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Abstract. In this note we prove a generalization of the flat extension theorem
of Curto and Fialkow [4] for truncated moment matrices. It applies to moment
matrices indexed by an arbitrary set of monomials and its border, assuming
that this set is connected to 1. When formulated in a basis-free setting, this
gives an equivalent result for truncated Hankel operators.
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1. Introduction

Throughout this note, K denotes a field, K[x] = K[x1, . . . , xn] is the ring of
multivariate polynomials in n variables x = (x1, . . . , xn) with coefficients in K,
Mn = {xα := xα1

1 · · ·x
αn
n | α ∈ N

n} is the set of monomials in the variables x, and
Mn,t (resp., K[x]t) is the set of monomials (resp., of polynomials) of degree at most
t. The dual basis ofMn in the dual space K[x]∗ is denoted as Dn = {dβ | β ∈ N

n}.
The natural action of K[x] on K[x]∗ is denoted by

(p, Λ) ∈ K[x]×K[x]∗ 7→ p · Λ ∈ K[x]∗

where (p · Λ)(q) := Λ(pq) for q ∈ K[x].

1.1. The moment problem

In this section, we consider K = R. The moment problem (see e.g. [1, 7]) deals with
the characterization of the sequences of moments of measures. Given a probability
measure µ on R

n, its moment of order a = x
α ∈ Mn is the quantity

∫
x

αµ(dx).
The moment problem concerns the characterization of the sequences y = (ya)a∈Mn

that are the sequences of moments of some nonnegative measure µ, in which case
one says that µ is a representing measure for y, with y1 = 1 if µ is a probability
measure. Let Λ ∈ R[x]∗ denote the linear form on R[x] associated to the sequence
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y, defined by Λ(p) =
∑

a paya for any polynomial p =
∑

a∈Mn
paa ∈ R[x]. Then, y

has a representing measure µ precisely when Λ is given by Λ(p) =
∫

p(x)µ(dx) for
all p ∈ R[x]. A well known necessary condition for the existence of a representing
measure is the positivity of Λ, i.e. Λ(p2) ≥ 0 for all p ∈ R[x], which is equivalent
to requiring that the matrix M(y) := (yab)a,b∈Mn

be positive semidefinite. As is
well known this necessary condition is also sufficient in the univariate case (n = 1)
(Hamburger’s theorem), but it is not sufficient in the multivariate case (n ≥ 2).
However, positivity is sufficient for the existence of a representing measure under
some additional assumptions. This is the case, for instance, when the sequence y
is bounded [2] or, more generally, exponentially bounded [3]. The next result of
Curto and Fialkow [4] shows that this is also the case when the matrix M(y) has
finite rank (cf. also [14, 15] for a short proof).

Theorem 1.1. [4] If M(y) is positive semidefinite and the rank of M(y) is fi-
nite, then y has a (unique) representing measure (which is finitely atomic with
rank M(y) atoms).

In the univariate case n = 1, a matrix of the form M(y) is a Hankel matrix.
In the multivariate case, M(y) is known as a generalized Hankel matrix (see [17])
or moment matrix (see [15]). One can also define truncated moment matrices:
A matrix M indexed by a subset C ⊆ Mn is said to be a moment matrix if
Ma,b = Ma′,b′ for all a, b, a′, b′ ∈ C with ab = a′b′. Thus its entries are given by a
sequence y = (yc)c∈C·C , where C·C := {ab | a, b ∈ C}, and we can write M = MC(y).
When C = Mn,t, we also write M = Mt(y), where the entries of y are indexed
by Mn,2t. Such matrices arise naturally in the context of the truncated moment
problem, which asks for the existence of a representing measure for a truncated
sequence indexed by a subset of monomials. A solution to the truncated moment
problem would in fact imply a solution to the moment problem. Indeed, Stochel
[19] shows that a sequence y = (ya)a∈Mn

has a representing measure if and only
if the truncated sequence (ya)a∈Mn,t

has a representing measure for all t ∈ N.

1.2. The flat extension theorem of Curto and Fialkow

Curto and Fialkow studied intensively the truncated moment problem (cf. e.g.
[4, 5, 6] and further references therein). In particular, they observed that the
notion of flat extension of matrices plays a central role in this problem. Given
matrices MC and MB indexed, respectively, by C and B ⊆ C, MC is said to be a
flat extension of MB if MB coincides with the principal submatrix of MC indexed
by B and rank MC = rank MB. Curto and Fialkow [4] show the following result
for truncated moment matrices.

Theorem 1.2 (The flat extension theorem [4]). For a sequence y = (ya)a∈Mn,2t
,

if Mt(y) is a flat extension of Mt−1(y), then there exists a (unique) sequence
ỹ = (ỹa)a∈Mn

for which M(ỹ) is a flat extension of Mt(y).

The flat extension theorem combined with Theorem 1.1 directly implies the
following sufficient condition for existence of a representing measure.
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Corollary 1.3. For a sequence y = (ya)a∈Mn,2t
, if Mt(y) is positive semidefinite

and Mt(y) is a flat extension of Mt−1(y), then y has a representing measure.

Curto and Fialkow [5] show moreover that the flat extension condition is in
some sense necessary and sufficient for the existence of a representing measure.
More precisely, they show that a sequence y = (ya)a∈Mn,2t

has a representing
measure if and only if it can be extended to a sequence y′ = (y′

a)a∈Mn,2t+2k+2
(for

some k ≥ 0) for which Mt+k+1(y
′) is a flat extension of Mt+k(y′).

The proof of Theorem 1.2 relies on a “truncated ideal like” property of the
kernel of flat moment matrices (see (2.2) below). This permits to set up a linear
system of equations in order to construct the flat extension Mt+1(ỹ) of Mt(y) (and
then iteratively the infinite flat extension M(ỹ)). See also [15] for an exposition of
this proof. Schweighofer [18] proposes an alternative proof which is less technical
and relies on properties of Gröbner bases. We propose in this note another simple
alternative proof, which applies more generally to truncated moment matrices
indexed by (suitable) general monomial sets (see Theorem 1.4).

1.3. A generalized flat extension theorem

We need some definitions to state our extension of Theorem 1.2. For C ⊆ Mn,

C+ := C ∪

n⋃

i=1

xiC = {m, x1m, . . . , xnm | m ∈ C} and ∂C := C+ \ C

are called, respectively, the closure and the border of C. The set C ⊆ Mn is said
to be connected to 1 if 1 ∈ C and every monomial m ∈ C \ {1} can be written as
m = xi1 · · ·xik

with xi1 , xi1xi2 , . . . , xi1 · · ·xik
∈ C. For instance, C is connected to

1 if C is closed under taking divisions. For example, {1, x2, x1x2} is connected to
1 but {1, x1x2} is not. We now state our main result.

Theorem 1.4. Consider a sequence y = (ya)a∈C+·C+, where C ⊆ Mn is finite and
connected to 1. If MC+(y) is a flat extension of MC(y), then there exists a (unique)
sequence ỹ = (ỹ)a∈Mn

for which M(ỹ) is a flat extension of MC+(y).

The proof is delayed till Section 2. Note that Theorem 1.2 follows directly
from Theorem 1.4 applied to the case C = Mn,t−1. Thus our result can be seen
as a sparse version of Theorem 1.2, which applies to a more general monomial set
C, not necessarily the full set of monomials up to a given degree. We now give an
example showing that the assumption that C is connected to 1 cannot be omitted.

Example. For n = 1, consider the set C = {1, x3}, which is not connected to 1, with

∂C = {x, x4}. Consider the sequence y ∈ R
C+·C+

defined by y1 = yx = yx2 = 1,
yx3 = yx4 = yx5 = a and yx6 = yx7 = yx8 = b, where a, b are scalars with b 6= a2.
Then, rank MC+(y) = rank MC(y) = 2. If there is a flat extension M(ỹ) of MC+(y),
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then its principal submatrix indexed by C+ ∪ {x2} has the form:

MC+∪{x2}(ỹ) =









1 x3 x x4 x2

1 1 a 1 a 1
x3 a b a b a
x 1 a 1 a a
x4 a b a b b
x2 1 a a b a









However, 1−x ∈ kerMC+(y) implies x−x2 ∈ kerMC+∪{x2}(ỹ) (see (2.2)) and thus

1 = a = b, contradicting our choice b 6= a2. Hence no flat extension exists.

1.4. Basis-free reformulation

Here we reformulate our result in a basis-free setting. Moment matrices correspond
indeed to choosing the monomial basis Mn in the polynomial ring K[x] and its
dual basis Dn in the dual space K[x]∗. Given Λ ∈ K[x]∗, the operator

HΛ : K[x] → K[x]∗

p 7→ p · Λ

is known as a Hankel operator. Its matrix with respect to the bases Mn and
Dn is precisely the moment matrix (Λ(xα+β))α,β∈Mn

= M(y) of the sequence
y = (Λ(a))a∈Mn

. The kernel of HΛ,

ker HΛ = {p ∈ K[x] | Λ(pq) = 0 ∀q ∈ K[x]},

is an ideal in K[x]. Moreover, when K = R and Λ is positive, i.e. when Λ(p2) ≥ 0 for
all p ∈ R[x], ker HΛ is a real radical ideal [14]. Theorem 1.1 means that Λ ∈ R[x]∗

is positive with rank HΛ <∞ if and only if there exists a nonnegative finite atomic
measure µ for which Λ(p) =

∫
p(x)µ(dx) for all p ∈ R[x].

Truncated Hankel operators can be analogously defined. Given C ⊆ Mn and
Λ ∈ (Span(C+ · C+))∗, the corresponding Hankel operator is

HC+

Λ : Span(C+) → Span(C+)∗

p 7→ p · Λ

and its restriction to Span(C) is HC
Λ : Span(C)→ Span(C)∗. We have the following

mappings:
Span(C)

ker HC
Λ

σ1←−
Span(C)

ker HC+

Λ ∩ Span(C)

σ2−→
Span(C+)

ker HC+

Λ

(1.1)

where σ1 is onto and σ2 is one-to-one, so that

dim
Span(C)

ker HC
Λ

≤ dim
Span(C)

ker HC+

Λ ∩ Span(C)
≤ dim

Span(C+)

ker HC+

Λ

. (1.2)

Thus, rank HC+

Λ = rank HC
Λ (in which case we also say that HC+

Λ is a flat extension
of HC

Λ) if and only if equality holds throughout in (1.2), i.e. both σ1 and σ2 in (1.1)
are isomorphisms or, equivalently, if

Span(C+) = Span(C) + kerHC+

Λ and ker HC
Λ = ker HC+

Λ ∩ Span(C).
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Theorem 1.4 can be reformulated as follows.

Theorem 1.5. Let Λ ∈ (Span(C+ · C+))∗, where C ⊆Mn is finite and connected to

1, and assume that rank HC+

Λ = rank HC
Λ. Then there exists (a unique) Λ̃ ∈ R[x]∗

for which HΛ̃ is a flat extension of HC+

Λ , i.e. Λ̃ coincides with Λ on Span(C+ · C+)

and rank HΛ̃ = rank HC+

Λ .

1.5. Border bases and commuting multiplication operators

We recall here a result of [16] about border bases of polynomial ideals that we
exploit to prove our flat extension theorem. Let B := {b1, . . . , bN} be a finite set
of monomials. Assume that, for each border monomial xibj ∈ ∂B, we are given a
polynomial of the form

g(ij) := xibj −

N∑

h=1

a
(ij)
h bh where a

(ij)
h ∈ K.

The set

F := {g(ij) | i = 1, . . . , n, j = 1, . . . , N with xibj ∈ ∂B} (1.3)

is known as a border prebasis [9] or a rewriting family for B [16]. When the set B
contains the constant monomial 1, one can easily verify that B is a generating set
for the quotient space K[x]/(F ), where (F ) is the ideal generated by the set F .
When B is connected to 1, Theorem 1.6 below characterizes the case when B is a
basis of K[x]/(F ), in which case F is said to be a border basis of the ideal (F ). For
this, for each i = 1, . . . , n, consider the linear operator:

χi : Span(B) → Span(B)

bj 7→ χi(bj) =

{
xibj if xibj ∈ B,
∑N

h=1 a
(ij)
h bh if xibj ∈ ∂B

(1.4)

extended to Span(B) by linearity. When B is a basis of K[x]/(F ), χi corresponds
to the “multiplication operator by xi” from K[x]/(F ) to K[x]/(F ) and thus the
operators χ1, . . . , χn commute pairwise. The next result of [16] shows that the
converse implication holds when B is connected to 1; this was also proved later in
[9] when B is closed under taking divisions.

Theorem 1.6. [16] Let B ⊆ Mn be a finite set of monomials which is connected
to 1, let F be a rewriting family for B as in (1.3), and let χ1, . . . , χn be defined
as in (1.4). The set B is a basis of the quotient space K[x]/(F ) if and only if the
operators χ1, . . . , χn commute pairwise.

The proof of our sparse flat extansion theorem is an adaptation of this result
to kernels of Hankel operators, where we omit the assumption that B is connected
to 1.
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1.6. Contents of the paper

Section 2 contains the proof of our generalized flat extension theorem and we
mention some applications in Section 3. In particular, we observe that Theorem
1.2 is an ‘easy’ instance of our flat extension theorem (since one can prove existence
of a basis connected to 1). We also point out the relevance of the flat extension
theorem to polynomial optimization and to the problem of computing real roots
to systems of polynomial equations.

2. Proof of the flat extension theorem

We give here the proof of Theorem 1.5 (equivalently, of Theorem 1.4). We will often
use the following simple observations, which follow directly from the assumption

that rank HC+

Λ = rank HC
Λ: For all p ∈ Span(C+),

p ∈ ker HC+

Λ
def.
⇐⇒ Λ(ap) = 0 ∀a ∈ C+ ⇐⇒ Λ(ap) = 0 ∀a ∈ C, (2.1)

p ∈ ker HC+

Λ and xip ∈ Span(C+) =⇒ xip ∈ ker HC+

Λ . (2.2)

Our objective is to construct a linear form Λ̃ ∈ K[x]∗ whose Hankel operator HΛ̃

is a flat extension of HC+

Λ .

Let B ⊆ C for which rank HC+

Λ = rank HB
Λ = |B|. Note that we can assume

that 1 ∈ B. Indeed, if no such B exists containing 1, then Λ(p) = 0 ∀p ∈ Span(C+)
and one can easily verify that this implies that Λ is identically zero, in which case
the theorem trivially holds.

From the assumption: rank HC+

Λ = rank HB
Λ = |B|, we have the direct sum

decomposition: Span(C+) = Span(B)⊕ ker HC+

Λ , and thus

∀p ∈ Span(C+) ∃! π(p) ∈ Span(B) such that f(p) := p−π(p) ∈ ker HC+

Λ . (2.3)

Then the set

F := {f(m) = m− π(m) | m ∈ ∂B}

is a rewriting family for B and, for i = 1, . . . , n, the linear operator χi in (1.4) maps
p ∈ Span(B) to χi(p) = π(xip) ∈ Span(B). We show that χ1, . . . , χn commute

pairwise. Set K := ker HC+

Λ .

Lemma 2.1. χi ◦ χj = χj ◦ χi.

Proof. Let m ∈ B. Write π(xim) :=
∑

b∈B λi
bb (λi

b ∈ R). We have:

χj ◦ χi(m) = χj(
∑

b∈B λi
bb) =

∑

b∈B λi
bχj(b) =

∑

b∈B λi
b(xjb− f(xjb))

= xj(
∑

b∈B λi
bb)−

∑

b∈B λi
bf(xjb) = xj(xim− f(xim))−

∑

b∈B λi
bf(xjb).

Therefore,

p := χj ◦ χi(m)− χi ◦ χj(m) = xif(xjm)− xjf(xim)
︸ ︷︷ ︸

p1

+
∑

b∈B

λj
bf(xjb)− λi

bf(xib)

︸ ︷︷ ︸

p2

.
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We show that p1 ∈ K. Indeed, ∀a ∈ C, Λ(ap1) = Λ(axif(xjm) − axj(xim)) = 0
since axi, axj ∈ C

+ and f(xim), f(xjm) ∈ K; by (2.1), this shows that p1 ∈ K.
As p2 ∈ K too, this implies p ∈ K and thus p = 0, because p ∈ Span(B). �

Our objective now is to show that B is a basis of K[x]/(F ) and that, if π̃

denotes the projection from K[x] onto Span(B) along (F ), then the operator Λ̃

defined by Λ̃(p) = Λ(π̃(p)) for p ∈ K[x], defines the desired flat extension of Λ.
Note that when B is connected to 1, Theorem 1.6 implies directly that B is a basis
of K[x]/(F ). As we do not assume B connected to 1, we cannot apply Theorem 1.6,
but our arguments below are inspired from its proof. In particular, we construct
the projection π̃ via the mapping ϕ from (2.4) below.

As the χi’s commute, the operator f(χ) := f(χ1, . . . , χn) is well defined for
any polynomial f ∈ K[x]. Then K[x] acts on Span(B) by

(f, p) ∈ K[x]× Span(B) 7→ f(χ)(p) ∈ Span(B).

Recall that 1 ∈ B. The mapping

ϕ : K[x] → Span(B)
f 7→ f(χ)(1)

(2.4)

is a homomorphism and, by the following property,

ϕ(fg) = f(χ)(g(χ)(1)) = f(χ)(ϕ(g)) ∀f, g ∈ K[x], (2.5)

ker ϕ is an ideal in K[x]. We now prove that ϕ coincide on Span(C+) with the

projection π on Span(B) along K = kerHC+

Λ .

Lemma 2.2. For any element m ∈ C+, ϕ(m) = π(m).

Proof. We use induction on the degree of m. If m = 1, we have ϕ(1) = π(1) = 1
since 1 ∈ B. Let m 6= 1 ∈ C+. As C is connected to 1, m is of the form m = xim1

for some m1 ∈ C
+. By the induction assumption, we have ϕ(m1) = π(m1). Then,

ϕ(m) = ϕ(xim1) = χi(ϕ(m1)) = χi(π(m1)) = xiπ(m1)− κ,

with κ ∈ F ⊆ K. But we also have

m = xi m1 = xi(π(m1) + m1 − π(m1)) = xiπ(m1) + xi κ1

where κ1 = m1 − π(m1) ∈ K. We deduce that

m = ϕ(m) + κ + xi κ1 = ϕ(m) + κ2

with κ2 = κ + xi κ1 ∈ K+ ∩ Span(C+). As κ1 ∈ K and xiκ1 ∈ Span(C+), we
deduce using (2.1) that xiκ1 ∈ K, thus implying κ2 ∈ K. As ϕ(m) ∈ Span(B), it
coincides with the projection of m on Span(B) along K. �

This implies directly:

ϕ(b) = b, ϕ(xib) = χi(b) ∀b ∈ B ∀i = 1, . . . , n, (2.6)

Λ(pq) = Λ(p ϕ(q)) = Λ(ϕ(p)ϕ(q)) ∀p, q ∈ Span(C+). (2.7)

Lemma 2.3. For all p, q ∈ Span(C+), Λ(pq) = Λ(ϕ(pq)).
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Proof. We first show by induction on the degree of m ∈ C+ that

Λ(mb) = Λ(ϕ(mb)) ∀b ∈ B. (2.8)

The result is obvious if m = 1. Else, as C+ is connected to 1, we can write m = xim1

where m1 ∈ C
+. Using first (2.7) and then (2.6), we find:

Λ(mb) = Λ(m1xib) = Λ(m1ϕ(xib)) = Λ(m1χi(b)).

Next, using first the induction assumption and then (2.5), (2.6), we find:

Λ(m1χi(b)) = Λ(ϕ(m1χi(b))) = Λ(m1(χ)(χi(b))) = Λ(m(χ)(b)) = Λ(ϕ(mb)),

thus showing (2.8). We can now conclude the proof of the lemma. Let p, q ∈
Span(C+). Then, using successively (2.7), (2.8), (2.5), (2.6), Λ(pq) is equal to

Λ(p ϕ(q)) = Λ(ϕ(pϕ(q))) = Λ(p(χ)(ϕ(ϕ(q)))) = Λ(p(χ)(ϕ(q))) = Λ(ϕ(pq)). �

We can now conclude the proof of Theorem 1.5. Let Λ̃ be the linear operator
on K[x] defined by

Λ̃(p) := Λ(ϕ(p)) for p ∈ K[x].

We show that HΛ̃ is the unique flat extension of HC+

Λ .

First, HΛ̃ is an extension of HC+

Λ since, for all p, q ∈ Span(C+), Λ̃(pq) =
Λ(ϕ(pq)) = Λ(pq) (by Lemma 2.3).

Next, we have K = kerHC+

Λ ⊆ kerHΛ̃. Indeed, let κ ∈ K. By Lemma 2.2,

ϕ(κ) = π(κ) = 0. Thus for any p ∈ K[x], we have Λ̃(p κ) = Λ(ϕ(p κ)) =
Λ(p(χ)(ϕ(κ))) = 0, which shows that κ ∈ kerHΛ̃.

As F is a rewritting family for B and B contains 1, B is a generating set
of K[x]/(F ) and thus dim K[x]/(F ) ≤ |B|. Set AΛ̃ := K[x]/ kerHΛ̃. Then, as
F ⊆ K ⊆ kerHΛ̃, we have dimAΛ̃ ≤ dim K[x]/(F ) ≤ |B|. On the other hand,
dimAΛ̃ = rankHΛ̃ ≥ rankHB

Λ̃
= rankHB

Λ = |B|. Therefore, dimAΛ̃ = rankHΛ̃ =

|B|, kerHΛ̃ = (K), HΛ̃ is a flat extension of HC+

Λ , and we have the direct sum:
K[x] = Span(B)⊕ker HΛ̃. Moreover, ϕ(p) is the projection of p ∈ K[x] on Span(B)
along kerHΛ̃. Indeed, ϕ(p) ∈ Span(B) and p − ϕ(p) ∈ kerHΛ̃ for any p ∈ K[x]
since, for any q ∈ K[x],

Λ̃(pq) = Λ(ϕ(pq)) = Λ(p(χ)(ϕ(q))),

Λ̃(pϕ(q)) = Λ(ϕ(pϕ(q))) = Λ(p(χ)(ϕ(q))) = Λ̃(pq).

Finally, if Λ′ ∈ K[x]∗ is another linear form whose Hankel operator HΛ′ is

a flat extension of HC+

Λ , then kerHΛ̃ = (K) ⊆ ker HΛ′ . This implies that for all

p ∈ K[x], Λ′(p) = Λ′(ϕ(p)) = Λ(ϕ(p)) = Λ̃(p). This shows the unicity of the flat

extension of HC+

Λ , which concludes the proof of Theorem 1.5.
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3. Applications

3.1. Application to the flat extension theorem of Curto and Fialkow

Theorem 1.2 is in some sense an ‘easy’ instance of Theorem 1.4. Indeed, under its
assumptions, one can show existence of a maximum rank principal submatrix of
Mt−1(y) indexed by a monomial set B connected to 1 which, as noted in the proof
of Theorem 1.4, permits to apply Theorem 1.6.

Proposition 3.1. Let Λ ∈ (Span(C+ · C+))∗, where C := Mn,t−1. If rank HC+

Λ =
rank HC

Λ, then there exists B ⊆ C closed under taking divisions (and thus connected

to 1) for which rank HC+

Λ = rank HB
Λ = |B|.

Proof. Let M = (Λ(ab))a,b∈C+ denote the matrix of HC+

Λ in the canonical bases.
Consider a total degree monomial ordering � of C and let B ⊆ C index a maximum
linearly independent set of columns of M which is constructed by the greedy
algorithm using the ordering �. One can easily verify that B is closed under taking
divisions (cf. [13]). �

The following example shows that, even if C is connected to 1, there may not
always exist a base B connected to 1 for HC

Λ (which justifies our generalisation of
Theorem 1.6 to kernels of Hankel operators).

Example. For n = 2, let C = {1, x1, x1x2} with ∂C = {x2, x1x
2
2, x

2
1, x

2
1x2}, and let

Λ ∈ (Span(C+ · C+))∗ be defined by Λ(xi
1x

j
2) = 1 if j = 0, 1, and Λ(xi

1x
j
2) = a if

j = 2, 3, 4, except Λ(x2
1x

4
2) = a2, where a is a scalar with a 6= 1. The associated

moment matrix has the form













1 x1 x1x2 x2
1 x2

1x2 x2 x1x
2
2

1 1 1 1 1 1 1 a
x1 1 1 1 1 1 1 a
x1x2 1 1 a 1 a a a
x2

1 1 1 1 1 1 1 a
x2

1x2 1 1 a 1 a a a
x2 1 1 a 1 a a a
x1x

2
2 a a a a a a a2













and rank HC
Λ = rank HC+

Λ = 2. As 1 − x1 ∈ ker HC+

Λ , the only sets indexing a
column base for HC

Λ are B = {1, x1x2} and {x1, x1x2}, thus not connected to 1.

Combining Theorem 1.5 with Theorem 1.1 we obtain the following extension
of Corollary 1.3.

Theorem 3.2. Let Λ ∈ (Span(C+ · C+))∗, where C ⊆Mn is finite and connected to

1. Assume that Λ is positive and that rank HC+

Λ = rank HC
Λ. Then the sequence

y = (Λ(a))a∈C+·C+ has a representing measure.
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3.2. Application to polynomial optimization

We point out here the relevance of the flat extension theorems to polynomial opti-
mization and to the problem of computing the real roots to polynomial equations.
In this section, we take again K = R.

The truncated moment problem has recently attracted a lot of attention also
within the optimization community, since it can be used to formulate semidefinite
programming relaxations to polynomial optimization problems (see [11]). Moreover
the flat extension theorem of Curto and Fialkow permits to detect optimality of the
relaxations and to extract global optimizers to the original optimization problem
(see [8]). Here is a brief sketch; see e.g. [15] and references therein for details.

Suppose we want to compute the infimum p∗ of a polynomial p over a semi-
algebraic set K defined by the polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. For any
integer t ≥ deg(p)/2 and such that t ≥ dj := ⌈deg(gj)/2⌉, consider the program:

p∗t := inf Λ(p) s.t. Λ ∈ (R[x]2t)
∗, Λ(1) = 1, Λ � 0, gj · Λ � 0 (∀j ≤ m). (3.1)

Here, Λ � 0 means that Λ is positive (i.e., Λ(p2) ≥ 0 for all p ∈ R[x]t) and the
localizing conditions gj · Λ � 0 (i.e. Λ(gjp

2) ≥ 0 for all p ∈ R[x]t−dj
) aim to

restrict the search for a representing measure suported by the set K (cf. [6, 11]).
Using moment matrices, the program (3.1) can be formulated as an instance of
semidefinite programming for which efficient algorithms exist (see e.g. [20, 21]).

We have: p∗t ≤ p∗, with equality if H
Mn,t

Λ is a flat extension of H
Mn,t−d

Λ for
an optimum solution Λ to (3.1) (d := maxj dj). In that case, the atoms of the
representing measure (which exists by Corollary 1.3) are global minimizers of p
over the semi-algebraic set K and they can be computed from Λ [8]. Moreover,

they are all the global minimizers when H
Mn,t

Λ has the maximum possible rank
among all optimum solutions to the semidefinite program (3.1).

As shown in [12], the truncated moment problem also yields an algorithmic
approach to the problem of computing the real roots to polynomial equations
g1 = 0, . . . , gm = 0 (assuming their number is finite). Indeed, this amounts to
finding all global minimizers to a constant polynomial, say p = 0, over the real
variety K := {x ∈ R

n | gj(x) = 0 ∀j = 1, . . . , m}. Consider the semidefinite
program (3.1) where the localizing conditions now read gj · Λ = 0 ∀j. For t large
enough, the program (3.1) has a maximum rank solution which is a flat extension
and thus, as noted above, all points of K can be computed from this solution. See
[12] for details.

A concern in this type of approach is the size of the matrices appearing in
the semidefinite program (3.1). In order to improve the practical applicability of
this approach, it is crucial to derive semidefinite programs involving matrices of
moderate sizes. For this one may want to consider moment matrices indexed by
sparse sets of monomials instead of the full degree levels Mn,t. This is where our
new sparse flat extension theorem may become very useful. It will be used, in
particular, in [10].
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The approach in [12] also permits to find the real radical of the ideal generated
by the polynomials g1, . . . , gm. Indeed, if Λ ∈ (R[x])∗ is positive, then the kernel
of its Hankel operator HΛ is a real radical ideal [14] and, under the conditions

of Theorem 3.2, ker HC+

Λ generates a real radical ideal. These facts explain the
relevance of moment matrices and Hankel operators to the problem of finding
the real radical of a polynomial ideal. For instance, this permits to weaken the
assumptions in Proposition 4.1 of [12] and to strengthen its conclusions; more
precisely, we do not need to assume the commutativity of the operators χi’s (as
this holds automatically, by Lemma 2.1) and we can claim that the returned ideal
is real radical (by the above argument).
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