Multiplicative weights method: A meta algorithm with applications to linear and semi-definite programming

Sanjeev Arora Princeton University

Based upon:

Fast algorithms for Approximate SDP [FOCS '05] $\sqrt{\log(n)}$ approximation to SPARSEST CUT in $\tilde{O}(n^2)$ time [FOCS '04] The multiplicative weights update method and it's applications ['05] See also recent papers by Hazan and Kale.

Multiplicative update rule (long history)

n agents weights

 \mathbf{W}_1

W₂ Update weights according to

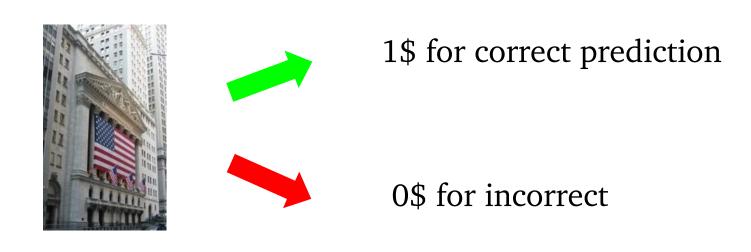
. performance:

$$w_i^{t+1} \tilde{A} w_i^t (1 + \epsilon \text{ performance of } i)$$

 W_n

Applications: approximate solutions to LPs and SDPs, flow problems, online learning (boosting), derandomization & chernoff bounds, online convex optimization, computational geometry, metricembeddongs, portfolio management... (see our survey)

Simplest setting – predicting the market



- N "experts" on TV
- Can we perform as good as the best expert ?

Weighted majority algorithm [LW '94]

"Predict according to the weighted majority."

Multiplicative update (initially all $w_i = 1$):

- If expert predicted correctly: $w_i^{t+1} \tilde{A} w_i^t$
- If incorrectly, $w_i^{t+1} \tilde{A} w_i^t (1 \varepsilon)$

Claim: #mistakes by algorithm $\frac{1}{4}$ 2(1+ ε)(#mistakes by best expert)

- Potential: $\phi_t = \text{Sum of weights} = \sum_i w_i^t$ (initially n)
- If algorithm predicts incorrectly) $\phi_{t+1} \cdot \phi_t \epsilon \phi_t / 2$
- $\phi_T \cdot (1-\epsilon/2)^{m(A)}$ n m(A) = # mistakes by algorithm
- ullet $laph_{\mathrm{T}}$, $(1-\varepsilon)^{\mathrm{m_i}}$
-) $m(A) \cdot 2(1+\varepsilon)m_i + O(\log n/\varepsilon)$

Generalized Weighted majority

[A.,Hazan, Kale '05] Set of events (possibly infinite) n agents event j expert i payoff M(i,j)

Generalized Weighted majority [AHK '05]

n agents

Set of events (possibly infinite)

 p_1

 \mathbf{p}_2

Algorithm: plays distribution on experts $(p_1,...,p_n)$

•

Payoff for event j: $\sum_{i} p_{i} M(i,j)$

Update rule:

 $p_i^{t+1} \tilde{A} p_i^t (1 + \varepsilon \Leftrightarrow M(i,j))$

 $\mathbf{p}_{\mathbf{n}}$

Claim: After T iterations,

Algorithm payoff (1- ε) best expert – O(log n / ε)

Game playing, Online optimization Lagrangean relaxation

Gradient descent

Chernoff bounds

Games with Matrix Payoffs

Fast soln to LPs, SDPs

Common features of MW algorithms

- "competition" amongst n experts
- Appearance of terms like

```
\exp(-\sum_{t} (performance at time t))
```

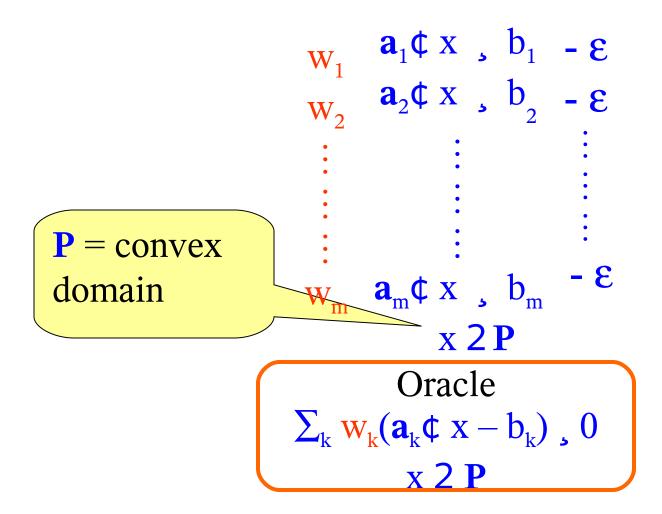
Time to get ϵ -approximate solutions is proportional to $1/\epsilon^2$.

Application1 : Approximate solutions to LPs ("Combinatorial")

- Plotkin Shmoys Tardos '91
- Young'97
- Garg Koenemann'99
- Fleischer'99

MW Meta-Algorithm gives unified view

Solving LPs (feasibility)



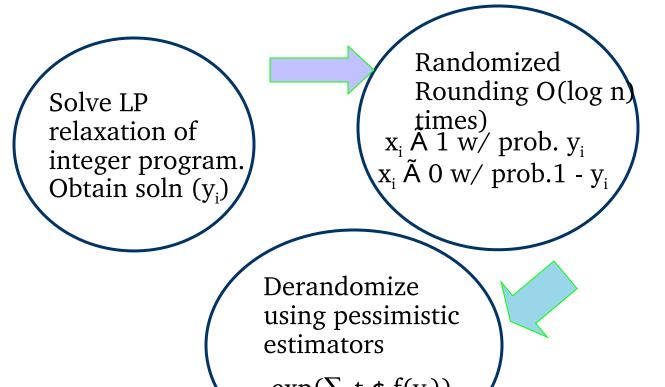
Solving LPs (feasibility)

Performance guarantees

- In $O(\rho^2 \log(n)/\epsilon^2)$ iterations, average x is ϵ feasible.
- Packing-Covering LPs: [Plotkin, Shmoys, Tardos '91]
 - 9? x 2 P: j = 1, 2, ... m: $\mathbf{a}_j \notin x$, 1 Covering problem
 - Want to find $x \ge P$ s.t. $a_i \notin x \le 1 \varepsilon$
 - Assume: $8 \times 2 \text{ P}$: $0 \cdot \mathbf{a}_{j} \notin x \cdot \rho$
 - MW algorithm gets ε feasible x in $O(\rho \log(n)/\varepsilon^2)$ iterations

Connection to Chernoff bounds and derandomization

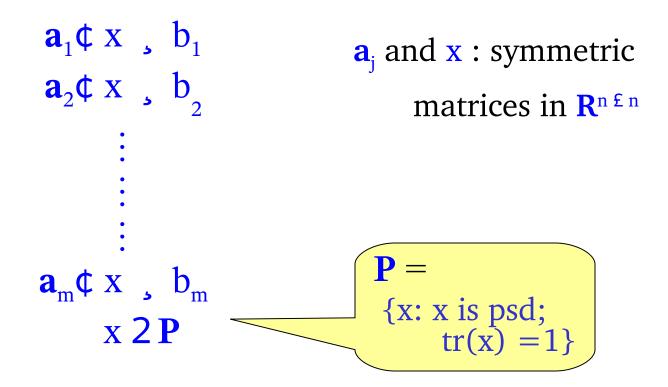
Deterministic approximation algorithms for 0/1 packing/covering problem *a la* Raghavan-Thompson



Young [95] "Randomized rounding without solving the LP." MW update rule mimics pessimistic estimator.

Application 2:

Semidefinite programming (Klein-Lu'97)



Oracle: $\max \sum_{j} w_{j} (\mathbf{a}_{j} \mathbf{x})$ over \mathbf{P}

(eigenvalue computation!)

Next few slides: New Results (AHK'04, AHK'05)

Key difference between efficient and not-so-efficient implementations of the MW idea: Width management.

(e.g., the difference between PST'91 and GK'99)

Solving SDP relaxations more efficiently [AHK'05]

Problem	Using Interior Point	Our result
MAXQP (e.g. MAX-CUT)	Õ(n ^{3.5})	$\tilde{O}(n^{1.5}N/\epsilon^{2.5})$ or $\tilde{O}(n^3/\alpha^*\epsilon^{3.5})$
HAPLOFREQ	$\tilde{O}(n^4)$	$\tilde{O}(n^{2.5}/\epsilon^{2.5})$
SCP	$\tilde{O}(n^4)$	$\tilde{O}(n^{1.5}N/\epsilon^{4.5})$
EMBEDDING	$\tilde{O}(n^4)$	$\tilde{O}(n^3/d^5\epsilon^{3.5})$
SPARSEST CUT	$\tilde{O}(n^{4.5})$	$\tilde{O}(n^3/\epsilon^2)$
MIN UNCUT etc	$\tilde{O}(n^{4.5})$	$\tilde{O}(n^{3.5}/\epsilon^2)$

Recall: issue of width

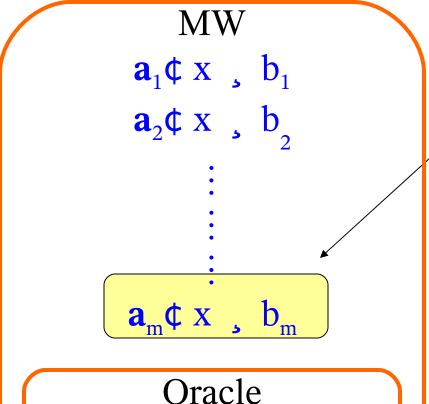
\mathbf{MW} $\mathbf{a}_{1} \mathbf{c} \times \mathbf{b}_{1}$ $\mathbf{a}_{2} \mathbf{c} \times \mathbf{b}_{2}$ \vdots $\mathbf{a}_{m} \mathbf{c} \times \mathbf{b}_{m}$

Oracle
$$\sum_{k} w_{k}(\mathbf{a}_{k} \mathbf{c} x - \mathbf{b}_{k}) \mathbf{c} 0$$

$$\times 2 \mathbf{P}$$

- $\tilde{O}(\rho^2/\epsilon^2)$ iterations to obtain ϵ feasible x
- $\rho = \max_{k} |\mathbf{a}_{k} + \mathbf{x} \mathbf{b}_{k}|$
- ρ is too large!!

Issue 1:Dealing with width



Oracle $\sum_{k} w_{k}(\mathbf{a}_{k} \mathbf{x} - \mathbf{b}_{k}) = 0$ $\times 2 \mathbf{P}$

- A few high width/ constraints
- Oracle: separation hyperplane for dual
- Can run ellipsoid/Vaidya
- poly(m, log(ρ/ε))iterations to obtain εfeasible x

Dealing with width (contd)

MW

$$\mathbf{a}_1 \Leftrightarrow \mathbf{x} \cdot \mathbf{b}_1$$

 $\mathbf{a}_2 \Leftrightarrow \mathbf{x} \cdot \mathbf{b}_2$
 \vdots

Dual ellipsoid/Vaidya

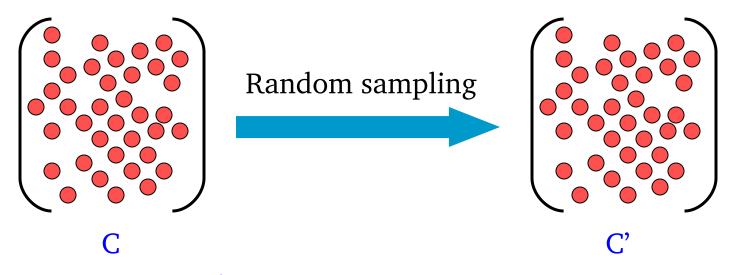
$$\mathbf{a}_{m} \mathbf{c} \mathbf{x} \mathbf{b}_{m}$$

Oracle

$$\sum_{k} w_{k}(\mathbf{a}_{k} \mathbf{c} x - \mathbf{b}_{k}) , 0$$

- Hybrid of MW and Vaidya
- $\tilde{O}(\rho_L^2/\epsilon^2)$ iterations to obtain ϵ feasible x
- ρ_{τ.} ¿ ρ

Issue 2: Efficient implementation of Oracle: fast eigenvalues via matrix sparsification



$$O(\sqrt[n]{\sum_{ij} |C_{ij}|/\epsilon})$$
 non-zero entries

$$kC-C'k \cdot \epsilon$$

- Lanczos effectively uses sparsity of C
- Similar to Achlioptas, McSherry ['01], but better in some situations (also easier analysis)

Online games with matrix payoffs (Satyen Kale'06)

Payoff is a matrix, and so is the "distribution" on experts!

Uses matrix analogues of usual inequalities

$$1 + x \cdot e^x$$
 $I + A \cdot e^A$

Used (together with many other tricks) to solve "triangle inequality" SDPs in O(n³) time.

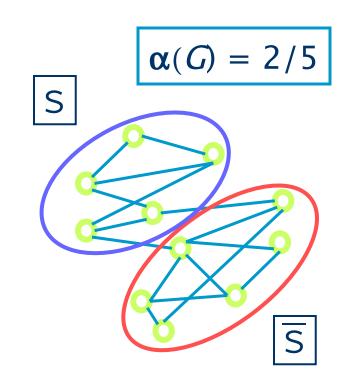
O(n²)-time algorithm to compute O(plog n)-approximation to SPARSEST CUT

(v/s $O(n^{4.5})$ using interior point methods)

Sparsest Cut

The sparsest cut:

$$\mathbb{R} := \min_{S \mu V ; jSj < V=2} \frac{jE(S; \$)j}{jSj}$$



- O(log n) approximation [Leighton Rao '88]
- O(plog n) approximation [A., Rao, Vazirani'04]
- O(p log n) approximation in O(n²) time.
 (Actually, finds expander flows) [A., Hazan, Kale'05]

MW algorithm to find expander flows

- Events { (s,w,z) | weights on vertices, edges, cuts}
- Experts pairs of vertices (i,j)
- Payoff: (for weights $d_{i,j}$ on experts)

$$_{ij}$$
 d_{ij} $(s_i + s_j + l_{ij} \mid z_{ij})$

shortest path

according to

weights w

Fact: If events are chosen optimally, the distribution on experts d_{i,j} Cuts separating converges to a demand graph which is an "expander flow and j and j [by results of Arora-Rao-Vazirani '04 suffices to produce approx. sparsest cut]

Faster algorithms for online learning and portfolio management

(Agarwal-Hazan'06, Agarwal-Hazan-Kalai-Kale'06)

- Framework for online optimization inspired by Newton's method (2nd order optimization). (Note: MW ¼ gradient descent)
- Fast algorithms for Portfolio management and other online optimization problems

Open problems

Better approaches to width management?

Faster run times?

THANK YOU

Connection to Chernoff bounds and derandomization

- Deterministic approximation algorithms a la Raghavan-Thompson
- Packing/covering IP with variables $x_i = 0/1$

9? x 2 P: 8 j 2 [m],
$$f_j(x) = 0$$

- Solve LP relaxation using variables y_i 2 [0, 1]
- Randomized rounding: w.p. y_i $x_i = \begin{cases} 0 \text{ w.p. } 1 - y_i \end{cases}$
- Chernoff: O(log m) sampling iterations suffice

Derandomization [Young, '95]

- Can derandomize the rounding using $\exp(t\sum_j f_j(x))$ as a pessimistic estimator of failure probability
- By minimizing the estimator in every iteration, we mimic the random expt, so O(log m) iterations suffice
- The structure of the estimator obviates the need to solve the LP: Randomized rounding without solving the Linear Program
- Punchline: resulting algorithm is the MW algorithm!

Weighted majority [LW '94]

- If lost at t, $\phi_{t+1} \cdot (1-\frac{1}{2} \epsilon) \phi_t$
- At time T: $\phi_T \cdot (1-\frac{1}{2} \epsilon)^{\text{#mistakes}} \varphi_0$

$$(1; ")^{m_i} = w_i^T \cdot X \qquad w_i^T = \mathbb{C}_T$$

#mistakes of expert i

Overall:

#mistakes $\cdot \log(n)/\epsilon + (1+\epsilon) m_i$

Semidefinite programming

- Vectors \mathbf{a}_i and \mathbf{x} : symmetric matrices in $\mathbb{R}^{n \cdot \mathbf{n}}$
- x ° 0
- Assume: $Tr(x) \cdot 1$
- Set $P = \{x: x \circ 0, Tr(x) \cdot 1\}$
- Oracle: max $\sum_{j} w_{j}(\mathbf{a}_{j} \mathbf{x})$ over \mathbf{P}
- Optimum: $\mathbf{x} = \mathbf{v}\mathbf{v}^T$ where \mathbf{v} is the largest eigenvector of $\sum_i \mathbf{w}_i \mathbf{a}_j$

Efficiently implementing the oracle

- Optimum: $x = vv^T$
 - v is the largest eigenvector of some matrix C
- Suffices to find a vector v such that v^TCv , 0
- Lanczos algorithm with a random starting vector is ideal for this
- Advantage: uses only matrix-vector products
 - Exploits sparsity (also: sparsification procedure)
- Use analysis of Kuczynski and Wozniakowski ['92]