
Theoretical Computer Science 410 (2009) 2685–2700

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A prolongation–projection algorithm for computing the finite real
variety of an ideal
Jean B. Lasserre a, Monique Laurent b, Philipp Rostalski c,∗
a LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 Avenue du Colonel Roche, 31 077 Toulouse Cedex 4, France
b CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
c Automatic Control Lab., ETH Zurich, Physikstrasse 3, 8092 Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 23 June 2008
Received in revised form 12 January 2009
Accepted 19 March 2009
Communicated by V. Pan

Keywords:
Real solving
Finite real variety
Numerical algebraic geometry
Semidefinite optimization

a b s t r a c t

We provide a real algebraic symbolic–numeric algorithm for computing the real variety
VR(I) of an ideal I ⊆ R[x], assuming VR(I) is finite (while VC(I) could be infinite). Our
approach uses sets of linear functionals on R[x], vanishing on a given set of polynomials
generating I and their prolongations up to a given degree, as well as on polynomials of
the real radical ideal R√I obtained from the kernel of a suitably defined moment matrix
assumed to be positive semidefinite and of maximum rank. We formulate a condition on
the dimensions of projections of these sets of linear functionals, which serves as a stopping
criterion for our algorithm; this new criterion is satisfied earlier than the previously used
stopping criterion based on a rank condition for moment matrices. This algorithm is based
on standard numerical linear algebra routines and semidefinite optimization and combines
techniques from previous work of the authors together with an existing algorithm for the
complex variety.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Polynomial equations play a crucial role in mathematics and are widely used in an emerging number of modern
applications. Recent years have witnessed a new trend in algebraic geometry and polynomial system solving, namely
numerical polynomial algebra [25] or numerical algebraic geometry [24]. Algorithms in this field deal with the problem
of (approximately) computing objects of interest in the classical area of algebraic geometry with a focus on polynomial root
finding.
There is a broad literature for the problem of computing complex roots, that deals with numerical and symbolic

algorithms, ranging from numerical continuation methods as in e.g. Verschelde [27] to exact methods as in e.g. Rouillier
[22], or more general Gröbner or border bases methods; see e.g. the monograph [9] and the references therein.
In many practical applications, one is only interested in the real solutions of a system of polynomial equations, possibly

satisfying additional polynomial inequality constraints. An obvious approach for finding all real roots of a system of
polynomial equations is to first compute all complex solutions, i.e., the algebraic variety VC(I) of the associated ideal
I ⊆ R[x], and then to sort the real variety VR(I) = Rn ∩ VC(I) from VC(I) afterwards. However, in many practical
instances, the number of real roots is considerably smaller than the total number of roots and, in some cases, it is finite
while |VC(I)| = ∞.
The literature about algorithms tailored to the problem of real solving systems of polynomial equations is by far not

as broad as for the problem of computing complex roots. Often local Newton type methods or subdivision methods based
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on the Descartes rule of sign, on Sturm–Habicht sequences or on Hermite quadratic forms are used; see e.g. [1,19,21] for a
discussion. In [12] we gave an algorithm for finding VR(I) (assumed to be finite), and a semidefinite characterization as well
as a border (or Gröbner) basis of the real radical ideal R√I , by using linear algebra combined with semidefinite programming
(SDP) techniques. We exploited the fact that all information needed to compute the above objects is contained in the
so-called moment matrix (whose entries depend on the polynomials generating the ideal I) and its geometric properties
when this matrix is required to be positive semidefinite with maximum rank. We use the name (real-root) moment-matrix
algorithm for the algorithm proposed in [12]. This algorithm was later extended to the computation of all complex roots in
[13]. A feature of the real-root moment-matrix algorithm is that it requires solving a sequence of SDP problems involving
matrices of increasing size until a certain rank condition is satisfied. Solving the SDP problem is the computationally most
demanding task in the algorithm. It is thus important to be able to terminate the algorithm as early as possible so that the
size of the matrices does not grow too much. This is the motivation for the present paper where we present a new stopping
condition, which is satisfied at least as early as the rank condition of [12] (and often earlier on examples). This leads to a
new algorithmwhichwe name (real-root) prolongation–projection algorithm since its stopping condition involves computing
the dimensions of projections of certain sets of linear functionals on spaces of polynomials. This new algorithm arises by
incorporating several ideas of [12,13] into an existing symbolic–numeric solver dedicated to compute VC(I) (as described
e.g. in [31]). A detailed description will be given in Section 5 but, in order to ease comparison with the moment-matrix
method of [12], we now give a brief sketch of both methods.

Sketch of the real-root moment-matrix and prolongation–projection algorithms

While methods based on Gröbner bases work with the (primal) ring of polynomials R[x], its ideals and their associated
quotient spaces, we follow a dual approach here. The algorithms proposed in [12] and in this work manipulate specific
subspaces of (R[x])∗, the space of linear forms dual to the ring of multivariate polynomials.
We denote by (R[x]t)∗ the space of linear functionals on the set R[x]t of polynomials with degree at most t and use the

notion of moment matrix Ms(L) := (L(xαxβ)) (indexed by monomials of degree at most s) for L ∈ (R[x]2s)∗. (See Section 2
for more definitions.) Say we want to compute the (finite) real variety VR(I) of an ideal I given by a set of generators
h1, . . . , hm ∈ R[x] with maximum degree D. A common step in both methods is to compute a maximum rank moment
matrix Mbt/2c(L), where L ∈ (R[x]t)∗ vanishes on the setHt of all prolongations up to degree t of the polynomials hj; this
step is carried out with a numerical algorithm for semidefinite optimization. From that point on both methods use distinct
strategies. In the moment-matrix method one checks whether the rank condition: rankMs(L) = rankMs−1(L) holds for
some D ≤ s ≤ bt/2c; if so, then one can conclude that R√I is generated by the polynomials in the kernel of Ms(L) and
extract VR(I); if not, iterate with t + 1. In the prolongation–projection algorithm, one considers Gt , the set obtained by
adding toHt prolongations of the polynomials in the kernel ofMbt/2c(L), its border G+t := Gt ∪i xiGt , as well as the set G⊥t of
linear functionals on R[x]t vanishing on Gt , and its projections πs(G⊥t ) on various degrees s ≤ t . We give conditions on the
dimension of these linear subspaces ensuring the computation of the real variety VR(I) and generators for the real radical
ideal R√I . Namely, if dimπs(G⊥t ) = dimπs−1(G

⊥
t ) = dimπs((G

+

t )
⊥) holds for some D ≤ s ≤ t , then one can compute an

ideal J nested between I and R√I so that VR(I) = VR(J), with equality J =
R√I if dimπs(G⊥t ) = |VR(I)|; if not, iterate with

t + 1.
Both algorithms are tailored to finding real roots and terminate assuming that VR(I) is finite (while VC(I) could be

infinite). However, the order t atwhich the dimension condition holds is atmost the order atwhich the rank condition holds.
Hence the prolongation–projection algorithm terminates earlier than the moment-matrix method, which often permits
saving a few semidefinite optimization steps with larger moment matrices (as shown on a few examples in Section 6).

Contents of the paper

Section 2 provides some basic background on polynomial ideals and moment matrices whereas Section 3 presents the
basic principles behind the prolongation–projection method and Theorem 4, our main result, provides a new stopping
criterion for the computation of VR(I). Section 4 relates the prolongation–projection algorithm to the moment-matrix
method of [12]. In particular, Proposition 12 shows that the rank condition used as stopping criterion in themoment-matrix
method is equivalent to a strong version of the new stopping criterion; as a consequence the new criterion is satisfied at
least as early as the rank condition (Corollary 13). Section 5 contains a detailed description of the algorithmwhose behavior
is illustrated on a few examples in Section 6.

2. Preliminaries

2.1. Polynomial ideals and varieties

We briefly introduce some notation and preliminaries for polynomials used throughout the paper and refer e.g. to [4,3]
for more details.
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Throughout R[x] := R[x1, . . . , xn] is the ring of real polynomials in the n variables x = (x1, . . . , xn) and R[x]t is the
subspace of polynomials of degree at most t ∈ N. For α ∈ Nn, xα = xα11 · · · x

αn
n is the monomial with exponent α and degree

|α| =
∑
i αi. For an integer t ≥ 0, the set Nnt = {α ∈ Nn | |α| ≤ t} corresponds to the set of monomials of degree at most

t , and Tn = {xα | α ∈ Nn}, Tnt = {x
α
| α ∈ Nnt } denote the set of all monomials and of all monomials of degree at most t ,

respectively. Given S ⊆ R[x], set xiS := {xip | p ∈ S}. The set

S+ := S ∪ x1S ∪ · · · ∪ xnS

denotes the one degree prolongation of S and, for B ⊆ Tn, ∂B := B+ \ B is called the set of border monomials of B. A
set B ⊆ Tn is said to be connected to 1 if 1 ∈ B and every monomial m ∈ B \ {1} can be written as m = xi1 . . . xik with
xi1 , xi1xi2 , . . . , xi1 · · · xik ∈ B. For instance,B is connected to 1 if it is closed under taking divisions, i.e.m ∈ B andm′ divides
m impliesm′ ∈ B.

Given h1, . . . , hm ∈ R[x], I = (h1, . . . , hm) is the ideal generated by h1, . . . , hm, its algebraic variety is

VC(I) :=
{
v ∈ Cn | hj(v) = 0 ∀j = 1, . . . ,m

}
and its real variety is VR(I) := Rn ∩ VC(I). The ideal I is zero-dimensional when VC(I) is finite. The vanishing ideal of a set
V ⊆ Cn is the ideal

I(V ) := {f ∈ R[x] | f (v) = 0 ∀v ∈ V }.

The Real Nullstellensatz [2, Chapter 4, Section 1] asserts that I(VR(I)) coincideswith
R√I , the real radical of I , which is defined

as

R√I :=
{
p ∈ R[x]

∣∣ p2m +∑
j

q2j ∈ I for some qj ∈ R[x],m ∈ N \ {0}
}
.

Given a vector space A on R, its dual vector space is the space A∗ = Hom(A,R) consisting of all linear functionals from
A to R. Given B ⊆ A, set B⊥ := {L ∈ A∗ | L(b) = 0 ∀b ∈ B}, and SpanR(B) := {

∑m
i=1 λibi | λi ∈ R, bi ∈ B}. Then

SpanR(B) ⊆ (B⊥)⊥, with equality when A is finite dimensional.
For an ideal I ⊆ R[x], the space D[I] := I⊥ = {L ∈ (R[x])∗ | L(p) = 0 ∀p ∈ I}, considered e.g. by Stetter [25],

is isomorphic to (R[x]/I)∗ and D[I]⊥ = I when I is zero-dimensional. Recall that I is zero-dimensional precisely when
dimR[x]/I <∞, and |VC(I)| ≤ dimR[x]/I with equality precisely when I = I(VC(I)).
The canonical basis ofR[x] is themonomial setTn, withDn := {dα |∈ Nn} as corresponding dual basis for (R[x])∗, where

dα(p) =
1
n∏
i=1
αi!

(
∂ |α|

∂xα11 . . . ∂x
αn
n
p
)
(0) for p ∈ R[x].

Thus any L ∈ (R[x])∗ can be written in the form L =
∑

α yαdα (for some y ∈ RNn ).
By restricting its domain to R[x]s, any linear form L ∈ (R[x])∗ gives a linear form πs(L) in (R[x]s)∗. Throughout we let πs

denote this projection from (R[x])∗ (or from (R[x]t)∗ for any t ≥ s) onto (R[x]s)∗.

Given a zero-dimensional ideal I ⊆ R[x], a well known method for computing VC(I) is the so-called eigenvalue method
which relies on the following theorem relating the eigenvalues of the multiplication operators in R[x]/I to the points in
VC(I). See e.g. [3, Chapter 2, Section 4].

Theorem 1. Let I be a zero-dimensional ideal in R[x] and h ∈ R[x]. The eigenvalues of the multiplication operator

mh : R[x]/I −→ R[x]/I
p mod I 7→ ph mod I

are the evaluations h(v) of the polynomial h at the points v ∈ VC(I). Moreover, given a basisB of R[x]/I , the eigenvectors of the
matrix of the adjoint operator of mh with respect toB are (up to scaling) the vectors (b(v))b∈B ∈ R|B| (for all v ∈ VC(I)).

The extraction of the roots via the eigenvalues of the multiplication operators requires knowledge of a basis of R[x]/I
and an algorithm for reducing a polynomial p ∈ R[x]modulo the ideal I in order to construct the multiplication matrices.
Algorithms using Gröbner bases can be used to perform this reduction by implementing a polynomial division algorithm
(see [4, Chapter 1]) or, as we will do in this paper, generalized normal form algorithms using border bases (see [13,20,25]
for details).
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2.2. Moment matrices

Given L ∈ (R[x])∗, let Q L denote the quadratic form on R[x] defined by QL(p) := L(p2) for p ∈ R[x]. QL is said to be
positive semidefinite, written as QL � 0, if QL(p) ≥ 0 for all p ∈ R[x]. LetM(L) denote the matrix associated with QL in the
canonical monomial basis of R[x], with (α, β)-entry L(xαxβ) for α, β ∈ Nn, so that

QL(p) =
∑
α,β∈Nn

pαpβL(xαxβ) = vec(p)TM(L)vec(p),

where vec(p) is the vector of coefficients of p in the monomial basis Tn. Then QL � 0 if and only if the matrix M(L) is
positive semidefinite. For a polynomial p ∈ R[x], p ∈ KerQL (i.e. Ql(p) = 0 and so L(pq) = 0 for all q ∈ R[x]) if and only
ifM(L)vec(p) = 0. Thus we may identify KerM(L) with a subset of R[x], namely we say that a polynomial p ∈ R[x] lies in
KerM(L) ifM(L)vec(p) = 0. Then KerM(L) is an ideal in R[x], which is a real radical ideal whenM(L) � 0 (cf. [15,17]). For
an integer s ≥ 0,Ms(L) denotes the principal submatrix ofM(L) indexed by Nns . Then, in the canonical basis of R[x]s,Ms(L)
is the matrix of the restriction of QL toR[x]s, and KerMs(L) can be viewed as a subset ofR[x]s. It follows from an elementary
property of positive semidefinite matrices that

Mt(L) � 0 =⇒ KerMt(L) ∩ R[x]s = KerMs(L) for 1 ≤ s ≤ t, (1)

Mt(L), Mt(L′) � 0 =⇒ KerMt(L+ L′) = KerMt(L) ∩ KerMt(L′). (2)

We now recall some results aboutmomentmatrices which played a central role in our previous work [12] and are used here
again.

Theorem 2. [5] Let L ∈ (R[x]2s)∗. If rankMs(L) = rankMs−1(L), then there exists (a unique) L̃ ∈ (R[x])∗ such that π2s(L̃) = L,
rankM(L̃) = rankMs(L), and KerM(L̃) = (KerMs(L)).

Theorem 3 (Cf. [12,15]). Let L ∈ (R[x])∗. If M(L) � 0 and rankM(L) = rankMs−1(L), then KerM(L) = (KerMs(L)) is a
zero-dimensional real radical ideal and |VC(KerM(L))| = rankM(L).

3. Basic principles for the prolongation–projection algorithm

We present here the results underlying the prolongation–projection algorithm for computing VK(I),K = R,C. The basic
techniques behind this section originally stem from the treatment of partial differential equations, see [23]. Zharkov et
al. [29,30] were the first to apply these techniques to polynomial ideals. Section 3.1 contains the main result (Theorem 4).
The complex case is inspired from [31] and was treated in [13]. The real case goes along the same lines, so we only give a
brief sketch of the proof in Section 3.2. In Section 3.3 we indicate a natural choice for the polynomial system G involved in
Theorem 4, which is based on the ideas of [12] and will be used in the prolongation–projection algorithm.

3.1. New stopping criterion based on prolongation/projection dimension conditions

We state the main result on which the prolongation–projection algorithm is based. We give a unified formulation for
both complex/real cases.

Theorem 4. Let I = (h1, . . . , hm) be an ideal in R[x], D = maxj deg(hj) and s, t be integers with 1 ≤ s ≤ t. Let G ⊆ R[x]t ,
satisfying h1, . . . , hm ∈ G and G ⊆ I (resp., G ⊆ R√I). If dimπs(G⊥) = 0 then VC(I) = ∅ (resp., VR(I) = ∅). Assume now that
s ≥ D and

dimπs(G⊥) = dimπs−1(G⊥), (3a)
dimπs(G⊥) = dimπs((G+)⊥). (3b)

Then there exists a set B ⊆ Tns−1 closed under taking divisions (and thus connected to 1) for which the following direct sum
decomposition holds:

R[x]s = SpanR(B)⊕ (R[x]s ∩ SpanR(G)). (4)

Let B ⊆ Tns−1 be any set connected to 1 for which (4) holds, let ϕ be the projection from R[x]s onto SpanR(B) along
R[x]s ∩ SpanR(G), and let F0 := {m − ϕ(m) | m ∈ ∂B}, J := (F0). Then B is a basis of R[x]/J and F0 is a border basis of
J . Moreover:

• If G ⊆ I then J = I .
• If G ⊆ R√I then

VR(I) = VC(J) ∩ Rn; J ∩ R[x]s = SpanR(G) ∩ R[x]s; πs(D[J]) = πs(G⊥),

and in addition, J = R√I if dimπs(G⊥) = |VR(I)|.
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This result is proved in [13] in the case when G = Ht ⊆ I , where

Ht := {xαhj | |α| + deg(hj) ≤ t, j = 1, . . . ,m} (5)

consists of all prolongations to degree t of the generators hj of I . Note however that in [13] we did not prove the existence
ofB closed under taking divisions; we include a proof in Section 3.2 below.
The proof for arbitrary G ⊆ I is identical to the case G = Ht . In the case G ⊆

R√I , the proof1 is essentially analogous
(except for the last claim J = R√I which is specific to the real case). We give a brief sketch of the proof in the next section,
since this enables us to point out the impact of the various assumptions and, moreover, some technical details that are
needed later in the presentation.

3.2. Sketch of proof for Theorem 4

We begin with a lemma used to show the existence ofB closed by division in Theorem 4.

Lemma 5. Let Y be a matrix whose columns are indexed by Tns . Assume

∀λ ∈ R|T
n
s−1|

∑
a∈Tns−1

λaYa = 0 =⇒
∑
a∈Tns−1

λaYxia = 0, (6)

where Ya denotes the a-th column of Y . Then there existsB ⊆ Tns which is closed under taking divisions and indexes a maximum
linearly independent set of columns of Y .

Proof. Order the monomials in Tns according to a total degree monomial ordering≺. LetB ⊆ Tns index a maximum linearly
independent set of columns of Y , which is constructed using the greedy algorithm (as described in [12]) applied to the
ordering ≺ of the columns. Then, setting Bm := {m′ ∈ B | m′ ≺ m}, m ∈ B precisely when Bm ∪ {m} indexes a linearly
independent set of columns of Y . We claim that B is closed under taking divisions. For this assume m ∈ B and m = xim1
withm1 6∈ B. Asm1 6∈ B, we deduce that

Ym1 =
∑
a∈Bm1

λaYa for some scalars λa.

For a ∈ Bm1 , a ≺ m1 implies xia ≺ xim1 = m, i.e., xia ∈ Bm. Applying (6) we deduce that

Ym =
∑
a∈Bm1

λaYxia,

which gives a linear dependency of Ym with the columns indexed byBm, contradictingm ∈ B. �

We now sketch the proof of Theorem 4. Set N := dimπs−1(G⊥). If N = 0 then VK(I) = ∅ (for otherwise the evaluation
at v ∈ VK(I) would give a nonzero element of πs−1(G⊥)). Let {L1, . . . , LN} ⊆ G⊥ for which {πs−1(L1), . . . , πs−1(LN)}
is a basis of πs−1(G⊥). Let Y be the N × |Tns−1| matrix with (j,m)-th entry Lj(m) for j ≤ N and m ∈ Tns−1. We verify
that Y satisfies the condition (6) of Lemma 5 (replacing s by s − 1). For this note that

∑
a∈Tns−2

λaYa = 0 if and only if

p :=
∑
a∈Tns−2

λaa ∈ (πs−2(G⊥))⊥ = SpanR(G) ∩ R[x]s−2 and thus xip ∈ SpanR(G
+) ∩ R[x]s−1; in view of (3b), this implies

xip ∈ SpanR(G) ∩ R[x]s−1 and thus
∑
a∈Tns−2

λaYxia = 0. Thus we can apply Lemma 5: There exists a set B indexing a
maximum linearly independent set of columns of Y which is closed by division. This amounts to having the direct sum
decomposition:

R[x]s−1 = SpanR(B)⊕ (SpanR(G) ∩ R[x]s−1). (7)

As N = dimπs(G⊥), the set {πs(L1), . . . , πs(LN)} is a basis of πs(G⊥), and thus (4) holds. Set F := {m − ϕ(m) | m ∈ Tns }.
Obviously, F0 ⊆ F ⊆ SpanR(G) ∩ R[x]s.Moreover, one can verify (cf. [13]) that

SpanR(F) = SpanR(G) ∩ R[x]s, (8)
(F0) = (F), I ⊆ (F) if s ≥ D, (9)
ϕ(xiϕ(xjm)) = ϕ(xjϕ(xim)) form ∈ B and i, j ∈ {1, . . . , n}. (10)

Note that (3b) is used to show (9)–(10).
The ideal J := (F0) satisfies I ⊆ J (by (9)) and J ⊆ I or J ⊆

R√I depending on the assumption on G. AsB is connected to
1 and we have the commutativity property (10), we can apply [18, Theorem 3.1] and deduce thatB is a basis of R[x]/J . The
inclusion: SpanR(G)∩R[x]s ⊆ J∩R[x]s follows from (8)–(9), while the reverse inclusion follows from the fact that ϕ(p) = 0

1 Note that if we would apply the previous result to the ideal J := (I ∪ G) and the set G, then we would reach the desired conclusion, but under the
stronger assumption s ≥ max(D,D′), where D′ is the maximum degree of a generating set for G.
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for all p ∈ J ∩ R[x]s since B is a basis of R[x]/J . Thus SpanR(G) ∩ R[x]s = J ∩ R[x]s, implying πs(G⊥) = (J ∩ R[x]s)⊥. The
inclusion πs(J⊥) ⊆ (J ∩ R[x]s)⊥ is obvious, and the reverse inclusion follows from (πs(J⊥))⊥ ⊆ (J⊥)⊥ ∩ R[x]s = J ∩ R[x]s,
since J is zero-dimensional. Hence πs(G⊥) = πs(J⊥) = πs(D[J]). Finally note that

dimπs(G⊥) = |B| = dimR[x]/J ≥ |VC(J)| ≥ |VR(I)|.

Hence, if dimπs(G⊥) = |VR(I)|, then equality holds throughout, which implies that J is real radical and thus J =
R√I . This

concludes the proof of Theorem 4.

Remark 6. We indicate here what happens if we weaken some assumptions in Theorem 4.
(i) The condition s ≥ D is used only in (9) to show I ⊆ (F). Hence if we omit the condition s ≥ D in Theorem 4, then we get
the same conclusion except that we cannot claim I ⊆ J .
(ii) Consider now the case where we assume only that (3a) holds (and not (3b)). As we use (3b) to show the existence of
B connected to 1 and to prove (9)–(10), we cannot prove the commutativity property (10), nor the equality (F) = (F0).
Nevertheless, what we can do is test whether B is connected to 1 and whether (10) holds. If this is the case, then we can
conclude thatB is a basis of R[x]/J where, depending on the choice of G, the ideal J = (F0) ⊆ I or J = (F0) ⊆

R√I .
Furthermore, we can compute the variety VC(J) which satisfies VK(I) ⊆ VC(J) and |VC(J)| ≤ dimR[x]/J = |B|. Then

it suffices to sort out VK(I) from VC(J). The additional information that condition (3b) gives us is the guarantee that the
commutativity property (10) holds and that we have equality J = (F), thus implying J ⊇ I and VC(I) = VC(J) (respectively
VR(I) = VC(J) ∩ Rn) if s ≥ D.

3.3. A concrete choice for the polynomial system G in Theorem 4

For the task of computing VC(I), one can choose as indicated in [13] the set G = Ht from (5) and thus consider the linear
subspace Kt := H⊥t of (R[x]t)

∗. For the task of computing VR(I), as inspired by [12], we augment Ht with a set Wt of
polynomials in R√I obtained from the kernel of a suitable positive element inH⊥t . For this, consider the convex cone

Kt,� := {L ∈ H⊥t | Mbt/2c(L) � 0},

consisting of the elements ofKt that are positive, i.e. satisfy L(p2) ≥ 0 whenever deg(p2) ≤ t . Generic elements ofKt,�
(defined in Lemma 7 below) play a central role; geometrically these are the elements lying in the relative interior of the
coneKt,�.

Lemma 7. The following assertions are equivalent for L∗ ∈ Kt,�.

(i) rankMbt/2c(L∗) = maxL∈Kt,� rankMbt/2c(L).
(ii) rankMs(L∗) = maxL∈Kt,� rankMs(L) for all 1 ≤ s ≤ bt/2c.
(iii) KerMs(L∗) ⊆ KerMs(L) for all L ∈ Kt,� and 1 ≤ s ≤ bt/2c.

Then L∗ is said to be generic.

Proof. Direct verification using (1)–(2). �

Hence any two generic elements L1, L2 ∈ Kt,� have the same kernel, denoted by Nt (= KerMbt/2c(L1) = KerMbt/2c(L2)),
which satisfies

Nt ⊆ Nt ′ if t ≤ t ′ (11)

(easy verification), as well as

Nt ⊆
R√I. (12)

(cf. [12, Lemma 3.1]). Define the set

Wt := {xαg | α ∈ Nn
bt/2c, g ∈ Nt}, (13)

whose definition is motivated by the fact that, for L ∈ (R[x]t)∗,

Nt ⊆ KerMbt/2c(L)⇐⇒ L ∈ W⊥t . (14)

Therefore,Wt ⊆
R√I . For the task of computing VR(I), our choice for the set G in Theorem 4 is

Gt := Ht ∪Wt . (15)

Note also that

Kt,� ⊆ H⊥t ∩W⊥t = (Ht ∪Wt)
⊥. (16)

In fact, as we now show, both sets in (16) have the same dimension, i.e. (Ht ∪Wt)
⊥ is the smallest linear space containing

the coneKt,�.
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Lemma 8. dimKt,� = dim(Ht ∪Wt)
⊥.

Proof. Pick L∗ lying in the relative interior ofKt,�, i.e. L∗ is generic, and define

Pt := {L ∈ (R[x]t)∗ | L∗ ± εL ∈ Kt,� for some ε > 0},

the linear space consisting of all possible perturbations at L∗. Then, dimKt,� = dimPt . One can verify that there exists an
ε > 0 such that L∗ ± εL ∈ Kt,� if and only if L ∈ H⊥t and KerMbt/2c(L

∗) ⊆ KerMbt/2c(L) (cf. e.g. [8, Thm. 31.5.3]). As the
latter condition is equivalent to L ∈ W⊥t by (14), we find Pt = (Ht ∪Wt)

⊥, which concludes the proof. �

We conclude with a characterization of R√I and of its dual spaceD[
R√I], using the sets Gt from (15).

Proposition 9. With Gt = Ht ∪Wt ,
R√I =

⋃
t SpanR(Gt) andD[

R√I] =
⋂
t G
⊥
t .

Proof. The inclusion
⋃
t SpanR(Gt) ⊆

R√I follows from (12). Next, for some order (t, s) we have R√I = (KerMs(L∗)).
The proof, which relies on the existence of a finite basis for the ideal R√I can be found in [12]. This fact, combined with
KerMs(L∗) ⊆ Nt ⊆ SpanR(Gt), implies the reverse inclusion

R√I ⊆
⋃
t SpanR(Gt). Now the equality

R√I =
⋃
t SpanRGt

implies in turnD[
R√I] =

⋂
t G
⊥
t . �

When |VR(I)| < ∞, the dual of the real radical ideal coincides in fact with the vector space spanned by the evaluations
at all v ∈ VR(I). Proposition 9 shows how to obtain it directly from the quadratic forms QL (or its matrix representation
Mbt/2c(L)) for a generic L ∈ Kt,� without a priori knowledge of VR(I).

4. Links with the moment-matrix method

In this section we explore the links with the moment-matrix method of [12] for finding VR(I) as well as the real radical
ideal R√I . We recall the main result of [12], underlying this method.

Theorem 10 ([12]). Let L∗ be a generic element ofKt,�. Assume that

rankMs(L∗) = rankMs−1(L∗) (17)

for some D ≤ s ≤ bt/2c. Then (KerMs(L∗)) =
R√I and any set B ⊆ Tns−1 indexing a maximum linearly independent set of

columns of Ms−1(L∗) is a basis of R[x]/
R√I .

4.1. Relating the rank condition and the prolongation–projection dimension conditions

We now present some links between the rank condition (17) and the conditions (3a)–(3b). First we show that the
condition (3a) suffices to ensure that the rank condition (17) holds at some later order.

Proposition 11. Let 1 ≤ s ≤ t. If (3a) holds with G := Ht ∪Wt , then rankMs(L) = rankMs−1(L) for all L ∈ Kt+2s,�.

Proof. Let L ∈ Kt+2s,�. We show that rankMs(L) = rankMs−1(L). For this, pick m,m′ ∈ Tns . As in the proof of Theorem 4,
(4) holds and thus we can write m =

∑
b∈B λbb + f , where λb ∈ R, f ∈ SpanR(G), and B ⊆ Tns−1. (Note that (3b) was

not used to derive this.) Then, mm′ =
∑
b∈B λbm

′b + m′f . It suffices now to show that L(m′f ) = 0. Indeed this will imply
M(L)m′,m = L(mm′) =

∑
b∈B λbL(m

′b) =
∑
b∈B λbM(L)m′,b, that is, the mth column of M(L) is a linear combination of its

columns indexed by b ∈ B, thus giving the desired result.
We now show that L(m′g) = 0 for all g ∈ Ht ∪ Wt . By assumption, L ∈ Kt+2s,� ⊆ H⊥t+2s ∩ W⊥t+2s (recall (16)). If

g ∈ Ht , then m′g ∈ Ht+s ⊆ Ht+2s and thus L(m′g) = 0. If g ∈ Wt , then g = xαh, where h ∈ Nt and |α| ≤ bt/2c. Hence,
m′g = m′xαh, where deg(m′xα) ≤ s+ bt/2c ≤ b(2s+ t)/2c and h ∈ Nt ⊆ Nt+2s (by (11)), implyingm′g ∈ Wt+2s and thus
L(m′g) = 0. �

We now show that the rank condition (17) is in fact equivalent to the following stronger version of the conditions (3a)–
(3b) with G = Gt = Ht ∪Wt :

dimπ2s(G⊥t ) = dimπs−1(G
⊥

t ), (18a)

dimπ2s(G⊥t ) = dimπ2s((G
+

t )
⊥). (18b)

Proposition 12. Let L∗ be a generic element ofKt,� and 1 ≤ s ≤ bt/2c.

(i) Assume (17) holds. Then (18a) holds, and (18b) holds as well if s ≥ D.
(ii) Assume (18a)–(18b) hold. Then, (17) holds, the ideal J obtained in Theorem 4 is a real radical ideal and satisfies J =

(KerMs(L∗)) ⊆ I(VR(I)) and, given B ⊆ Tns−1, B satisfies (7) if and only if B indexes a column basis of Ms−1(L∗).
Furthermore, J = R√I if s ≥ D.
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The proof being a bit technical is postponed to Section 4.2. An immediate consequence of Proposition 12 is that the rank
condition at order (t, s) implies the prolongation–projection dimension conditions (3a)–(3b) at the same order (t, s).

Corollary 13. Assume D ≤ s ≤ bt/2c and let G = Gt = Ht ∪Wt . Then,

(17)⇐⇒ (18a)–(18b) =⇒ (3a)–(3b).

Proof. Indeed, πs(G⊥t ) = πs((G
+

t )
⊥) follows directly from π2s(G⊥t ) = π2s((G

+

t )
⊥). �

It is shown in [12] that the rank condition (17) holds at order (s, t) large enough with D ≤ s ≤ bt/2c. Hence the
same holds for the conditions (18a)–(18b) (and thus for (3a)–(3b)), which will imply the termination of the prolongation–
projection algorithm based on Theorem 4.

4.2. Proof of Proposition 12

First we note that the rank condition (17) is in fact a property of the whole coneKt,� and its superset G⊥t = H⊥t ∩W⊥t .

Lemma 14. If (17) holds for some generic L∗ ∈ Kt,�, then (17) holds for all L ∈ G⊥t .

Proof. Let L ∈ G⊥t . We have

KerMs(L∗) = KerMbt/2c(L∗) ∩ R[x]s = Nt ∩ R[x]s ⊆ KerMbt/2c(L) ∩ R[x]s ⊆ KerMs(L), (19)

where the first equality holds by (1), the first inclusion holds by (14), and the second one holds since Ms(L) is a principal
submatrix ofMbt/2c(L). This implies directly that rankMs(L) = rankMs−1(L). �

We now give the proof for Proposition 12. Let L∗ be a generic element ofKt,�.
(i) Assume that (17) holds. First we show (18a), i.e. we show that dimπ2s(G⊥t ) = dimπs−1(G

⊥
t ). For this, consider the

linear mapping

ψ : π2s(G
⊥
t ) → πs−1(G

⊥
t )

π2s(L) 7→ πs−1(L).

Asψ is onto, it suffices to show thatψ is one-to-one. For this assumeπs−1(L) = 0 for some L ∈ G⊥t .We show thatπ2s(L) = 0,
i.e. L(xγ ) = 0 for all |γ | ≤ 2s by induction on |γ | ≤ 2s. The case |γ | ≤ s − 1 holds by assumption. Let s ≤ |γ | ≤ 2s and
write γ as γ = α+ β where |α| = s and |β| ≤ s. By Lemma 14, rankMs(L) = rankMs−1(L). Hence the αth column ofMs(L)
can be written as a linear combination of the columns indexed by Tns−1. This gives
Ms(L)β,α =

∑
|δ|≤s−1 λδMs(L)β,δ for some λδ ∈ R. As |β+δ| ≤ |γ |−1, we haveMs(L)β,δ = L(xβ+δ) = 0 by the induction

assumption, implying L(xγ ) = Ms(L)β,α = 0.
We now assume moreover s ≥ D. We show the inclusion π2s(G⊥t ) ⊆ π2s((G

+

t )
⊥), which implies (18b). Let L ∈ G⊥t . As

rankMs(L) = rankMs−1(L), we can apply Theorem 2 and deduce the existence of L̃ ∈ (R[x])∗ for which π2s(L̃) = π2s(L)
and KerM(L̃) = (KerMs(L)). It suffices now to show that L̃ ∈ (G+t )⊥. We show a stronger result, namely that L̃ ∈ I(VR(I))⊥.
As s ≥ D, we know from Theorem 10 that I(VR(I)) = (KerMs(L∗)). Pick p ∈ I(VR(I)) and write it as p =

∑
l ulgl, where

ul ∈ R[x] and gl ∈ KerMs(L∗); we show that L̃(p) = 0. By (19), gl ∈ KerMs(L) and thus, as Ms(L) = Ms(L̃), gl ∈ KerMs(L̃).
Therefore, p lies in (KerMs(L̃)) = KerM(L̃), which gives L̃(p) = 0.
(ii) Assume now that (18a)–(18b) hold. Then, (3a)–(3b) holds for the pair (t, 2s) (andG = Gt ). Althoughwe do not assume

2s ≥ D, the conclusion of Theorem 4 partially holds, as observed in Remark 6(i). Namely, we can find an ideal J satisfying
J ⊆ I(VR(I)), J ∩ R[x]2s = SpanR(Gt) ∩ R[x]2s, π2s(D[J]) = π2s(G

⊥
t ), and I ⊆ J if 2s ≥ D. Moreover, there exists a set

B ⊆ Tns−1 which is a basis of R[x]/J and satisfies the following analogue of (4):

R[x]2s = SpanR(B)⊕ (SpanR(Gt) ∩ R[x]2s). (20)

We show that rankMs(L∗) = rankMs−1(L∗). As L∗ ∈ G⊥t , there exists L̃ ∈ D[J] for which π2s(L
∗) = π2s(L̃). Thus

Ms(L∗) = Ms(L̃), and J ⊆ KerM(L̃) since L̃ ∈ D[J]. It suffices to show that rankMs(L̃) = rankMs−1(L̃). For this, as in the proof
of Proposition 11, pick m,m′ ∈ Tns . Using (20), we can write m =

∑
b∈B λbb+ f , where λb ∈ R, f ∈ SpanR(Gt) ∩ R[x]2s ⊆

J ⊆ KerM(L̃), so that L̃(m′m) =
∑
b∈B λbL̃(m

′b), which gives the desired result: rankMs(L̃) = rankMs−1(L̃).
LetB1,B2 ⊆ Tns−1, whereB1 satisfies (7) andB2 indexes a column basis ofMs−1(L∗). Then

|B1| = dimR[x]/J ≤ rankMs−1(L∗) (= |B2|) (21)

since the columns of Ms−1(L∗) indexed by B1 are linearly independent (direct verification, using (7) and the fact that
KerMs−1(L∗) ⊆ KerMbt/2c(L∗) = Nt ⊆ SpanR(Gt)). Moreover,

|B2| = rankMs−1(L∗) ≤ dimπs−1(G⊥t ) (= |B1|). (22)
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Indeed, as SpanR(Gt) ∩ R[x]s−1 ⊆ J ∩ R[x]s−1 ⊆ KerMs−1(L̃) = KerMs−1(L∗), we obtain SpanR(Gt) ∩ SpanR(B2) = {0},
which implies |B2| ≤ dim(SpanR(Gt) ∩ R[x]s−1)⊥ = dimπs−1(G⊥t ). Hence, equality holds in (21) and (22). Therefore, B1
indexes a column basis ofMs−1(L∗),B2 satisfies (7), and

rankMs−1(L∗) = dimπs−1(G⊥t ) = dimR[x]/J.

As J ⊆ KerM(L̃), we deduce

dimR[x]/KerM(L̃) ≤ dimR[x]/J.

On the other hand,

dimR[x]/J = rankMs−1(L∗) = rankMs−1(L̃) ≤ rankM(L̃) = dimR[x]/KerM(L̃).

Hence equality holds throughout. In particular, J = KerM(L̃) and rankM(L̃) = rankMs−1(L̃). As Ms−1(L̃) = Ms−1(L∗) � 0,
we deduce thatM(L̃) � 0 and J = KerM(L̃) = (KerMs(L̃)) = (KerMs(L∗)) is a real radical ideal (using Theorem 3). Finally,
if s ≥ D, then J = (KerMs(L∗)) =

R√I by Theorem 10. This concludes the proof of Proposition 12.

4.3. Two illustrative examples

We discuss two simple examples to illustrate the various notions just introduced and the role of moment matrices; the
second one has infinitely many complex roots.

Example 15. Let I = (x21, x
2
2, x1x2) ⊆ R[x1, x2], considered in [13] as an example with a non-Gorenstein algebraR[x]/I . Any

L ∈ Kt (t ≥ 2) satisfies L(xα) = 0 if |α| ≥ 2 and thus

Mbt/2c(L) =


a b c 0 . . .
b 0 0 0 . . .
c 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 for some scalars a, b, c,

where entries are indexed by 1, x1, x2, . . . Hence, dimπ2(K2) = dimπ1(K2) = dimπ2(K3) = 3 and the rank stabilizes
at order (t, s) = (4, 2), i.e. rankM2(L∗) = rankM1(L∗) = 2 for generic L∗ ∈ K4. When L ∈ Kt,�, the condition
Mbt/2c(L) � 0 implies b = c = 0. Hence, for generic L∗ ∈ K2,�, N2 := KerM1(L∗) is spanned by the polynomials x1
and x2, and the rank condition (17) holds at order (t, s) = (2, 1), i.e. rankM1(L∗) = rankM0(L∗) = 1. As SpanR(G2)
is spanned by the polynomials x1, x2, x21, x1x2, x

2
2, the conditions (18a)–(18b) hold at the same order (t, s) = (2, 1), i.e.

dimπ2(G⊥2 ) = dimπ0(G
⊥

2 ) = dimπ2((G
+

2 )
⊥) = 1, as predicted by Proposition 12.

Example 16. Consider the ideal I = (x21 + x
2
2) ⊆ R[x1, x2] with VR(I) = {0} and |VC(I)| = ∞. As dimπs(Kt) =

dimπs−1(Kt) + 2 for any t ≥ s ≥ 2, the conditions (3a)–(3b) never hold in the case G = Ht . On the other hand, any
L ∈ K2,� satisfies L(x21) = L(x

2
2) = 0, which follows from L(x

2
1 + x

2
2) = 0 combined withM1(L) � 0, giving L(x

2
1), L(x

2
2) ≥ 0.

Moreover, L(x1) = L(x2) = L(x1x2) = 0. Thus N2 is spanned by the polynomials x1 and x2, and the conditions (17) and
(18a)–(18b) hold at order (t, s) = (2, 1).

Examples 18 and 20 in Section 6 are cases where the prolongation–projection method terminates earlier than the
moment-matrix method.

5. A prolongation–projection algorithm

Let us now give a brief description of our algorithm for computing VK(I) (K = R,C) based on the results of the previous
section. A simple adjustment in the proposed prolongation–projection algorithm allows the computation of all complex
vs. real roots. The general structure is shown in Algorithm 1. If I is an ideal given by a set of generators and |VK(I)| < ∞,
this algorithm computes the multiplication matrices in R[x]/J , which thus allows the immediate computation of VC(J) (by
Theorem 1), where J is a zero-dimensional ideal satisfying J = I if K = C and I ⊆ J ⊆ R√I if K = R, so that VK(J) = VK(I).
We then comment on the key steps involved in the algorithm.
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Algorithm 1 Unified prolongation–projection algorithm for computing VK(I):
Require: A set {h1, . . . , hm} of generators of I and t ≥ D.
Ensure: The multiplication matrices in R[x]/J , where J = I if K = C and I ⊆ J ⊆ R√I if K = R, thus enabling the
computation of VK(I).

1: Compute the matrix representation Gt of Gt and G+t of G
+

t .
2: Compute KerGt and KerG+t .
3: Compute dimπs(KerGt) (= dimπs((Gt)⊥)) and dimπs(KerG+t ) (= dimπs((G

+

t )
⊥)) for s ≤ t .

4: Check if (3a)–(3b) holds for some D ≤ s ≤ bt/2c.
5: if yes then
6: return a basis B ⊆ R[x]s−1 connected to 1 and satisfying (7), and the multiplication matrices Xi in R[x]/J

represented in the basisB.
7: else
8: Iterate (go to 1) replacing t by t + 1.
9: end if

Remark 17. Here, Gt = Ht (see (5)) for the task of computing VC(I), and Gt = Ht ∪Wt (see (13)) for the task of computing
VR(I). See below for details about the matrix representations Gt and G+t .

Characterizing Gt and G⊥t via the matrix Gt
In the real case, the set Gt is defined as Gt = Ht ∪Wt whereWt is the linear space defined in (13). As we are interested

in the orthogonal space G⊥t , it suffices to compute a basis Ct of the linear spaceNt and to define the set

St := {xαg | |α| ≤ bt/2c, g ∈ Ct}. (23)

Then, Nt = SpanR(Ct),Wt = SpanR(St), and G⊥t = (Ht ∪ St)
⊥. Let St (resp., Ht ) be the matrix with columns indexed by

Tnt and whose rows are the coefficient vectors of the polynomials in St (resp., inHt ). In the case K = C, the set Gt = Ht is
represented by the matrix Gt := Ht and, in the case K = R, the set Gt = Ht ∪Wt is represented by the matrix

Gt :=
[
Ht
St

]
.

Then the vectors in KerGt are precisely the coordinate vectors in the canonical basis of (R[x]t)∗ of the linear forms in G⊥t ,
i.e.

L ∈ G⊥t ⇐⇒ (L(xα))|α|≤t ∈ KerGt . (24)

Analogously, G+t is the matrix representation of (Ht ∪ St)
+, so that (G+t )⊥ corresponds to KerG

+

t .
To compute the spaceNt we need a generic element L∗ ∈ Kt,�. How to find such a generic element has been discussed

in detail in [12, Section 4.4.1]. Let us only mention here that this task can be performed numerically using a standard
semidefinite programming solver implementing a self-dual embedding strategy, see e.g. [7, Chapter 4]. For our computations
we use the SDP solver SeDuMi [26].

Computing πs(G⊥t ) and its dimension
As shown in (24), the dual spaceG⊥t can be characterized in the canonical dual basis as the kernel of thematrix Gt , see e.g.

[31] for details using an algorithmbased on singular value decomposition. Faster implementations can be obtained e.g. using
Gauss elimination. Once we have a basis of KerGt , denoted say by {z1, . . . , zM}, then, for any s ≤ t , we construct the matrix
Zs whose rows are the vectors πs(z1), . . . , πs(zM), the projections onto Rns of z1, . . . , zM . Then dimπs(G

⊥
t ) = dimπs(KerGt)

is equal to the rank of the matrix Zs.

Extracting solutions
In order to extract the variety VK(I), we apply Theorem 1 which thus requires a basis B of the quotient space and

the corresponding multiplication matrices. In the setting of Theorem 4, rank Zs = rank Zs−1 =: N and B is chosen such
that B ⊆ Tns−1 indexes N linearly independent columns of Zs−1. The first possibility to construct B is to use a greedy
algorithm as explained in the proof of Lemma 5. Another possibility is to use Gauss–Jordan elimination with partial pivoting
on Zs (see [10]) such that each column corresponding to a monomial of degree s is expressed as a linear combination of N
monomials of degree atmost s−1. The pivot variables form a setB ⊆ Tns−1 indexing amaximum set of linearly independent
columns of Zs and their corresponding monomials serve as a (monomial) basis B of the quotient space (provided B is
connected to 1). The reduced rowechelon formof Zs, interpreted as coefficient vector for somepolynomials, gives the desired
rewriting family, which thus enables the construction of multiplication matrices and provides a border (or Gröbner) basis
(cf. [12] for details).
A second alternative proposed in [31] is to use singular value decomposition once more to obtain a basis of Ker Zs and

therefore a polynomial basis B for the quotient ring (see [31] for details). All examples presented in the next section are
computed using singular value decomposition.
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Table 1
Dimension table for πs(H⊥t ) in Example 18.

s
0 1 2 3 4 5 6 7 8 9

dimπs(K3) 1 4 8 11 — — — — — —
dimπs(K4) 1 4 8 10 12 — — — — —
dimπs(K5) 1 4 8 9 10 12 — — — —
dimπs(K6) 1 4 8 8 9 10 12 — — —
dimπs(K7) 1 4 8 8 8 9 10 12 — —
dimπs(K8) 1 4 8 8 8 8 9 10 12 —
dimπs(K9) 1 4 8 8 8 8 8 9 10 12

6. Numerical examples

We now illustrate the prolongation–projection algorithm on some simple examples. The algorithm has been
implemented in Matlab using the Yalmip toolbox [16]. For the real-root prolongation–projection algorithm, we show the
dimensions of πs(G⊥t ) and πs((G

+

t )
⊥), the projections of the orthogonal complement of the set Gt = Ht ∪ Wt and of its

one degree prolongation. For comparison, we also sometimes show the dimension table for the complex-root version of this
algorithm, andwe show the values rankMs(L∗) (s ≤ bt/2c) for a generic element L∗ ∈ Kt,� used in the real moment-matrix
method. To illustrate the potential savings, and at the same time facilitate a comparison between the various methods,
we sometimes give more data than needed for the real root computation (then displayed in gray color). We also provide
the extracted roots v ∈ VK(I) and, as a measure of accuracy, the maximum evaluation ε(v) = maxj |hj(v)| taken over all
input polynomials hj at the extracted root v, as well as the commutativity error c(X) := maxni,j=1 abs(XiXj −XjXi) of the
computed multiplication matricesXi.

Example 18. Consider the ideal I = (h1, h2, h3) ⊆ R[x1, x2, x3], where

h1 = x21 − 2x1x3 + 5,

h2 = x1x22 + x2x3 + 1,

h3 = 3x22 − 8x1x3,

with D = 3, |VC(I)| = 8 and |VR(I)| = 2, taken from [3, Ex. 4, p.57]. We illustrate and compare the various algorithms in
this example.
Table 1 shows the dimensions of the sets πs(H⊥t ) for various prolongation–projection orders (t, s). Note that the

conditions (3a)–(3b) hold at order (t, s) = (6, 3), i.e.

π3(H
⊥

6 ) = π2(H
⊥

6 ) = π3(H
⊥

7 ).

With the complex-root prolongation–projection algorithm we can compute the following eight complex roots:

v1 =
[
−1.10 −2.88 −2.82

]
,

v2 =
[
0.0767+ 2.243i 0.461+ 0.497i 0.0764+ 0.00834i

]
,

v3 =
[
0.0767− 2.243i 0.461− 0.497i 0.0764− 0.00834i

]
,

v4 =
[
−0.0815− 0.931i 2.35+ 0.0431i −0.274+ 2.209i

]
,

v5 =
[
−0.0815+ 0.931i 2.35− 0.0431i −0.274− 2.20i

]
,

v6 =
[
0.0725+ 2.24i −0.466− 0.464i 0.0724+ 0.00210i

]
,

v7 =
[
0.0725− 2.24i −0.466+ 0.464i 0.0724− 0.00210i

]
,

v8 =
[
0.966 −2.81 3.07

]
,

with a maximum error of maxi ε(vi) < 8e-13 and commutativity error c(X) < 6e-13.
Table 2 shows the dimensions of the sets πs(G⊥t ) and πs((G

+

t )
⊥)with Gt = Ht ∪Wt for various prolongation–projection

orders (t, s). Note that the conditions (3a)–(3b) hold at order (t, s) = (5, 2), i.e.

dimπ2(G⊥5 ) = dimπ1(G
⊥

5 ) = dimπ2((G
+

5 )
⊥).

With the real-root prolongation–projection algorithm we can extract the two real solutions:

v1 =
[
−1.101 −2.878 −2.821

]
,

v2 =
[
0.966 −2.813 3.072

]
,

with maxi ε(vi) < 2e-8 and commutativity error c(X) < 3.3e-9. Note that, since 2 = s < D = 3, we cannot directly apply
Theorem 4 to claim VR(I) = VC(J)∩Rn. Instead, as indicated in Remark 6(i), we can only claim VC(J)∩Rn ⊇ VR(I). However,
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Table 2
Dimension table for πs(G⊥t ) and πs((G

+

t )
⊥) with Gt = Ht ∪

Wt in Example 18.
s
0 1 2 3 4 5 6 7

dimπs(G⊥3 ) 1 4 8 11 — — — —

dimπs((G+3 )
⊥) 1 4 8 10 12 — — —

dimπs(G⊥4 ) 1 4 8 10 12 — — —

dimπs((G+4 )
⊥) 1 4 8 9 10 12 — —

dimπs(G⊥5 ) 1 2 2 2 3 5 — —

dimπs((G+5 )
⊥) 1 2 2 2 3 4 6 —

dimπs(G⊥6 ) 1 2 2 2 2 2 3 —

dimπs((G+6 )
⊥) 1 2 2 2 2 2 2 3

Table 3
Showing rankMs(L∗)
for generic L∗ ∈ Kt,�
in Example 18.
t s

0 1 2 3

3 1 4 — —
4 1 4 8 —
5 1 2 8 —
6 1 2 2 10

equality can be verified by evaluating the input polynomials hj at the points v ∈ VC(J) ∩ Rn. Anyway, one can also observe
that the conditions (3a)–(3b) hold at order (t, s) = (5, 3), in which case one can directly conclude VR(I) = VC(J) ∩ Rn.
Finally, we can even conclude J = R√I since dimπs(G⊥t ) = |VR(I)| (using the last claim in Theorem 4).
The ranks of the moment matrices involved in the computation are shown in Table 3. Observe that the rank condition

(17) holds at order (t, s) = (6, 2), i.e.

rankM2(L∗) = rankM1(L∗) for generic L∗ ∈ K6,�.

(To beprecise, as 2 = s < D = 3,weuse [12, Prop. 4.1] and checkwhether the extracted roots belong toVR(I) afterwards.)
In this small example, we see that we can improve efficiency over the general complex-root algorithm if we are only

interested in computing the real roots. Indeed the prolongation–projection algorithm terminates at order (t, s) = (5, 2) in
the real case while it terminates at order (6, 3) in the complex case, however at the price of solving an SDP in the real case.
Moreover, compared to the real-root moment-matrix algorithm of [12], we save the computation of the last momentmatrix
M3(L∗) for L∗ ∈ K6,�.
Modifying the above example by replacing each polynomial hi by hi · (1 +

∑
i x
2
1) yields an example with a positive

dimensional complex variety, while the real variety is unchanged. The proposed algorithm still converges, this time at order
(t, s) = (7, 2) and allows the extraction of the two real roots.

Example 19. Consider the ideal I = (h1, h2, h3) ⊆ R[x1, x2], where

h1 = x42x1 + 3x
3
1 − x

4
2 − 3x

2
1,

h2 = x21x2 − 2x
2
1,

h3 = 2x42x1 − x
3
1 − 2x

4
2 + x

2
1,

and D = 5, taken from [3, p.40]. The corresponding variety consists of two (real) points, one of which has multiplicity 8.
Table 4 shows the dimensions of the projections of the sets G⊥t and (G

+

t )
⊥ with Gt = Ht ∪Wt . The conditions (3a)–(3b)

hold at order (t, s) = (6, s)with 2 ≤ s ≤ 5, i.e.

dimπs(G⊥6 ) = dimπs−1(G
⊥

6 ) = dimπs((G
+

6 )
⊥) for 2 ≤ s ≤ 5,

the conditions (18a)–(18b) hold at order (t, s) = (6, 2), i.e.

dimπ1(G⊥6 ) = dimπ4(G
⊥

6 ) = dimπ4((G
+

6 )
⊥),

and the extracted roots are
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Table 4
Dimension table for πs(G⊥t ) and πs((G

+

t )
⊥)with Gt = Ht ∪

Wt in Example 19.
s
0 1 2 3 4 5 6 7

dimπs(G⊥5 ) 1 3 5 6 8 10 — —

dimπs((G+5 )
⊥) 1 3 5 6 6 8 10 —

dimπs(G⊥6 ) 1 2 2 2 2 2 4 —

dimπs((G+6 )
⊥) 1 2 2 2 2 2 2 4

Table 5
Showing rankMs(L∗)
for generic L∗ ∈ Kt,�
in Example 19.
t s

0 1 2 3

5 1 3 5 —
6 1 2 2 4

Table 6
Dimension table for πs(H⊥t ) in Example 19.

s
0 1 2 3 4 5 6 7 8 9 10

dimπs(K5) 1 3 6 8 11 13 — — — — —
dimπs(K6) 1 3 6 8 9 11 13 — — — —
dimπs(K7) 1 3 6 8 9 9 11 13 — — —
dimπs(K8) 1 3 6 8 9 9 9 11 13 — —
dimπs(K9) 1 3 6 8 9 9 9 9 11 13 —
dimπs(K10) 1 3 6 8 9 9 9 9 9 11 13

v1 =
[
−6.17e-6 1.10e-5

]
v2 =

[
0.9988 1.9998

]
with an accuracy of ε(v1) < 2e-10 and ε(v2) < 4e-3 and maximum commutativity error c(X) < 3e-5.
The ranks of the moment matrices involved in the computations are shown in Table 5. As predicted by Proposition 12,
condition (17) holds at order (t, s) = (6, 2), i.e.

rankM2(L∗) = rankM1(L∗) for generic L∗ ∈ K6,�.

Moreover, the returned ideal J satisfies J = (KerM1(L∗)) =
R√I . Table 6 shows the dimensions of the projectionsπs(H⊥t ) for

the complex-root prolongation–projection algorithm. The conditions (3a)–(3b) are satisfied at order (t, s) = (7, 5), allowing
(in principle) to extract the two roots with their corresponding multiplicities. The appearance of multiple roots requires a
careful choice of the extraction procedure using multiplication operators. We employ the approach described in [6] using
reordered Schur factorization. At order (t, s) = (7, 5), numerical problems prevent a successful extraction despite this
algorithm.However, at order (t, s) = (8, 5), themultiplicationmatrices (onwhich the reordered Schur factorizationmethod
is applied) have a commutativity error of c(X) < 6.25e-16. Thus, we can extract the root

v =
[
1 2

]
with accuracy ε(v) < 1.38e-14 and the 8-fold root at the origin with an even higher accuracy of ε(vi) < 1.75e-32.
Note that the real version of this algorithm, working directly with the real radical of the ideal, does not require these

considerations as it eliminates multiplicities.

Example 20. This example is taken from [28] and represents a Gaussian quadrature formula with two weights and two
knots, namely, I = (h1, . . . , h4), where

h1 = x1 + x2 − 2,
h2 = x1x3 + x2x4,

h3 = x1x23 + x2x
2
4 −

2
3
,

h4 = x1x33 + x2x
3
4,
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Table 7
Dimension table forπs(G⊥t ) andπs((G

+

t )
⊥)withGt = Ht∪Wt

in Example 20.
s
0 1 2 3 4 5 6 7

dimπs(G⊥4 ) 1 3 7 11 20 — — —

dimπs((G+4 )
⊥) 1 3 4 8 12 23 — —

dimπs(G⊥5 ) 1 2 2 2 5 16 — —

dimπs((G+5 )
⊥) 1 2 2 2 5 9 22 —

dimπs(G⊥6 ) 1 2 2 2 2 16 18 —

dimπs((G+6 )
⊥) 1 2 2 2 2 2 2 2

with D = 4 and |VR(I)| = |VC(I)| = 2. Table 7 shows the dimensions for the projections of the sets G⊥t and (G
+

t )
⊥ with

Gt = Ht ∪Wt and Table 8 shows the ranks of the moment matricesMs(L∗) for generic L∗ ∈ Kt,�. The conditions (3a)–(3b)
hold at order (t, s) = (5, 2) and the extracted roots are

v1 =
[
1 1 −0.5774 0.5774

]
v2 =

[
1 1 0.5774 −0.5774

]
.

with an accuracy of ε(v1) < 2e-11 and ε(v2) < 2e-11 and maximum commutativity error c(X) < 4e-14. Here again the
algorithm returns the ideal J = R√I , since dimπ2(G⊥5 ) = |VR(I)| = 2. On the other hand, the moment-matrix algorithm of
[12] terminates at order (t, s) = (6, 2), thus later than the prolongation–projection algorithm.

Example 21. The following 6-dimensional system is taken from http://www.mat.univie.ac.at/∼neum/glopt/coconut/
Benchmark/Library3/katsura5.mod and is known under the name Katsura 5:

h1 = 2x26 + 2x
2
5 + 2x

2
4 + 2x

2
3 + 2x

2
2 + x

2
1 − x1,

h2 = x6x5 + x5x4 + 2x4x3 + 2x3x2 + 2x2x1 − x2,

h3 = 2x6x4 + 2x5x3 + 2x4x2 + x22 + 2x3x1 − x3,
h4 = 2x6x3 + 2x5x2 + 2x3x2 + 2x4x1 − x4,

h5 = x23 + 2x6x1 + 2x5x1 + 2x4x1 − x5,
h6 = 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 − 1,

with D = 2, |VC(I)| = 32, and |VR(I)| = 12. The projection dimensions are shown in Table 9.
The solution points

v1 =
[
1 8.73e−7 2.14e−6 2.48e−7 2.23e−6 −1.29e−6

]
,

v2 =
[
0.277 0.226 0.162 0.0858 0.0115 −0.124

]
,

v3 =
[
0.136 0.0428 0.0417 0.0404 0.0964 0.211

]
,

v4 =
[
0.462 0.309 0.0553 −0.102 −0.0844 0.0917

]
,

v5 =
[
0.441 0.151 0.0225 0.219 0.0935 −0.207

]
,

v6 =
[
0.239 0.0608 −0.0622 −0.0233 0.186 0.219

]
,

v7 =
[
0.753 0.0532 0.191 −0.114 −0.146 0.139

]
,

v8 =
[
0.726 −0.0503 0.122 0.164 0.109 −0.208

]
,

v9 =
[
0.409 −0.0732 0.0657 −0.127 0.252 0.178

]
,

v10 =
[
0.292 −0.101 0.181 −0.0591 0.193 0.141

]
,

v11 =
[
0.590 0.0422 0.327 −0.0642 −0.0874 −0.0132

]
,

v12 =
[
0.68 0.266 −0.154 0.0323 0.0897 −0.0735

]
,

were extracted at order (t, s) = (6, 3), when conditions (3a)–(3b) were first satisfied. The maximum evaluation error was
found to be maxi ε(vi) < 2.4e-4 and the commutativity error c(X) < 6.2e-6. Again the algorithm returns the ideal J =

R√I
as dimπ3(G⊥6 ) = |VR(I)| = 12. In this example the moment-matrix method [12] also extracts the 12 real solutions at order
(t, s) = (6, 3).

http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Library3/katsura5.mod
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Table 8
Showing rankMs(L∗)
for generic L∗ ∈ Kt,�
in Example 20.
t s

0 1 2 3

4 1 4 9 —
5 1 2 5 —
6 1 2 2 9

Table 9
Dimension table for πs(G⊥t ) and πs((G

+

t )
⊥)with Gt = Ht ∪Wt

in Example 21.
s
0 1 2 3 4 5 6 7

dimπs(G⊥2 ) 1 6 16 — — — — —

dimπs((G+2 )
⊥) 1 6 16 26 — — — —

dimπs(G⊥3 ) 1 6 16 26 — — — —

dimπs((G+3 )
⊥) 1 6 16 26 31 — — —

dimπs(G⊥4 ) 1 6 16 26 31 — — —

dimπs((G+4 )
⊥) 1 6 16 26 31 32 — —

dimπs(G⊥5 ) 1 6 16 26 31 32 — —

dimπs((G+5 )
⊥) 1 6 16 26 31 32 32 —

dimπs(G⊥6 ) 1 6 12 12 12 12 12 —

dimπs((G+6 )
⊥) 1 6 12 12 12 12 12 12

7. Conclusion

This work was motivated by the great success of numerical–algebraic methods in recent years. Incorporating features
specific to real root finding into efficient symbolic–numeric methods may lead to more efficient algorithms for numerically
computing all real roots of a given system of polynomials. The contribution of this paper is a first attempt in this direction
as it implements real-algebraic features into the existing symbolic–numeric algorithm described in [31]. Concretely, the
resulting algorithm uses semidefinite programming techniques in addition to standard numerical linear algebra techniques.
It is not only applicable to zero-dimensional ideals, but to all problems for which the real variety is finite. An extension to
zero-dimensional basic semi-algebraic subsets is also possible, along the same lines as in [12].
The new approach relies on a dual space characterization of (an approximation of) the real radical ideal, obtained by

combining ideas of [12,31], but the new prolongation–projection algorithmmay terminate earlier than the moment-matrix
method of [12]. Although preliminary computational results are encouraging, whether the characterization at hand can
lead to a new treatment of real-algebraic problems is still to be demonstrated on a larger sample of problems. An important
computational issue is how to efficiently solve the underlying semidefinite program for large problems involving high degree
polynomialswithmany variables. Exploiting sparsity in order to decrease the size of the semidefinite program is a promising
direction and the work of Kojima et al. [11] and Lasserre [14] is a first important step in this direction. Strategies similar to
those used in Gröbner/border basis computations can be employed to further increase efficiency of the proposed method,
particularly in view of the linear algebra steps involved, e.g. the dimension tests.
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