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CHAPTER 1

POSITIVE SEMIDEFINITE
MATRICES

In this chapter we collect basic facts about positive semidefinite matrices, which
we will need in the next chapter to define semidefinite programs.

We use the following notation. Throughout ‖x‖ denotes the Euclidean norm
of x ∈ Rn, defined by ‖x‖ =

√
xTx =

√∑n
i=1 x

2
i . An orthonormal basis of

Rn is a set of unit vectors {u1, . . . , un} that are pairwise orthogonal: ‖ui‖ = 1
for all i and uTi uj = 0 for all i 6= j. For instance, the standard unit vectors
e1, . . . , en ∈ Rn form an orthonormal basis. In denotes the n×n identity matrix
and Jn denotes the all-ones matrix (we may sometimes omit the index n if the
dimension is clear from the context). We let Sn denote the set of symmetric n×n
matrices and O(n) denote the set of orthogonal matrices. A matrix P ∈ Rn×n
is orthogonal if PPT = In or, equivalently, PTP = In, i.e. the rows (resp., the
columns) of P form an orthonormal basis of Rn. A diagonal matrix D ∈ Sn has
entries zero at all off-diagonal positions: Dij = 0 for all i 6= j.

1.1 Basic definitions

1.1.1 Characterizations of positive semidefinite matrices

We recall the notions of eigenvalues and eigenvectors. For a matrix X ∈ Rn×n,
a nonzero vector u ∈ Rn is an eigenvector of X if there exists a scalar λ ∈ R
such that Xu = λu, then λ is the eigenvalue of X for the eigenvector u. A
fundamental property of symmetric matrices is that they admit a set of eigen-
vectors {u1, . . . , un} forming an orthonormal basis of Rn. This is the spectral
decomposition theorem, one of the most important theorems about symmetric

1



matrices.

Theorem 1.1.1. (Spectral decomposition theorem) Any real symmetric matrix
X ∈ Sn can be decomposed as

X =

n∑
i=1

λiuiu
T
i , (1.1)

where λ1, . . . , λn ∈ R are the eigenvalues of X and where u1, . . . , un ∈ Rn are
the corresponding eigenvectors which form an orthonormal basis of Rn. In matrix
terms, X = PDPT, where D is the diagonal matrix with the λi’s on the diagonal
and P is the orthogonal matrix with the ui’s as its columns.

Next we define positive semidefinite matrices and give several equivalent
characterizations.

Theorem 1.1.2. (Positive semidefinite matrices) The following assertions are
equivalent for a symmetric matrix X ∈ Sn.

(1) X is positive semidefinite, written as X � 0, which is defined by the prop-
erty: xTXx ≥ 0 for all x ∈ Rn.

(2) The smallest eigenvalue of X is nonnegative, i.e., the spectral decomposition
of X is of the form X =

∑n
i=1 λiuiu

T
i with all λi ≥ 0.

(3) X = LLT for some matrix L ∈ Rn×k (for some k ≥ 1), called a Cholesky
decomposition of X.

(4) There exist vectors v1, . . . , vn ∈ Rk (for some k ≥ 1) such that Xij = vTi vj
for all i, j ∈ [n]; the vectors vi’s are called a Gram representation of X.

(5) All principal minors of X are non-negative.

Proof. (i) =⇒ (ii): By assumption, uTi Xui ≥ 0 for all i ∈ [n]. On the other hand,
Xui = λiui implies uTi Xui = λi‖ui‖2 = λi, and thus λi ≥ 0 for all i.
(ii) =⇒ (iii): By assumption, X has a decomposition (1.1) where all scalars λi
are nonnegative. Define the matrix L ∈ Rn×n whose i-th column is the vector√
λiui. Then X = LLT holds.

(iii) =⇒ (iv): Assume X = LLT where L ∈ Rn×k. Let vi ∈ Rk denote the i-th
row of L. The equality X = LLT gives directly that Xij = vTi vj for all i, j ∈ [n].
(iv) =⇒ (i): Assume Xij = vTi vj for all i, j ∈ [n], where v1, . . . , vn ∈ Rk, and let
x ∈ Rn. Then, xTXx =

∑n
i,j=1 xixjXij =

∑n
i,j=1 xixjv

T
i vj = ‖

∑n
i=1 xivi‖2 is

thus nonnegative. This shows that X � 0.
The equivalence (i) ⇐⇒ (v) can be found in any standard Linear Algebra text-
book (and will not be used here).

Observe that for a diagonal matrix X, X � 0 if and only if its diagonal
entries are nonnegative: Xii ≥ 0 for all i ∈ [n].
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The above result extends to positive definite matrices. A matrix X is said to
be positive definite, which is denoted as X � 0, if it satisfies any of the following
equivalent properties: (1) xTXx > 0 for all x ∈ Rn \ {0}; (2) all eigenvalues
of X are strictly positive; (3) in a Cholesky decomposition of X, the matrix L
is nonsingular; (4) in any Gram representation of X as (vTi vj)

n
i,j=1, the system

of vectors {v1, . . . , vn} has full rank n; and (5) all the principal minors of X
are positive (in fact positivity of all the leading principal minors already implies
positive definiteness, this is known as Sylvester’s criterion).

1.1.2 The positive semidefinite cone Sn
�0

We let Sn�0 denote the set of all positive semidefinite matrices in Sn, called the
positive semidefinite cone. Indeed, Sn�0 is a convex cone in Sn, i.e., the following
holds:

X,X ′ � 0, λ, λ′ ≥ 0 =⇒ λX + λ′X ′ � 0

(check it). Moreover, Sn�0 is a closed subset of Sn. (Assume we have a sequence
of matrices X(i) � 0 converging to a matrix X as i → ∞ and let x ∈ Rn. Then
xTX(i)x ≥ 0 for all i and thus xTXx ≥ 0 by taking the limit.) Moreover, as a
direct application of (1.1), we find that the cone Sn�0 is generated by rank one
matrices, i.e.,

Sn�0 = cone{xxT : x ∈ Rn}. (1.2)

Furthermore, the cone Sn�0 is full-dimensional and the matrices lying in its inte-
rior are precisely the positive definite matrices.

1.1.3 The trace inner product

The trace of an n× n matrix A is defined as

Tr(A) =
n∑
i=1

Aii.

Taking the trace is a linear operation:

Tr(λA) = λTr(A), Tr(A+B) = Tr(A) + Tr(B).

Moreover, the trace satisfies the following properties:

Tr(A) = Tr(AT), Tr(AB) = Tr(BA), Tr(uuT) = uTu = ‖u‖2 for u ∈ Rn. (1.3)

Using the fact that Tr(uuT) = 1 for any unit vector u, combined with (1.1), we
deduce that the trace of a symmetric matrix is equal to the sum of its eigenval-
ues.

Lemma 1.1.3. If X ∈ Sn has eigenvalues λ1, . . . , λn, then Tr(X) = λ1+ . . .+λn.
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One can define an inner product, denoted as 〈·, ·〉, on Rn×n by setting

〈A,B〉 = Tr(ATB) =

n∑
i,j=1

AijBij for A,B ∈ Rn×n. (1.4)

This defines the Frobenius norm on Rn×n by setting ‖A‖ =
√
〈A,A〉 =

√∑n
i,j=1A

2
ij .

In other words, this is the usual Euclidean norm, just viewing a matrix as a vec-
tor in Rn2

. For a vector x ∈ Rn we have

〈A, xxT〉 = xTAx.

The following property is useful to know:

Lemma 1.1.4. Let A,B ∈ Sn and P ∈ O(n). Then, 〈A,B〉 = 〈PAPT, PBPT〉.

Proof. Indeed, 〈PAPT, PBPT〉 is equal to

Tr(PAPTPBPT) = Tr(PABPT) = Tr(ABPTP ) = Tr(AB) = 〈A,B〉,

where we have used the fact that PTP = PPT = In and the commutativity rule
from (1.3).

Positive semidefinite matrices satisfy the following fundamental property:

Lemma 1.1.5. For a symmetric matrix A ∈ Sn,

A � 0 ⇐⇒ 〈A,B〉 ≥ 0 for all B ∈ Sn�0.

Proof. The proof is based on the fact that Sn�0 is generated by rank 1 matrices
(recall (1.2)). Indeed, if A � 0 then 〈A, xxT 〉 = xTAx ≥ 0 for all x ∈ Rn, and
thus 〈A,B〉 ≥ 0 for all B ∈ Sn�0. Conversely, if 〈A,B〉 ≥ 0 for all B ∈ Sn�0 then,
for B = xxT, we obtain that xTAx ≥ 0, which shows A � 0.

In other words, the cone Sn�0 is self dual, i.e., it coincides with its dual cone1.

1.2 Basic properties

1.2.1 Schur complements

We recall some basic operations about positive semidefinite matrices. The proofs
of the following Lemmas 1.2.1, 1.2.2 and 1.2.3 are easy and left as an exercise.

Lemma 1.2.1. If X � 0 then every principal submatrix of X is positive semidefi-
nite.

1By definition, the dual of the cone Sn�0 is the set of all matrices Y ∈ Sn satisfying 〈Y,X〉 ≥ 0

for all X ∈ Sn�0.
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Moreover, any matrix congruent to X � 0 (i.e., of the form PXPT where P
is nonsingular) is positive semidefinite:

Lemma 1.2.2. Let P ∈ Rn×n be a nonsingular matrix. Then,

X � 0⇐⇒ PXPT � 0.

Lemma 1.2.3. Let X ∈ Sn be a matrix having the following block-diagonal form:

X =

(
A 0
0 C

)
.

Then,
X � 0⇐⇒ A � 0 and B � 0.

We now introduce the notion of Schur complement, which can be very useful
for showing positive semidefiniteness.

Lemma 1.2.4. Let X ∈ Sn be a matrix in block form

X =

(
A B
BT C

)
, (1.5)

where A ∈ Sp, C ∈ Sn−p and B ∈ Rp×(n−p). If A is non-singular, then

X � 0 ⇐⇒ A � 0 and C −BTA−1B � 0.

The matrix C −BTA−1B is called the Schur complement of A in X.

Proof. One can verify that the following identity holds:

X = PT

(
A 0
0 C −BTA−1B

)
P, where P =

(
I A−1B
0 I

)
.

As P is nonsingular, we deduce that X � 0 if and only if (P−1)TXP−1 � 0 (use
Lemma 1.2.2), which is thus equivalent to A � 0 and C − BTA−1B � 0 (use
Lemma 1.2.3).

1.2.2 Kronecker and Hadamard products

Given two matrices A = (Aij) ∈ Rn×m and B = (Bhk) ∈ Rp×q, their Kronecker
product is the matrix A⊗B ∈ Rnp×mq with entries

Aih,jk = AijBhk ∀i ∈ [n], j ∈ [m], h ∈ [p], k ∈ [q].

The matrix A ⊗ B can be seen as the n ×m block matrix whose ij-th block is
the p× q matrix AijB for all i ∈ [n], j ∈ [m]. Alternatively, it can be seen as the
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p× q block matrix whose hk-block is the n×m matrix BhkA for h ∈ [p], k ∈ [q].
As an example, I2 ⊗ J3 takes the form:

I2 I2 I2
I2 I2 I2
I2 I2 I2

 =


1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

 ,

or, after permuting rows and columns, the form:

(
J3 0
0 J3

)
=


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 .

This includes in particular defining the Kronecker product u ⊗ v ∈ Rnp of
two vectors u ∈ Rn and v ∈ Rp, with entries (u⊗ v)ih = uivh for i ∈ [n], h ∈ [p].

Given two matrices A,B ∈ Rn×m, their Hadamard product is the matrix
A ◦B ∈ Rn×m with entries

(A ◦B)ij = AijBij ∀i ∈ [n], j ∈ [m].

Note that A ◦B coincides with the principal submatrix of A⊗B indexed by the
subset of all ‘diagonal’ pairs of indices of the form (ii, jj) for i ∈ [n], j ∈ [m].

Here are some (easy to verify) facts about these products, where the matrices
and vectors have the appropriate sizes.

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

2. In particular, (A⊗B)(u⊗ v) = (Au)⊗ (Bv).

3. AssumeA ∈ Sn andB ∈ Sp have, respectively, eigenvalues α1, . . . , αn and
β1, . . . , βp. Then A⊗B ∈ Snp has eigenvalues αiβh for i ∈ [n], h ∈ [p]. In
particular,

A,B � 0 =⇒ A⊗B � 0 and A ◦B � 0,

A � 0 =⇒ A◦k = ((Aij)
k)ni,j=1 � 0 ∀k ∈ N.

1.2.3 Properties of the kernel

Here is a first useful property of the kernel of positive semidefinite matrices.

Lemma 1.2.5. Assume X ∈ Sn is positive semidefinite and let x ∈ Rn. Then,

Xx = 0⇐⇒ xTXx = 0.
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Proof. The ‘only if’ part is clear. Conversely, decompose x =
∑n
i=1 xiui in the

orthonormal base of eigenvectors of X. Then, Xx =
∑
i λixiui and xTXx =∑

i x
2
iλi. Hence, 0 = xTXx gives 0 =

∑
i λix

2
i and thus xi = 0 for each i for

which λi > 0. This shows that x is a linear combination of the eigenvectors ui
with eigenvalue λi = 0, and thus Xx = 0.

Clearly, X � 0 implies Xii ≥ 0 for all i (because Xii = eTi Xei ≥ 0). More-
over, if X � 0 has a zero diagonal entry at position (i, i) then the whole i-th
row/column is identically zero. This follows from the following property:

Lemma 1.2.6. Let X ∈ Sn be a matrix in block form

X =

(
A B
BT C

)
, (1.6)

where A ∈ Sp, C ∈ Sn−p and B ∈ Rp×(n−p). Assume y ∈ Rp belongs to the kernel
of A, i.e., Ay = 0. Then the vector x = (y, 0, . . . , 0) ∈ Rn (obtained from y by
adding zero coordinates at the remaining n− p positions) belongs to the kernel of
X, i.e., Xx = 0.

Proof. We have: xTXx = uTAu = 0 which, in view of Lemma 1.2.5, implies
that Xx = 0.

We conclude with the following property: The inner product of two positive
semidefinite matrices is zero if and only if their matrix product is equal to 0.

Lemma 1.2.7. Let A,B � 0. Then,

〈A,B〉 = 0⇐⇒ AB = 0.

Proof. The ‘only if’ part is clear since 〈A,B〉 = Tr(AB). Assume now 〈A,B〉 = 0.
Say, B =

∑n
i=1 λiuiu

T
i , where λi ≥ 0 and the ui form an orthonormal base.

Then, 0 = 〈A,B〉 =
∑
i λi〈A, uiuTi 〉. This implies that each term λi〈A, uiuTi 〉 =

λiu
T
i Aui is equal to 0, since λi ≥ 0 and uTi Aui ≥ 0 (as A � 0). Hence, λi > 0

implies uTi Aui = 0 and thus Aui = 0 (by Lemma 1.2.5). Therefore, each term
λiAui is equal to 0 and thus AB = A(

∑
i λiuiu

T
i ) =

∑
i λiAuiu

T
i = 0.

1.3 Exercises

1.1 Given x1, . . . , xn ∈ R, consider the following matrix

X =


1 x1 . . . xn
x1 x1 0 0
... 0

. . . 0
xn 0 0 xn

 .

That is, X ∈ Sn+1 is the matrix indexed by {0, 1, . . . , n}, with entries
X00 = 1, X0i = Xi0 = Xii = xi for i ∈ [n], and all other entries are equal
to 0.

7



Show: X � 0 if and only if xi ≥ 0 for all i ∈ [n] and
∑n
i=1 xi ≤ 1.

Hint: Use Schur complements.

1.2. Define the matrix Fij = (ei−ej)(ei−ej)T ∈ Sn for 1 ≤ i < j ≤ n. That is,
Fij has entries 1 at positions (i, i) and (j, j), entries −1 at (i, j) and (j, i),
and entries 0 at all other positions.

(a) Show: Fij � 0.

(b) Assume that X ∈ Sn satisfies the condition:

Xii ≥
∑

j∈[n]:j 6=i

|Xij | for all i ∈ [n].

(Then X is said to be diagonally dominant.)
Show: X � 0.

1.3 Let X ∈ {±1}n×n be a symmetric matrix whose entries are 1 or −1.

Show: X � 0 if and only if X = xxT for some x ∈ {±1}n.
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CHAPTER 2

SEMIDEFINITE PROGRAMS

Semidefinite programming is the analogue of linear programming but now, in-
stead of having variables that are vectors assumed to lie in the nonnegative
orthant Rn≥0, we have variables that are matrices assumed to lie in the cone Sn�0
of positive semidefinite matrices. Thus semidefinite optimization can be seen as
linear optimization over the convex cone of positive semidefinite matrices.

In this chapter we introduce semidefinite programs and give some basic
properties, in particular, about duality and complexity.

For convenience we recap some notation, mostly already introduced in the
previous chapter. Sn denotes the set of symmetric n× n matrices. For a matrix
X ∈ Sn, X � 0 means that X is positive semidefinite and Sn�0 is the cone of
positive semidefinite matrices; X � 0 means that X is positive definite.

Throughout In (or simply I when the dimension is clear from the con-
text) denotes the n × n identity matrix, e denotes the all-ones vector, i.e.,
e = (1, . . . , 1)T ∈ Rn, and Jn = eeT (or simply J) denotes the all-ones ma-
trix. The vectors e1, . . . , en are the standard unit vectors in Rn, and the matrices
Eij = (eie

T
j + eje

T
i )/2 form the standard basis of Sn. O(n) denotes the set

of orthogonal matrices, where A is orthogonal if AAT = In or, equivalently,
ATA = In.

We consider the trace inner product: 〈A,B〉 = Tr(ATB) =
∑n
i,j=1AijBij for

two matrices A,B ∈ Rn×n. Here Tr(A) = 〈In, A〉 =
∑n
i=1Aii denotes the trace

of A. Recall that Tr(AB) = Tr(BA); in particular, 〈QAQT, QBQT〉 = 〈A,B〉 if Q
is an orthogonal matrix. A well known property of the positive semidefinite cone
Sn�0 is that it is self-dual: for a matrix X ∈ Sn, X � 0 if and only if 〈X,Y 〉 ≥ 0
for all Y ∈ Sn�0. For a matrix A ∈ Sn, diag(A) denotes the vector in Rn with
entries are the diagonal entries of A and, for a vector a ∈ Rn, Diag(a) ∈ Sn is
the diagonal matrix with diagonal entries the entries of a.
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2.1 Semidefinite programs

2.1.1 Recap on linear programs

We begin with recalling the standard form of a linear program, in primal form:

p∗ = max
x∈Rn
{cTx : aTj x = bj (j ∈ [m]), x ≥ 0}, (2.1)

where c, a1, . . . , am ∈ Rn and b = (bj)
m
j=1 ∈ Rm are the given data of the LP.

Then the dual LP reads:

d∗ = min
y∈Rm


m∑
j=1

bjyj :

m∑
j=1

yjaj − c ≥ 0

 . (2.2)

We recall the following well known facts about LP duality:

Theorem 2.1.1. The following holds for the programs (2.1) and (2.2).

1. (weak duality) If x is primal feasible and y is dual feasible then cTx ≤ bTy.
Thus, p∗ ≤ d∗.

2. (strong duality) p∗ = d∗ unless both programs (2.1) and (2.2) are infeasi-
ble (in which case p∗ = −∞ and d∗ = +∞).

If p∗ is finite (i.e., (2.1) is feasible and bounded) or if d∗ is finite (i.e., (2.2) is
feasible and bounded), then p∗ = d∗ and both (2.1) and (2.2) have optimum
solutions.

3. (optimality condition) If (x, y) is a pair of primal/dual feasible solutions,
then they are primal/dual optimal solutions if and only if cTx = bTy or,
equivalently, the complementary slackness condition holds:

xi

 m∑
j=1

yjaj − c


i

= 0 ∀i ∈ [n].

2.1.2 Semidefinite program in primal form

The standard form of a semidefinite program (abbreviated as SDP) is a maxi-
mization problem of the form

p∗ = sup
X
{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}. (2.3)

Here A1, . . . , Am ∈ Sn are given n×n symmetric matrices and b ∈ Rm is a given
vector, they are the data of the semidefinite program (2.3). The matrix X is the
variable, which is constrained to be positive semidefinite and to lie in the affine
subspace

W = {X ∈ Sn | 〈Aj , X〉 = bj (j ∈ [m])}

10



of Sn. The goal is to maximize the linear objective function 〈C,X〉 over the
feasible region

F = Sn�0 ∩W,

obtained by intersecting the positive semidefinite cone Sn�0 with the affine sub-
spaceW.

Of course, one can also handle minimization problems, of the form

inf
X
{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}

since they can be brought into the above standard maximization form using the
fact that inf〈C,X〉 = − sup〈−C,X〉.

In the special case when the matrices Aj , C are diagonal matrices, with di-
agonals aj , c ∈ Rn, then the program (2.3) reduces to the linear program (2.1).
Indeed, let x denote the vector consisting of the diagonal entries of the matrix
X, so that x ≥ 0 ifX � 0, and 〈C,X〉 = cTx, 〈Aj , X〉 = aTj x. Hence semidefinite
programming contains linear programming as a special instance.

A feasible solutionX ∈ F is said to be strictly feasible ifX is positive definite.
The program (2.3) is said to be strictly feasible if it admits at least one strictly
feasible solution.

Note that we write a supremum in (2.3) rather than a maximum. This is
because the optimum value p∗ might not be attained in (2.3). In general, p∗ ∈
R ∪ {±∞}, with p∗ = −∞ if the problem (2.3) is infeasible (i.e., F = ∅) and
p∗ = +∞ might occur in which case we say that the problem is unbounded.

We give a small example as an illustration.

Example 2.1.2. Consider the problem of minimizing/maximizing X11 over the
feasible region

Fa =
{
X ∈ S2 : X =

(
X11 a
a 0

)
� 0
}

where a ∈ R is a given parameter.

Note that det(X) = −a2 for any X ∈ Fa. Hence, if a 6= 0 then Fa = ∅ (the
problem is infeasible). Moreover, if a = 0 then the problem is feasible but not
strictly feasible. The minimum value of X11 over F0 is equal to 0, attained at
X = 0, while the maximum value of X11 over F0 is equal to ∞ (the problem is
unbounded).

Example 2.1.3. As another example, consider the problem

p∗ = inf
X∈S2

{
X11 :

(
X11 1
1 X22

)
� 0

}
. (2.4)

Then the infimum is p∗ = 0 which is reached at the limit when X11 = 1/X22 and
letting X22 tend to∞. So the infimum is not attained.
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2.1.3 Semidefinite program in dual form

The program (2.3) is often referred to as the primal SDP in standard form. One
can define its dual SDP, which takes the form:

d∗ = inf
y


m∑
j=1

bjyj = bTy :

m∑
j=1

yjAj − C � 0

 . (2.5)

Thus the dual program has variables yj , one for each linear constraint of the pri-
mal program. The positive semidefinite constraint arising in (2.5) is also named
a linear matrix inequality (LMI). The SDP (2.5) is said to be strictly feasible if it
has a feasible solution y for which

∑
j yjAj − C � 0.

Example 2.1.4. Let us work out the dual SDP of the SDP in Example 2.1.3. First
we write (2.4) in standard primal form as

− p∗ = max
X∈S2

{〈−E11, X〉 : 〈E12, X〉 = 2}. (2.6)

As there is one linear equation, there is one dual variable y and the dual SDP reads:

− d∗ = inf
y∈R
{2y : yE12 + E11 =

(
1 y
y 0

)
� 0}. (2.7)

Hence y = 0 is the only dual feasible solution. Hence, the dual optimum value is
d∗ = 0, attained at y = 0.

2.1.4 Duality

The following facts relate the primal and dual SDP’s. They are simple, but very
important.

Lemma 2.1.5. Let X be a feasible solution of (2.3) and let y be a feasible solution
of (2.5). Then the following holds.

1. (weak duality) We have: 〈C,X〉 ≤ bTy and thus p∗ ≤ d∗.

2. (optimality condition) Assume that p∗ = d∗ holds. Then X is an optimal
solution of (2.3) and y is an optimal solution of (2.5) if and only if equality:
〈C,X〉 = bTy holds or, equivalently, 〈X,

∑m
j=1 yjAj−C〉 = 0 which, in turn,

is equivalent to the following complementarity condition:

X

 m∑
j=1

yjAj − C

 = 0.

Proof. Let (X, y) is a primal/dual pair of feasible solutions.
1. We have:

〈X,
∑
j

yjAj −C〉 =
∑
j

〈X,Aj〉yj − 〈X,C〉 =
∑
j

bjyj − 〈X,C〉 = bTy− 〈C,X〉,

(2.8)

12



where we used the fact that 〈Aj , X〉 = bj to get the second equality. As both
X and

∑
j yjAj − C are positive semidefinite, we get: 〈X,

∑
j yjAj − C〉 ≥ 0,

which implies 〈C,X〉 ≤ bTy and thus p∗ ≤ d∗.
2. By assumption, we have: 〈C,X〉 ≤ p∗ = d∗ ≤ bTy. Hence, (X, y) form a pair
of primal/dual optimal solutions if and only if 〈C,X〉 = bTy or, equivalently
(in view of relation (2.8)), 〈X,

∑
j yjAj − C〉 = 0. Finally, as both X and

Z =
∑
j yjAj − C are positive semidefinite, we deduce that 〈X,Z〉 = 0 if and

only if XZ = 0. (Recall Lemma 1.2.7.)

The quantity d∗ − p∗ is called the duality gap. While there is no duality gap
in LP, there might be a positive duality gap between the primal and dual SDP’s.
When there is no duality gap, i.e., when p∗ = d∗, one says that strong duality
holds. Having strong duality is a very desirable situation, which happens when
at least one of the primal and dual semidefinite programs is strictly feasible. We
only quote the following result on strong duality. For its proof we refer e.g. to
the textbook [1] or to [3].

Theorem 2.1.6. (Strong duality: no duality gap) Consider the pair of primal
and dual programs (2.3) and (2.5).

1. Assume that the dual program (2.5) is bounded from below (d∗ > −∞)
and that it is strictly feasible. Then the primal program (2.3) attains its
supremum (i.e., p∗ = 〈C,X〉 for some primal feasible X) and there is no
duality gap: p∗ = d∗.

2. Assume that the primal program (2.3) is bounded from above (p∗ <∞) and
that it is strictly feasible. Then the dual program (2.5) attains its infimum
(i.e., d∗ = bTy for some dual feasible y) and there is no duality gap: p∗ = d∗.

Consider again the primal and dual SDP’s of Example 2.1.4. Then, the primal
(2.6) is strictly feasible, the dual (2.7) attains its optimum value and there is no
duality gap, while the dual is not strictly feasible and the primal does not attain
its optimum value.

We conclude with an example having a positive duality gap.

Example 2.1.7. Consider the primal semidefinite program with data matrices

C =

−1 0 0
0 −1 0
0 0 0

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 1
0 1 0
1 0 0

 ,

and b1 = 0, b2 = 1. It reads

p∗ = sup{−X11 −X22 : X11 = 0, 2X13 +X22 = 1, X � 0}

and its dual reads

d∗ = inf

y2 : y1A1 + y2A2 − C =

y1 + 1 0 y2
0 y2 + 1 0
y2 0 0

 � 0

 .
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Then any primal feasible solution satisfies X13 = 0, X22 = 1, so that the primal
optimum value is equal to p∗ = −1, attained at the matrix X = E22. Any dual
feasible solution satisfies y2 = 0, so that the dual optimum value is equal to d∗ = 0,
attained at y = 0. Hence there is a positive duality gap: d∗ − p∗ = 1.

Note that in this example both the primal and dual programs are not strictly
feasible.

2.2 Application to eigenvalue optimization

Given a matrix C ∈ Sn, let λmin(C) (resp., λmax(C)) denote its smallest (resp.,
largest) eigenvalue. One can express them (please check it) as follows:

λmax(C) = max
x∈Rn\{0}

xTCx

‖x‖2
= max
x∈Sn−1

xTCx, (2.9)

where Sn−1 = {x ∈ Rn | ‖x‖x = 1} denotes the unit sphere in Rn, and

λmin(C) = min
x∈Rn\{0}

xTCx

‖x‖2
= min
x∈Sn−1

xTCx. (2.10)

(This is known as the Rayleigh principle.) As we now see the largest and small-
est eigenvalues can be computed via a semidefinite program. Namely, consider
the semidefinite program

p∗ = sup {〈C,X〉 : Tr(X) = 〈I,X〉 = 1, X � 0} (2.11)

and its dual program
d∗ = inf

y∈R
{y : yI − C � 0} . (2.12)

In view of (2.9), we have that d∗ = λmax(C). The feasible region of (2.11)
is bounded (all entries of any feasible X lie in [0, 1]) and contains a positive
definite matrix (e.g., the matrix In/n), hence the infimum is attained in (2.12).
Analogously, the program (2.12) is bounded from below (as y ≥ λmax(C) for
any feasible y) and strictly feasible (pick y large enough), hence the infimum is
attained in (2.12). Moreover there is no duality gap: p∗ = d∗. Here we have
applied Theorem 2.1.6. Thus we have shown:

Lemma 2.2.1. The largest and smallest eigenvalues of a symmetric matrix C ∈ Sn
can be expressed with the following semidefinite programs:

λmax(C) = max 〈C,X〉 = min y
s.t. Tr(X) = 1, X � 0 s.t. yIn − C � 0

λmin(C) = min 〈C,X〉 = max y
s.t. Tr(X) = 1, X � 0 s.t. C − yIn � 0
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More generally, also the sum of the k largest eigenvalues of a symmetric
matrix can be computed via a semidefinite program. For details see [4].

Theorem 2.2.2. (Fan’s theorem) Let C ∈ Sn be a symmetric matrix with eigen-
values λ1 ≥ . . . ≥ λn. Then the sum of its k largest eigenvalues is given by any of
the following two programs:

λ1 + · · ·+ λk = max
X∈Sn

{〈C,X〉 : Tr(X) = k, In � X � 0} , (2.13)

λ1 + · · ·+ λk = max
Y ∈Rn×k

{
〈C, Y Y T〉 : Y TY = Ik

}
. (2.14)

2.3 Some facts about complexity

2.3.1 More differences between LP and SDP

We have already seen above several differences between linear programming
and semidefinite programming: there might be a duality gap between the pri-
mal and dual programs and the supremum/infimum might not be attained even
though they are finite. We point out some more differences regarding rationality
and bit size of optimal solutions.

In the classical bit (Turing machine) model of computation an integer num-
ber p is encoded in binary notation, so that its bit size is log p+ 1 (logarithm in
base 2). Rational numbers are encoded as two integer numbers and the bit size
of a vector or a matrix is the sum of the bit sizes of its entries.

Consider a linear program

max{cTx : Ax = b, x ≥ 0} (2.15)

where the dataA, b, c is rational valued. From the point of view of computability
this is a natural assumption and it would be desirable to have an optimal solu-
tion which is also rational-valued. A fundamental result in linear programming
asserts that this is indeed the case: If program (2.15) has an optimal solution,
then it has a rational optimal solution x ∈ Qn, whose bit size is polynomially
bounded in terms of the bit sizes of A, b, c (see e.g. [5]).

On the other hand it is easy to construct instances of semidefinite program-
ming where the data are rational valued, yet there is no rational optimal solu-
tion. For instance, the following program

max

{
x :

(
1 x
x 2

)
� 0

}
(2.16)

attains its maximum at x = ±
√
2.

Consider now the semidefinite program, with variables x1, . . . , xn,

inf

{
xn :

(
1 2
2 x1

)
� 0,

(
1 xi−1

xi−1 xi

)
� 0 for i = 2, . . . , n

}
. (2.17)

Then any feasible solution satisfies xn ≥ 22
n

. Hence the bit-size of an optimal
solution is exponential in n, thus exponential in terms of the bit-size of the data.
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2.3.2 Algorithms

It is well known that linear programs (with rational data c, a1, . . . , am, b) can be
solved in polynomial time. Although the simplex method invented by Dantzig
in 1948 performs very well in practice, it is still an open problem whether it
gives a polynomial time algorithm for solving general LP’s. The first polynomial-
time algorithm for solving LP’s was given by Khachiyan in 1979, based on the
ellipsoid method. The value of this algorithm is however mainly theoretical as
it is very slow in practice. Later the algorithm of Karmarkar in 1984 opened the
way to polynomial time algorithms for LP based on interior-point algorithms,
which also perform well in practice.

What about algorithms for solving semidefinite programs?
First of all, one cannot hope for a polynomial time algorithm permitting to

solve any semidefinite program exactly. Indeed, even if the data of the SDP
are assumed to be rational valued, the output might be an irrational number,
thus not representable in the bit model of computation. Such an instance was
mentioned above in (2.16). Therefore, one can hope at best for an algorithm
permitting to compute in polynomial time an ε-approximate optimal solution.

However, even if we set up to this less ambitious goal of just computing
ε-approximate optimal solutions, we should make some assumptions on the
semidefinite program, roughly speaking, in order to avoid having too large or
too small optimal solutions. An instance of SDP whose output is exponentially
large in the bit size of the data was mentioned above in (2.17).

On the positive side, it is well known that one can test whether a given
rational matrix is positive semidefinite in polynomial time — using Gaussian
elimination. Hence one can test in polynomial time membership in the positive
semidefinite cone and, moreover, if X 6∈ Sn�0, then one can compute in polyno-
mial time a hyperplane strictly separating X from Sn�0 (again as a byproduct of
Gaussian elimination). See Section ?? below for details.

This observation is at the base of the polynomial time algorithm for solving
approximately semidefinite programs, based on the ellipsoid method. Roughly
speaking, one can solve a semidefinite program in polynomial time up to any
given precision. More precisely, we quote the following result describing the
complexity of solving semidefinite programming with the ellipsoid method:

Consider the semidefinite program

p∗ = sup{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0},

where Aj , C, bj are integer valued. Denote by F its feasibility region. Suppose
that an integer R is known a priori such that either F = ∅ or there exists X ∈ F
with ‖X‖ ≤ R. Let ε > 0 be given.Then, either one can find a matrix X∗ at
distance at most ε from F and such that |〈C,X∗〉 − p∗| ≤ ε, or one can find
a certificate that F does not contain a ball of radius ε. The complexity of this
algorithm is polynomial in n, m, logR, log(1/ε), and the bit size of the input
data.
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Again, although polynomial time in theory, algorithms based on the ellipsoid
method are not practical. Instead, interior-point algorithms are used to solve
semidefinite programs in practice. We refer e.g. to [1], [2], [5], [6] for more
information about algorithms for linear and semidefinite programming.

2.3.3 Gaussian elimination

Let A = (aij) ∈ Sn be a rational matrix. Gaussian elimination permits to do the
following tasks in polynomial time:

(i) Either: find a rational matrix U ∈ Qn×n and a rational diagonal matrix
D ∈ Qn×n such that A = UDUT, thus showing that A � 0.

(ii) Or: find a rational vector x ∈ Qn such that xTAx < 0, thus showing that
A is not positive semidefinite and giving a hyperplane separating A from
the cone Sn�0.

Here is a sketch. We distinguish three cases.

Case 1: a11 < 0. Then, (ii) applies, since eT1Ae1 < 0.

Case 2: a11 = 0, but some entry a1j is not zero, say a12 6= 0. Then choose λ ∈ Q
such that 2λa12 + a22 < 0, so that xTAx < 0 for the vector x = (λ, 1, 0, . . . , 0)
and thus (ii) applies again.

Case 3: a11 > 0. Then we apply Gaussian elimination to the rows Rj and
columns Cj of A for j = 2, . . . , n. Namely, for each j = 2, . . . , n, we replace Cj
by Cj− a1j

a11
C1, and analogously we replace Rj by Rj− a12

a11
Rj , which amounts to

making all entries of A equal to zero at the positions (1, j) and (j, 1) for j 6= 1.
For this, define the matrices Pj = In− a1j

a11
E1j and P = P2 · · ·Pn. Then, P is

rational and nonsingular, and PTAP has the block form:

PTAP =

(
1 0
0 A′

)
,

where A′ ∈ Sn−1. Thus, A � 0⇐⇒ PTAP � 0⇐⇒ A′ � 0.
Then, we proceed inductively with the matrix A′ ∈ Sn−1:

• Either, we find W ∈ Q(n−1)×(n−1) and a diagonal matrix D′ ∈ Q(n−1)×(n−1)

such that A′ =WTD′W . Then, we obtain that A = UTDU , setting

U =

(
1 0
0 W

)
P−1, D =

(
1 0
0 D′

)
.

• Or, we find y ∈ Qn−1 such that yTA′y < 0. Then, we obtain that xTAx < 0,
after defining z = (0, y) and x = Pz ∈ Qn.
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2.4 Exercises

2.1. Let G = (V = [n], E) be a graph and let d = (dij){i,j}∈E ∈ RE≥0 be given
nonnegative weights on the edges. Consider the following problem (P):

Find vectors v1, . . . , vn ∈ Rk (for some integer k ≥ 1) such that

n∑
i=1

‖vi‖2 = 1, ‖vi − vj‖2 = dij for all {i, j} ∈ E

and for which the sum
∑n
i,j=1 v

T
i vj is minimum.

(a) Formulate problem (P) as an instance of semidefinite program.

(b) If in problem (P) we add the additional constraint that the vectors
v1, . . . , vn should belong to Rk for some fixed dimension k, how would
you translate this condition on the semidefinite program?
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CHAPTER 3

GRAPH COLORING AND
INDEPENDENT SETS

In this chapter we discuss how semidefinite programming can be used for con-
structing tractable bounds for two hard combinatorial problems: for finding
maximum independent sets and minimum colorings in graphs.

We introduce the graph parameter ϑ(G), known as the theta number of the
graph G. This parameter was introduced by L. Lovász in his seminal paper [7].
We present several equivalent formulations and explain how ϑ(G) can be used
to compute maximum stable sets and minimum colorings in perfect graphs in
polynomial time, whereas these problems are NP-hard for general graphs.

Here are some definitions that we use in this chapter. Let G = (V,E) be a
graph; often we let V = [n] = {1, . . . , n}. Then, E denotes the set of pairs {i, j}
of distinct nodes that are not adjacent in G. The graph G = (V,E) is called the
complementary graph of G. G is self-complementary if G and G are isomorphic
graphs. Given a subset S ⊆ V , G[S] denotes the subgraph induced by S: its node
set is S and its edges are all pairs {i, j} ∈ E with i, j ∈ S. The graph Cn is the
circuit (or cycle) of length n, with node set [n] and edges the pairs {i, i + 1}
(for i ∈ [n], indices taken modulo n). For a set S ⊆ V , its characteristic vector is
the vector χS ∈ {0, 1}V , whose i-th entry is 1 if i ∈ S and 0 otherwise. We let
e = (1, . . . , 1)T denote the all-ones vector.
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3.1 Preliminaries on graphs

3.1.1 Stability and chromatic numbers

A subset S ⊆ V of nodes is said to be stable (or independent) if no two nodes
of S are adjacent in G. Then the stability number of G is the parameter α(G)
defined as the maximum cardinality of an independent set in G.

A subset C ⊆ V of nodes is called a clique if every two distinct nodes in C
are adjacent. The maximum cardinality of a clique in G is denoted ω(G), the
clique number of G. Clearly,

ω(G) = α(G).

Computing the stability number of a graph is a hard problem: Given a graph
G and an integer k, deciding whether α(G) ≥ k is an NP -complete problem.

Given an integer k ≥ 1, a k-coloring of G is an assignment of numbers (view
them as colors) from {1, · · · , k} to the nodes in such a way that two adjacent
nodes receive distinct colors. In other words, this corresponds to a partition of
V into k stable sets: V = S1 ∪ · · · ∪ Sk, where Si is the stable set consisting of
all nodes that received the i-th color. The coloring (or chromatic) number is the
smallest integer k for which G admits a k-coloring, it is denoted as χ(G).

Again it is anNP -complete problem to decide whether a graph is k-colorable.
In fact, it is NP -complete to decide whether a planar graph is 3-colorable. On
the other hand, it is known that every planar graph is 4-colorable – this is the
celebrated 4-color theorem. Moreover, observe that one can decide in polyno-
mial time whether a graph is 2-colorable, since one can check in polynomial
time whether a graph is bipartite.

Figure 3.1: The Petersen graph has α(G) = 4, ω(G) = 2 and χ(G) = 3

Clearly, any two nodes in a clique of G must receive distinct colors. There-
fore, for any graph, the following inequality holds:

ω(G) ≤ χ(G). (3.1)

This inequality is strict, for example, when G is an odd circuit, i.e., a circuit
of odd length at least 5, or its complement. Indeed, for an odd circuit C2n+1

(n ≥ 2), ω(C2n+1) = 2 while χ(C2n+1) = 3. Moreover, for the complement
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G = C2n+1, ω(G) = n while χ(G) = n + 1. For an illustration see the cycle of
length 7 and its complement in Figure 6.2.

Figure 3.2: For C7 and its complement C7: ω(C7) = 2, χ(C7) = 3, ω(C7) =
α(C7) = 3, χ(C7) = 4

3.1.2 Perfect graphs

It is intriguing to understand for which graphs equality ω(G) = χ(G) holds.
Note that any graph G with ω(G) < χ(G) can be embedded in a larger graph Ĝ
with ω(Ĝ) = χ(Ĝ), simply by adding to G a clique of size χ(G) (disjoint from
V ). This justifies the following definition, introduced by C. Berge in the early
sixties, which makes the problem well posed.

Definition 3.1.1. A graph G is said to be perfect if equality

ω(H) = χ(H)

holds for all induced subgraphs H of G (including H = G).

Here are some classes of perfect graphs. For each of them the relation
ω(G) = χ(G) gives a combinatorial min-max relation.

1. Bipartite graphs (the relation ω(G) = χ(G) = 2 is clear).

2. Line graphs of bipartite graphs (the min-max relation claims that the max-
imum cardinality of a matching is equal to the minimum cardinality of a
vertex cover, which is König’s theorem).

3. Comparability graphs (the min-max relation corresponds to Diilworth’s
theorem).

It follows from the definition and the above observation about odd circuits
that if G is a perfect graph then it does not contain an odd circuit of length at
least 5 or its complement as an induced subgraph. Berge already conjectured
that all perfect graphs arise in this way. Resolving this conjecture has haunted
generations of graph theorists. It was finally settled in 2002 by Chudnovsky,
Robertson, Seymour and Thomas who proved the following result, known as
the strong perfect graph theorem:
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Theorem 3.1.2. (The strong perfect graph theorem)[1] A graph G is perfect if
and only if it does not contain an odd circuit of length at least 5 or its complement
as an induced subgraph.

This implies the following structural result about perfect graphs, known as
the perfect graph theorem, already proved by Lovász in 1972.

Theorem 3.1.3. (The perfect graph theorem)[6] If G is a perfect graph, then
its complement G too is a perfect graph.

We give a direct proof of Theorem 3.1.3 in the next section and we will
mention later some other, more geometric, characterizations of perfect graphs
(see, e.g., Theorem 3.2.5).

3.1.3 The perfect graph theorem

Lovász [6] proved the following result, which implies the perfect graph theorem
(Theorem 3.1.3). The proof given below follows the elegant linear-algebraic
argument of Gasparian [3].

Theorem 3.1.4. A graph G is perfect if and only if |V (G′)| ≤ ω(G′)χ(G′) for each
induced subgraph G′ of G.

Proof. Necessity is easy: Assume that G is perfect and let G′ be an induced
subgraph of G. Then χ(G′) = ω(G′) and thus V (G′) can be covered by ω(G′)
stable sets, which implies that |V (G′)| ≤ ω(G′)α(G′).

To show sufficiency, assume for a contradiction that there exists a graph G
which satisfies the condition but is not perfect; choose such a graph with |V (G)|
minimal. Then, n ≤ α(G)ω(G), ω(G) < χ(G) and ω(G′) = χ(G′) for each
induced subgraph G′ 6= G of G. Set ω = ω(G) and α = α(G) for simplicity. Our
first claim is:

Claim 1: There exist αω + 1 stable sets S0, . . . , Sαω such that each vertex of G
is covered by exactly α of them.

Proof of the claim: Let S0 be a stable set of size α in G. For each node v ∈ S0,
as G\v is perfect (by the minimality assumption on G), χ(G\v) = ω(G\v) ≤ ω.
Hence, V \ {v} can be partitioned into ω stable sets. In this way we obtain a
collection of αω stable sets which together with S0 satisfy the claim.

Our next claim is:

Claim 2: For each i = 0, 1, . . . , αω, there exists a clique Ki of size ω such that
Ki ∩ Si = ∅ and Ki ∩ Sj 6= ∅ for j 6= i.

Proof of the claim: For each i = 0, 1, . . . , αω, as G \ Si is perfect we have that
χ(G\Si) = ω(Si) ≤ ω. This implies that χ(G\Si) = ω since, if χ(G\Si) ≤ ω−1,
then one could colorGwith ω colors, contradicting our assumption onG. Hence
there exists a clique Ki disjoint from Si and with |Ki| = ω. Moreover Ki meets
all the other αω stable sets Sj for j 6= i. This follows from the fact that each

23



of the ω elements of Ki belongs to α stable sets among the Sj ’s (Claim 1) and
these ωα sets are pairwise distinct.

We can now conclude the proof. Define the matrices M,N ∈ Rn×(αω+1), whose
columns are χS0 , . . . , χSαω (the incidence vectors of the stable sets Si), and the
vectors χK0 , . . . , χαω+1 (the incidence vectors of the cliques Ki), respectively.
By Claim 2, we have that MTN = J − I (where J is the all-ones matrix and
I the identity). As J − I is nonsingular, we obtain that that rank(MTN) =
rank(J − I) = αω + 1. On the other hand, rank(MTN) ≤ rankN ≤ n. Thus we
obtain that n ≥ αω + 1, contradicting our assumption on G.

3.2 Linear programming bounds

3.2.1 Fractional stable sets and colorings

Let ST(G) denote the polytope in RV defined as the convex hull of the charac-
teristic vectors of the stable sets of G:

ST(G) = conv{χS : S ⊆ V, S is a stable set in G},

called the stable set polytope of G. Hence, computing α(G) is linear optimization
over the stable set polytope:

α(G) = max{eTx : x ∈ ST(G)}.

We have now defined the stable set polytope by listing explicitly its extreme
points. Alternatively, it can also be represented by its hyperplanes representa-
tion, i.e., in the form

ST(G) = {x ∈ RV : Ax ≤ b}

for some matrix A and some vector b. As computing the stability number is
a hard problem one cannot hope to find the full linear inequality description
of the stable set polytope (i.e., the explicit A and b). However some partial
information is known: several classes of valid inequalities for the stable set
polytope are known. For instance, if C is a clique of G, then the clique inequality

x(C) =
∑
i∈C

xi ≤ 1 (3.2)

is valid for ST(G): any stable set can contain at most one vertex from the clique
C. The clique inequalities define the polytope

QST(G) =
{
x ∈ RV : x ≥ 0, x(C) ≤ 1 ∀C clique of G

}
(3.3)

and maximizing the linear function eTx over it gives the parameter

α∗(G) = max{eTx : x ∈ QST(G)}, (3.4)
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known as the fractional stability number of G. Clearly, QST(G) is a relaxation of
the stable set polytope:

ST(G) ⊆ QST(G). (3.5)

The parameter α∗(G) is nested between α(G) and χ(G), and it can also be
interpreted in terms of fractional colorings of G.

Lemma 3.2.1. For any graph G, we have

α(G) ≤ α∗(G) ≤ χ(G). (3.6)

Moreover, α∗(G) is equal to the optimal value of the linear program

min

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = e, yC ≥ 0 ∀C clique of G

 . (3.7)

Proof. The inequality α(G) ≤ α∗(G) in (3.6) follows from the inclusion (3.5)
and the inequality α∗(G) ≤ χ(G) follows from the definitions: If x ∈ QST(G)
and V = C1 ∪ · · · ∪ Ck is a partition into k cliques, then

xTe = xT

(
k∑
i=1

χCi

)
=

k∑
i=1

x(Ci) ≤
k∑
i=1

1 = k.

We now show that the optimal value of (3.7) is equal to α∗(G) (which again
gives the inequality α∗(G) ≤ χ(G)). For this, we first observe that in the lin-
ear program (3.4) the condition x ≥ 0 can be removed without changing the
optimal value; that is,

α∗(G) = max{eTx : x(C) ≤ 1 ∀C clique of G} (3.8)

(check it). Now, it suffices to observe that the dual LP of the above linear
program (3.8) coincides with the linear program (3.7).

For instance, for an odd circuit C2n+1 (n ≥ 2), α∗(C2n+1) =
2n+1

2 (check it)
lies strictly between α(C2n+1) = n and χ(C2n+1) = n+ 1.

When G is a perfect graph, equality holds throughout in relation (3.6). As
we see in the next section, there is a natural extension of this result to weighted
graphs, which permits to show the equality ST(G) = QST(G) when G is a
perfect graph. Moreover, it turns out that this geometric property characterizes
perfect graphs.

3.2.2 Polyhedral characterization of perfect graphs

For any graph G, the factional stable set polytope is a linear relaxation of the
stable set polytope: ST(G) ⊆ QST(G). Here we show a geometric character-
ization of perfect graphs: G is perfect if and only if both polytopes coincide:
ST(G) = QST(G).
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The following operation of duplicating a node will be useful. Let G = (V,E)
be a graph and let v ∈ V . Add to G a new node, say v′, which is adjacent to v
and to all neighbours of v in G. In this way we obtain a new graph H, which
we say is obtained from G by duplicating v. Repeated duplicating is called
replicating.

Lemma 3.2.2. Let H arise from G by duplicating a node. If G is perfect then H
too is perfect.

Proof. First we show that α(H) = χ(H) if H arises from G by duplicating node
v. Indeed, by construction, α(H) = α(G), which is equal to χ(G) since G is
perfect. Now, if C1, . . . , Ct are cliques in G that cover V with (say) v ∈ C1, then
C1∪{v′}, . . . , Ct are cliques in H covering V (H). This shows that χ(G) = χ(H),
which implies that α(H) = χ(H).

From this we can conclude that, if H arises from G by duplicating a node
v, then α(H ′) = χ(H ′) for any induced subgraph H ′ of H, using induction on
the number of nodes of G. Indeed, either H ′ is an induced subgraph of G (if
H ′ does not contain both v and v′), or H ′ is obtained by duplicating v in an
induced subgraph of G; in both cases we have that α(H ′) = χ(H ′).

Hence, if H arises by duplicating a node in a perfect graph G, then H is
perfect which, by Theorem 3.1.3, implies that H is perfect.

Given node weights w ∈ RV+, we define the following weighted analogues of
the (fractional) stability and chromatic numbers:

α(G,w) = max
x∈ST(G)

wTx,

α∗(G,w) = max
x∈QST(G)

wTx

= min
y

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = w, yC ≥ 0 ∀C clique of G

 ,

χ(G,w) = min
y

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = w, yC ∈ Z, yC ≥ 0 ∀C clique of G

 .

When w is the all-ones weight function, we find again α(G), α∗(G) and χ(G),
respectively. The following analogue of (3.6) holds for arbitrary node weights:

α(G,w) ≤ α∗(G,w) ≤ χ(G,w). (3.9)

Lemma 3.2.3. Let G be a perfect graph and let w ∈ ZV≥0 be nonnegative integer
node weights. Then, α(G,w) = χ(G,w).

Proof. Let H denote the graph obtained from G by duplicating node i wi times
if wi ≥ 1 and deleting node i if wi = 0. Then, by construction, α(G,w) = ω(H),
which is equal to χ(H) since H is perfect (by Lemma 3.2.2). Say, S̃1, . . . , S̃t are
t = χ(H) stable sets in H partitioning V (H). Each stable set S̃k corresponds to
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a stable set Sk in G (since S̃k contains at most one of the wi copies of each node
i of G). Now, these stable sets S1, . . . , St have the property that each node i of
G belongs to exactly wi of them, which shows that χ(G,w) ≤ t = χ(H). This
implies that χ(G,w) ≤ χ(H) = α(G,w), giving equality χ(G,w) = α(G,w).

We will also use the following geometric property of down-monotone poly-
topes. A polytope P ⊆ Rn≥0 is said to be down-monotone if x ∈ P and 0 ≤ y ≤ x
(coordinate-wise) implies y ∈ P .

Lemma 3.2.4. Let P,Q ⊆ Rn be polytopes such that P ⊆ Q.

(i) P = Q if and only if the following equality holds for all weights w ∈ Rn:

max
x∈P

wTx = max
x∈Q

wTx. (3.10)

(ii) Assume that P ⊆ Q ⊆ Rn≥0 are down-monotone. Then P = Q if and only if
(3.10) holds for all nonnegative weights w ∈ Rn≥0.

Moreover, in (i) and (ii) it suffices to show that (3.10) holds for integer weights w.

Proof. (i) The ‘only if’ part is clear. The ‘if part’ follows using the ‘hyperplane
separation’ theorem: Assume that P ⊂ Q and that there exists z ∈ Q \ P . Then
there exists a hyperplane separating z from P , i.e., there exists a nonzero vector
w ∈ Rn and a scalar w0 ∈ R such that wTz > w0 and wTx ≤ w0 for all x ∈ P .
These two facts contradict the condition (3.10).

(ii) The ‘only if’ part is clear. For the ‘if part’, it suffices to show that the equality
(3.10) holds for all weights w if it holds for all nonnegative weights w′. This
follows from the following claim (applied to both P and Q).

Claim: Let P ⊆ Rn≥0 be a down-monotone polytope, let w ∈ Rn and de-
fine the nonnegative vector w′ ∈ Rn≥0 by w′i = max{wi, 0} for i ∈ [n]. Then,
maxx∈P w

Tx = maxx∈P (w
′)Tx.

Proof of the claim: Suppose x ∈ P maximizeswTx over P ; we claim that xi = 0
at all positions i for which wi < 0. Indeed, if xi > 0 and wi < 0 then, by setting
yi = 0 and yj = xj for j 6= i, one obtains another point y ∈ P (since 0 ≤ y ≤ x
and P is down-monotone) with wTy > wTx. Therefore, wTx = (w′)Tx and thus
x maximizes w′ over P .

The last part of the lemma follows using a continuity argument (if (3.10) holds
for all integer weights w, it holds for all rational weights (by scaling) and thus
for all real weights (taking limits)).

We can now show the following geometric characterization of perfect graphs,
due to Chvátal [2].

Theorem 3.2.5. [2] A graph G is perfect if and only if ST(G) = QST(G).
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Proof. First assume that G is perfect, we show that ST(G) = QST(G). As ST(G)
and QST(G) are down-monotone in RV≥0, we can apply Lemma 3.2.4. Hence, it
suffices to show that, for any w ∈ ZV≥0, α(G,w) = maxx∈ST(G) w

Tx is equal to
α∗(G,w) = maxx∈QST(G) w

Tx, which follows from Lemma 3.2.3 (applied to G).
Conversely, assume that ST(G) = QST(G) and that G is not perfect. Pick a

minimal subset U ⊆ V for which the subgraph G′ of G induced by U satisfies
α(G′) < χ(G′). Setting w = χU , we have that α(G′) = α(G,w) which, by
assumption, is equal to maxx∈QST(G) w

Tx = α∗(G,w). Consider the dual of the
linear program defining α∗(G,w) with an optimal solution y = (yC). Pick a
clique C of G for which yC > 0. Using complementary slackness, we deduce
that x(C) = 1 for any optimal solution x ∈ QST(G) and thus |C ∩ S| = 1 for
any maximum cardinality stable set S ⊆ U . Let G′′ denote the subgraph of G
induced by U \ C. Then, α(G′′) ≤ α(G′) − 1 < χ(G′) − 1 ≤ χ(G′′), which
contradicts the minimality assumption made on U .

When G is a perfect graph, an explicit linear inequality description is known
for its stable set polytope, given by the clique inequalities. However, it is not
clear how to use this information in order to give an efficient algorithm for
optimizing over the stable set polytope of a perfect graph. As we see later in
Section ?? there is yet another description of ST(G) – in terms of semidefinite
programming, using the theta body TH(G) – that will allow to give an efficient
algorithm.

3.3 Semidefinite programming bounds

3.3.1 The theta number

Definition 3.3.1. Given a graph G = (V,E), consider the following semidefinite
program

max
X∈Sn

{〈J,X〉 : Tr(X) = 1, Xij = 0 ∀{i, j} ∈ E, X � 0} . (3.11)

Its optimal value is denoted as ϑ(G), and called the theta number of G.

This parameter was introduced by Lovász [7]. He proved the following sim-
ple, but crucial result – called the Sandwich Theorem by Knuth [5] – which
shows that ϑ(G) provides a bound for both the stability number of G and the
chromatic number of the complementary graph G.

Theorem 3.3.2. (Lovász’ sandwich theorem) For any graph G, we have that

α(G) ≤ ϑ(G) ≤ χ(G).

Proof. Given a stable set S of cardinality |S| = α(G), define the matrix

X =
1

|S|
χS(χS)T ∈ Sn.
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Then X is feasible for (3.11) with objective value 〈J,X〉 = |S| (check it). This
shows the inequality α(G) ≤ ϑ(G).

Now, consider a matrix X feasible for the program (3.11) and a partition of
V into k cliques: V = C1 ∪ · · · ∪ Ck. Our goal is now to show that 〈J,X〉 ≤ k,
which will imply ϑ(G) ≤ χ(G). For this, using the relation e =

∑k
i=1 χ

Ci ,
observe that

Y :=

k∑
i=1

(
kχCi − e

) (
kχCi − e

)T
= k2

k∑
i=1

χCi(χCi)T − kJ.

Moreover, 〈
X,

k∑
i=1

χCi(χCi)T

〉
= Tr(X).

Indeed the matrix
∑
i χ

Ci(χCi)T has all its diagonal entries equal to 1 and it
has zero off-diagonal entries outside the edge set of G, while X has zero off-
diagonal entries on the edge set of G. As X,Y � 0, we obtain

0 ≤ 〈X,Y 〉 = k2Tr(X)− k〈J,X〉

and thus 〈J,X〉 ≤ k Tr(X) = k.

An alternative argument for the inequality ϑ(G) ≤ χ(G), showing an even
more transparent link to coverings by cliques, will be given in the paragraph
after the proof of Lemma ??.

3.3.2 Computing maximum stable sets in perfect graphs

Assume that G is a graph satisfying α(G) = χ(G). Then, as a direct applica-
tion of Theorem 3.3.2, α(G) = χ(G) = ϑ(G) can be computed by solving the
semidefinite program (3.11), it suffices to solve this semidefinite program with
precision ε < 1/2 as one can then find α(G) by rounding the optimal value to
the nearest integer. In particular, combining with the perfect graph theorem
(Theorem 3.1.3):

Theorem 3.3.3. If G is a perfect graph then α(G) = χ(G) = ϑ(G) and ω(G) =
χ(G) = ϑ(G).

Hence one can compute the stability number and the chromatic number in
polynomial time for perfect graphs. Moreover, one can also find a maximum
stable set and a minimum coloring in polynomial time for perfect graphs. We
now indicate how to construct a maximum stable set – we deal with minimum
graph colorings in the next section.

Let G = (V,E) be a perfect graph. Order the nodes of G as v1, · · · , vn. Then
we construct a sequence of induced subgraphsG0, G1, · · · , Gn ofG. Hence each
Gi is perfect, also after removing a node, so that we can compute in polynomial
time the stability number of such graphs. The construction goes as follows: Set
G0 = G. For each i = 1, · · · , n do the following:
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1. Compute α(Gi−1\vi).

2. If α(Gi−1\vi) = α(G), then set Gi = Gi−1\vi.

3. Otherwise, set Gi = Gi−1.

By construction, α(Gi) = α(G) for all i. In particular, α(Gn) = α(G). Moreover,
the node set of the final graph Gn is a stable set and, therefore, it is a maximum
stable set of G. Indeed, if the node set of Gn is not stable then it contains a
node vi for which α(Gn\vi) = α(Gn). But then, as Gn is an induced subgraph
of Gi−1, one would have that α(Gn\vi) ≤ α(Gi−1\vi) and thus α(Gi−1\vi) =
α(G), so that node vi would have been removed at Step 2.

Hence, the above algorithm permits to construct a maximum stable set in
a perfect graph G in polynomial time – namely by solving n + 1 semidefinite
programs for computing α(G) and α(Gi−1\vi) for i = 1, · · · , n.

More generally, given integer weights w ∈ ZV≥0 on the nodes, one can com-
pute in polynomial time a stable set S of maximum weight w(S). For this, one
can apply the algorithm just described for computing a maximum cardinality
stable set in the new graph G′ defined in the following way: Replace each node
i ∈ V by a set Wi of wi nodes pairwise non-adjacent, and make two nodes
x ∈Wi and y ∈Wj adjacent if i and j are adjacent in G. One can verify that G′

is perfect and that α(G′) is the maximum weight w(S) of a stable set S in G.

3.3.3 Minimum colorings of perfect graphs

We now describe an algorithm for computing a minimum coloring of a perfect
graph G in polynomial time. This will be reduced to several computations of
the theta number which we will use for computing the clique number of some
induced subgraphs of G.

Let G = (V,E) be a perfect graph. Call a clique of G maximum if it has
maximum cardinality ω(G).

The crucial observation is that it suffices to find a stable set S in G which
meets all maximum cliques. Indeed, if such S is found then one can recursively
color G\S with ω(G) − 1 colors (in polynomial time), and thus G with ω(G)
colors. (Clearly, such a stable set S exists: any color class S in a ω(G)-coloring
must meet all maximum cliques as ω(G\S) = χ(G\S) = ω(G)− 1.)

The algorithm goes as follows: For t ≥ 1, grow a list L of t maximum cliques
C1, · · · , Ct. Suppose C1, · · · , Ct have been found. Then do the following:

1. We find a stable set S meeting each of the cliques C1, · · · , Ct (see below).

2. Compute ω(G\S).

3. If ω(G\S) < ω(G) then S meets all maximum cliques and we are done.

4. Otherwise, compute a maximum clique Ct+1 in G\S, which is thus a new
maximum clique of G, and we add it to the list L.
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The first step can be done as follows: Set w =
∑t
i=1 χ

Ci ∈ ZV≥0 and compute
a stable set S having maximum possible weight w(S), then w(S) = t and S
meets C1, · · · , Ct.

The above algorithm has polynomial running time, since the number of iter-
ations is bounded by |V |. To see this, define the affine space Lt ⊆ RV defined
by the equations x(C1) = 1, · · · , x(Ct) = 1 corresponding to the cliques in the
current list L. Then, Lt contains strictly Lt+1, since χS ∈ Lt \Lt+1 for the set S
constructed in the first step, and thus the dimension decreases at least by 1 at
each iteration.
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