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LOWER BOUND FOR THE NUMBER OF ITERATIONS
IN SEMIDEFINITE HIERARCHIES FOR THE CUT POLYTOPE

MONIQUE LAURENT

Hierarchies of semidefinite relaxations for 0/1 polytopes have been constructed by Lasserre
(2001a) and by Lovász and Schrijver (1991). The cut polytope of a graph on n nodes can be
expressed as a projection of such a semidefinite relaxation after at most n steps. We show that
�n/2� iterations are needed for finding the cut polytope of the complete graph Kn.

1. Introduction.

1.1. Preamble. Given a graph G = �V �E	 and a subset A ⊆ V , the cut determined
by A is the vector ��A	 ∈ �±1
E with ijth entry −1 if and only if �A∩ �i� j
� = 1. The
cut polytope CUT�G	 is the polytope in �E defined as the convex hull of all cuts ��A	
(A⊆ V ). Given edge weights w ∈�E , the max-cut problem is the problem of finding a cut
��A	 whose weight

∑
ij∈E�i∈A� j 
∈A wij is maximum. Hence, it can be formulated as the linear

programming problem:

max
1
2

∑
ij∈E
wij�1−xij	 subject to x ∈ CUT�G	

over the cut polytope.
Because the max-cut problem is NP-hard, extensive research has been done for finding

good and efficient relaxations of the cut polytope. Research has focused, in particular, on
finding large classes of valid inequalities and facets for the cut polytope by exploiting the
combinatorial structure of the specific max-cut problem (see Deza and Laurent 1997 for
a detailed account). Research has also focused on developing general purpose methods
applied to arbitrary 0/1 (or ±1) problems. Let us mention, in particular, the lift-and-project
method of Balas et al. (1993), the matrix-cut method of Lovász and Schrijver (1991), the
linearization-reformulation technique of Sherali and Adams (1990, 1999), and the more
recent real-algebraic method of Lasserre (2001a, b) (and related work of Nesterov 2000;
Parrilo 2000, 2003, Shor 1987). A common feature of these methods is the construction of a
hierarchy of linear or semidefinite relaxations for a given 0/1 (or ±1) polytope P , converging
to P in d steps (if P lies in the d-space). The various constructions have been compared in
Laurent (2003a) and it is shown there that the Lasserre hierarchy of semidefinite relaxations
refines all the other hierarchies.
Let us define the rank of a given method (with respect to some initial relaxation of P ) as

the smallest number of iterations needed for finding the integer polytope P . The dimension
of the ambient space is a common upper bound for the rank of the various procedures.
Lower bounds have been established for several examples; for instance, for the Sherali-
Adams procedure (Laurent 2003a), and for the Lovász-Schrijver procedure applied to the
matching polytope (Stephen and Tunçel 1999), to the knapsack polytope and to the “pigeon
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hole principle” polytope (Grigoriev et al. 2001), to the traveling salesman polytope and
to some other examples (Cook and Dash 2001, Dash 2000, Goemans and Tunçel 2001).
As pointed out to us by D. Pasechnik, it follows from arguments in Grigoriev (2001)
(given in the context of Positivstellensatz calculus) that �n/2� iterations of the Lasserre
procedure are needed to prove that the polytope �x ∈ �0�1�n �∑n

i=1 xi = �n/2�+ 1
2
 contains

no integer point (see also Grigoriev et al. 2001). The same holds for the (semidefinite)
Lovász-Schrijver procedure, thus improving the lower bound n/4 given in Grigoriev et al.
(2001, Theorem 7.1). (This follows from the fact, shown in Laurent 2003a, that the tth
iterate in the semidefinite Lovász-Schrijver hierarchy contains the tth iterate in the Lasserre
hierarchy for any integer t ≥ 1.)
When P = CUT�G	 is the cut polytope of a graph G, let Qt�G	 (resp., N

t�G	, N t+�G	)
denote the hierarchy of relaxations for CUT�G	 obtained using the Lasserre construction
(resp., using the N and N+ operators in the Lovász-Schrijver construction). The sets N t�G	
are linear relaxations while N t+�G	 and Qt�G	 are semidefinite relaxations of CUT�G	;
these hierarchies of relaxations are studied in detail in Laurent (2001, 2003b). The sets
Qt�G	 will be defined in §1.2, but we do not need here a precise definition of the sets
N t�G	 and N t+�G	; let us simply mention that they are obtained by applying the Lovász-
Schrijver N and N+ operators to the relaxation of the cut polytope defined by the triangle
inequalities. It is shown in Laurent (2003b) that

(1) Qt+2�G	⊆ N t+�G	⊆ N t�G	
(for t ≥ 0) and in Laurent (2001) that CUT�G	=N t�G	 if G has t edges whose contraction
produces a graph with no K5-minor. Define the parameter �L�G	 as the smallest integer t
for which CUT�G	 = Qt�G	, called the rank of the graph G with respect to the Lasserre
procedure; analogously, define �N �G	 (resp., �N+�G	) as the smallest t for which CUT�G	=
N t�G	 (resp., N t+�G	). Thus,

�L�G	−2 ≤ �N+�G	≤ �N �G	≤max�0� n−��G	−3	�

and in particular, �N �Kn	 ≤ n− 4 for n ≥ 4. It is conjectured in Laurent (2003a) that
�N �Kn	 = n− 4, i.e., that n− 4 iterations are, in fact, needed for finding CUT�Kn	 using
the N operator. Equality �N �Kn	= n−4 is known to hold for n≤ 7.
The main contribution of this paper is to show the lower bound

�L�Kn	≥
⌈
n

2

⌉

for the rank of the complete graph Kn with respect to the Lasserre procedure. As a conse-
quence, this implies the lower bound

�N �Kn	≥ �N+�Kn	≥
⌈
n

2

⌉
−2

for the rank of the Lovász-Schrijver procedure. We conjecture that equality �L�Kn	= �n/2�
holds.
The paper is organized as follows. In §§1.2 and 1.3, we introduce the semidefinite relax-

ations Qt�G	 for the cut polytope CUT�G	 and sketch the method of proof utilized for
showing the strict inclusion: CUT�Kn	⊂Qt�Kn	 when t ≤ �n/2�−1 (which constitutes the
main result of the paper). This can be reduced to establishing positive semidefiniteness of
some matrix Yn (indexed by all subsets of �1� � � � � n
 of size ≤ �n/2�−1) (see Theorem 6).
Section 2 is devoted to proving that matrix Yn is indeed positive semidefinite; the proof
relies on algebraic tools like the Johnson association scheme and hypergeometric series.
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Section 3 recalls the algebraic background underlying the Lasserre procedure, about repre-
sentations of nonnegative polynomials as sums of squares of polynomials. It contains, in
particular, an algebraic reformulation of our bound on the rank of the Lasserre procedure
for the cut polytope. Finally, in the Appendix, we group a number of remarkable features
displayed by the matrix Yn, which plays a central role in the paper.

1.2. Semidefinite relaxations for the cut polytope. Let G = �V �E	 be a graph with
V = �1� � � � � n
 and let t ≥ 1 be an integer; �t�V 	 denotes the collection of subsets of
V whose cardinality is ≤t and has the same parity as t, and ��V 	 the collection of even
subsets of V . Given a vector y = �yI 	I∈��V 	� �I �≤2t , its moment matrix of order t is the matrix
Mt�y	 indexed by �t�V 	 with �I� J 	th entry y�I"J 	.
It is useful to observe that Mt�y	 can alternatively be indexed by the set �I"O � I ∈

�t�V 	
, for any given set O ⊆ V . From this follows, in particular, that

Mn�y	=Mn−1�y	$

Indeed, say n is even. Then Mn�y	 is indexed by all even subsets while Mn−1�y	 is indexed
by all odd subsets. As the collection of odd subsets of V is equal to �I"O � I ∈ ��V 	

where O is any given odd set, Mn−1�y	 can be assumed to be indexed by all even sets, and
therefore Mn−1�y	=Mn�y	.
Let �t�n	 denote the set of moment matrices of order t that are positive semidefinite

and have an all-ones main diagonal, and let Qt�G	 denote the projection of �t�n	 on the
subspace �E indexed by the edge set of G. That is,

�t�n	=
{
Y � 0 � Y =Mt�y	 for some y = �yI 	I∈��V 	� �I �≤2t with y� = 1

}
�

and

Qt�G	 =
{
x ∈ �E � ∃y = �yI 	I∈��V 	� �I �≤2t such that y� = �� yij = xij �ij ∈ E	�

and Mt�y	� 0
}
$

Then the set Qt�G	 is a semidefinite relaxation of the cut polytope, i.e.,

(2) CUT�G	⊆Qt�G	�
and

(3) CUT�G	=Qn−1�G	$

The inclusion (2) follows from the fact that each cut ��A	 is equal to the projection on �E

of the moment matrix of the vector yA ∈ ���V 	 defined by

(4) yA�I	 %= �−1	�I∩A� for I ∈ ��V 	�

and from the fact that

(5) Mn−1�y
A	= yA�yA	T

is therefore positive semidefinite. Equality (3) is proved by Lasserre (2001b) using results
about moment sequences. The following elementary proof was given by Laurent (2003a, b).

Lemma 1. Given y ∈���V 	, the eigenvectors of the matrix Mn−1�y	 are the 2
n−1 distinct

vectors yA (A⊆ V ) with respective eigenvalues yT yA.
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Proof. Direct verification shows that each vector yA is an eigenvector of Mn−1�y	 with
corresponding eigenvalue yT yA. Moreover, two distinct vectors yA and yB are orthogonal,
since �yA	T yB =∑

I∈��V 	�−1	�I∩A��−1	�I∩B� =∑
I∈��V 	�−1	�I∩�A"B	�, which is equal to 0 if

A"B 
= �, V . Therefore, the 2n−1 distinct vectors yA form a basis of eigenvectors for
Mn−1�y	. �

Hence any matrix Y =Mn−1�y	 ∈ �n−1�n	 can be written as

Y = ∑
A⊆V \�n


(Ay
A�yA	T �

where (A %= �1/�2n−1		yT yA ≥ 0 and
∑
A (A = 1. Therefore, �n−1�n	 is a 2n−1-dimensional

simplex with the cut matrices Mn−1�y
A	 = yA�yA	T as vertices and its projection Qn−1�G	

on the edge subspace �E is the cut polytope CUT�G	.
Remark 2. We have introduced here only the Lasserre relaxations Qt�G	 of the cut

polytope that are considered in the paper. More generally, given a polytope K ⊆ �0�1�n,
the Lasserre construction produces a hierarchy of semidefinite relaxations Qt�K	 of the
polytope P %= conv�K ∩ �0�1
n	, with the property that P = Qn�K	 (Lasserre 2001b). In
the case of max-cut, one can apply the Lasserre construction to the linear relaxation K of
the cut polytope, defined by the triangle inequalities, or proceed as indicated above in this
section and obtain the relaxations Qt�G	; these two possibilities are referred to as the “edge
model” and the “node model” in Laurent (2003a, 2003b) and they are described in detail
there. We focus on the relaxations Qt�G	 since they have a much simpler description.
The following properties of the parameter �L�G	, defined as the smallest t for which

Qt�G	= CUT�G	, are shown in Laurent (2003b).

Proposition 3. (i) If G has an edge e whose contraction produces a graph G/e with
�L�G/e	≤ t, then �L�G	≤ t+1.

(ii) The class of graphs G with �L�G	≤ t is closed under taking minors.

In view of Proposition 3(ii) (by the results of Robertson and Seymour 1988), the class
of graphs with bounded rank t can be characterized by a finite list of minimal forbidden
minors. Such a list is known only for t ≤ 2; namely,

�L�G	 ≤ 1 ⇔ G has no K3-minor*

�L�G	 ≤ 2 ⇔ G has no K5-minor$

The exact value of the rank of Kn is known for n≤ 7:

�L�K2	= 1� �L�K3	= �L�K4	= 2� �L�K5	= �L�K6	= 3� �L�K7	= 4$

Therefore, by applying Proposition 3(i), we find that �L�Kn	 ≤ n−3 for n ≥ 6. Generally,
we conjecture:

Conjecture 4. �L�Kn	= �n/2� for all n≥ 2.

We show in this paper that �n/2� is a lower bound for the Lasserre rank of Kn.

Theorem 5. �L�Kn	≥ �n/2� for all n≥ 2.

Observe that, in view of Proposition 3, it suffices to show Theorem 5 for all odd values
of n and Conjecture 4 for all even values of n.
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1.3. Method of proof for Theorem 5. We indicate here the proof method for
Theorem 5. As observed earlier we can assume that n is odd, n≥ 3. Our objective is to show
that the inclusion CUT�Kn	⊆Q�n/2�−1�Kn	 is strict. For this, we consider the inequality:

(6)
∑

1≤i<j≤n
xij ≥

1−n
2
$

This inequality is valid for the cut polytope CUT�Kn	, since e
T xxT e = �eT x	2 ≥ 1 for all

x ∈ �±1
n (with e denoting the all ones vector). Define

(7)

p∗t %= min
∑

1≤i<j≤n
xij = min

∑
1≤i<j≤n

yij

s.t. x ∈Qt�Kn	 s.t. Mt�y	� 0�
y� = 1$

Then, for 1≤ t ≤ n,

(8) −n
2
≤ p∗t ≤

1−n
2
$

The lower bound −n/2 follows from the fact that Mt�y	 � 0 implies that M1�y	 � 0 and,
thus, eTM1�y	e= n+2

∑
1≤i<j≤n yij ≥ 0. The inequality (6) is valid for N �n/2�−2

+ �Kn	 (Laurent
2001, Proposition 5.1), and thus, for Q�n/2��Kn	 by (1). That is,

p∗t =
1−n
2

for t ≥
⌈n
2

⌉
$

We show here that

(9) p∗t =−n
2

for t ≤
⌈n
2

⌉
−1$

For this we have to construct a positive semidefinite moment matrix Mt�y	 with y� = 1 and∑
ij yij =−n/2. By symmetry, we can assume that all yij are equal; that is, yij =−1/�n−1	

for all 1≤ i < j ≤ n. Direct inspection tells us what the remaining coordinates of y should
be. (Indeed, as M1�y	e = 0 by the choice of yij , the vector �1� � � � �1�0� � � � �0	T—with
exactly n ones—belongs to the kernel of Mt�y	. From this, one can deduce what the value
of yI should be for �I � ≤ t+2, and so on.) Namely, define the scalars a0� a2� � � � � an−1 by

(10) a0 %= 1� a2r+2 %=−a2r
2r+1
n−2r−1

for r = 0�1� � � � �
n−3
2
*

in other words,

a2r = �−1	r
∏
i odd

1≤i≤2r−1

i

n− i =
(
−1
4

)r (2r
r

)
(
�n−1	/2
r

) $
Moreover, define the vector y ∈ ���V 	 by

(11) yI %= a�I � for all even subsets I ⊆ V $

Then Theorem 5 will follow from the following result, whose proof is given in the next
section.

Theorem 6. The matrix Yn %=M�n/2�−1�y	 is positive semidefinite, where y is given by
(10), (11).
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2. Proof of Theorem 6. Set k %= �n/2�−1 = �n−1	/2 and let Yn =Mk�y	, where y
is given by (10), (11). Thus, Yn is indexed by the set �k�V 	 and has entries Yn�I� J 	 =
y�I"J 	= a�I"J �. The order of Yn is

(12) N %= ∑
i≤k

i≡kmod2

(
n

i

)
$

We proceed as follows for proving that Yn is positive semidefinite. First, we show that Yn
has a large kernel, namely, that

(13) dim ker Yn ≥D %=
∑
i≤k

i 
≡kmod2

(
n

i

)

(see Corollary 9). Second, we identify a principal submatrix Z of Yn of order N −D which
is positive definite (see Proposition 11). By the interlacing property of eigenvalues (see, e.g.,
Horn and Johnson 1990, Theorem 4.3.15), this implies that Yn has at least N −D positive
eigenvalues. Therefore, Yn has exactly D zero eigenvalues and N −D positive eigenvalues
which shows that Yn � 0, thus proving Theorem 6.

2.1. Identifying a large kernel of Yn. For H ⊆ V , define the vector zH ∈ �0�1
�k�V 	 by
zH�I	 %= 1 if and only if �I"H � = 1� i.e., if I =H"�i
 for some i ∈ V �

and set �′
k�V 	 %= �I ⊆ V � �I � ≤ k and �I � 
≡ kmod2
.

Lemma 7. We have Ynz
H = 0 for all H ∈�′

k�V 	.

Proof. For H ∈�′
k�V 	 and I ∈�k�V 	, we have

Ynz
H�I	= ∑

J∈�k�V 	
a�I"J �z

H�J 	=
n∑
i=1

a�I"H"�i
�$

As the cardinalities of the sets I and H have distinct parities, �I"H � =% 2r + 1 for some
0 ≤ r < k. Then,

Ynz
H�I	= �2r+1	a2r + �n−2r−1	a2r+2

which is equal to 0 by the definition (10) of a. �

Lemma 8. The vectors zH (H ∈�′
k�V 	) are linearly independent.

Proof. For T ⊆ V , define the vector eT ∈ �0�1
�k�V 	 with entries eT �I	= 1 if and only
if T ⊆ I . Then we have

�eT 	
T �zH	=



0 if �H ∩T � ≤ �T �−2�

1 if �H ∩T � = �T �−1�

n−�T � if H ⊇ T $
Consider a linear dependency

∑
H∈�′

k�V 	
�Hz

H = 0. We show that all �H are equal to 0. For
this, we first show by induction on t = 0�1� � � � � k that

(14)
∑

H∈�′
k�V 	�H⊇T

�H = 0 for any set T ⊆ V with �T � = t$

Taking the scalar product of both sides of
∑
H �Hz

H = 0 with the vector e� = �1� � � � �1	T ,
we find that

∑
H �H = 0; that is, (14) holds for the base of induction t = 0. Suppose that
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(14) holds for t−1; we show that it also holds for t. Given a set T ⊆ V of size t, take the
inner product of

∑
H �Hz

H = 0 with the vector eT . This yields

(15)
∑

H ��H∩T �=�T �−1

�H + �n− t	
∑
H �H⊇T

�H = 0$

We have

∑
H ��H∩T �=t−1

�H =∑
i∈T

∑
H �H∩T=T \�i


�H =∑
i∈T

( ∑
H �H⊇T \�i


�H −
∑
H �H⊇T

�H

)
�

which is equal to −t∑H �H⊇T �H since
∑
H �H⊇T \�i
 �H = 0 by the induction assumption.

Combining with (15), this implies that 0= �n−2t	
∑
H �H⊇T �H , and thus, (14) holds.

One can now easily derive that �H = 0 for all H ∈�′
k�V 	 by induction on �H � ≤ k−1. �

Corollary 9. The dimension of the kernel of Yn is at least the value D given in (13).

2.2. Identifying a large positive definite principal submatrix of Yn. Let Z denote the
principal submatrix of Yn indexed by the collection of all subsets I ⊆ �1� � � � � n−1
 with
cardinality �I � = k.
Lemma 10. The order of Z is equal to N −D, where N and D are given by (12) and

(13), respectively.

Proof. The order of Z being equal to
(
n−1
k

)
, we have to show the identity

(16)
∑
i≤k

i≡kmod2

(
n

i

)
=
(
n−1
k

)
+ ∑

i≤k
i 
≡kmod2

(
n

i

)
$

The collection of sets I ⊆ V with �I � ≤ k and �I � ≡ kmod2 can be partitioned into the
following two classes:
• The sets I ⊆ V \�n
 with �I � ≤ k and �I � ≡ kmod2.
• The sets I = J ∪ �n
 for J ⊆ V \�n
 with �J � ≤ k−1 and �J � 
≡ kmod2.
Therefore, the left-hand side of (16) is equal to

∑
i≤k

i≡kmod2

(
n−1
i

)
+ ∑

i≤k−1
i 
≡kmod2

(
n−1
i

)
�

which is equal to
(
n−1
k

)+∑i≤k−1

(
n−1
i

)
. Using the identity:

(
n−1
i

)+ (n−1
i+1

)= ( n
i+1

)
, we can now

conclude that ∑
i≤k−1

(
n−1
i

)
= ∑

j≤k−1
j 
≡kmod2

(
n

j

)

and, thus, (16) holds. �

It remains now to prove that the matrix Z is positive definite. For this, we use the fact that
Z belongs to the Bose-Mesner algebra of the Johnson scheme J �n− 1� k	, which implies
that its eigenvalues can be explicitly expressed in terms of the Eberlein polynomials.
We briefly recall some definitions and refer to Bannai and Ito (1984) or van Lint and

Wilson (1992) for details about the Johnson scheme. Given integers k� v with k ≤ v/2, the
Johnson scheme J �v� k	 is defined on the set � of all k-subsets of �1� � � � � v
. Its adjacency
matrices are the 0/1 matrices A0�A1� � � � �Ak indexed by � with the �I� J 	th entry of Ai
being equal to 1 if and only if �I"J � = 2i; thus A0 = I and A0+· · ·+Ak = J . A fundamen-
tal property is that the linear span of A0� � � � �Ak is closed under matrix multiplication and
forms a commutative algebra, called the Bose-Mesner algebra of the scheme. Another fun-
damental property is the existence of a common orthonormal basis of eigenvectors for all
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matrices in the Bose-Mesner algebra. For l= 0�1� � � � � k, the distinct eigenvalues of Al are
given by the Eberlein polynomial,

(17) Pl�u	=
l∑
j=0

�−1	j
(
u

j

)(
k−u
l− j

)(
v−k−u
l− j

)
�

for u = 0�1� � � � � k. Therefore, the distinct eigenvalues of a matrix X %= ∑
l xlAl in the

Bose-Mesner algebra of J �v� k	 are the quantities
∑
l xlPl�u	 for u= 0� � � � � k.

Here and below, for two integers m, n≥ 0,
(
m

n

)
is the binomial coefficient defined by

(
m

n

)
=
{
m!/n!�m−n	! if n≤m�
0 if n > m$

In our case, we have v= n−1= 2k; the matrix Z has the form
∑k
l=0 a2lAl, and therefore,

belongs to the Bose-Mesner algebra of the Johnson scheme J �n−1� k	. Hence, the distinct
eigenvalues of Z are

(18) (u %=
k∑
l=0

a2lPl�u	=
k∑
l=0

a2l

l∑
j=0

�−1	j
(
u

j

)(
k−u
l− j

)2

for u= 0� � � � � k.

Proposition 11. We have (u > 0 for all u= 0� � � � � k; that is, the matrix Z is positive
definite.

The rest of the section gives the proof of Proposition 11. In order to evaluate (u, we use
the tool of hypergeometric series. A detailed account on hypergeometric series and on how
they can be used for explicitly computing rational series is given in the book by Petkovsek
et al. (1996). We thank Dima Pasechnik for bringing this book to our attention and a result
in Grigoriev et al. (2001, §8) about the degree of Positivstellensatz calculus refutations for
knapsack, whose proof technique uses hypergeometric series and has inspired our proof
below.
Let us briefly recall some facts we need. A hypergeometric series is a series

∑
i≥0 �i

where �0 = 1 and the ratio ��i+1	/�i is the quotient of two polynomials in i, say

�i+1

�i
= �i+a1	 · · · �i+ap	
�i+b1	 · · · �i+bq	

x

i+1
�

where x�a1� � � � � ap� b1� � � � � bq are complex numbers such that b1� � � � � bq are not nonpos-
itive integers. Equivalently, the series

∑
i≥0 �i has the form

(19)
∑
i≥0

�a1	i · · · �ap	i
�b1	i · · · �bq	i

xi

i! �

which is commonly abbreviated as

pFq

[
a1 · · ·ap
b1 · · ·bq * x

]
$

Here, �a	i denotes the rising factorial function defined by

�a	i %=
{
a�a+1	 · · · �a+ i−1	 if i ≥ 1�
1 if i = 0$
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The monograph by Petkovsek et al. (1996) contains a number of identities permitting us to
compute explicitly certain hypergeometric series; in particular, the Gauss identity:

(20) 2F1

[
a b

c
*1
]
= >�c−a−b	>�c	
>�c−a	>�c−b	

if b is a nonpositive integer or if c− a− b has a positive real part. Here >�·	 is the
Gamma function which is defined on the complex plane except on the nonpositive integers.
Recall that

(21) >�n+1	= n! = �1	n�
>�a+n	
>�a	

= �a	n

for an integer n≥ 0.
We now proceed to compute the value of (u in (18). Let us first rewrite (u by changing

the summation in the following way. Set i = l− j . Then,

(u =
k−u∑
i=0

(
k−u
i

)2
[
k−i∑
j=0

a2i+2j �−1	j
(
u

j

)]
$

In a first step, we compute the inner sum

si %=
k−i∑
j=0

a2i+2j �−1	j
(
u

j

)
=%∑

j≥0

�j$

We have that �0 = a2i and
�j+1

�j
= �j+ i+1/2	
�j+ i−k	

�j−u	
�j+1	

$

Therefore,

si = a2i · 2F1
[−u i+1/2
i−k *1

]
$

(This hypergeometric series is well defined, although i− k is a negative integer; indeed,
�−u	h = 0 for all h ≥ u+ 1 and, thus, the summation obtained by expanding the above
hypergeometric series as in (19) can be restricted to 0≤ h≤ u, in which case �i−k	h 
= 0.)
Using Gauss formula (20) and relation (21), we find that

2F1

[−u i+1/2
i−k *1

]
= >�u−k−1/2	>�i−k	
>�−k−1/2	>�i−k+u	 =

�−k−1/2	u
�i−k	u

$

Therefore,

(u =
k−u∑
i=0

a2i

(
k−u
i

)2
�−k−1/2	u
�i−k	u

=%∑
i≥0

Ai$

We compute this sum again using hypergeometric series. We have that the starting term is
A0 = �−k−1/2	u/�−k	u and

Ai+1

Ai
= i+1/2
i−k

(
i+u−k
i+1

)2
i−k
i−k+u = �i+1/2	�i+u−k	

�i+1	2
$

Therefore,

(u = A0 · 2F1
[
1/2 u−k
1

*1
]
$
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Using Gauss formula (20) and (21) again, we find that (u is equal to

A0

>�k−u+1/2	>�1	
>�1/2	>�k−u+1	

= �−k−1/2	u
�−k	u

�1/2	k−u
�k−u	! = 1 ·3 · · · �2k+1	

2k ·k! · �2k−2u+1	
$

Therefore, (u > 0 for all u = 0� � � � � k. This concludes the proof of Proposition 11 and,
thus, of Theorem 6.

3. Algebraic interpretation. The Lasserre hierarchy of semidefinite relaxations was
originally motivated by results about moment sequences and the dual theory of nonnegative
polynomials and their representation as sums of squares of polynomials. It applies to general
polynomial programming problems of the form

(22) p∗ %=minp0�x	 subject to x ∈ K %= {
x ∈ �n � pl�x	≥ 0 ∀ l = 1� � � � �m

}
�

where p0� p1� � � � � pm are polynomials in x = �x1� � � � � xn	. Given x ∈�n, define the vector
y %= �x�	�∈�n+ whose components are the monomials x� %= x�11 · · ·x�nn and, given an integer
t ≥ 1, define M�

t �y	 as the matrix indexed by the sequences � ∈ �n+ with
∑
i �i ≤ t and

whose ���A	-entry is equal to y�+A. Observe that the matrix M�
t �y	 is positive semidefinite

as well as each matrix M�
t �pl ∗y	, setting pl ∗y %= �

∑
A�pl	Ay�+A	�. This observation leads

to defining the following semidefinite relaxations of problem (22):

p∗t %=min
∑
�

�p0	�y�

s.t. M�
t �y	� 0�

M�
t−vl �pl ∗y	� 0 �l = 1� � � � �m	�

y0 = 1�

(23)

for any t ≥max�vl	, where vl %= �deg�pl	/2�. The dual semidefinite program to (23) takes
the form:

(24)

�∗t %=max �
s.t. p0�x	−�= q0�x	+

∑
l

ql�x	pl�x	�

where q0� ql are sums of squares of polynomials and
deg�q0	≤ 2t� deg�ql	≤ 2�t−vl	$

(See Lasserre 2001a, 2002 for details.) We have �∗t ≤ p∗t ≤ p∗ by weak semidefinite duality.
Lasserre (2001a) shows asymptotic convergence of the bound �∗t to p

∗ as t goes to infinity.
His proof is based on a result of Putinar (1993) asserting that, if K is compact and satisfies
some additional technical condition, then any polynomial positive on K has a decomposi-
tion of the form q0�x	+

∑
l ql�x	pl�x	, where q0� ql are sums of squares of polynomials.

Putinar’s (1993) result holds, in particular, in the ±1 case when the polynomials x2i = 1 are
present in the description of K. Moreover, in this case, there is finite convergence in n steps.
This was proved by Lasserre (2001b) using a result about rank extensions of moment matri-
ces from Curto and Fialkow (2000); this can also be proved in an elementary way using
Lemma 1 (see Laurent 2003a). Indeed, the presence of the constraints gi�x	 %= x2i −1 = 0
in the description of K and, thus, of the constraints M�

t−1�gi ∗ y	 = 0 in the program (23),
enables us to replace the moment matrix M�

t �y	 (indexed by integer sequences) by the
“combinatorial” moment matrix Mt�y	 (indexed by subsets of V ) considered earlier in this
paper.
In the case of max-cut considered in this paper, we have the problem of finding

the minimum value p∗ of a quadratic polynomial p0�x	 %=
∑

1≤i<j≤n cijxixj over the set
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K %= �x ∈ �n � x2i −1= 0 for i = 1� � � � � n
. Thus, the semidefinite program (23) gives the
lower bound,

p∗t %=min
∑

1≤i<j≤n
cijyij subject to Mt�y	� 0� y� = 1

(as in (7)), and its dual (24) gives the bound �∗t defined as the maximum value of � for
which the polynomial

∑
1≤i<j≤n cijxixj −� has a decomposition

(25) q0�x	+
n∑
i=1

qi�x	�x
2
i −1	�

where q0 is a sum of squares of polynomials, deg�q0	 ≤ 2t, and deg�qi	 ≤ 2�t−1	 for i =
1� � � � � n. The latter condition about the degree of q1� � � � � qn can, in fact, be omitted, since it
follows from the degree bound on q0. (Indeed, the polynomial p�x	 %=∑ cijxixj−�−q0�x	
belongs to the ideal I generated by the polynomials gi�x	 %= x2i − 1 (i = 1� � � � � n), which
form a Groebner basis of I . Thus, p =∑n

i=1 qigi with deg�qigi	≤ deg�p	 if qi 
= 0.)
In fact, there is no duality gap, i.e., �∗t = p∗t (since the Slater condition holds). As

∑
1≤i<j≤n

xixj +
n

2
= 1

2

( n∑
i=1

xi

)2

+ 1
2

n∑
i=1

�1−x2i 	�

we find that the value � = −n/2 is dual feasible, and thus, p∗t ≥ −n/2 for any t ≥ 1 (as
in (8)).
The result from Relation (9) (or equivalently from Theorem 6) shown earlier can be

reformulated in the following way: If the polynomial
∑

1≤i<j≤n xixj−� has a decomposition
(25), where q0 is a sum of squares and deg�q0	≤ 2��n/2�−1	, then �≤−n/2.
Similarly, Conjecture 4 amounts to proving the following result: Assume that the inequal-

ity
∑

1≤i<j≤n cijxij ≥ p∗ is valid for CUT�Kn	, i.e., that p�x	 %=
∑

1≤i<j≤n cijxixj −p∗ ≥ 0
for all x ∈ �±1
n. Then, the polynomial p has a decomposition (25), where q0 is a sum
of squares and deg�q0	 ≤ 2�n/2�. This conjecture is known to be true for n ≤ 7. For
n ≥ 7, one only knows that such a decomposition exists having deg�q0	 ≤ 2�n− 3	 (since
�L�Kn	≤ n−3).

Appendix: More on the moment matrix Yn. The matrix Yn =M�n−1	/2�y	 (for n odd),
whose positive semidefiniteness was proven in Theorem 6, seems to have quite remarkable
structural properties. Let us mention a few properties, observed in some earlier attempts for
proving Theorem 6.
About the spectrum of Yn. We have computed the eigenvalues of Yn for odd n = 3�

� � � �11. The distinct eigenvalues are displayed in Figure 1. All eigenvalues have multiplicity
greater than 1, except the eigenvalues (3�(8 marked with a star (∗) which have multiplicity

n= 3 n= 5 n= 7 n= 9 n= 11

0 0 0 0 0

(1 %= 3
2 (2 %= 5

4(1 (4 %= 7
6(2 (6 %= 9

8(4 (9 %= 11
10(6

(3 %= 13
8 (∗) (5 %= 7

6(3 (7 %= 9
8(5 (10 %= 11

10(7

(8 %= 263
128 (∗) (11 %= 11

10(8

Figure 1. Distinct eigenvalues of Yn.
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1. Interestingly, the distinct eigenvalues of Yn for �n− 1	/2 odd appear to be of the form
�n/�n− 1		(, where the (s are the distinct eigenvalues of Yn−2. The same holds when
�n− 1	/2 is even except that a new eigenvalue with multiplicity one appears (namely, (3
for n= 5 and (8 for n= 9). Although we could not prove it, it seems quite likely that this
behaviour of the spectrum of Yn holds for any odd n. If true, this could lead to an alternative
proof of positive semidefiniteness of Yn.

A tentative iterative proof. Matrix Yn has a natural block decomposition into the blocks
Yrs (r� s ≤ k� r� s ≡ kmod2), where Yrs is the submatrix of Yn whose rows are indexed by
all r-subsets of V and columns by all s-subsets.
Let V �r	0 ∪V �r	1 ∪· · ·∪V �r	r denote the orthogonal decomposition of the space �� (� = (n

r

)
)

corresponding to the distinct eigenvalues of matrices in the Bose-Mesner algebra of the
Johnson scheme J �n� r	. Then the orthogonal projections E�r	i of �� onto V �r	i form another
basis of the Bose-Mesner algebra of J �n� r	.
Suppose (to fix ideas) that k is odd. Then, Yn has the form

Yn =



Y11 Y13 Y15 · · ·
Y31 Y33 Y35 · · ·
Y51 Y53 Y55 · · ·
$$$

$$$
$$$

$ $ $


 $

The upper left corner Y11 of Yn belongs to the Bose-Mesner algebra of J �n�1	. Moreover,

(26) Y11 =
n

n−1
E
�1	
1 � Yi1E

�1	
0 = 0 for odd i ≥ 3$

Therefore, Yn � 0 if and only if the matrix

Y �1	n %=


Y33 Y35 · · ·
Y53 Y55 · · ·
$$$

$$$
$ $ $


− n−1

n



Y31
Y51
$$$





Y31
Y51
$$$



T

=%



Y
�1	
33 Y

�1	
35 · · ·

Y
�1	
53 Y

�1	
55 · · ·

$$$
$$$

$ $ $




is positive semidefinite. We verified that the upper left corner Y �1	33 of Y �1	n belongs to the
Bose-Mesner algebra of J �n�3	 and

(27) Y
�1	
33 = AE�3	3 � Y

�1	
i3 E

�3	
u = 0 for odd i ≥ 5� u= 0�1�2

(with A %= n�n− 2	�n− 4	/�n− 1	�n− 3	�n− 5	). Analogously, Y �1	n � 0 if and only if
the matrix

Y �2	n %=



Y
�1	
55 Y

�1	
57 · · ·

Y
�1	
75 Y

�1	
77 · · ·

$$$
$$$

$ $ $


− 1

A



Y
�1	
53

Y
�1	
73
$$$





Y
�1	
53

Y
�1	
73
$$$



T

is positive semidefinite. Again the upper left corner of Y �2	n is a positive multiple of the
last idempotent E�5	5 , etc. Quite probably, this reasoning can be carried out throughout, thus
“peeling off” one block layer of Yn at each iteration until finding Y �n−3	/4

n which should
be proven to be a positive multiple of E�k	k . If true, this would show that Yn is positive
semidefinite. We did not succeed in carrying out this type of proof. Checking (27) and
its further analogues indeed becomes technically very complicated, a difficulty being that
although the entries in all the blocks of the initial matrix Yn are governed by a single
sequence a, at a later iteration t ≥ 1, the entries in each of the blocks of Y �t	n are governed
by distinct sequences.
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