
.5
c
m

.

Real solving polynomial equations with
semidefinite programming

Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski

LAAS, Toulouse - CWI, Amsterdam - ETH, Z̈urich

LAW 2008

Real solving polynomial equations with semidefinite programming – p.1



The problem

Given polynomialsh1, . . . , hm ∈ R[x] = R[x1, . . . ,xn]

• Compute all commonreal roots (assuming finitely many), i.e.
compute thereal variety VR(I) of the idealI := (h1, . . . , hm)

• Find a basis of thereal radical ideal I(VR(I))

VR(I) := {v ∈ R
n | f(v) = 0 ∀f ∈ I}

I(VR(I)) := {f ∈ R[x] | f(v) = 0 ∀v ∈ VR(I)}

=
︸︷︷︸

Real Nullstellensatz

{f ∈ R[x] | ∃m ∈ N si ∈ R[x] f2m +
∑

i s
2
i ∈ I}
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Our contribution

1. A semidefinite characterizationof I(VR(I))
[as the kernel of some positive semidefinitemoment matrix]

2. Assuming|VR(I)| < ∞, an algorithm for finding:
• a generating set (border or Gröbner basis) of I(VR(I))
• thereal variety VR(I)

Remarks about the method:
• real algebraicin nature: no complex roots computed
• works if VR(I) is finite (even ifVC(I) is not)
• no preliminary Gröbner basis ofI is needed
• numerical, based on semidefinite programming (SDP)

Real solving polynomial equations with semidefinite programming – p.3



Plan of the talk

1. The moment-matrix method forVR(I)

2. Adapt the moment-matrix method forVC(I) [drop PSD]

3. Relate to the ‘prolongation-projection’ algorithm of
Zhi and Reid forVC(I)

4. Adapt the prolongation-projection algorithm forVR(I)
[add PSD]
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The complex case is well understood

Given an idealI ⊆ R[x] with |VC(I)| < ∞,
find the(complex) varietyVC(I) and theradical ideal I(VC(I)).

Linear algebra in the finite dimensional spaceR[x]/I

 Need a linear basis ofR[x]/I and a normal form algorithm

VC(I) can be computed e.g. with:
• Linear algebra methods: Eigenvalue method
[Stetter-Möller, Stickelberger, Rouillier]
• Homotopy methods [Verschelde]. . .

Seidenberg [1974]:I(VC(I)) = (I ∪ {q1, . . . , qn}), where
qi is the square-free part ofpi, the monic generator ofI ∩R[xi].
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The eigenvalue method for|VC(I)| < ∞, i.e. dim R[x]/I < ∞

Stickelberger theorem:
Let mf be the‘multiplication byf ’ linear operator in R[x]/I.

1. Theeigenvaluesof mf are{f(v) | v ∈ VC(I)}.

2. Theeigenvectorsof mT
f give the pointsv ∈ VC(I).

MT
f ζB,v = f(v)ζB,v ∀ v ∈ VC(I)

whereMf is the matrix ofmf in a baseB of R[x]/I and
ζB,v := (b(v))b∈B

Moreover, whenB is a set of monomials and1 ∈ B, aborder
basisof I can be read directly from the multiplication matrices
Mx1

, . . . ,Mxn
.
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Finding a linear basisB of R[x]/I and a basisG of the ideal I

• Typically: G is aGröbner basisandB is the set ofstandard
monomialsfor a given monomial ordering (e.g. via
Buchberger’s algorithm)

• More generally: AssumeB = {b1 = 1, b2, . . . , bN} is a set of
monomials withborder ∂B := (x1B ∪ . . . ∪ xnB) \ B.
Write any border monomial

xibj =
N∑

k=1

a
(ij)
k bk

︸ ︷︷ ︸

∈Span(B)

+ g(ij)

︸︷︷︸

∈I

Then: G := {g(ij) | xibj ∈ ∂B} is a (border) basis ofI and
carries thesame informationas the multiplication matrices
Mx1
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Counting real roots with the Hermite quadratic form

Forf ∈ R[x]

Hermite bilinear form:
Hf : R[x]/I × R[x]/I → R

(g, h) 7→ Tr(Mfgh)

Theorem: Forf = 1

rank(H1) = |VC(I)|, Sign(H1) = |VR(I)|, Rad(H1) = I(VC(I))

• rank(Hf ) = |{v ∈ VC(I) | f(v) 6= 0}|

• Sign(Hf )

= |{v ∈ VR(I) | f(v) > 0}| − |{v ∈ VR(I) | f(v) < 0}|

Real solving polynomial equations with semidefinite programming – p.8



To find VR(I) and a basis of the real radical idealI(VR(I)) ...

... it suffices to have alinear basisB of R[x]/I(VR(I)) and the
multiplication matrices in R[x]/I(VR(I)) !

New tool: Moment matrices

y ∈ R
N

n

2s
 Ms(y) := (yα+β)α,β∈Nn

s

N
n
s := {α ∈ N

n | |α| =
∑

i αi ≤ s}
 monomialsxα of degree≤ s

Motivation: Fory = (vα)α∈Nn

2s
=: ζ2s,v wherev ∈ R

n

Ms(y) = ζs,vζ
T
s,v� 0 and KerMs(y) ⊆ I(v)
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Real roots ofI = (h1, . . . , hm) and PSD moment matrices

Lemma: Forv ∈ VR(I) andt ≥ D := maxj deg(hj)
the vectory = ζt,v = (vα)|α|≤t satisfies:

• the linear constraints(LC) : [v ∈ VC(I)]

yT ~(hjx
α) = 0 ∀j = 1 . . . m ∀α s.t. |α| + deg(hj) ≤ t

• the PSD constraint: M⌊t/2⌋(y) � 0 [v ∈ R
n]

Set: Kt := {y ∈ R
N

n

t | (LC), M⌊t/2⌋(y) � 0}

Obviously: Kt ⊇ cone(ζt,v | v ∈ VR(I)}

Theorem: ∃t ≥ s ≥ D πs(Kt)=cone(ζs,v | v ∈ VR(I)}
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Semidefinite characterization ofI(VR(I))

Theorem 1: Let y be ageneric elementof Kt, i.e.
y lies in therelative interior of the coneKt. Then

(KerM⌊t/2⌋(y)) ⊆ I(VR(I))

with equalityfor t large enough.

• Geometric property of SDP:
y is generic⇐⇒ rankM⌊t/2⌋(y) is maximum
⇐⇒ KerM⌊t/2⌋(y) ⊆ KerM⌊t/2⌋(z) ∀z ∈ Kt

Thus: for v ∈ VR(I), KerM⌊t/2⌋(y) ⊆ KerM⌊t/2⌋(ζt,v)⊆ I(v).

• Let {g1, . . . , gL} be a basis ofI(VR(I)).
Real Nullstellensatz:g2m

l +
∑

i s
2
i =

∑m
j=1 ujhj .

This implies:gl ∈ KerM⌊t/2⌋(y) for t large enough.
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Stopping criterion when |VR(I)| < ∞

Theorem 2: Let y be agenericelement ofKt.
Assume one of the following twoflatness conditionsholds:

(F1) rankMs(y) = rankMs−1(y) for someD ≤ s ≤ ⌊t/2⌋

(Fd) rankMs(y) = rankMs−d(y) for somed = ⌈D/2⌉ ≤ s ≤ ⌊t/2⌋.

Then:
• I(VR(I)) = (KerMs(y))

• Any baseB of the column space ofMs−1(y)

is a base ofR[x]/I(VR(I))

• The multiplication matrices can be constructed fromMs(y).

Real solving polynomial equations with semidefinite programming – p.12



Sketch of proof: AssumerankMs(y) = rankMs−1(y)

• Thm [Curto-Fialkow 1996]π2s(y) has aflat extension
ỹ ∈ R

N
n

, i.e. such thatrankM(ỹ) = rankMs(y).

• Thm [La 2005] AsM(ỹ) � 0, (KerMs(y))=KerM(ỹ) is a
real radical 0-dimensional ideal.

• I ⊆
︸︷︷︸

(LC)

(KerMs(y)) ⊆
︸︷︷︸

y generic

I(VR(I))

Thus: (KerMs(y))=I(VR(I))

• B indexes a base ofMs−1(y) =⇒ B indexes a base ofM(ỹ)
=⇒ B is a base ofR[x]/KerM(ỹ) = R[x]/I(VR(I))

 Use linear dependencies inMs(y) to construct the
multiplication matrices.
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The moment-matrix algorithm for VR(I)

Input: h1, . . . , hm ∈ R[x]
Output: B base ofR[x]/I(VR(I))

The multiplication matricesMxi
in R[x]/I(VR(I))

Algorithm: For t ≥ D

Step 1: Compute a generic elementy ∈ Kt.

Step 2: Check if(F1)or (Fd)holds.

If yes, return a column basisB of Ms−1(y) andMxi
= M−1

B Pi,
• MB:= principal submatrix ofMs−1(y) indexed byB
• Pi:= submatrix ofMs(y) with rows inB and columns inxiB.

If no, go to Step 1 witht → t + 1.

Theorem: The algorithm terminates.Real solving polynomial equations with semidefinite programming – p.14



The algorithm terminates: (F1) holds for t large enough.

• For t ≥ t0, KerM⌊t/2⌋(y) contains a Gröbner base
{g1, . . . , gL} of I(VR(I)) for a total degree ordering.

• B := {b1, . . . , bN}: set of standard monomials
 base ofR[x]/I(VR(I)).

Set: s := 1 + maxb∈B deg(b) and assumet ≥ t0, ⌊t/2⌋ > s.

For |α| ≤ s, write xα =
N∑

i=1

λibi

︸ ︷︷ ︸

deg≤s−1

+
L∑

l=1

ulgl

︸ ︷︷ ︸

deg≤|α|≤s<⌊t/2⌋

Thus: xα −
∑N

i=1 λibi ∈ KerM⌊t/2⌋(y).

That is: rankMs(y) = rankMs−1(y).
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Two small examples

Ex. 1: I = (h := x
2
1 + x

2
2)

VR(I) = {0}, |VC(I)| = ∞.

M1(y) � 0, 0 = yT~h = y20 + y02 =⇒ yα = 0 ∀α 6= 0.

 Any genericy ∈ K2 is y = (y0, 0, . . . , 0) with y0 > 0.

Thus: (KerM1(y)) = (x1,x2) = I(VR(I)).

Ex. 2: I = (hi := xi(x
2
i + 1) | i = 1, . . . , n)

VR(I) = {0}, |VC(I)| = 3n.

M2(y) � 0, 0 = yT ~(xihi) = y4ei
+ y2ei

∀i =⇒ yα = 0 ∀α 6= 0.

 Any genericy ∈ K4 is y = (y0, 0, . . . , 0) with y0 > 0.

Thus: (KerM1(y)) = (x1, . . . ,xn) = I(VR(I)).
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Some algorithmic issues

How to find a genericy ∈ Kt, i.e. with rankMt(y) max. ?

Solve the SDP program:miny∈Kt
1 with a SDP solver using

the ‘extended self-dual embedding property’.

Then the central path converges to a solution in the relative
interior of the optimum face, i.e., to agenericpointy ∈ Kt.

How to compute ranks of matrices ?

We use SVD decomposition, but this is a sensitive numerical
issue ...

The method may work without (F1) or (Fd):
If rankMB(y) = rankMB∪∂B(y) and the formal multiplication
matrices commute.
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Extension of the moment-matrix algorithm to VC(I)

Omit the PSD conditionand work with thelinear space:

Kt = {y ∈ R
N

n

t | yT ~(hjx
α) = 0 ∀j, α with |α| + deg(hj) ≤ t}

Thesamealgorithm applies: Fort ≥ D

• Pickgenericy ∈ Kt, i.e. rankMs(y) maximum ∀s ≤ ⌊t/2⌋
[choosey ∈ Kt randomly]

• Check if the flatness condition(F1) or (Fd)holds.

• If yes, find a basis ofR[x]/J whereJ := (KerMs(y))
satisfiesI ⊆ J ⊆ I(VC(I)) and thusVC(J) = VC(I).

• If not, iterate witht + 1.
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Find the ideal (KerMs(y)) = I in the Gorenstein case

The inclusionI ⊆ (KerMs(y)) ⊆ I(VC(I)) may be strict for
any genericy.

Example: For I = (x2
1,x

2
2,x1x2), VC(I) = {0},

I(VC(I)) = (x1,x2), dim R[x]/I = 3, dim R[x]/I(VC(I)) = 1,
while dim R[x]/(KerMs(y)) = 2 for any genericy !

Recall: The algebraA := R[x]/I is Gorensteinif there exists a
non-degenerate bilinear form onA satisfying(f, gh) = (fg, h)
∀f, g, h ∈ A, i.e. if there existsy ∈ K∞ with I = KerM(y)

Hence:∃y ∈ Kt s.t. rankMs(y) = rankMs−1(y) and
I = (KerMs(y)) IFF A is Gorenstein.
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Example: the moment-matrix algorithm for real/complex roots

I = (x2

1
− 2x1x3 + 5, x1x

2

2
+ x2x3 + 1, 3x2

2
− 8x1x3), D = 3, d = 2

Ranks ofMs(y) for generic y ∈ Kt, Kt :

t = 2 3 4 5 6 7 8 9

s = 0 1 1 1 1 1 1 1 1

s = 1 4 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8

s = 3 11 10 9 8

s = 4 12 10

no PSD 8 complexroots

t = 2 3 4 5 6

s = 0 1 1 1 1 1

s = 1 4 4 4 2 2

s = 2 8 8 2

s = 3 10

with PSD extract2 realroots
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8 complex/ 2 realroots:

v1 =
h

−1.101,−2.878,−2.821
i

v2 =
h

0.07665 + 2.243i, 0.461 + 0.497i, 0.0764 + 0.00834i
i

v3 =
h

0.07665 − 2.243i, 0.461 − 0.497i, 0.0764 − 0.00834i
i

v4 =
h

−0.081502 − 0.93107i, 2.350 + 0.0431i,−0.274 + 2.199i
i

v5 =
h

−0.081502 + 0.93107i, 2.350 − 0.0431i,−0.274 − 2.199i
i

v6 =
h

0.0725 + 2.237i,−0.466 − 0.464i, 0.0724 + 0.00210i
i

v7 =
h

0.0725 − 2.237i,−0.466 + 0.464i, 0.0724 − 0.00210i
i

v8 =
h

0.966,−2.813, 3.072
i
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Extracting real roots without (F1) or (Fd)

I = (5x9

1
− 6x5

1
x2 + x1x

4

2
+ 2x1x3,−2x6

1
x2 + 2x2

1
x

3

2
+ 2x2x3,x2

1
+ x

2

2
− 0.265625)

D = 9, d = 5, |VR(I)| = 8, |VC(I)| = 20

order rank sequence of extract. orders accuracy comm. error

t Ms(y) (1 ≤ s ≤ ⌊t/2⌋) MON/SVD MON/SVD MON/SVD

10 1 4 8 16 25 34 — — —

12 1 3 9 15 22 26 32 — — —

14 1 3 8 10 12 16 20 24 3(3)/—(—) 0.12786/— 0.00019754/—

16 1 48 8 812 16 20 24 4(3)/3(3) 4.6789e-5/0.00013406 4.7073e-5/0.00075005

Quotient basis:B = {1,x1,x2,x3,x2

1
,x1x2,x1x3,x2x3} border basisG of size10

Real solutions:

8

>

>

>

>

>

<

>

>

>

>

>

:

x1 = (−0.515,−0.000153,−0.0124) x2 = (−0.502, 0.119, 0.0124)

x3 = (0.502, 0.119, 0.0124) x4 = (0.515,−0.000185,−0.0125)

x5 = (0.262, 0.444,−0.0132) x6 = (−2.07e-5, 0.515,−1.27e-6)

x7 = (−0.262, 0.444,−0.0132) x8 = (−1.05e-5,−0.515,−7.56e-7)
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Link with the elimination method of Zhi and Reid

Theorem: If (F1)holds, i.e. for someD ≤ s ≤ ⌊t/2⌋

rankMs(y) = rankMs−1(y) for genericy ∈ Kt,

then dim π2s(Kt) = dim π2s−1(Kt) = dim π2s(Kt+1)

Theorem (based on [Zhi-Reid 2004]):If for someD ≤ s ≤ t

(ZR) dim πs(Kt) = dim πs−1(Kt) = dim πs(Kt+1)

then one can construct a base ofR[x]/I and the multiplication
matrices inR[x]/I [and thus extractVC(I)].

Hence:The Zhi-Reid criterion(ZR) may be satisfied earlier
than the flatness criterion(F1).
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Example: I = (x2
1 − 2x1x3 + 5,x1x

2
2 + x2x3 + 1, 3x2

2 − 8x1x3)

t = 2 3 4 5 6 7 8 9

s = 0 1 1 1 1 1 1 1 1

s = 1 4 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8

s = 3 11 10 9 8

s = 4 12 10

rankM3(y)=rankM2(y)

for y ∈ K9

t = 3 4 5 6 7 8 9

s = 1 4 4 4 4 4 4 4

s = 2 8 8 8 8 8 8 8

s = 3 11 10 9 8 8 8 8

s = 4 12 10 9 8 8 8

s = 5 12 10 9 8 8

s = 6 12 10 9 8

s = 7 12 10 9

s = 8 12 10

s = 9 12

dim π3(K6)

= dim π2(K6)

= dim π3(K7)
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Extending the Zhi-Reid criterion to the real case

• In thecomplexcase,Kt = Ht
⊥ where

Ht := {hjx
α ∀j, α with deg(hjx

α) ≤ t}.

• In thereal case,Kt is a cone, contained in the linear space
P⊥

t , with the same dimensions:dimKt = dimP⊥
t , where

Pt := Ht ∪ {fx
α | f ∈ KerM⌊t/2⌋(y), deg(xα) ≤ ⌊t/2⌋}

Theorem: If for someD ≤ s ≤ t

(ZR+) dim πs(P
⊥
t ) = dim πs−1(P

⊥
t ) = dim πs((Pt ∪ ∂Pt)

⊥)

then one can construct a base ofJ with I ⊆ J ⊆ I(VR(I)) and

thus extractVR(I) = VC(J) ∩ R
n.
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Link with the flatness criterion

Theorem: In the PSD case, the flatness criterion(F1):

rankMs(y) = rankMs−1(y) for genericy ∈ Kt

is equivalent to the stronger version of the(ZR) criterion:

(ZR++) dim πs−1(P
⊥
t ) = dim π2s(P

⊥
t ) = dim π2s((Pt ∪ ∂Pt)

⊥)

in which case we find the real radical idealJ = I(VR(I)).

Hence: the algorithm based on(ZR) may stop earlier than the
moment-matrix algorithm, based on(F1).

Future work: Adapt other known efficient algorithms for
complex roots toreal roots by incorporating SDP conditions.
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