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Abstract

We give a concise exposition of the elegant proof given recently by Leonid Gurvits
for several lower bounds on permanents.

1. Permanents

The permanent of a square matrix A = (ai,j)
n
i,j=1 is defined by

(1) perA =
∑

π∈Sn

n
∏

i=1

ai,π(i),

where Sn denotes the set of all permutations of {1, . . . , n}. (The name “permanent” has
its root in Cauchy’s fonctions symétriques permanentes [2], as a counterpart to fonctions
symétriques alternées — the determinants.)

Despite its appearance as the simpler twin-brother of the determinant, the permanent
has turned out to be much less tractable. Whereas the determinant can be calculated
quickly (in polynomial time, with Gaussian elimination), determining the permanent is
difficult (“number-P-complete”). As yet, the algebraic behaviour of the permanent function
has appeared to a large extent unmanageable, and its algebraic relevance moderate. Most
fruitful research on permanents concerns lower and upper bounds for the permanent (see
the book of Minc [12]). In this paper we will consider only lower bounds.

Indeed, most interest in the permanent function came from the famous Van der Waerden
conjecture [16] (in fact formulated as question), stating that the permanent of any n × n
doubly stochastic matrix is at least n!/nn, the minimum being attained only by the matrix
with all entries equal to 1/n. (A matrix is doubly stochastic if it is nonnegative and each
row and column sum is equal to 1.)

This conjecture was unsolved for over fifty years, which, when contrasted with its simple
form, also contributed to the reputation of intractability of permanents. Finally, Falikman
[6] and Egorychev [4] were able to prove this conjecture, using a classical inequality of
Alexandroff and Fenchel. The proof with eigenvalue techniques also revealed some unex-
pected nice algebraic behaviour of the permanent function (see, also for background, Knuth
[9] and van Lint [10,11]).

Before the proof of the Van der Waerden conjecture was found, a weaker conjecture was
formulated by Erdős and Rényi [5]. It claims the existence of a real number α3 > 1 such
that, for each nonnegative integer-valued n × n matrix A with all row and column sums
equal to 3, the permanent of A is at least αn

3 . This would follow from the Van der Waerden
conjecture, since 1

3A is doubly stochastic, hence
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(2) perA = 3nper(1
3A) ≥ 3n n!

nn
≥

(3

e

)n
.

Erdős and Rényi also asked for the largest value of α3 one can take in this bound. More
generally, for any natural number k, they asked for the largest real number αk such that
each nonnegative integer-valued n×n matrix A = (ai,j) with all row and column sums equal
to k has permanent at least αn

k . Note that this permanent is equal to the number of perfect
matchings in the k-regular bipartite graph with vertices u1, . . . , un, v1, . . . , vn, where ui and
vj are connected by ai,j edges.

In 1979, before the Van der Waerden conjecture was settled, the first conjecture of Erdős
and Rényi was proved, by Bang [1], Friedland [7], and Voorhoeve [15]. Bang and Friedland
in fact showed that the permanent of any n × n doubly stochastic matrix is at least e−n.
Note that limn→∞(n!/nn)1/n = e−1, so this may be seen as an asymptotic proof of the Van
der Waerden conjecture. It also implies that the number αk of Erdős and Rényi is at least
k/e; in particular, α3 ≥ 3/e > 1.

The proof of Voorhoeve gives a better bound: α3 ≥ 4/3. In fact, this bound is best
possible. Indeed, it follows from a theorem of Wilf [18] that α3 ≤ 4/3, and more generally

(3) αk ≤
(k − 1)k−1

kk−2
,

and Schrijver and Valiant [14] conjectured that equality holds for each k. For k = 1, 2, this
is trivial, and for k = 3 this follows from Voorhoeve’s theorem.

The proof of Voorhoeve that α3 ≥ 4/3 is very short and elegant, and it seduces one to
search for similar arguments for general k. However, it was only at the cost of frightening
technicalities that Schrijver [13] found a proof that equality indeed holds in (3) for each k.
This amounts to a lower bound for permanents of doubly stochastic matrices in which all
entries are integer multiples of 1/k. Under this restriction, this bound is larger than the
Van der Waerden bound.

In fact, both the bound of Falikman-Egorychev and that of Schrijver are best possible,
in different asymptotic directions. Let µ(k, n) denotes the minimum permanent of n × n
doubly stochastic matrices with all entries being integer multiples of 1/k. Then the two
bounds state

(4) µ(k, n) ≥
n!

nn
and µ(k, n) ≥

(k − 1

k

)(k−1)n
.

They are best possible in the following sense:

(5) inf
k

µ(k, n)1/n =
n!1/n

n
and inf

n
µ(k, n)1/n =

(k − 1

k

)k−1
.

The proof of Falikman and Egorychev requires some nontrivial theorems, and the proof
of Schrijver is combinatorially complex. It was a big surprise when Leonid Gurvits [8] gave
an amazingly short proof of the two bounds. En route, he extended Schrijver’s theorem to:
each doubly stochastic n×n matrix with at most k nonzeros in each column has permanent
at least ((k− 1)/k)(k−1)n. In fact, Gurvits proved that each doubly stochastic n×n matrix

2



A satisfies

(6) perA ≥

n
∏

i=1

g(min{i, λA(i)}) (Gurvits’s inequality),

where λA(i) is the number of nonzeros in the ith column of A, and where

(7) g(0) := 1 and g(k) :=
(k − 1

k

)k−1
for k = 1, 2, . . .

(setting 00 = 1). Gurvits’ bound implies both the bound of Falikman and Egorychev and
the bound of Schrijver — see Section 4.

We give here a proof based on Gurvits’s proof. The building blocks of the proof are
from Gurvits [8], but we take a few shortcuts.

2. Description of Gurvits’s approach

As usual, let R+ := {x ∈ R | x ≥ 0}. Recall the geometric-arithmetic mean inequality,
saying that if λ1, . . . , λn, x1, . . . , xn ∈ R+ with

∑n
i=1 λi = 1, then

(8)

n
∑

i=1

λixi ≥

n
∏

i=1

xλi

i .

It amounts to the concavity of the log function.
For any n×n matrix A, define the following multivariate polynomial pA in the variables

x1, . . . , xn:

(9) pA(x1, . . . , xn) :=
n

∏

i=1

aix =
n

∏

i=1

n
∑

j=1

ai,jxj ,

where ai denotes the ith row of A (in aix we take ai as a row vector and x = (x1, . . . , xn)T

as a column vector). So pA is homogeneous of degree n.
Then the coefficient of the monomial x1 · · ·xn in pA is equal to perA. This can also be

stated in terms of partial derivatives as

(10) perA =
∂npA

∂x1 · · · ∂xn
.

Note that the latter expression is a constant function.
The crux of the method is to consider more generally the following derivatives of pA,

for any i = 0, . . . , n:

(11) qi(x1, . . . , xi) :=
∂n−ipA

∂xi+1 · · · ∂xn

⌋

xi+1=···=xn=0

.
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So qi ∈ R[x1, . . . , xi]. Then qn = pA and q0 = perA.
The polynomials qi will be related through the following concept of “capacity” of a

polynomial. The capacity cap(p) of a polynomial p ∈ R[x1, . . . , xn] is defined as

(12) cap(p) := inf p(x),

where the infimum ranges over all x ∈ R
n
+ with

∏n
j=1 xj = 1. So cap(q0) = perA. Moreover,

we have:

Proposition 1. If A is doubly stochastic, then cap(pA) = 1.

Proof. For any x ∈ R
n
+ with

∏n
j=1 xj = 1 we have, using the geometric-arithmetic mean

inequality (8):

(13) pA(x) =
∏

i

aix ≥
∏

i

∏

j

x
ai,j

j =
∏

j

∏

i

x
ai,j

j =
∏

j

x
P

i ai,j

j =
∏

j

xj = 1.

Hence cap(pA) ≥ 1. As pA(1, . . . , 1) = 1, this gives cap(pA) = 1.

Then Gurvits’s inequality (6) follows inductively from the inequality

(14) cap(qi−1) ≥ cap(qi)g(min{i, λA(i)})

for i = 1, . . . , n, assuming A to be nonnegative. This is the basic inequality in Gurvits’s
proof, which is established using the concept of “H-stable polynomial”, as follows.

Define C+ := {z ∈ C | Rez ≥ 0} and C++ := {z ∈ C | Rez > 0}. A polynomial
p ∈ C[x1, . . . , xn] is called H-stable if p has no zeros in C

n
++. (Here “H” stands for “half-

plane.”) Note that for any doubly stoachastic matrix A, the polynomial pA indeed is H-
stable.

For any polynomial p ∈ R[x1, . . . , xn], let the polynomial p′ ∈ R[x1, . . . , xn−1] be defined
by

(15) p′(x1, . . . , xn−1) :=
∂p

∂xn

⌋

xn=0

.

Then the polynomials introduced in (11) satisfy qi−1 = (qi)
′ for i = 1, . . . , n. As noted

above, we need to show inequality (14). This is what the following key result of Gurvits
does, relating cap(p) and cap(p′).

Theorem 1. Let p ∈ R+[x1, . . . , xn] be H-stable and homogeneous of degree n. Then p′ ≡ 0
or p′ is H-stable. Moreover,

(16) cap(p′) ≥ cap(p)g(k),

where k = degxn
(p) denotes the degree of xn in p.
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Note that the degree of the variable xi in qi is at most min{i, λA(i)}. Hence, as g is
monotone nonincreasing, (14) indeed follows.

3. Proof of Theorem 1

We first prove a lemma. For any x ∈ C
n, let Rex := (Rex1, . . . ,Rexn).

Lemma 1. Let p ∈ C[x1, . . . , xn] be H-stable and homogeneous. Then for each x ∈ C
n
+:

(17) |p(x)| ≥ |p(Rex)|.

Proof. By continuity, we can assume x ∈ C
n
++. Then, as p is H-stable, p(Rex) 6= 0. Fixing

x, consider p(x + sRex) as a function of s ∈ C. As p is homogeneous, we can write

(18) p(x + sRex) = p(Rex)
m
∏

i=1

(s − bi)

for b1, . . . , bm ∈ C, where m is the total degree of p. For each i, as p(x + biRex) = 0 and as
p is H-stable, we know x + biRex 6∈ C

n
++, and so Re (1 + bi) ≤ 0, that is, Re bi ≤ −1, which

implies |bi| ≥ 1. Therefore,

(19) |p(x)| = |p(x + 0Rex)| = |p(Rex)|
m
∏

i=1

|bi| ≥ |p(Rex)|.

Now we can prove Theorem 1. It suffices to prove that for each y ∈ C
n−1
++ with

∏n−1
i=1 Reyi = 1:

(20) (i) if p′(y) = 0 then p′ ≡ 0, and
(ii) if y is real, then p′(y) ≥ cap(p)g(k).

Before proving (20), note that for any real t > 0,

(21) cap(p) ≤
p(Rey, t)

t
.

Indeed, let λ := t−1/n and x := λ·(Rey, t). We chose λ so that
∏i

i=1 xi = λn
(

∏n−1
i=1 Reyi

)

t =

1. Hence, as p is homogeneous of degree n,

(22) cap(p) ≤ p(x) = λnp(Rey, t) =
p(Rey, t)

t
,

and we have (21).
We now prove (20). First assume that p(y, 0) = 0. Then by (17) we have p(Rey, 0) = 0

(since 0 = |p(y, 0)| ≥ |p(Rey, 0)| ≥ 0). Moreover,
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(23) p′(y) = lim
t↓0

p(y, t) − p(y, 0)

t
= lim

t↓0

p(y, t)

t
,

and a similar expression holds for p′(Rey). By (17), as all coefficients of p are nonnegative,
p(Rey, t) ≤ |p(y, t)| for all t ≥ 0. So, using (21),

(24) cap(p) ≤ lim
t↓0

p(Rey, t)

t
= p′(Rey) ≤ lim

t↓0

|p(y, t)|

t
= |p′(y)|.

This implies (20): we have (i) since if p′(y) = 0 then p′(Rey) = 0, so p′ ≡ 0 (as all coefficients
of p′ are nonnegative); (ii) follows as g(k) ≤ 1 for each k.

Second assume that p(y, t) has degree at most 1, as a polynomial in t. Then also
p(Rey, t) has degree at most 1, since p(Rey, t) ≤ |p(y, t)|. Moreover,

(25) p′(y) = lim
t→∞

p(y, t)

t
,

and a similar expression holds for p′(Rey). Now again using (21),

(26) cap(p) ≤ lim
t→∞

p(Rey, t)

t
= p′(Rey) ≤ lim

t→∞

|p(y, t)|

t
= |p′(y)|,

again implying (20).
So we can assume that p(y, 0) 6= 0 and that p(y, t) has degree at least 2, as a polynomial

in t. This implies k ≥ 2. Since p(y, 0) 6= 0, we can write

(27) p(y, t) = p(y, 0)
k

∏

i=1

(1 + ait)

for some a1, . . . , ak ∈ C. Hence p′(y) = p(y, 0)
∑k

i=1 ai. As p(y, t) has degree at least 2, not
all ai are 0. Moreover, for i = 1, . . . , k:

(28) if ai 6= 0, then a−1
i is a nonnegative real linear combination of y1, . . . , yn−1.

Otherwise there is a line in the complex plane C through 0 that separates a−1
i from

y1, . . . , yn−1. So there exists a λ ∈ C such that Re (λa−1
i ) < 0 and Re(λyj) > 0 for

j = 1, . . . , n − 1. Hence (λy,−λa−1
i ) belongs to C

n
++.

However, p(λy,−λa−1
i ) = λnp(y,−a−1

i ) = 0 (this follows by substituting t = −a−1
i in

(27)). This contradicts the H-stability of p, and thus proves (28).
As the yi belong to C++, (28) in particular implies that Reai > 0 if ai 6= 0. Hence, as

not all ai are 0,
∑k

i=1 ai 6= 0. Therefore p′(y) = p(y, 0)
∑k

i=1 ai 6= 0. This gives (20)(i).
To prove (20)(ii) we now assume that y is real. Then by (28), all ai are real nonnegative.

By scaling p we can assume that p(y, 0) = 1. Set

(29) t :=
k

(k − 1)p′(y)
.
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Then, using the geometric-arithmetic mean inequality (8) and the fact that p′(y) =
∑k

i=1 ai,

(30) p(y, t) =
k

∏

i=1

(1 + ait) ≤
(1

k

k
∑

i=1

(1 + ait)
)k

=
(1

k
(k + p′(y)t)

)k
=

(

1 +
1

k − 1

)k
=

( k

k − 1

)k
.

Therefore, by (21),

(31) cap(p) ≤
p(y, t)

t
≤

1

t

( k

k − 1

)k
= p′(y)

( k

k − 1

)k−1
.

The value (29) for t was determined by Gurvits to yield the best inequality relating
cap(p′) and cap(p).

4. Applications to permanents

Corollary 1a. For any nonegative n × n matrix A:

(32) perA ≥ cap(pA)
n

∏

i=1

g(min{i, λA(i)}).

Proof. We may assume that A has no zero row. Then, as pA(x) = 0 implies that aix = 0
for some i, pA is H-stable. Define qi ∈ R+[x1, . . . , xi] as in (11). Then by Theorem 1, for
i = 1, . . . , n,

(33) cap(qi−1) ≥ cap(qi)g(degxi
(qi)) ≥ cap(qi)g(min{i, λA(i)}),

since degxi
(qi) ≤ min{i, λA(i)} and g is monotone nonincreasing. As cap(q0) = perA, (32)

follows by induction.

If A is doubly stochastic, cap(pA) = 1 (Proposition 1), and hence Corollary 1a gives
Gurvits’s inequality (6). This implies the theorem of Falikman [6] and Egorychev [4] (Van
der Waerden’s conjecture [16]):

Corollary 1b. If A is a doubly stochastic n × n matrix, then

(34) perA ≥
n!

nn
.

Proof. By (32),
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(35) perA ≥
n

∏

i=1

( i − 1

i

)i−1
=

n
∏

i=1

i
(i − 1)i−1

ii
=

n!

nn
.

Another consequence of Corollary 1a is the bound of Voorhoeve [15] (for k = 3) and
Schrijver [13]:

Corollary 1c. If A is a nonnegative integer n × n matrix with all row and column sums
equal to k, then

(36) perA ≥
((k − 1)k−1

kk−2

)n
.

Proof. Let B := 1
kA. Then B is doubly stochastic and each column has at most k nonzeros.

Hence by Corollary 1a,

(37) perA = knperB ≥ kn
(k − 1

k

)(k−1)n
=

((k − 1)k−1

kk−2

)n
.

For each fixed k, the base (k − 1)k−1/kk−2 in (36) is best possible (Wilf [18]). It is even
best possible when A is restricted to 0, 1 matrices (Wanless [17]).

As was observed by Henryk Minc, Corollary 1c for k = 6 implies the (currently best
known) lower bound of 0.44007584 for the 3-dimensional dimer constant (see Ciucu [3]).

One can also derive uniqueness of the doubly stochastic matrix having minimum per-
manent (a result of Egorychev [4]).

Corollary 1d. Let A = (ai,j) be a doubly stochastic n×n matrix with perA = n!/nn. Then
ai,j = 1/n for all i, j.

Proof. By symmetry it suffices to show that all entries in the last column of A are equal.
Let the polynomials qi be as in (11). Then, since equality holds in (33),

(38) inf
y

qn−1(y) = cap(qn−1) =
(n − 1

n

)n−1
cap(qn) =

(n − 1

n

)n−1
,

where y ranges over y ∈ R
n−1
+ with

∏n−1
j=1 yj = 1. Now for any such y we have the following,

where i and k range over 1, . . . , n and j ranges over 1, . . . , n − 1, and where a′i denotes the
ith row of A with the last entry chopped off:

(39) qn−1(y) =
∑

k

ak,n

∏

i6=k

a′iy ≥
∏

k

∏

i6=k

(a′iy)ak,n =
∏

i

∏

k 6=i

(a′iy)ak,n =
∏

i

(a′iy)1−ai,n

=
∏

i

(

∑

j

ai,jyj

)1−ai,n

=
∏

i

(

(1 − ai,n)
∑

j

ai,j

1 − ai,n
yj

)1−ai,n

≥
∏

i

(

(1 − ai,n)1−ai,n

∏

j

y
ai,j

j

)

=
(

∏

i

(1 − ai,n)1−ai,n

)(

∏

j

∏

i

y
ai,j

j

)

=
(

∏

i

(1 − ai,n)1−ai,n

)(

∏

j

yj

)

=
∏

i

(1 − ai,n)1−ai,n ≥
(n − 1

n

)n−1
.
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Here we used, in the first two inequalities, the geometric-arithmetic mean inequality (8)
and, in the last inequality, the log-convexity of the function xx (note that (n − 1)/n is the
average of the 1 − ai,n).

By (38) we must have equality in the last inequality of (39). Hence 1− ai,n is the same
for all i, and so the last column of A is constant.

Acknowledgements. We thank the referees for helpful comments improving the presen-
tation of the paper.
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