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Abstract

The paper identifies classes of nonconvex optimization problems whose convex relaxations
have optimal solutions which at the same time are global optimal solutions of the original
nonconvex problems. Such a hidden convexity property was so far limited to quadratically
constrained quadratic problems with one or two constraints. We extend it here to problems
with some partial separable structure. Among other things, the new hidden convexity re-
sults open up the possibility to solve multi-stage robust optimization problems using certain
nonlinear decision rules.

Keywords: convex relaxation of nonconvex problems, hidden convexity, partially sepa-
rable functions, robust optimization

1 Introduction

In this paper we reveal some classes of nonconvex optimization problems which nevertheless
posses a hidden convexity property. By this it is meant that there is an explicit convex problem
having an optimal solution which is at the same time a global optimal solution of the original
nonconvex problem. Hidden convexity was discovered for problems with indefinite quadratic
objective functions, and one or two quadratic constraints( [10],[13]). The hidden convex problems
in these cases are generally Semi Definite Programs (SDP), or, in more specific cases, are Conic
Quadratic Programs (CQP) ([3]). The main mathematical tools to derive these results are basic
results on the range space of (indefinite) quadratic forms ([11]) and the so-called S-lemma ([12],
[8]). Here we go beyond the quadratic case, and hence no reliance on such tools is possible
anymore. The classes of problems we study are all special cases of the following general form

(NCP ) min
x∈Rn

{G0(x) | Gl(x) ≤ ρl, l ∈ L},

∗This paper was written when the author was visiting Centrum Wiskunde & Informatica in Amsterdam, The
Netherlands, as a CWI Distinguished Scientist.
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where L is a finite index set, and, for l ∈ {0} ∪ L:

Gl(x1, ..., xn) = gl(βl1f1(x[1]), ..., βlNfN (x[N ])) + hl(αl1x1, ..., αlnxn).

Here x[1], x[2], ..., x[N ] is a partition of the variables (x1, x2, ..., xn) into N mutually exclusive

subvectors (this is the “block-separable” case considered in Section 2). Moreover, gl : R
N → R,

hl : R
n → R, and fj : R

|[j]| → R are convex functions. The source of nonconvexity in problem
(NCP ) comes from the possible negative signs of some of the coefficients βlk. But even if all βlks
are nonnegative Gl(x) can be nonconvex, since gl is not assumed to be componentwise monotone
increasing.

The general methodology by which we try to expose hidden convexity in problem (NCP ) is as
follows. First we write (NCP ) equivalently in terms of additional variables y1, ..., yN :







minx∈Rn,y∈RN F0(x, y) = g0(β01y1, ..., β0NyN ) + h0(α01x1, ..., α0nxn)

s.t.

Fl(x, y) = gl(βl1y1, ..., βlNyN ) + hl(αl1x1, ..., αlnxn) ≤ ρl, l ∈ L

fj(x[j]) = yj, j = 1, ..., N.

(1)

We then relax the nonconvex constraints fj(x[j]) = yj by replacing them with

fj(x[j]) ≤ yj, j = 1, ..., N, (2)

thus obtaining the following convex optimization problem:

(CP ) min{F0(x, y) | Fl(x, y) ≤ ρl, l ∈ L; fj(x[j]) ≤ yj, j = 1, ..., N}.

Now, if we can prove that (CP ) has an optimal solution which happens to satisfy all the con-
straints in (2) as equalities (we call such a solution an E-solution), then this solution is an
optimal (global) solution of problem (1) and hence of problem (NCP ).

The main special case treated in the paper, for which we prove (by construction) the existence of
an E-solution is when the functions gl and hl are linear and |L| ≤ 2, or |L| > 2 but an additional
property (“termwise parallel”) links the constraints in some sense. Another special case is when
|L| ≥ 1, gl are general convex functions, and hl are convex functions with certain restrictions on
the signs of their partial derivatives. For this case we prove that every optimal solution of (CP )
is an E-solution.

The above results are presented in Section 2 and are finally collected in Table 1. In Section
3 we show how the hidden convexity results offer the possibility to derive robust solutions of
constraints in which the dependence on the uncertain parameters is nonlinear. Moreover, for
multi-period linear problems we show that new opportunities to go beyond using just linear
decision rules (as in [5], [2]) open up. In the last section the complexity of (CP ) and its dual
problem is studied. It is shown that in many cases polynomial complexity is achieved.

2 Exact convex relaxations of partially separable problems

We first start with the fully separable case (N = n). Given univariate functions f1, . . . , fn :
R → R and vectors αl, βl ∈ R

n, (for l ∈ {0} ∪ L), ρl ∈ R (for l ∈ L), we consider the following
problem in n variables x = (x1, . . . , xn) and with m = |L| constraints:

min αT
0 x + βT

0 f(x) s.t. αT
l x + βT

l f(x) ≤ ρl (l ∈ L). (3)
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Note that this problem is a special case of problem (NCP ) in the Introduction (take hl(t1, ..., tn) =
gl(t1, ..., tn) =

∑n
i=1 ti, l ∈ {0} ∪ L). We introduce new variables y = (y1, . . . , yn) for f(x) =

(f1(x1), . . . , fn(xn)), leading to the following reformulation of (3):

min αT
0 x + βT

0 y s.t. αT
l x + βT

l y ≤ ρl (l ∈ L), f(x) = y. (4)

Now we relax the equation y = f(x) by the (coordinate-wise) inequality f(x) ≤ y, and obtain
the following relaxation of (3) (and (4)):

min αT
0 x + βT

0 y s.t. αT
l x + βT

l y ≤ ρl (l ∈ L), f(x) ≤ y. (5)

Observe that, in the special case when each fi is a convex function, (5) is a convex program,
whereas the original problem (3) is not convex when not all βis are nonnegative.

The following definition plays a key role in our analysis.

Definition 2.1. A feasible solution (x, y) to problem (5) is an E-solution if it satisfies f(x) = y.

We will identify in the paper several classes of instances of problem (3) for which the relaxation
(5) has an optimal E-solution, so in fact it is exact. These classes are distinguished by properties
satisfied by the functions f1, . . . , fn, and the structure of the constraints in (3). In a first step
we group some general facts about problem (3) and its relaxation (5).

2.1 Basic properties of partially separable problems

Although problem (3) is defined for arbitrary functions fi, we will need to make some as-
sumptions for some of our results. In particular, we will need the following notion of (strong)
coercivity.

Definition 2.2. A function f : R → R is said to be coercive if lim
|t|→+∞

f(t) = +∞, and strongly

coercive if lim
|t|→+∞

f(t)/|t| = +∞. Moreover, call f semi-coercive if it satisfies at least one of the

following two conditions:

lim
t→−∞

f(t) = +∞, or lim
t→+∞

f(t) = +∞, (6)

and strongly semi-coercive if it satisfies at least one of the following two conditions:

lim
t→+∞

f(t)/t = +∞, or lim
t→−∞

f(t)/t = −∞. (7)

For instance, any convex non-constant function is semi-coercive. Examples of strongly semi-
coercive functions include et, e−t, and odd degree univariate polynomials. Examples of strongly
coercive functions include cosh(t) and even degree univariate polynomials with a positive leading
coefficient.

When in problem (3) we assume that all the functions fi are convex, the relaxed problem (5) is
convex and thus it admits a dual problem.

Recall that the (Fenchel) conjugate of a function f : R → R is the function f∗ : R → R ∪ {∞}
defined by f∗(y) = supx∈R{xy − f(x)} for y ∈ R. When f is strongly coercive, then f∗(y) ∈ R

for all y ∈ R.
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Theorem 2.1. The dual problem of problem (5) reads:

sup
v∈R|L|

−
∑

i=1,...,n|β0i+
∑

l βlivl>0

(

β0i +
∑

l∈L

βlivl

)

f∗
i

(

− α0i +
∑

l∈L αlivl

β0i +
∑

l∈L βlivl

)

−
∑

l∈L

ρlvl

s.t. v ≥ 0, β0i +
∑

l∈L βlivl ≥ 0 (i = 1, . . . , n).

(8)

Assume that each function fi is convex and that problem (5) has a strictly feasible solution.
Then the optimal objective value of (5) is equal to the optimal value of the dual problem (8).

Proof. We first compute the Lagrange function L(x, y, u, v) for problem (5), where vl are the
Lagrangian multipliers for the constraints αT

l x + βT
l y ≤ ρl, and ui are the multipliers for the

constraints fi(xi) − yi ≤ 0, assumed to be nonnegative. We have:

L(x, y, u, v) =
∑

i(α0ixi + β0iyi) +
∑

i ui(fi(xi) − yi) +
∑

l (
∑

i(αlixi + βliyi) − ρl) vl

=
∑

i yi(β0i − ui +
∑

l βlivl) +
∑

i (xi(α0i +
∑

l αlivl) + uifi(xi)) −
∑

l ρlvl.

Consider the dual objective function g(u, v) := infx,y L(x, y, u, v), so that the dual of (5) reads
supu,v g(u, v). Clearly, g(u, v) = −∞ if, for some i, β0i − ui +

∑

l βlivl 6= 0 (letting yi tend to
∞), or (ui = 0 and α0i +

∑

l αlivl 6= 0) (letting xi tend to ∞). Hence, in the dual problem, we
can restrict the variables u, v to satisfy

∀i ui = β0i +
∑

l βlivl, and α0i +
∑

l αlivl = 0 if ui = 0.

For such u, v, we deduce that

g(u, v) = −∑i|ui>0 supxi
xi(−α0i −

∑

l αlivl) − uifi(xi) −
∑

l ρlvl

= −∑i|ui>0 uif
∗
i

(

− α0i+
∑

l αlivl

ui

)

−∑l ρlvl.

This immediately leads to the dual problem (8). The optimal objective values of problems (5)
and (8) are equal when (5) is convex and has a strictly feasible solution.

For any function f : R → R, the function h : R
2 → R defined by h(x, y) = yf∗(x/y) for

y > 0, is a convex function. Hence the objective function in problem (8) is a concave function.
Therefore, the dual problem (8) is a maximization optimization problem with linear constraints
and a concave objective function.

We now group some results characterizing boundedness of the relaxed problem (5) and providing
sufficient conditions for attainment of its minimum; this latter condition plays an important role
in several of our results.

Proposition 2.1. Consider problem (5).

(i) If there does not exist scalars vl ≥ 0 (l ∈ L) such that β0 +
∑

l∈L βlvl ≥ 0, then problem (5)
is unbounded (i.e., its minimal value is −∞).

(ii) Assume that there exist scalars vl ≥ 0 (l ∈ L) such that β0 +
∑

l∈L βlvl ≥ 0 and that the
functions fi are strongly coercive. Then problem (5) is bounded.

(iii) Assume that there exist scalars vl ≥ 0 (l ∈ L) such that β0 +
∑

l∈L βlvl > 0 and that the
functions fi are strongly coercive. Then problem (5) attains its minimum.
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Proof. (i) Fix x ∈ R
n and consider the following LP in the variables y1, . . . , yn:

min βT
0 y s.t. βT

l y ≤ ρl − αT
l x (l ∈ L), yi ≥ fi(xi) (i = 1, . . . , n), (9)

and its dual LP in the variables vl (l ∈ L) and ui (i = 1, . . . , n):

max −
∑

l∈L

vl(ρl − αT
l x) +

n∑

i=1

uifi(xi) s.t.
∑

l∈L

vlβli − ui = −β0i (i = 1, . . . , n), u, v ≥ 0. (10)

The constraints in (10) can be rewritten as
∑

l∈L vlβl + β0 ≥ 0 and v ≥ 0. By assumption, (10)
is infeasible, which implies that (9) is unbounded and thus problem (5) too is unbounded.

(ii) By assumption, the dual problem (8) of (5) is feasible. As the functions fi are strongly
coercive, the objective value of (8) at any feasible solution is finite, which thus gives a finite
lower bound for the minimum of problem (5). (We use here the weak duality between (5) and
(8).)

(iii) By assumption, we have scalars vl ≥ 0 (l ∈ L) such that β0 +
∑

l∈L vlβl > 0. We show
that in problem (5) we can assume without loss of generality that the variables x and y are
bounded. Note that each function fi is bounded from below, since it is strongly coercive. Hence
the constraints yi ≥ fi(xi) imply that yi is bounded from below. Therefore, it suffices to show
that yi is bounded from above. For this, pick (x, y) feasible for (5) and write the objective
function of (5) as
∑

i

(

(α0i +
∑

l

vlαli)xi + (β0i +
∑

l

vlβli)yi

︸ ︷︷ ︸

ϕi(xi,yi)

)

−
∑

l

vl(α
T
l x + βT

l y)

︸ ︷︷ ︸

ϕ0(x,y)

=
∑

i

ϕi(xi, yi) + ϕ0(x, y).

The constraints of (5) imply that the last term satisfies: ϕ0(x, y) ≥ −∑l vlρl. As β0i+
∑

l vlβli >
0, we have that

ϕi(xi, yi) ≥ (α0i +
∑

l

vlαli)xi + (β0i +
∑

l

vlβli)fi(xi)

is bounded from below, since the right hand side tends to +∞ when |xi| tends to +∞ (as fi is
strongly coercive). Since we are minimizing αT

0 x+βT
0 y, we can assume that it is bounded above

and thus we may assume without loss of generality that each variable yi is bounded and thus xi

too is bounded. This concludes the proof.

Remark 2.1. As an application of Proposition 2.1, checking whether the relaxed problem (5) is
bounded amounts to checking whether the linear system: v ≥ 0, β0 +

∑

l∈L vlβl ≥ 0 is feasible,
which can be done with linear programming. Similarly for the linear system: v ≥ 0, β0 +
∑

l∈L vlβl > 0.

2.2 The case of multiple termwise parallel constraints

In this section we consider instances of problem (3), where the functions fi are assumed not to
be dominated by any affine function (see the class F1 introduced in Definition 2.4 below) and
the m constraints are assumed to be ‘termwise parallel’ - the precise definition is given below.
We notice that the analysis in this section also allows that some or all of the constraints in (3)
are equality constraints.

Definition 2.3. The inequalities: αT
l x + βT

l f(x) ≤ ρl (l ∈ L) are termwise parallel if

rank{(αli, βli) : l = 1, . . . ,m} ≤ 1 for all i = 1, . . . , n, (11)

where αl = (αli)
n
i=1, βl = (βli)

n
i=1.

5



For example, a double-sided inequality: ρ1 ≤ ∑n
i=1 αixi + βifi(xi) ≤ ρ2 corresponds to two

termwise parallel inequalities. Clearly, the constraints: αT
l x + βT

l f(x) ≤ ρl (l ∈ L) are termwise
parallel if αli = 0 ∀l ∈ L ∀i ∈ {1, . . . , n}.

Example 2.1. As an illustration, the following system:

x4
1 + x2 + 1

2x2
2 ≤ 1, 2x4

1 − 2x2 − x2
2 ≤ −1 (12)

consists of two termwise parallel constraints. Indeed, choosing the functions f1(x1) = x4
1 and

f2(x2) = x2
2, (12) can be rewritten as f1(x1) + x2 + 1

2f2(x2) ≤ 1, 2f1(x1) − 2x2 − f2(x2) ≤ −1.

Definition 2.4. Let F1 denote the class of continuous functions f : R → R which are not
strictly dominated by an affine function. That is, if f(t0) < at0 + b for some a, b, t0 ∈ R, then
there exists t1 ∈ R such that f(t1) = at1 + b. Note that supR f(t) = ∞ for f ∈ F1.

Examples of functions in the class F1 include convex non-linear functions and strongly semi-
coercive functions.

Our first result shows that when all functions fi belong to the class F1 and the constraints
are termwise parallel, if the program (5) has an optimal solution, then it has one which is an
E-solution and thus (5) is in fact equivalent to (3).

Theorem 2.2. Consider problem (3), where we assume that each function fi belongs to the class
F1 and the m constraints are termwise parallel. If problem (5) attains its minimum, then it has
an optimal solution which is an E-solution and thus both problems (3) and (5) are equivalent.

Proof. Let (x̄, ȳ) be an optimal solution to problem (5). If (x̄, ȳ) is an E-solution, there is nothing
to prove. Hence we now assume that the set

J := {i ∈ {1, . . . , n} | fi(x̄i) < ȳi} (13)

is not empty. First we show that there exist scalars λl ≥ 0 (l ∈ L) satisfying

α0i +
∑

l∈L

λlαli = 0, β0i +
∑

l∈L

λlβli = 0 ∀i ∈ J. (14)

For this consider the linear program:

min
∑

i∈J α0ixi + β0iyi s.t.
∑

i∈J αlixi + βliyi ≤ ρ̃l (l ∈ L)

= min aT x + bT y s.t. cT
l x + dT

l y ≤ ρ̃l (l ∈ L),
(15)

and its dual:

max−
∑

l∈L

λlρ̃l s.t. a +
∑

l∈L

λlcl = 0, b +
∑

l∈L

λldl = 0, λ ≥ 0 (l ∈ L), (16)

after setting a = (α0i)i∈J , b = (β0i)i∈J , cl = (αli)i∈J , dl = (αli)i∈J , ρ̃l := ρl−(
∑

i6∈J αlix̄i+βliȳi).
The linear program (15) is obtained from (5) by ignoring the constraints f(x) ≤ y and fixing the
variables xi = x̄i for i 6∈ J , so that only the variables xi (i ∈ J) are free. We claim that (16) is
feasible, i.e., the vector −(a, b) lies in the cone generated by the vectors (cl, dl) for l ∈ L. If not,
Farkas’ lemma implies the existence of a vector (u, v) with aT u+ bT v > 0 and cT

l u+dT
l v ≥ 0 for

all l ∈ L. Fix a scalar t > 0 and define the vectors x, y ∈ R
n as follows: For i ∈ J , xi = x̄i − tui,

yi = ȳi − tvi and, for i 6∈ J , xi = x̄i, yi = ȳi. Then, if we choose t small enough, the inequality
fi(xi) < yi holds for all i ∈ J . Hence (x, y) is a feasible solution for (5) whose objective value is
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smaller than that of (x̄, ȳ), which yields a contradiction. Thus we have shown that there exist
nonnegative scalars1 λl ≥ 0 satisfying (14).

Next observe that it suffices to show the existence of x̂i (i ∈ J) satisfying the conditions:

αlix̂i + βlifi(x̂i) = αlix̄i + βliȳi for all l ∈ L, (17)

α0ix̂i + β0ifi(x̂i) = α0ix̄i + β0iȳi (18)

for all i ∈ J . Indeed, by replacing each x̄i by x̂i and ȳi by fi(x̂i) for each i ∈ J , we obtain a new
feasible solution for (5) which is an E-solution and whose value is equal to the optimal value of
(5). Thus we obtain an optimal solution of (5) which is an E-solution, which will conclude the
proof.

To verify (17)-(18) let us fix i ∈ J . Pick an index l ∈ L for which (αli, βli) 6= (0, 0) (if no such
index exists then (17) holds for any choice of x̂i). Consider the function

ϕli(xi) := αlixi + βlifi(xi) − (αlix̄i + βliȳi). (19)

We claim that there exists x̂i for which ϕli(x̂i) = 0. As the constraints are all parallel to the

l-th one, this will imply that ϕ
(l′)
i (x̂i) = 0 for all l′ ∈ L and thus (17) holds. Now, if βli = 0,

just choose x̂i = x̄i. If βli > 0, then ϕli(x̄i) = βli(fi(x̄i) − ȳi) < 0. As fi ∈ F1, we deduce the
existence of x̂i for which ϕli(x̂i) = 0. Analogously if βli < 0. Hence, for this choice of x̂i as a
root of ϕli, condition (17) holds.

We now show that condition (18) holds as well. Indeed, we have

α0ix̂i + β0ifi(x̂i) = −
∑

l

λlαlix̂i −
∑

l

λlβlifi(x̂i) = −
∑

l

λl

(

αlix̄i + βliȳi

)

= α0ix̄i + β0iȳi,

where we have used (14) for the first and third equalities and (17) for the second equality. This
concludes the proof.

Example 2.1 (continued) We can apply Theorem 2.2 to the problem of minimizing the ob-
jective function: −x4

1 − 2x2 − x2
2 subject to the constraints (12). Indeed, we are in case (iii)

of Proposition 2.1, so that we can conclude that the minimum is attained in the corresponding
relaxed problem:

min −y1 − 2y2 s.t. y1 + y2 ≤ 1
2y1 − 2y2 ≤ −1
y1 ≥ x4

1, y2 ≥ x2 + 1
2x2

2.

One can easily verify that the optimal solutions of the above relaxed problem are x̄1 = ȳ1 = 0,
ȳ2 = 1, and x̄2 ∈ [−1 −

√
3,−1 +

√
3]. Now any x̄2 ∈ (−1 −

√
3,−1 +

√
3) is not an E-solution,

however two E-solutions are those with x̄2 = −1 ±
√

3.

Remark 2.2. Consider problem (3), where we assume that the constraints are termwise parallel
and that the functions fi are strongly coercive (a slightly stronger assumption than was made in
Theorem 2.2). Then we can assume without loss of generality that the following condition holds
for the data of problem (3):

6 ∃i ∈ {1, . . . , n} such that β0i, βli ≤ 0 (∀l ∈ L), with at least one strict inequality. (20)

Indeed, if (20) does not hold for some index i, then we are in one of the following ‘pathological’
cases:

1Clearly, if we choose a pair (xi, yi) (i ∈ J) and λl (l ∈ L) of primal/dual optimal solutions to (15), (16), then
they satisfy the complementary slackness and thus λl = 0 if the l-th constraint is not active.
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(i) β0i < 0. Then (5) is unbounded (by Proposition 2.1 (i)), and problem (3) as well if |L| = 1.

(ii) β0i = 0 and (say) β1i < 0, so that βli = λlβ1i, αli = λlα1i (for some scalar λl) for all l ∈ L,
and thus βli = 0 implies αli = 0 (since the constraints are parallel). If α0i 6= 0, then (3)
is unbounded (since we can let α0ixi tend to −∞). If α0i = 0, then any constraint with
βli < 0 is redundant and can thus be eliminated (and variable xi can be eliminated as well,
so we can reduce to a problem with less variables and constraints).

Note that, in case (i), the relaxed problem (5) is unbounded, although the original (3) might be
bounded when |L| ≥ 2. This situation is illustrated by the following small example: min

0≤x≤1
x−x2,

with two constraints and with optimal value 0, while the relaxed problem: min
0≤x≤1, y≥x2

x − y is

unbounded.

Extension to the case of block-separable variables

Theorem 2.2 extends directly to the more general setting where, in problem (3), we replace single
variables by disjoint blocks of variables. More precisely, we assume that the variables x1, . . . , xn

are partitioned into N disjoint blocks of variables x[1], . . . , x[N ], where [1], . . . , [N ] denote subsets
forming a partition of {1, . . . , n} and x[j] = (xi | i ∈ [j]) denotes the group of variables indexed

by [j]. We now assume that we have functions f1, . . . , fN , where fj is a function from R
|[j]| to R,

and parameters αl ∈ R
n, βlj ∈ R for j ∈ {1, . . . , N} and l ∈ {0} ∪ L. We consider the following

extension of problem (3):

min αT
0 x +

N∑

j=1

β0jfj(x[j]) s.t. αT
l x +

N∑

j=1

βljfj(x[j]) ≤ ρl (l ∈ L), (21)

which is still a special case of problem (NCP ), and its relaxation:

min αT
0 x +

N∑

j=1

β0jyj s.t. αT
l x +

N∑

j=1

βljyj ≤ ρl (l ∈ L)

fj(x[j]) ≤ yj (j ∈ {1, . . . , N}).
(22)

The definitions of termwise parallel constraints and of the class of functions F1 (from Definitions
2.3 and 2.4) extend to the multivariate case as follows.

Definition 2.5. The inequalities αT
l x +

∑N
j=1 βljfj(x[j]) ≤ ρl (l ∈ L) are termwise parallel if

rank{(αli (i ∈ [j]), βlj) : l ∈ L} ≤ 1 for all j ∈ {1, . . . , N}. (23)

Definition 2.6. A continuous function f : R
d → R belongs to F1 if there is no affine linear

d-variate polynomial ` for which f(t) < `(t) for all t ∈ R
d.

For instance, the function x 7→ ‖x‖p (for p > 0) belongs to F1.

Example 2.2. As an illustration, consider the following small example:

min x1 − x2 + x3 + 2x4 + (x2
1 − x1x2) + 2(x2

3 + 3x2
4 − x3x4)

s.t. 2x1 + 3(x2
1 − x1x2) − x4 − (x2

3 + 3x2
4 − x3x4) ≤ 2

−4x1 − 6(x2
1 − x1x2) + 2x4 + 2(x2

3 + 3x2
4 − x3x4) ≤ −1.

(24)

Here, we have two blocks of variables x[1] = (x1, x2) and x[2] = (x3, x4), we use the functions
f1(x1, x2) = x2

1 − x1x2 and f2(x3, x4) = x2
3 + 3x2

4 − x3x4, and the two constraints are termwise
parallel.

8



We have the following analogue of Theorem 2.2.

Theorem 2.3. Consider problem (21), where we assume that the functions f1, . . . , fN belong to
the class F1 and that the constraints are termwise parallel. If problem (22) attains its minimum,
then it has an optimal E-solution and thus both problems (21) and (22) are equivalent.

Proof. Let (x̄, ȳ) be an optimal solution to (22) and set J = {j ∈ {1, . . . , N} | fj(x̄[j]) < ȳj}. As
in the proof of Theorem 2.2, there exist multipliers λl ≥ 0 (l ∈ L) such that

α0i +
∑

l∈L

λlαli = 0 ∀i ∈
⋃

j∈J

[j], β0j +
∑

l∈L

λlβlj = 0 ∀j ∈ J. (25)

Define the function
ϕlj(x[j]) =

∑

i∈[j]

αli(xi − x̄i) + βlj(fj(x[j]) − ȳi) (26)

for l ∈ L, j ∈ J . Pick l1 ∈ L for which the vector (αl1i (i ∈ [j]), βl1j) is not identically zero. As
the constraints are termwise parallel, any ϕlj is a scalar multiple of ϕl1j . Now, as in the proof
of Theorem 2.2, it it suffices to show the existence of x̂[j] (j ∈ J) for which ϕl1j(x̂[j]) = 0 for all
j ∈ J . This follows using the assumption that fj ∈ F1; we omit the details which are analogous
to those in the proof of Theorem 2.2.

As was done for problem (5), one can write explicitly the dual problem of problem (22), using
the Fenchel conjugate functions f∗

j . For a multivariate function f : R
d → R, its conjugate is

the function f∗ : R
d → R ∪ {∞} defined by f∗(y) = supx∈Rd{xT y − f(x)} for y ∈ R

d. Again,
f∗(y) ∈ R for all y ∈ R

d when f is strongly coercive. The definitions for the univariate case
from Definition 2.2 extend to the multivariate setting as follows.

Definition 2.7. A function f : R
d → R is strongly semi-coercive if it satisfies the following

analogue of condition (7):

f(x)

‖x‖2
→ +∞ on at least one half-line of R

d (27)

and f is strongly coercive if lim‖x‖2→+∞ f(x)/‖x‖2 = +∞.

The following analogue of Theorem 2.1 holds; we omit the proof since it is analogous to that of
Theorem 2.1.

Theorem 2.4. Consider problem (22), where we assume that each function fj is convex. If
problem (22) has a strictly feasible solution, then its optimal objective value is equal to the
optimal value of the following dual problem:

sup
v∈R|L|

−
∑

j=1,...,N |β0j+
∑

j βljvl>0

(β0j +

N∑

j=1

βljvl)f
∗
j

(

− (α0i +
∑

l∈L αlivl)i∈[j]

β0j +
∑N

j=1 βljvl

)

−
∑

l∈L

ρlvl

s.t. vl ≥ 0 ∀l ∈ L, β0j +
∑N

j=1 βljvl ≥ 0 ∀j = 1, . . . , N.

(28)

2.3 The case of two constraints

In the preceding section we have considered instances of problem (3), where all constraints are
assumed to be termwise parallel and the functions fi belong to the class F1. If we consider
stronger properties for the functions fi (see the class F2 in Definition 2.8 below), then we
can allow two arbitrary constraints and still show a hidden convexity type result. We will
also consider some extensions where we allow more constraints (but satisfying some parallelism
conditions).
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Definition 2.8. Let F2 denote the class of continuous univariate functions f satisfying the
following condition: If f(t0) < at0 + b for some a, b, t0 ∈ R, then there exist scalars t1, t2 ∈ R

such that t1 < t0 < t1, f(t1) = at1 + b, and f(t2) = at2 + b.

Examples of functions in the class F2 include coercive convex functions (e.g., et2 , t4, cosh(t)) and
strongly coercive functions (e.g., even degree polynomials with a positive leading coefficient).

Theorem 2.5. Consider problem (3) with m = 2 constraints and where the functions f1, . . . , fn

are assumed to belong to the class F2. Assume that problem (5) has an optimal solution (x̄, ȳ).
Then there exist scalars λ1, λ2 ≥ 0 satisfying

α0i + λ1α1i + λ2α2i = 0, β0i + λ1β1i + λ2β2i = 0 ∀i ∈ J := {i | fi(x̄i) < ȳi}. (29)

Assume, moreover, that λ1λ2 = 0 and that the following condition holds:

There does not exist i ∈ J such that β0i, β1i, β2i ≤ 0, with at least one strict inequality. (30)

Then problem (5) has an optimal E-solution and thus both problems (3) and (5) are equivalent.

Proof. The proof is along the same line as for Theorem 2.2, with some additional technical
details. Let (x̄, ȳ) be an optimal solution of (5) and set J := {i | fi(x̄i) < ȳi}. We assume that
J 6= ∅ (else we are done). The existence of λ1, λ2 ≥ 0 satisfying (29) was shown in the first part
of the proof of Theorem 2.2 (recall (14) there). By assumption, λ1λ2 = 0. Say, λ2 = 0, so that
(29) implies:

α0i + λ1α1i = 0, β0i + λ1β1i = 0 ∀i ∈ J. (31)

As in the proof of Theorem 2.2, we consider the functions ϕli(xi) (l = 1, 2) from (19). It suffices
to show that we can find x̂i satisfying (18) and

ϕ1i(x̂i) = 0, ϕ2i(x̂i) ≤ 0 ∀i ∈ J. (32)

Indeed, replacing (x̄i, ȳi) by (x̂i, fi(x̂i)) for i ∈ J , we obtain an optimal solution of (5) which is
an E-solution, thus showing equivalence of (3) and (5).

Suppose first that β1i > 0. Then ϕ1i(x̄i) = β1i(fi(x̄i) − ȳi) < 0. As fi ∈ F2, the function
ϕ1i has two roots ri and si such that ri < x̄i < si. For any root t of ϕ1i, one has that

ϕ2i(t) = (t − x̄i)
(

α2i − β2iα1i

β1i

)

. Thus we can choose t ∈ {ri, si} such that ϕ2i(t) ≤ 0. Denoting

by x̂i this choice of the root of ϕ1i, we thus have found x̂i satisfying (32). The same conclusion
holds assuming β1i < 0.

Suppose now that β1i = 0. If α1i = 0, then ϕ1i is identically zero and we can choose for x̂i

a root of ϕ2i. If α1i 6= 0, then we must choose x̂i = x̄i as this is the only root of ϕ1i. Then
ϕ2i(x̄i) = β2i(fi(x̄i) − ȳi), so that (32) holds if β2i ≥ 0. Hence we are left with the case when
β1i = 0, β2i < 0, β0i = 0 (by (31)), which is excluded by assumption (30).

Finally we verify that condition (18) holds. Using (31) combined with the fact that ϕ1i(x̂i) = 0
from (32), we obtain:

α0ix̂i + β0ifi(x̂i) = −λ1(α1ix̂i + β1ifi(x̂i)) = α0ix̄i + β0iȳi,

thus showing (18) and concluding the proof.

Remark 2.3. We make some comments regarding condition (30), which is related to the condi-
tion (20) introduced earlier in Remark 2.2 following Theorem 2.2. Again, if we assume that the
functions fi are strongly coercive, then we can assume without loss of generality that the data
of problem (3) satisfy the condition (30). Indeed suppose that condition (30) does not hold, i.e.,
there exists an index i such that β0i, β1i, β2i ≤ 0, with at least one strict inequality. Then one
can verify that
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(i) either problem (3) is unbounded,

(ii) or at least one of the two constraints is redundant,

(iii) or Theorem 2.5 does not hold, i.e., problem (3) is not equivalent to (5).

Case (i) is covered by Proposition 2.1 (i). Case (ii) occurs when α0i = β0i = 0. Case (iii)
occurs in the case when β0i = 0 and one of β1i, β2i is zero, say β1i = 0, and β2i < 0, α0iα1i < 0.
Example 2.3 below illustrates case (iii).

Example 2.3. We give here an example showing that if λ1λ2 = 0 does hold, but condition (30)
does not hold, then the conclusion of Theorem 2.5 does not hold. Consider the following instance
of problem (3) with two constraints:

π∗ := min −x1 + x2 + x2
2 s.t. x1 + x2 + x2

2 ≤ 1
x1 − x2

1 + x2 − x2
2 ≤ −3

2 ,
(33)

and its relaxation

π := min −x1 + x2 + y2 s.t. x1 + x2 + y2 ≤ 1
x1 − y1 + x2 − y2 ≤ −3

2
y1 ≥ x2

1, y2 ≥ x2
2.

(34)

In a first step, we show that the optimal value of (34) is π = −3
2 and is attained at x1 = 5

4 ,
y1 ≥ 2 (> x2

1), x2 = −1
2 , y2 = 1

4 (= x2
2); we also show that the second multiplier satisfies λ2 = 0.

To see this, let (x, y) be feasible for (34). Observe that x2 + y2 ≥ x2 + x2
2 ≥ −1

4 , with equality if
x2 = −1

2 , y2 = x2
2 = 1

4 . This fact combined with the first inequality in (34) implies:

−x1 + x2 + y2 = −(x1 + x2 + y2) + 2(x2 + y2) ≥ −1 − 1

2
= −3

2
.

Therefore, π ≥ −3
2 . Moreover, equality π = −3

2 holds precisely when x2 = −1
2 , y2 = x2

2 = 1
4 ,

x1 = 5
4 and, using the second constraint in (34), y1 ≥ 2.

Hence J = {1}. Note that, if we choose y1 = 2, then the two constraints are active. Moreover,
the relations for the multipliers read: −1 + λ1 + λ2 = 0 and 0 + 0.λ1 − λ2 = 0, implying λ2 = 0
and λ1 = 1.

Next we verify that the optimal value of (33) satisfies π∗ > π = −3
2 . For this assume that there

exist x1, x2 satisfying
(a) − x1 + x2 + x2

2 = −3
2 ,

(b) x1 + x2 + x2
2 ≤ 1

(c) x1 − x2
1 + x2 − x2

2 ≤ −3
2 .

Relation (a) implies −x1 + (x2 + 1
2)2 + 5

4 = 0 and thus x1 ≥ 5
4 . Summing (a) and (b) we get:

x2 +x2
2 ≤ −1

4 , i.e., (x2 + 1
2)2 ≤ 0. implying x2 = −1

2 . Using (a), this implies x1 = 5
4 . Therefore,

x1 − x2
1 + x2 − x2

2 = 5
4 − 25

16 − 1
2 − 1

4 = 1
2 − 25

16 > −3
2 , thus contradicting (c).

In this example, the parameters satisfy: β0i = β1i = 0, β2i < 0, α0iα1i < 0, so that condition
(30) is violated. The relaxed program (34) has an optimal solution where the two constraints
are active and the second multiplier is λ2 = 0. Yet the relaxed problem (34) is not equivalent to
the original problem (33), which verifies the statement in Remark 2.3 (iii). Hence the result of
Theorem 2.5 does not hold in this case.
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Extension to the case of block-separable variables and multiple constraints

The result of Theorem 2.5 extends to the case where we have block-separable variables and
multiple constraints of a special form as specified below.

Consider problem (21) involving the block-separable variables x[j] (j = 1, . . . , N) and its relax-
ation (22). We assume that we have two groups of constraints. The constraints in the first
group, indexed by L1, are termwise parallel, i.e., satisfy (23). The constraints in the second
group, indexed by L2, are also termwise parallel and, moreover, satisfy the following stronger
sign condition:

∀j ∈ {1, . . . , N} ∃l2 ∈ L2 ∀l ∈ L2 ∃µl ≥ 0 such that αli = µlαl2i ∀i ∈ [j] and βlj = µlβl2j.
(35)

We will make the following assumption on the parameters β0, βl (which can be seen as an
analogue of condition (30) in the separable case):

6 ∃j ∈ {1, . . . , N} such that β0j = 0, βlj = 0 ∀l ∈ L1,
and βlj ≤ 0 ∀l ∈ L2, with at least one strict inequality.

(36)

Under these conditions the following extension of Theorem 2.5 holds.

Theorem 2.6. Consider problem (21). We assume that condition (36) holds as well as the
following two conditions:

(i) When each block [j] has cardinality 1 (the usual separable case), we assume that fj ∈ F2 for
all j; otherwise we assume that the functions f1, . . . , fN are strongly coercive.

(ii) The constraints are indexed by L = L1∪L2, where the constraints indexed by L1 are termwise
parallel and those indexed by L2 satisfy (35).

Assume that problem (22) attains its minimum at (x̄, ȳ). Then there exist scalars λl ≥ 0 (l ∈
L1 ∪ L2) satisfying

α0i +
∑

l∈L1∪L2

λlαli = 0 ∀i ∈
⋃

j∈J

[j], β0j +
∑

l∈L1∪L2

λlβlj = 0 ∀j ∈ J, (37)

where J := {j ∈ {1, . . . , N} | fj(x̄[j]) < ȳj}. If, moreover, λl = 0 for all l ∈ L2, then problem
(22) is equivalent to problem (21).

Proof. The proof combines ideas from the proofs of Theorems 2.3 and 2.5. We only point out
the main steps. Let j ∈ J . Pick l1 ∈ L1 for which the vector (αl1i (i ∈ [j]), βl1j) is not identically
zero; pick analogously such l2 ∈ L2. Recall the definition of the function ϕlj(x[j]) from (26). By
the assumption on the constraints, ϕlj(x[j]) is a scalar multiple of ϕl1j(x[j]) for any l ∈ L1, and
ϕlj(x[j]) is a nonnegative scalar multiple of ϕl2j(xj]) for any l ∈ L2. Hence it suffices to show
the existence of x̂[j] such that

ϕl1j(x̂[j]) = 0 and ϕl2j(x[j]) ≤ 0. (38)

Suppose first that βl1j 6= 0. Then, for any vector x[j],

ϕl1j(x[j]) = 0 =⇒ ϕl2j(x[j]) =
∑

i∈[j]

(

αl2i − βl2i
αl1i

βl1i
︸ ︷︷ ︸

=:σi

)

(xi − x̄i). (39)
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Constraints Conditions Hidden convexity results

• fi ∈ F1 (Definition 2.4)
|L| ≥ 1 • Problem (5) has an optimal solution Theorem 2.2 (separable case)

• Termwise parallel constraints if |L| > 1
(Definition 2.3)

• fi ∈ F1 (Definition 2.6)
|L| ≥ 1 • Problem (22) has an optimal solution Theorem 2.3 (block-separable case)

• Termwise parallel constraints if |L| > 1
(Definition 2.5)

• fi ∈ F2 (Definition 2.8)
|L| = 2 • Problem (5) has an optimal solution Theorem 2.5 (separable case)

• One of the dual multipliers is zero
• The sign condition (30) holds

• fi ∈ F2 (separable case)
• fi is strongly coercive (block-separable case)

L = L1 ∪ L2 • Problem (22) has an optimal solution Theorem 2.6 (separable and
• The constraints in L1 are termwise parallel block-separable cases)
• The constraints in L2 satisfy (35)
• The dual multipliers of the constraints in L2

are equal to 0
• The sign condition (36) holds

Table 1: Summary of the results in Sections 2.2 and 2.3

Let εi denote the sign of the parameter σi appearing in the above relation (39). Say βl1j > 0
(the case βl1j < 0 is similar). Then, ϕl1j(x̄[j]) = βl1j(fj(x̄[j]) − ȳj) < 0. For t ≥ 0, define the
vector x[j], where

xi = x̄i − εit for i ∈ [j].

Letting t → +∞, the norm of x[j] tends to +∞ and thus ϕl1j(x[j]) tends to +∞ (since fj is
strongly coercive). Therefore, there must exist t ≥ 0 for which ϕl1j(x[j]) = 0 and thus, in view
of (39), ϕl2j(x[j]) ≤ 0. This shows (38).

Suppose now βl1j = 0. This implies βlj = 0 for all l ∈ L1 (since the constraints are termwise
parallel) and, in turn, this implies β0j = 0 (using (37)). Finally, βl2j ≥ 0; indeed, using (35),
βl2j < 0 would imply βlj ≤ 0 for all l ∈ L2, which contradicts (36). Now, choose x̂[j] = x̄[j], so
that ϕl1j(x̄[j]) = 0 and ϕl2j(x̄j]) = βl2j(fj(x̄[j]) − ȳj) ≤ 0, thus showing (38).

When all blocks [j] have cardinality 1, we can show the existence of x̂[j] satisfying (38) using
only the assumption fj ∈ F2, in the same way as in the proof of Theorem 2.5. This concludes
the proof.

We conclude this section with Table 1, which summarizes the problem instances treated in this
section and the previous one, where we could prove a hidden convexity result.

2.4 Application to quadratic optimization

We discuss here some problems, arising in particular from quadratic optimization, which can be
cast as instances of the separable problems treated in the previous sections.
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Consider a general quadratic optimization problem:

min aT x + xT Bx s.t. cT
l x + xT Dlx ≤ ρl (l ∈ L) (40)

where B,Dl are real symmetric n × n matrices, a, cl ∈ R
n, ρl ∈ R.

Definition 2.9. Two matrices A,B are said to be simultaneously diagonalizable (SD) if there
exists a nonsingular matrix U such that both UT AU and UT BU are diagonal matrices.

As was observed in [3], when the matrices B,Dl (l ∈ L) can be simultaneously diagonalized,
problem (40) can be cast as an instance of problem (3), where we choose the functions fi(xi) =
x2

i . Indeed, if UT BU,UT DlU are all diagonal, then we can make a linear change of variables
(replacing x by U−1x), and reformulate (40) as

min αT
0 x +

n∑

i=1

β0ix
2
i s.t. αT

l x +

n∑

i=1

βlix
2
i ≤ ρl (l ∈ L), (41)

where α0 = Ua, αl = Ucl, UT BU = diag(β1, . . . , βn), UT DlU = diag(βl1, . . . , βln). The corre-
sponding relaxation (5) of problem (41) reads:

minαT
0 x + βT

0 y s.t. αT
l x + βT

l y ≤ ρl (l ∈ L), yi ≥ x2
i (i = 1, . . . , n). (42)

First let us observe that this relaxation coincides in fact with the basic semidefinite programming
relaxation of the quadratic problem (41). Indeed, the basic SDP relaxation has additional
variables zij (for the pairwise products xixj) and, instead of the conic quadratic constraints:
yi ≥ x2

i , it requires that the matrix

Y :=










1 x1 x2 . . . xn

x1 y1 z12 . . . z1n

x2 z12 y2 . . . z2n
...

...
...

. . .
...

xn z1n z2n . . . yn










be positive semidefinite. Note that Y � 0 implies yi ≥ x2
i for all i which, in turn, implies the

existence of scalars zij (1 ≤ i < j ≤ n) achieving Y � 0. As the monomials xixj do not appear
in (41), we can conclude that (42) coincides with the basic SDP relaxation of (41).

Next we note that, as an application of Proposition 2.1, the relaxed problem (42) is bounded if
and only if there exists v ≥ 0 such that B +

∑

l vlDl ≥ 0 and, moreover, if B +
∑

l vlDl � 0 for
some v ≥ 0, then (42) attains its minimum.

Simultaneous diagonalization

In order to bring problem (40) into the separable form (41), we need to be able to simultaneously
diagonalize the matrices B,Dl (l ∈ L).

As is well known, the matrices B,Dl (l ∈ L) are SD if they pairwise commute. A first obvious
case when this is possible is when Dl = 0 for all l, corresponding to the case when all constraints
in problem (40) are linear. Then, after diagonalizing B, one obtains the reformulation (41),
where all constraints are linear (i.e., βl = 0 for all l ∈ L). Hence the constraints are termwise
parallel and we are thus in the setting of Theorem 2.2. However, as observed above, the relaxed
problem (42) is bounded if and only if B � 0, which is precisely the case when the original
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problem (40) (or (41)) is already convex, so that using the relaxation (42) does not help. As an
illustration, recall that the maximum cut problem can be formulated as the instance:

min−xTLx s.t. x ∈ [−1, 1]n (43)

of problem (40), thus with linear constraints. Here, L is the Laplacian matrix of the graph which
is known to be positive semidefinite. The fact that we cannot apply Theorem 2.2 to reformulate
(43) in the form (42) is consistent with the fact that the maximum cut problem is NP-hard.

Another useful sufficient condition for simultaneous diagonalization of two matrices is provided
by the following classical result (proved e.g. in [11]).

Theorem 2.7. Given two real symmetric n × n matrices A and B, let QA = {x | xT Ax = 0}
and QB = {x | xT Bx = 0}. If the condition:

QA ∩ QB = {0} (44)

holds, then A and B can be simultaneously diagonalized. Moreover, when n ≥ 3, condition (44)
holds if and only if there exists a definite matrix in the pencil R(A,B) = {αA + βB | α, β ∈ R}
(and then all matrices in the pencil are SD).

Hence, two matrices are SD as soon as one of them is definite. Moreover, if, in the quadratic
optimization problem (40), the matrices B,Dl (l ∈ l) are all linear combinations of two matrices,
one of them definite, then the problem can be reformulated as an instance of (41). This is the
case, e.g., when QB ∩ QD1

= {0} and we are in one of the following cases:

(i) (40) has only one constraint,

(ii) (40) has two constraints, one of them linear (i.e., D2 = 0),

(iii) (40) has a double-sided constraint (i.e., D2 = −D1).

The next result summarizes what we can claim when the quadratic problem (40) has one or two
constraints as in cases (i), (ii), (iii) above.

Proposition 2.2. Consider problem (40) assumed to have one constraint, or two constraints
in which case we assume that D2 = λD1 for some λ ∈ R. Assume that there exists v1 ≥ 0 such
that B + v1D1 � 0. Then the matrices B and D1 are SD, hence one can reformulate (40) as
the quadratic (in general non-convex) separable problem (41) which, in turn, is equivalent to the
convex problem (42).

The following example, taken from [3], illustrates the above case (ii) where one of the two
constraints is linear. Namely, if an optimization problem has a quadratic objective function and
a conic quadratic constraint of the form:

‖Ax + b‖2 ≤ cT x + d,

then this constraint can be reformulated as a quadratic constraint combined with a linear con-
straint:

‖Ax + b‖2 ≤ (cT x + d)2, cT x + d ≥ 0,

which thus falls within the above case (ii).
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Possible extension

By Theorem 2.7, two symmetric matrices A and B can be simultaneously diagonalized when
the set QA ∩QB of common real zeros of their quadratic forms is reduced to the zero vector. To
conclude let us mention the following possible extension to the case when QA∩QB has dimension
at least 1.

Lemma 2.1. If A,B are symmetric n × n matrices with dim(QA ∩ QB) = k ≥ 1, then there
exists a nonsingular matrix U such that both UT AU and UT BU have an arrow shape like:








X ∗ . . . ∗
∗ ∗
...

. . .

∗ ∗








, (45)

where X is any k×k matrix with zero diagonal entries and the stars ∗ indicate blocks of positions
where the entries may be nonzero (thus all entries are equal to 0 at positions (i, i) for 1 ≤ i ≤ k,
and at positions (i, j) for k + 1 ≤ i 6= j ≤ n).

Proof. Say QA ∩QB is spanned by k linearly independent vectors u1, . . . , uk. Up to a change of
base we can assume that u1, . . . , uk are the first k unit vectors e1, . . . , ek, so that Aii = Bii = 0
for i = 1, . . . , k. Let A′, B′ be the principal submatrices of A,B obtained by deleting their first
k rows and columns. Then, QA′ ∩ QB′ = {0}. Indeed, if u is a nonzero vector in QA′ ∩ QB′ ,
then together with {e1, . . . , ek}, this would give k + 1 linearly independent vectors in QA ∩QB.
Hence, we can apply Theorem 2.7 and obtain a nonsingular matrix W such that both W T A′W

and W TB′W are diagonal. Define the matrix U =

(
Ik 0
0 W

)

. Then U is nonsingular and both

UT AU and UT BU have the desired arrow shape (45).

Consider, for instance, problem (40) having just one constraint and where QB ∩QD1
has dimen-

sion k = 1. Then, we can apply the above lemma and derive a reformulation of the form:

min αT
0 x +

n∑

i=2

β0ix
2
i + x1(

n∑

i=2

β′
0ixi) s.t. αT

1 x +
n∑

i=2

β1ix
2
i + x1(

n∑

i=2

β′
1ixi) ≤ ρ.

Here a strategy is to do binary search on x1. For each fixed x1, we obtain the following problem
in separable form:

g0(x1) := min
x2,...,xn

n∑

i=2

(α0i + β′
0ix1)xi +

n∑

i=2

β0ix
2
i

s.t.
n∑

i=2

(

α1i + β′
1ix1

)

xi +
n∑

i=2

β1ix
2
i ≤ ρ − α1x1

and minx1
g0(x1) is equal to the optimal value of the original problem.

2.5 The case of composite separable constraints

We now consider the second special case of problem (NCP ) in the Introduction:

min h0(x) + g0(β01f1(x1), ..., β0nfn(xn))
s.t. hl(x) + gl(βl1f1(x1), ..., βlnfn(xn)) ≤ ρl (l ∈ L),

(46)
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where ρl ∈ R, βl = (βli)
n
i=1 ∈ R

n are given vectors, and f = (f1, . . . , fn), hl, gl : R
n → R are

given functions (for l ∈ {0} ∪ L). We refer to problem (46) as the ‘composite separable’ case.
We will assume the following:

Assumption 1. The functions f, gl, hl (l ∈ {0} ∪ L) are convex differentiable.

Assumption 2. For all i ∈ {1, . . . , n} and x ∈ R
n, either ∂h0

∂xi
(x) > 0 and ∂hl

∂xi
(x) ≥ 0 ∀l ∈ L,

or ∂h0

∂xi
(x) < 0 and ∂hl

∂xi
(x) ≤ 0 ∀l ∈ L.

Remark 2.4. Under assumption 1, problem (46) is not necessarily convex. This is the case, for
instance, when some of the β0i’s are negative. Even if β0 ≥ 0, the function g(β01f1(x1), . . . , β0nfn(xn))
is not necessarily convex since g is not assumed to be componentwise monotone increasing.

Given scalars a ∈ R and b, c1, . . . , cn > 0, the function: x ∈ R
n 7→ a+ b exp(

∑n
i=1 cixi) is convex

and its gradient is positive everywhere. Hence we can choose, for instance, for the functions
h, hl any positive linear combination of functions of this form. Another such an example is the
function x ∈ R

n 7→ (x1x2...xn)1/n.

For the functions g, gl, we can choose, for instance, any linear function, or the function: x ∈
R

n 7→∑n
i=1 x2

i . In the latter case, the relaxation (47) becomes interesting only when the functions
fi are such that

∑n
i=1 f2

i is not convex (for, otherwise, the original problem (46) is convex
already). This is the case for instance for fi(xi) = −xci

i where 0 < ci < 1/2, or fi(xi) = −√
xi−ci

(ci > 0).

A natural relaxation of (46) is obtained by linearizing the terms fi(xi) by new variables yi,
leading to the following problem:

min h0(x) + g0(β01y1, ..., β0nyn)
s.t. hl(x) + gl(βl1y1, ..., βlnyn) ≤ ρl (l ∈ L)

yi ≥ fi(xi) (i = 1, . . . , n)
(47)

which, in view of assumption 1, is a convex problem. Clearly, (47) has a Slater point if (46) is
strictly feasible.

We show next that problem (46) posseses a hidden convexity property.

Theorem 2.8. Assume that assumptions 1-2 hold. Assume moreover that program (47) admits
a Slater point and that it has an optimal solution. Then any optimal solution of (47) is an
E-solution and thus (47) is equivalent to (46).

Proof. Let (x̄, ȳ) be an optimal solution of (47). As (47) has a Slater point, the KKT conditions
hold: There exist scalars λl ≥ 0 (l ∈ L) and µi ≥ 0 (i = 1, . . . , n) satisfying

∂h0

∂xi
(x̄) +

∑

l∈L

λl
∂hl

∂xi
(x̄) + µif

′
i(x̄i) = 0 ∀i = 1, . . . , n, (48)

β0i
∂g0

∂yi
(β01ȳ1, . . . , β0nȳn) +

∑

l∈L

λlβli
∂gj

∂yi
(βl1ȳ1, . . . , βlnȳn) − µi = 0 ∀i = 1, . . . , n (49)

and µi = 0 if fi(x̄i) < ȳi. By assumption 2, we may assume that ∂h0

∂xi
(x̄) > 0 and ∂hl

∂xi
(x̄) ≥ 0.

Hence, if fi(x̄i) < ȳi then µi = 0, and we get a contradiction in (48), since then the left hand
side of (48) is strictly positive. Hence, an optimal solution (x̄, ȳ) of (47) must have fi(x̄i) = ȳi

for all i, i.e., it must be an E-solution.

The following corollary specializes this theorem to problem (5) with specific sign conditions.
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Corollary 2.1. Consider problem (5), where the functions f1, . . . , fn are convex and differen-
tiable. Assume that problem (5) has a Slater point and an optimal solution. Suppose that the
following sign conditions on the data αl hold:

∀i ∈ {1, . . . , n} either α0i > 0, αli ≥ 0 ∀l ∈ L, or α0i < 0, αli ≤ 0 ∀l ∈ L, (50)

Then every optimal solution is an E-solution and thus problems (3) and (5) are equivalent.

Proof. The proof immediately follows from Theorem 2.8, by taking hl(x) = αT
l x and gl(z) =

∑n
i=1 zi, for all l ∈ {0} ∪ L, and noticing that condition (50) is required to validate assumption

2.

Extension to the case of block-separable variables

The result of Theorem 2.8 extends to the setting of block-variables, when the variables are
partitioned into groups of variables x[1], . . . , x[N ]. We now assume that fj (j = 1, . . . , N) is

a convex function from R
|[j]| to R and that g, gl are convex functions from R

N to R, and we
consider the following analogue of problem (46):

min h0(x) + g0(β01f1(x[1]), . . . , β0NfN (x[N ]))

s.t. hl(x) + gl(βl1f1(x[1]), . . . , βlNfN (x[N ])) ≤ ρl (l ∈ L)
(51)

and its relaxation:
min h0(x) + g0(β01y1, . . . , β0NyN )
s.t. hl(x) + gl(βl1y1, . . . , βlNyN)) ≤ ρl (l ∈ L)

fj(x[j]) ≤ yj (j = 1, . . . , N).
(52)

Consider the following analogue of assumption 2:

Assumption 3. For all j ∈ {1, . . . , N}, there exists i ∈ [j] such that, for all x ∈ R
n, either

∂h0

∂xi
(x̄) > 0 and ∂hl

∂xi
(x̄) ≥ 0 ∀l ∈ L, or ∂h0

∂xi
(x̄) < 0 and ∂hl

∂xi
(x̄) ≤ 0 ∀l ∈ L.

Theorem 2.9. Consider problem (51), where the functions fj, j = 1, ..., N , and hl, gl, l ∈
{0}∪L, are convex and assume that assumption 3 holds. If problem (52) has a Slater point and
attains its minimum, then every optimal solution of (52) is an E-solution and thus problems
(51) and (52) are equivalent.

Proof. Use the KKT conditions.

3 Application to Robust Optimization

The Robust Optimization (RO) methodology addresses optimization problems affected by pa-
rameter uncertainty in constraints. We focus here on a linear constraint

(RC) aT u + bT v ≥ η, (53)

where u ∈ R
n and v ∈ R

p are the decision variables, b ∈ R
p is a fixed vector and η a fixed

scalar, and a ∈ R
n is an uncertain vector, which is only known to reside in a set A (called the

uncertainty set). The robust counterpart of (53) is then

aT u + bT v ≥ η, ∀a ∈ A. (54)

With this formulation, it is required to determine the values of both u and v before the actual re-
alization of a is available (“here and now” decisions). However, in many important applications,

18



notoriously in multi-period (dynamic) decision problems, only the variable u has to be fixed a
priori (a nonadjustable variable) while v can be determined after a (or a part of it) is revealed.
In such situations the relevant RO model is the so-called Adjustable RO (ARO), where instead
of (54), the interpretation of (RC) is

(ARC)

{

∃u ∀a ∈ A ∃v = v(a) such that u, v satisfy

aT u + bT v ≥ η.
(55)

Solving (ARC) is in most cases an NP-hard problem. The Affinely Adjustable Robust Counter-
part (AARC) method thus restrict the function v(a) to be affine:

v(a) = v0 +

n∑

i=1

aiv
i, (56)

with vi ∈ R
p, for i = 0, 1, ..., n. The expression (56) is termed a Linear Decision Rule (LDR).

The corresponding interpretation of (53) then becomes

(AARC) aT u + bT

(

v0 +
n∑

i=1

aiv
i

)

≥ η ∀a ∈ A, (57)

or equivalently, a single inequality

min
a∈A

{

aT u + bT

(

v0 +

n∑

i=1

aiv
i

)}

≥ η (58)

in the variables u ∈ R
n, vi ∈ R

p(i = 0, ..., n).

Problem (58) is tractable for a large variety of uncertainty sets A. The “price” to get this
tractability was the restriction of the adjustable variable v(a) to be an LDR.

Consider the case where A is described by a system of separable-type inequalities:

As =
{
a ∈ R

n | αT
l a + βT

l f(a) ≤ ρl, l ∈ L
}

, (59)

where fi : R 7→ R are given univariate functions, and f = (f1, ..., fn). In this case the hidden
convexity results in the previous sections offer an opportunity to use more general functions v(a)
than an affine one. In particular let v(a) be given as a Separable Decision Rule (SDR) of the
form

v(a) = v0 +

n∑

i=1

viai +

n∑

i=1

wifi(ai), (60)

where v0, vi, wi ∈ R
p, for i = 1, ..., n. We emphasize that in this SDR the same separable

functions are chosen as those given in the constraint functions that define the uncertainty region.
The corresponding interpretation of (53) then becomes

(SARC) bT v0 + min
a∈As

{
n∑

i=1

ai(ui + bT vi) +

n∑

i=1

bT wifi(ai)

}

≥ η.

Collecting all variables uj, v
0
j , vi

j , w
i
j (∀i,∀j) in a single vector x, problem (SARC) reduces to

the following generic problem: find x such that

γ(x) + min
a∈As

{
α0(x)T a + β0(x)T f(a) : αT

l a + βT
l f(a) ≤ ρl (l ∈ L)

}
≥ η, (61)

where the functions α0(x), β0(x) and γ(x) are affine in x.

The following example illustrates this reformulation.

19



Example 3.1. Consider the following robust counterpart:

(1 + a1)u1 + a2u2 + v ≥ 1 ∀(a1, a2) : a2
1 + 2a2

2 ≤ 2, (62)

where v is adjustable and for which we use the following SDR (of the form (60)):

v = v0 + v1a1 + v2a2 + w1a2
1 + w2a2

2.

Substitution of this SDR into (62) yields:

v0 + u1 + a1(u1 + v1) + a2(u2 + v2) + w1a2
1 + w2a2

2 ≥ 1 ∀(a1, a2) : a2
1 + 2a2

2 ≤ 2. (63)

By defining f1(a1) = a2
1, f2(a2) = a2

2, and x = (u1, u2, v
0, v1, v2, w1, w2)T , γ(x) = x1 + x3,

α01(x) = x1 + x4, α02(x) = x2 + x5, β01(x) = x6, β02(x) = x7, (62) can be equivalently written
into the format of (61):

γ(x) + min
(a1,a2)

{α01(x)a1 + α02(x)a2 + β01(x)f1(a1) + β02(x)f2(a2) : f1(a1) + 2f2(a2) ≤ 2} ≥ 1.

The minimization problem in the left hand side of (61) is of the same format as problem (3)
studied in Section 2. Using the hidden convexity results there, the following result is obtained.

Theorem 3.1. Assume that f1, ..., fn are convex, βl ≥ 0 for all l ∈ L, and that, for each
i ∈ {1, ..., n}, βli 6= 0 for some l ∈ L. Assume moreover that the uncertainty region As (59) has
a strictly feasible solution, and that the m constraints that define it are termwise parallel. Then
x is an SARC solution (i.e., satisfies inequality (61)) if and only if there exists v ∈ R

m such
that (x, v) is a feasible solution for the following convex inequalities:







∑n
i=1(β0i(x) +

∑

l∈L βlivl)f
∗
i

(

−α0i(x)+
∑

l∈L αlivl

β0i(x)+
∑

l∈L βlivl

)

+
∑

l∈L ρlvl + η ≤ 0

β0i(x) +
∑

l∈L βlivl ≥ 0 (i = 1, . . . , n)
v ≥ 0.

(64)

Proof. The proof follows immediately from Theorems 2.1, 2.2 and 2.5.

Example 3.2. (Continuation of Example 3.1.) Using Theorem 3.1 and observing that f∗
i (s) =

1
4s2 for i = 1, 2, we obtain the following result for the Robust Counterpart (63):







(x1+x4)2

4(x6+v) + (x2+x5)2

4(x7+2v) + 2v + 1 ≤ 0

x6 + v ≥ 0
x7 + 2v ≥ 0
v ≥ 0.

(65)

Note that this system of inequalities can be rewritten as conic quadratic inequalities.

Example 3.3. In [4] it is proposed, in case the uncertain parameter a in (3) can be considered
as a probability vector, to use uncertainty regions defined by so-called φ-divergence functions.
Let us concentrate in this example on the well-known Kullback-Leibler function:

fi(ai) = ai log

(
ai

a0
i

)

,

where a0
i (i = 1, ..., n) are given nominal values. In this case the uncertainty region is defined by

As =

{

a ∈ R
n |

n∑

i=1

ai log

(
ai

a0
i

)

≤ ρ

}

.
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If we use the following separable decision rule:

v(a) = v0 +

n∑

i=1

aiv
i +

n∑

i=1

wiai log

(
ai

a0
i

)

, (66)

then by Theorem 3.1 we obtain that the corresponding (SARC) is given by (64), where f∗
i (s) =

a0
i e

s−1.

Remark 3.1. Theorem 3.1 can be easily generalized for the block-separable case.

4 Complexity results

In this section we analyze the complexity of the problems studied in the previous sections. A
key notion in complexity theory for convex optimization problems is self-concordance. In [7]
it is shown that if the optimization problem admits a self-concordant barrier, then there are
interior point methods that yields an ε-optimal solution in O (

√
n| ln ε|) Newton steps, where n

is the number of variables. In this section we show that for many cases the logarithmic barrier
function for the optimization problems studied in the previous sections are self-concordant,
thereby proving that there are interior point methods that solve such problems in polynomial
time.

We first start with the formal definition of the logarithmic barrier function and self-concordance.

Definition 4.1. The logarithmic barrier function for the set of constraints

{gi(z) ≤ 0, i ∈ I}

in the variables z ∈ R
n, is defined as

ϕ(z) = −
∑

i∈I

ln(−gi(z)).

Definition 4.2. Let F ⊂ R
n be an open and convex set and κ a nonnegative number. A function

ϕ : F → R is called κ-self-concordant on F if ϕ is convex, belongs to C3(F ), and satisfies:

|∇3ϕ(y)[h, h, h]| ≤ 2κ(hT∇2ϕ(y)h)
3

2 , ∀y ∈ F ∀h ∈ R
n,

where ∇3ϕ(y)[h, h, h] denotes the third order differential of ϕ at y and h. We call ϕ self-
concordant if it is κ-self-concordant for some κ.

The primal relaxation problem (5) for all the cases studied in Section 2 have linear objectives
and linear constraints and additional nonlinear convex constraints

fi(xi) ≤ yi, i = 1, ..., n. (67)

Note that the logarithmic barrier function for the linear constraints is self-concordant, hence we
only have to analyze the logarithmic barrier function for the convex constraints (67), i.e.,

ϕ(x, y) = −
n∑

i=1

ln(yi − fi(xi)).

For several choices of fi we may be able to prove that the corresponding logarithmic barrier is
self-concordant by using the following lemma taken from [6].
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Lemma 4.1. Assume that a convex function f ∈ C3(R+) satisfies |f ′′′
(s)| ≤ κf

′′
(s)/s for some

κ > 0. Then the logarithmic barrier function for the constraints

{f(s) ≤ t, s ≥ 0},

i.e., − ln(t − f(s)) − ln s, is (1 + 1
3)κ-self-concordant.

Hence, if all fi satisfy the condition in the lemma, then the logarithmic barrier function for
(5) is self-concordant, and hence there are interior point methods that solve these problems in
polynomial time. It is easy to see that e.g. fi(xi) = x2

i or fi(xi) = − ln xi satisfies the condition
of the lemma. For other choices we may first need a reformulation of the constraint. Suppose
e.g. that fi(xi) = exi . Then the constraint fi(xi) ≤ yi is equivalent to − ln yi ≤ −xi. Now
− ln yi satisfies the conditions of the lemma, and hence the corresponding logarithmic barrier
function is self-concordant. In Table 2 several examples are given that admit self-concordant
barrier functions for the primal problem.

Since in many problems studied in this paper the number of constraints is low, working with
the dual may improve the complexity. Let us first consider problem (8) where m = 1. This
is a 1 variable optimization problem. By using e.g. binary search or golden section search we
obtain an ε-accurate solution in O(| ln ε|) iterations. Each iteration costs O(n) number of basic
arithmetic operations. Hence, the overall complexity to solve problem (8), and thus problem
(3), is O(n| ln ε|).

All dual problems (8) and (64) have the same structure and their constraints can be reformulated
as follows: 





∑n
i=1 ti ≤ σ0(z)

rif
∗
i (si/ri) ≤ ti, i = 1, ..., n

ri = σi(z), i = 1, ..., n
si = τi(z), i = 1, ..., n
ri ≥ 0, i = 1, ..., n,

(68)

in which σi, i = 0, ..., n, and τi, i = 1, ..., n, are linear functions in the optimization variables z.

We illustrate this reformulation for problem (8):







zT = (vT , w)

σ0(z) = −∑l∈L ρlvl + w

σi(z) = β0i +
∑

l∈L βlivl, i = 1, ..., n

τi(z) = α0i +
∑

l∈L αlivl, i = 1, ..., n.

(69)

For several choices of fi we may be able to prove that there exists a self-concordant logarithmic
barrier for (68) by using the following lemma taken from [4]:

Lemma 4.2. Assume that a convex function f ∈ C3(R+) satisfies |f ′′′
(s)| ≤ κf

′′
(s)/s for some

κ > 0. Then the logarithmic barrier function for the constraints

{rf(s/r) ≤ t, r ≥ 0, s ≥ 0},

i.e., − ln(t − rf(s/r))− ln r − ln s, is (2 +
√

2
3 )κ-self-concordant.

Hence, if all f∗
i in (68) satisfy the condition in the lemma, then the logarithmic barrier function

for (68) is self-concordant, and hence interior point methods solve these problems in polynomial
time. Some examples for f∗

i that satisfy the condition of the above lemma are x2
i and − ln xi.
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f(t) primal problem f∗(s) (domain) dual problem

t LP 0 (s = 1) LP

t2 QP s2/4 (s ∈ R) CQP

|t|p/p (p > 1) CQP |s|q/q (s ∈ R) CQP

−tp/p (t ≥ 0, 0 < p < 1) CQP −(−s)q/q (s ≤ 0) CQP

− log t (t > 0) S.C. −1 − log(−s) (s < 0) S.C.

t log t (t > 0) S.C. es−1 (s ∈ R) S.C.

et S.C.

{

s log s − s (s > 0)

0 (s = 0)
S.C.

log(1 + et) S.C.

{

s log s + (1 − s) log(1 − s) (0 < s < 1)

0 (s = 0, 1)
S.C.

√
1 + t2 CQP −

√
1 − s2 (−1 ≤ s ≤ 1) CQP

Table 2: Some examples for f , with their conjugates, and indications of the tractability of the
primal and dual problems; S.C. means “admits self-concordant barrier”, (C)QP means (Conic)
Quadratic Programming, LP means Linear Programming. The parameters p and q are related
as follows: 1/p + 1/q = 1.

In Table 2 several examples are given that admit self-concordant barrier functions for the dual
problem.

We conclude this section by the remark that the tractability results for both the primal and
dual problems given in Table 2 also hold after affine transformations of the variable and for
summations of functions stated in Table 2. Let us first start with the primal problem (5).
It is well-known that a function that is self-concordant remains self-concordant after addition,
scaling, and affine transformations of its variables.

Before we give an example of the effect of affine transformations, addition and scaling on the
tractability of the dual problem, we first state a well-known result for the conjugate of the sum
of functions.

Proposition 4.1. [9] Assume that g =
∑

k gk, and gk are convex, and the intersection of the
relative interiors of the domains of gk is nonempty, i.e., ∩kri(dom gk) 6= ∅. Then

(
∑

k

gk

)∗

(s) = inf∑

k sk=s

∑

k

g∗k(sk),

and the infimum is attained for some sk. 2

Suppose now that fi =
∑

k fik and ∩kri(dom fik) 6= ∅, i = 1, ..., n, then (68) is equivalent to







∑

i,k tik ≤ σ0(z)

yif
∗
ik(sik/yi) ≤ tik, i = 1, ..., n; ∀k

yi = σi(z), i = 1, ..., n
∑

k sik = τi(z), i = 1, ..., n
yi ≥ 0, i = 1, ..., n.

(70)

Example for dual problem. Suppose fi(xi) = 3xi log xi + exi−1. Then f∗
i cannot be stated

in explicit form. However, since fi = fi1 + fi2, where fi1(xi) = 3xi log xi, and fi2(xi) = exi−1,
we can use (70) since f∗

i1 and f∗
i2 can be stated in explicit form.
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