and isomorphic to its complement. The exact value of
the Shannon capacity of Cn is not known for odd n ≥ 7.

Maximum cuts
Another successful application of semidefinite programming to
combinatorial optimization is the celebrated 0.878-approximation
algorithm of Goemans and Williamson [10] for the max-cut prob-
lem, which we briefly sketch below.

Given a graph G = (V, E) and edge weights w ∈ RE
+, a cut is a

set of edges of the form δG(S) := {i j ∈ E | i ∈ S, j ∈ V \ S} for
some S ⊆ V, and its weight is w(δG(S)) = ∑i j∈δG(S) wi j. The max-
cut problem asks for a cut of maximum total weight, whose weight
is then denoted as mc(G). While a minimum weight nonempty
cut can be found in polynomial time (using flow algorithms), the
max-cut problem is NP-hard [7].

Erdös proposed in 1967 the following simple algorithm for
constructing a cut of weight at least half the optimum cut. Colour
the vertices v1 , . . . , vn of G with two colours blue and red as fol-
lows: first colour v1 with blue. Assuming v1 , . . . , vi are already
coloured, colour vi+1 with blue if the total weight of the edges
joining vi+1 to the red vertices in {v1 , . . . , vi} is more than the
total weight of the edges joining vi+1 to the blue vertices in this
set; otherwise colour vi+1 red. Then the cut formed by the edges
connecting blue and red vertices has weight at least w(E)/2 and
thus at least mc(G)/2. This simple algorithm is thus an efficient
1/2-approximation algorithm for max-cut. There is an even easier
randomized 1/2-approximation algorithm. Namely colour ran-
domly each node blue or red independently, with probability 1/2.
The probability that an edge belongs to the cut determined by this
partition into blue and red vertices is 1/2 and thus the expected
weight of this cut is w(E)/2. Can one construct in polynomial
time a cut achieving a better approximation ratio? Goemans and
Williamson [10] showed that this is indeed possible. For this they
use a semidefinite program as relaxation for the max-cut problem
and a suitable rounding of its optimum solution to a cut. To start
with, they model the max-cut problem using ±1-valued variables
as

mc(G) = max

{
∑

i j∈E
wi j(1− xix j)/2 | x ∈ {±1}V

}
. (8)

Observe that, for x ∈ {±1}V , the matrix X := xxT can be charac-
terized by the constraints: (i) X � 0, (ii) Xii = 1 ∀i ∈ V and (iii)
rank(X) = 1. If we omit the rank condition (iii) then we find the
semidefinite relaxation

sdp(G) :=

max

{
∑

i j∈E
wi j(1− Xi j)/2 | X � 0, Xii = 1 (i ∈ V)

}
.

(9)

Let X be an optimum solution to (9). Goemans and Williamson

propose the following random rounding procedure for construct-
ing a good cut from X. Compute the Cholesky decomposition of
X, i.e. vectors vi (i ∈ V) such that Xi j = vT

i v j ∀i, j ∈ V. Select a
random unit vector r ∈ Rn. The hyperplane with normal r splits
the vectors vi into two sets, depending on the sign of rTvi. Let
S := {i ∈ V | rTvi ≥ 0}. As the probability that an edge i j lies in
the cut δG(S) is equal to 1

π arccos(vT
i v j), the expected weight of

the cut δG(S) is equal to

∑
i j∈E

wi j
arccos(vT

i v j)
π

= ∑
i j∈E

wi j
1− vT

i v j

2
2
π

arccos vT
i v j

1− vT
i v j

≥ αGW sdp(G) ≥ 0.878567 mc(G),

after setting αGW := min0<ϑ≤π
2
π

ϑ
1−cos ϑ and observing that

αGW > 0.878567. This randomized algorithm can be derandom-
ized to yield in polynomial time a deterministic cut achieving the
same performance ratio.

Much research has been done trying to improve the Goemans-
Williamson approximation algorithm for max-cut and to extend
and apply it to other problems (see for example the survey [27]
and references therein). However, although improved algorithms
could be designed for special graph classes, no better approxima-
tion ratio could yet be shown for the general max-cut problem. It
is in fact proved that αGW is the best possible approximation ratio
for max-cut that can be achieved in polynomial time (if P 6= NP)
under the so-called Unique Games Conjecture (see [17] and [18]).
On the negative side, Håstad [15] proved that if P 6= NP then no
polynomial time approximation algorithm exists for max-cut with
performance guarantee better than 16/17 ∼ 0.94117.

Hierarchies of semidefinite programming relaxations
We saw above how to define in a natural way a semidefinite re-
laxation for the maximum stable set problem (via the SDP (4))
and for the max-cut problem (via the SDP (9)). Several proce-
dures have been proposed for constructing stronger SDP relax-
ations (discussed in [22, 27, 31] and references therein). We now
describe a simple method for constructing a hierarchy of SDP re-
laxations, which finds the exact representation of the combina-
torial problem at hand in finitely many steps. We present it for
simplicity on the instance of the stable set problem.

Given a graph G = (V, E), let PG denote the convex hull of the
incidence vectors of all stable sets in G; in other words,

PG = conv
{

x ∈ {0, 1}V | xi + x j ≤ 1 (i j ∈ E)
}

,

called the stable set polytope of G. Then maximizing the linear func-
tion ∑i∈V xi over PG gives the stability number α(G), while max-
imizing it over a relaxation of PG gives an upper bound on α(G).
The basic idea is to ‘lift’ a vector x ∈ {0, 1}V to the higher dimen-
sional vector

x(t) =

(
xI := ∏

i∈I
xi

)
I∈Pt(V)

indexed by Pt(V) = {I ⊆ V | |I| ≤ t}

and to consider the matrix
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X = x(t)
(

x(t)
)T

.

Here are some obvious conditions satisfied by X: (i) X � 0 and
(ii) any (I, J)-entry of X depends only on the union I ∪ J (as XI,J =
xI∪J).

A matrix indexed by Pt(V) satisfying (ii) is of the form

Ct(y) := (yI∪J)I,J∈Pt(V) for some y ∈ RP2t(V) ; (10)

then Ct(y) is called the combinatorial moment matrix of order t of y.
Summarizing, we just saw that, if y = x(2t) for some x ∈

{0, 1}V , then its combinatorial moment matrix satisfies the SDP
condition Ct(y) � 0. Moreover, y∅ = 1 and, if x is the incidence
vector of a stable set in G, then y satisfies the edge equations
yi j = 0 for all i j ∈ E. This motivates the following definition.
For any integer t ≥ 1, consider the set

{
y ∈ RP2t(V) | Ct(y) � 0, y∅ = 1, yi j = 0 (i j ∈ E)

}
(11)

and its projection onto the space RV , denoted P(t)
G . As PG ⊆

P(t+1)
G ⊆ P(t)

G , we obtain a hierarchy of SDP relaxations for the

stable set polytope PG. It finds PG in α(G) steps, i.e. P(t)
G = PG

for t ≥ α(G). Optimizing the function ∑i∈V xi over P(t)
G yields an

upper bound on α(G), which coincides with α(G) for t ≥ α(G).
This upper bound can be computed in polynomial time (to any
precision) when t is fixed, since it is expressed via an SDP involv-
ing a matrix of size O(nt). Moreover, for t = 1, one can verify that
this upper bound coincides with the theta number ϑ(G) from (4).
Therefore, the above construction is a systematic procedure for
producing a hierarchy of upper bounds for the stability number,
starting with the theta number.

As t grows we obtain a tighter approximation of α(G), how-
ever at a higher computational cost. More economical block-
diagonal variations of the above hierarchy have been proposed,
which are based on considering, instead of the full matrix Ct(y), a
number of smaller blocks arising from principal submatrices of it.
Computational experiments for the stable set and graph colour-
ing problems show that such relaxations can give approximations
for α(G) and χ(G), which may improve substantially the theta
number (see [12–14, 20, 25]). When G is a Hamming graph, with
vertex set {0, 1}n and with edges the pairs of nodes with Ham-
ming distance below a prescribed value, α(G) corresponds to the
maximum cardinality of a code correcting a prescribed number of
errors, ϑ(G) corresponds to the well-known LP bound of Delsarte
[6], and the next bounds in the hierarchy are studied e.g. in [8, 25,
39]; as G has a large number of vertices, a crucial ingredient for the
practical computation of these bounds is exploiting symmetry in
the SDP formulations and using the explicit block-diagonalization
of the Terwilliger algebra given in [39].

Semidefinite Programming in Polynomial Optimization
We now turn to the application of semidefinite programming to
polynomial optimization. Given p, g1 , . . . , gm ∈ R[x] the ring of
polynomials in n variables x = (x1 , . . . , xn), consider the problem

pmin := inf {p(x) | g1(x) ≥ 0, . . . , gm(x) ≥ 0} (12)

of minimizing the polynomial p over the basic closed semi-
algebraic set

K := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} . (13)

This is a hard problem. For instance, it contains 0/1 linear pro-
gramming, as 0/1 variables can be modelled by the quadratic
equations x2

i = xi ∀i. It also contains the max-cut problem (8)
where the objective and the constraints are quadratic polynomi-
als (expressing xi = ±1 by x2

i = 1).
We fix some notation. For α ∈ Nn, xα = xα1

1 · · · xαn
n is the

monomial with exponent α, whose degree is |α| = ∑i αi. For
an integer d, Nn

d = {α ∈ Nn | |α| ≤ d} corresponds to the set
of monomials of degree at most d. For g = ∑α gαxα ∈ R[x], set
dg := ddeg(g)/2e and let ~g = (gα)α denote the vector of coeffi-
cients of g. Finally, for K as in (13), set

dK := max{dg1 , . . . , dgm}.

Several authors (see [21, 32, 34, 40]) have proposed approximating
the problem (12) by convex (semidefinite) relaxations, obtained by
using sums of squares representations for nonnegative polynomi-
als and the dual theory of moments. We give below a brief sketch
of this approach and refer e.g. to the survey [26] and references
therein for more details. The basic idea underlying this approach
is that, while testing whether a polynomial is nonnegative is a
hard problem, the relaxed problem of testing whether it can be
written as a sum of squares of polynomials is much easier since it
can be reformulated as a semidefinite program.

Of course, as Hilbert already realized in 1888, not every non-
negative polynomial p can be written as a sum of squares of poly-
nomials. This is true only in the following three exceptional cas-
es: when p is univariate (in which case one can easily verify that
p is a sum of two squares), when p is quadratic (which corre-
sponds to the fact that a positive semidefinite matrix A can be
written as BBT for some matrix B) and when p is a quartic poly-
nomial in 2 variables (in which case Hilbert proved that p can
be written as a sum of three squares - a non-trivial result). In all
other cases Hilbert proved that there exists a nonnegative poly-
nomial that is not a sum of squares of polynomials. His proof
was not constructive. Concrete examples of such polynomials
were found only much later; for instance, the following polyno-
mial x2

1x2
2(x2

1 + x2
2 − 3) + 1 is due to Motzkin (see [41] for a de-

tailed account). Hilbert asked at the 1900 International Congress
of Mathematicians in Paris whether every nonnegative polynomi-
al can be written as a sum of squares of rational functions, known
as Hilbert’s 17th problem. This was settled in the affirmative by
Artin in 1927, whose work laid the foundations for the field of
real algebraic geometry. See for example [35–36] for a detailed
exposition.

Sums of squares of polynomials and semidefinite programming
We first recall how to test whether a polynomial can be writ-
ten as a sum of squares of polynomials using semidefinite pro-
gramming: a polynomial p = ∑α pαxα of degree 2d is a sum of
squares of polynomials (s.o.s. for short), i.e. p = ∑m

j=1 u2
j for some

u j ∈ R[x], if and only if the SDP
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X � 0, ∑
β,γ∈Nn

d
β+γ=α

Xβ,γ = pα (α ∈ Nn
2d) (14)

is feasible, where the matrix variable X is indexed by Nn
d . Indeed,

setting z := (xα)α∈Nn
d
, we have

m

∑
j=1

u2
j =

m

∑
j=1

(zT~u j)2 = zT


m

∑
j=1

~u j~u
T
j︸ ︷︷ ︸

=: X�0

 z

= ∑
β,γ∈Nn

d

xβxγXβ,γ = ∑
α∈Nn

2d

xα

 ∑
β,γ∈Nn

d
β+γ=α

Xβ,γ

 ,

which shows that the s.o.s. decompositions for p correspond to
the solutions X of (14).

We now introduce some SDP relaxations based on sums of
squares for the polynomial optimization problem (12). Observe
first that (12) can be rewritten as

pmin = sup{λ | p(x)− λ ≥ 0 ∀x ∈ K}. (15)

Then define, for any integer t ≥ max(dK , dp), the parameter

psos
t := sup

{
λ | p− λ = s0 +

m

∑
j=1

s jg j

such that s0 , s j s.o.s. with deg(s0), deg(s jg j) ≤ 2t
}

,

(16)

which is obviously a lower bound for pmin. Moreover, it follows
from the above that psos

t can be computed via semidefinite pro-
gramming. As psos

t ≤ psos
t+1 ≤ pmin, we obtain a hierarchy of SDP

bounds for (12).

Positive semidefinite moment matrices and polynomial optimization
We now give a ‘dual’ SDP hierarchy for pmin in terms of moment
matrices. For this let us go back to problem (12) and observe that
it can be reformulated as

pmin = inf
{

yT~p | ∃ µ probability measure on K such that

yα =
∫

K
xαµ(dx) ∀α

}
;

(17)

here the variable y is constrained to have a representing mea-
sure µ, in which case the quantity

∫
K xαµ(dx) is called its mo-

ment of order α. Indeed, if µ is a probability measure on K then∫
K p(x)µ(dx) ≥

∫
K pminµ(dx) = pmin, giving inf(17) ≥ pmin. On

the other hand, if x0 ∈ K and µ is the Dirac measure at x0, then
p(x0) =

∫
K p(x)µ(dx) ≥ inf(17), thus giving the reverse inequali-

ty pmin ≥ inf(17).
Characterizing the sequences y having a representing measure

on K is the object of classical moment theory. Well-known nec-
essary conditions include (i) Mt(y) � 0, and the localizing con-
ditions (ii) Mt−dg j

(g j y) � 0 ( j ≤ m) for any t ≥ dK . Here

Mt(y) := (yβ+γ)β,γ∈Nn
t

is the moment matrix of order t of y and,
for a polynomial g = ∑α gαxα , gy ∈ RNn

is the sequence with αth
entry ∑β gβyα+β. Hence, for any t ≥ max(dK , dp), the parameter

pmom
t := inf

{
yT~p | y0 = 1, Mt(y) � 0,

Mt−dg j
(g j y) � 0 ( j = 1, . . . , m)

} (18)

is an SDP lower bound for (12). The two programs (14) and (17)
give ‘dual’ formulations for pmin, corresponding to the known
duality between the cone of nonnegative polynomials on K and
the cone of sequences having a nonnegative representing mea-
sure on K, while the two programs (16) and (18) are dual SDPs
(see [21] for details). We have psos

t ≤ pmom
t ≤ pmin, with equality

pmom
t = psos

t , e.g. when K has a nonempty interior. We see below
some conditions under which the SDP relaxations are exact, i.e.
equality pmom

t = psos
t = pmin holds.

Convergence, optimality certificate and extracting global minimizers
We group here some basic properties of the SDP hierarchies (14)
and (17), regarding convergence and extraction of a global mini-
mizer for the original problem (12).

Assume that the quadratic module MK := {s0 + ∑m
j=1 s jg j |

s0 , s j s.o.s} is Archimedean, i.e. ∀p ∈ R[x] N ± p ∈ MK for some
N ∈ N. As shown by Schmüdgen [38], MK is Archimedean if
and only if the set {x ∈ Rn | u(x) ≥ 0} is compact for some
u ∈ MK . Thus MK Archimedean implies K compact. On the other
hand, if K is compact and if we know an explicit ball of radius R
containing K, then it suffices to add the quadratic constraint R2 −
∑i x2

i ≥ 0 to the description of K to make MK Archimedean. The
important fact for our treatment here is that if MK is Archimedean
then there is asymptotic convergence of psos

t (and thus of pmom
t )

to pmin as t → ∞. As pointed out in [21], this follows directly
from the following representation result of Putinar [37]: if MK is
Archimedean then any polynomial that is positive on K belongs
to MK .

Sometimes there is even finite convergence to pmin. For in-
stance, psos

t = pmom
t = pmin (or pmom

t = pmin) for t large enough
when the description of K contains a set of equations having
finitely many common complex (or real) roots (see [24, 26]). Fi-
nite convergence occurs in particular in the 0/1 case considered
earlier, corresponding to the presence of the equations x2

i = xi
(i = 1, . . . , n). Note that, in the presence of these equations, one
can eliminate all variables yα with some αi ≥ 2 in the moment
matrices Mt(y) in (18), so that we find again the combinatorial
moment matrices Ct(y) considered in (10).

Another interesting case of (finite) convergence is for the prob-
lem (12) of minimizing a polynomial p over its gradient variety

Kp := {x ∈ Rn | ∂p/∂xi = 0 ∀i = 1, . . . , n},

which follows from the following result of Nie et al. [33]: if p is
positive on Kp then p is an s.o.s. modulo its gradient ideal Ip,
defined as the ideal generated by ∂p/∂xi (i = 1, . . . , n); moreover
the same conclusion holds when p is nonnegative on Kp and Ip is
a radical ideal.

Henrion and Lasserre [16] give the following optimality crite-
rion for the SDP hierarchy (18): if y is an optimum solution to (18)
satisfying

rankMs(y) = rankMs−dK
(y)

for some max(dK , dp) ≤ s ≤ t
(19)
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then equality pmom
t = pmin holds and, moreover, all common

roots to the polynomials lying in the kernel of Ms(y) are global
minimizers of p over the set K. Therefore one can compute these
roots (e.g. using the so-called eigenvalue method for solving poly-
nomial equations) and thus obtain global minimizers for the orig-
inal problem (12). Here is a brief sketch of the proof for this opti-
mality criterion. It relies on the following results of [5] for moment
matrices: firstly, if rankMs(y) = rankMs−1(y) then y can be ex-
tended to ỹ ∈ RNn

in such a way that rankM∞(ỹ) = rankMs(y).
Secondly, if M∞(ỹ) � 0 with finite rank then ỹ has a representing
measure. Combining these two results one can derive that, under
the rank condition (19), y has a representing measure µ on K up
to order 2s; this implies that pmom

t = yT~p =
∫

K p(x)µ(dx) ≥ pmin

and thus equality pmom
t = pmin holds and, moreover, the support

of µ is contained in the set of global minimizers. See for example
[26] for a detailed exposition.

Conclusions
We have given here a brief sketch of how to use semidefinite
programming for designing hierarchies of convex relaxations
for polynomial optimization problems, which include 0/1 lin-
ear optimization problems as special instances. The underlying
paradigm is that, while testing whether a polynomial is nonneg-
ative is a hard problem, one can test whether it can be written
as a sum of squares efficiently using semidefinite programming.
The duality between nonnegative polynomials and moment theo-

ry leads to dual SDPs in terms of sums of squares and in terms of
positive semidefinite moment matrices, the latter lending them-
selves to possible extraction of global optimizers. There are many
further interesting aspects that were not discussed here. To name
just a few: how often do positive polynomials admit s.o.s. decom-
positions? Various answers may be given depending whether one
lets the number of variables or the degree vary; how do you re-
duce the size of the SDPs using structural properties of the prob-
lem, like equations, sparsity or symmetries? This is indeed crucial
as SDPs that are too large could not be handled by the current SDP
solvers; and how do these hierarchies (based on Putinar’s repre-
sentation theorem) compare to other hierarchies based on other
representation results, like e.g. Pólya’s representation theorem for
positive homogeneous polynomials on the standard simplex?

Finally let us mention some recent work showing that semidef-
inite programming combined with invariant theory and harmon-
ic analysis can also be very useful for attacking various problems
on the unit sphere. In particular, Bachoc and Vallentin [1] obtain
the best upper bounds for the famous kissing number in dimen-
sion up to 10, while Bachoc et al. [2] introduce an analogue of the
theta number for compact metric spaces, leading e.g. to new lower
bounds for the measurable chromatic number of distance graphs
on the unit sphere. k
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