Multiplicative weights method:
A meta algorithm with applications to linear
and semi-definite programming

Sanjeev Arora
Princeton University

DE] : -
SVB NVMINE

Based upon:

Fast algorithms for Approximate SDP [FOCS ‘05]

Vlog(n) approximation to SPARSEST CUT in O(n?) time [FOCS ‘04]
The multiplicative weights update method and it’s applications ['05]
See also recent papers by Hazan and Kale.

Multiplicative update rule (long history)

n agents weights

Wl
. W2 Update weights according to

performance:

w1 A wt(l + € ¢ performance of

®

n

Applications: approximate solutions to LPs and SDPs, flow problems,
online learning (boosting), derandomization & chernoff bounds,
online convex optimization, computational geometry,

metricembeddongs, portfolio management... (see our survey)

Simplest setting — predicting the market

1$ for correct prediction

0% for incorrect

® N “experts” on TV

® (Can we perform as good as the best expert ?

Weighted majority algorithm [LW ‘94]
“Predict according to the weighted majority.”

Multiplicative update (initially all w, =1):
If expert predicted correctly: wet A wy

If incorrectly, wi+1 A we(1 - €)

Claim: #mistakes by algorithm 4 2(1+¢€)(#mistakes by best expert)

® Potential: ¢ = Sum of weights=). w! (initially n)

If algorithm predicts incorrectly) @, @ - € @ /2

@ @, - (1-e/2)m® n m(A) =# mistakes by algorithm
e ¢, (O™

@) m(A) - 2(1+&)m, + O(log n/¢)

Generalized Weighted majority
[A.,Hazan, Kale ‘05]

n agents @ts (possibly infinite)
. event j

expert i

> payoff

. M)

Generalized Weighted majority
[AHK ‘05]

n agents @ts (possibly infinite)
Pr Algorithm: plays distribution on
P, experts (pi,...,p,)

Payoff for event j: i p, M(i,j)

' Update rule:
Pt A pf(1 + & ¢ MG,))
p

n

Claim: After T iterations,

Algorithm payoff , (1-€) best expert — O(log n / €)

Game playing, Lagrangean relaxation
Online optimization

Gradient descent

Chernoff bounds

Games with Matrix
Payoffs Fast soln to

LPs, SDPs

Common features of MW algorithms

“competition” amongst n experts

= Appearance of terms like

exp(- >, (performance at time t))

Time to get e-approximate solutions is
proportional to 1/¢€2.

Application] : Approximate solutions
to LPs (“Combinatorial”)

Plotkin Shmoys Tardos 91
Young’97

Garg Koenemann’99
Fleischer'99

MW Meta-Algorithm gives unified view

Solving LPs (feasibility)

a¢Xx
a,¢ X

b, -¢
b2 -.g

>

W,

>

W,

P = convex E :
domain at¢t¢x , b T €
x2P

r

\

Oracle
2 W@ tx-b),0
x2 P

~

J

Solving LPs (feasibility)

[1 o S(al ¢ X0 _bl)/p] f W, a1¢ X, bl
[1-¢€(a, ¢ x,—Db,)/p] £ W, a,tx , b2

Final solution =
Average X vector

[1-¢(@ ¢x,—b)plEw a,¢x B b,
x2P

Oracle

la, ¢ x,— Db P 2 Wi(a¢x—b,),0

P = width \. x 2 P y

Performance guarantees

® In O(p? log(n)/€?) iterations, average x is € feasible.

® Packing-Covering LPs: [Plotkin, Shmoys, Tardos '91]

9? x 2 P: //Covering

i=1,2,..m: ad¢x,]1 @roblem

Want to find x2Ps.t.a ¢x,1-¢

Assume: 8x2P: 0-a ¢x-p

MW algorithm gets € feasible x in O(p log(n)/€?)
iterations

Connection to Chernoff bounds and
derandomization

Deterministic approximation algorithms for 0/1
packing/covering problem a la Raghavan-Thompson

Randomized
Rounding O(log n

fimes)
x; A 1 w/ prob. y,

x. A 0 w/ prob.1 -y,

Solve LP
relaxation of
integer program.
Obtain soln (y,)

Derandomize
using pessimistic
estimators

12&(%‘&}1&1@% /ithout solving the LP.”

hessimistie’ estimator.

Young [95] “Rands
MW update rule mi

Application 2:
Semidefinite programming (Klein-Luw97)

a¢x , b,
a,tx , b

>) matrices in Rr£n

a; and x : symmetric

am¢X. b (:

C" {x: X is psd;

x2P T " am =1

Oracle: max >, W;(a ¢ x) over P

(eigenvalue computation!)

Next few slides: New Results (AHK04, AHK05)

Key difference between efficient and
not-so-efficient implementations
of the MW idea: Width management.

(e.g., the difference between PST’91 and
GK’99)

Solving SDP relaxations more efficiently

[AHK’05]
Problem Using Interior Point Our result
MAXQP (e.g. MAX-CUT) | O(n3%) O(n!sN/€25) or
6(1—13/0*83.5)
HAPLOFREQ O(n% O(n25/g25)
SCP O(n%) O(n!5N/g*5)
EMBEDDING O(n% O(n3/dse3s)
SPARSEST CUT O(n*5) O(n3/€2)
MIN UNCUT etc O(n*9) O(n35/¢€2)

Recall: issue of width

/ MW \)
a¢x , b, ® O(p¥/s2) iterations to

atx , b2 obtain € feasible x
® p=max |a ¢x-—
by
: ® pis too large!!
am¢ X 5 bm

Oracle A

k Wk(ak¢ X = bk) 5 0

-
\ x2 P y

Issue 1:Dealing with width

-~

o

® A few high width
constraints
/ Oracle: separation
hyperplane for dual
® (Can run
ellipsoid/Vaidya
® poly(m, log(p/e))

iterations to obtain €

MW \
al¢ X 5 bl
a,t x , b2
[a_¢ X , b J
Oracle)
cW@agx-b),0
x2P y.

feasible x

Dealing with width (contd)

O e

a,tx , b

2

/Dual ellipsoid/Vaidya\
ac¢x , kb

> m

4 h

Oracle

2« Wi(a¢x—b),0

2

Hybrid of MW and
Vaidya
O(p,2/€?) iterations

to obtain € feasible x

PLeP

Issue 2: Efficient implementation of Oracle: fast
eigenvalues via matrix sparsification

/: 'o"o\ /: 'o"o\
0% 0° . 09 00
o % © Random sampling o O ©
© CCo00 e 0%,
0 .00 | M | 0 ©,0. 00
®_® ®_®
® % o 0 ® % o 0
\.® ©° _/ _©® @@)
C C’
O(¥ng;|C;|/¢) non-zero entries
kC-Ck- &

® Lanczos effectively uses sparsity of C

® Similar to Achlioptas, McSherry [’01], but better in
some situations (also easier analysis)

Online games with matrix payoffs
(Satyen Kale’06)

Payoff is a matrix, and so is the “distribution” on experts!
Uses matrix analogues of usual inequalities

Used (together with many other tricks) to solve “triangle
inequality” SDPs in O(n?) time.

O(n?)-time algorithm to compute O(plog n)-approximation
to SPARSEST CUT

(v/s O(n*°) using interior point methods)

Sparsest Cut a(G) = 2/5

The sparsest cut:

®:= min :
SuV ; jSj<Vv=2 1S

O(log n) approximation [Leighton Rao ’88]
O(plog n) approximation [A., Rao, Vazirani’04]

O(p log n) approximation in O(n?) time.
(Actually, finds expander flows) [A., Hazan, Kale’05]

MW algorithm to find expander flows

= Events — { (s,w,z) | weights on vertices, edges, cuts}

= Experts — pairs of vertices (i,j)
shortest path
= Payoff: (for weights d,; on experts) according to
’ weights w,

i dij(si+ sp+ lij i zij)

Fact: If events are chosen optimally, the distribution on experts d;.

. 1 « ratin
converges to a demand graph which is an expandgruﬁsois\/\%a?i Je.lt &

[by results of Arora-Rao-Vazirani ’04 suffices to produce approx.

sparsest cut]

Faster algorithms for online learning
and portfolio management
(Agarwal-Hazan’06, Agarwal-Hazan-Kalai-Kale’06)

Framework for online optimization
inspired by Newton’s method (2™ order optimization).
(Note: MW "4 gradient descent)

Fast algorithms for Portfolio management and other
online optimization problems

Open problems

® Better approaches to width management?

® Faster run times?

THANK YOU

Connection to Chernoff bounds and
derandomization

® Deterministic approximation algorithms a la
Raghavan-Thompson

® Packing/covering IP with variables x. = 0/1
9?x2P: 8j2[m], £(x),0
= Solve LP relaxation using variables y, 2 [0, 1]

" Randomized rounding: w p. y
=t
Owp.1-y,

® Chernoff: O(log m) sampling iterations suffice

Derandomization [Young, '95]

Can derandomize the rounding using exp (t3, fj(x)) as
a pessimistic estimator of failure probability

By minimizing the estimator in every iteration, we
mimic the random expt, so O(log m) iterations suffice
The structure of the estimator obviates the need to
solve the LP: Randomized rounding without solving the

Linear Program

Punchline: resulting algorithm is the MW algorithm!

Weighted majority [LW ‘94]

& Iflostatt, @ , - (1-%2¢€) @

@ At time T: @, - (1-Y2 g)#mistakes ¢ (o

X
(1i DT =w - w =0r

#mistakes of
expert i
@ Overall:

#mistakes - log(n)/e + (1+€) m,

Semidefinite programming

@ Vectors a, and x: symmetric matrices in R"£"
® x°0

® Assume: Tr(x) - 1

® SetP={x:x°0, Tr(x) -1}

® Oracle: max >, w,(a, ¢ x) over P

&

Optimum: x = vv! where v is the largest eigenvector

of Yw a,
J)

Efficiently implementing the oracle

® Optimum: x = vv?!
= vis the largest eigenvector of some matrix C
® Suffices to find a vector v such that viCv | O

® Lanczos algorithm with a random starting vector is
ideal for this

® Advantage: uses only matrix-vector products
= Exploits sparsity (also: sparsification procedure)

® Use analysis of Kuczynski and Wozniakowski ['92]

