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Overview

Augmented Primal-Dual Method
Boundary Point Method
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Semidefinite Programs

max{〈C,X〉 : A(X) = b,X # 0} = min{bT y : AT (y)−C = Z # 0}

Some notation and assumptions:

X,Z symmetric n × n matrices

The linear equations A(X) = b read 〈Ai, X〉 = bi for given
symmetric matrices Ai, i = 1, . . . , m. The adjoint map AT is
given by AT (y) =

∑

yiAi.

We assume that both the primal and the dual problem have
strictly feasible points (X,Z & 0), so that strong duality
holds, and optima are attained.
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Optimality conditions

Under these conditions, (X, y, Z) is optimal if and only if the
following conditions hold:

A(X) = b, X # 0, primal feasibility

AT (y) − Z = C, Z # 0, dual feasibility
〈X,Z〉 = 0 complementarity.

Last condition is equivalent to 〈C,X〉 = bT y.

It could also be replaced by the matrix equation

ZX = 0.

F. Rendl, Oberwolfach Seminar, May 2010 – p.4/32



Other solution approaches

• Spectral Bundle method, see Helmberg, Rendl: SIOPT
(2000): works on dual problem as eigenvalue optimization
problem.
• Low-Rank factorization, see Burer, Monteiro: Math Prog
(2003): express X = LLT and work with L. Leads to
nonlinear optimization techniques.
• Iterative solvers for augmented system, see Toh: SIOPT
(2004): use iterative methods to solve Newton system.
• Iterative solvers and modified barrier approach, see
Kocvara, Stingl: Math Prog (2007): strong computational
results using the package PENNSDP.
• and many other methods: sorry for not mentioning them
all
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Other solution approaches

• Spectral Bundle method
• Low-Rank factorization
• Iterative solvers for augmented system, Toh (2004)
• Iterative solvers and modified barrier approach, Kocvara,
Stingl (2007)

Methods based on projection
• boundary point approach: (Povh, R., Wiegele: Computing
2006)
• regularization methods: Malick, Povh, R., Wiegele, 2009
• augmented primal-dual approach: (Jarre, R.: SIOPT
2009)
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Comparing IP and projection methods

constraint IP BPM APD
A(X) = b yes *** yes

X # 0 yes yes ***
AT (y) − C = Z yes *** yes

Z # 0 yes yes ***
〈Z,X〉 = 0 — — yes

ZX = 0 *** yes —
IP: Interior-point approach
BPM: boundary point method
APD: augmented primal-dual method
***: means that once this condition is satisfied, the method
stops.

F. Rendl, Oberwolfach Seminar, May 2010 – p.7/32



Augmented Primal-Dual Method

(This is joint work with Florian Jarre.)

FP := {X : A(X) = b} primal linear space,

FD := {(y, Z) : Z = C + AT (y)} dual linear space

OPT := {(X, y, Z); 〈C,X〉 = bT y} optimality hyperplane.
From Linear Algebra:

ΠFP (X) = X − AT
(

(AAT )−1(A(X) − b)
)

,

ΠFD(Z) = C + AT
(

(AAT )−1(A(Z − C))
)

are the projections of (X,Z) onto FP and FD.
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Augmented Primal-Dual Method (2)

Note that both projections essentially need one solve with
matrix AAT . (Needs to be factored only once.)
Projection onto OPT is trivial.
Let K = FP ∩ FD ∩ OPT . Given (X, y, Z), the projection
ΠK(X, y, Z) onto K requires two solves.

This suggests the following iteration:

Start: Select (X, y, Z) ∈ K
Iteration: while not optimal

• X+ = ΠSDP (X), Z+ = ΠSDP (Z).
• (X, y, Z) ← ΠK(X+, y, Z+)

The projection ΠSDP (X) of X onto SDP can be computed
through an eigenvalue decomposition of X.
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Augmented Primal-Dual Method (3)

This approach converges, but possibly very slowly.
The computational effort is two solves (order m) and two
factorizations (order n).

An improvement: Consider

φ(X,Z) := dist(X,SDP )2 + dist(Z, SDP )2.

Here dist(X,SDP ) denotes the distance of the matrix X
from the cone of semidefinite matrices. The (convex)
function φ is differentiable with Lipschitz-continuous
gradient:

∇φ(X,Z) = (X,Z) − ΠK(ΠSDP (X,Z))

We solve SDP by minimizing φ over K.
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Augmented Primal-Dual Method (4)

Practical implementation currently under investigation.
The function φ could be modified by

φ(X,Z) + ‖XZ‖2
F

Apply some sort of conjugate gradient approach
(Polak-Ribiere) to minimize this function. Computational
work:

• Projection onto K done by solving a system with matrix AAT .

• Evaluating φ involves spectral decomposition of X,Z.

This approach is feasible if n not too large (n ≤ 1000), and if
linear system with AAT can be solved.
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Augmented Primal-Dual Method (5)

Recall: (X, y, Z) is optimal once X,Z # 0.
A typical run: n = 400, m = 10000.

iter secs 〈C,X〉 λmin(X) λmin(Z)

1 9.7 11953.300 -0.00209 -0.00727
10 55.8 11942.955 -0.00036 -0.00055
20 103.8 11948.394 -0.00013 -0.00015
30 150.7 11950.799 -0.00007 -0.00005
40 196.7 11951.676 -0.00005 -0.00002
50 242.6 11951.781 -0.00004 -0.00001

The optimal value is 11951.726.

F. Rendl, Oberwolfach Seminar, May 2010 – p.12/32



Random SDP

n m opt apd λmin

400 40000 -114933.8 -114931.1 -0.0002
500 50000 -47361.2 -47353.4 -0.0003
600 60000 489181.8 489194.5 -0.0004
700 70000 -364458.8 -364476.1 -0.0004
800 80000 -112872.6 -112817.4 -0.0011
1000 100000 191886.2 191954.5 -0.0012

50 iterations of APD.
Largest instance takes about 45 minutes.
λmin is most negative eigenvalue of X and Z.
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Boundary Point method

Augmented Lagrangian for (D)
min{bT y : AT (y) − C = Z # 0}.
X . . . Lagrange Multiplier for dual equations
σ > 0 penalty parameter

Lσ(y, Z, X) = bT y + 〈X,Z + C −AT (y)〉+
σ

2
‖Z + C −AT (y)‖2

Generic Method:
repeat until convergence
(a) Keep X fixed: solve miny,Z"0 Lσ(y, Z, X) to get y, Z # 0

(b) update X: X ← X + σ(Z + C − AT (y))
(c) update σ

Original version: Powell, Hestenes (1969)
σ carefully selected gives linear convergence
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Inner Subproblem

Inner minimization:
X and σ are fixed.

W (y) := AT (y) − C −
1

σ
X

Lσ = bT y + 〈X,Z + C − AT (y)〉 +
σ

2
‖Z + C − AT (y)‖2 =

= bT y +
σ

2
‖Z − W (y)‖2 + const = f(y, Z) + const.

Note that dependence on Z looks like projection problem,
but with additional variables y.
Altogether this is convex quadratic SDP!
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Optimality conditions (1)

Introduce Lagrange multiplier V # 0 for Z # 0:

L(y, Z, V ) = f(y, Z) − 〈V, Z〉

Recall:

f(y, Z) = bT y +
σ

2
‖Z − W (y)‖2, W (y) = AT (y) − C −

1

σ
X.

∇yL = 0 gives σAAT (y) = σA(Z + C) + A(X) − b,

∇ZL = 0 gives V = σ(Z − W (y)),

V # 0, Z =# 0, V Z = 0.

Since Slater constraint qualification holds, these are
necessary and sufficient for optimality.
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Optimality conditions (2)

Note also: For y fixed we get Z by projection: Z = W (y)+.
From matrix analysis:

W = W+ + W−, W+ # 0, −W− # 0, 〈W+,W−〉 = 0.

We have: (y, Z, V ) is optimal if and only if:

AAT (y) =
1

σ
(A(X) − b) + A(Z + C),

Z = W (y)+, V = σ(Z − W (y)) = −σW (y)−.

Solve linear system (of order m) to get y.
Compute eigenvalue decomposition of W (y) (order n).
Note that AAT does not change during iterations.
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Boundary Point Method

Start: σ > 0, X # 0, Z # 0
repeat until ‖Z − AT (y) + C‖ ≤ ε:

• repeat until ‖A(V ) − b‖ ≤ σε (X,σ fixed):
- Solve for y: AAT (y) = rhs
- Compute Z = W (y)+, V = −σW (y)−

• Update X : X = −σW (y)−

Inner stopping condition is primal feasibility.
Outer stopping condition is dual feasibility.

See: Povh, R, Wiegele (Computing, 2006)
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Theta: big DIMACS graphs

graph n m ϑ ω

keller5 776 74.710 31.00 27
keller6 3361 1026.582 63.00 ≥59
san1000 1000 249.000 15.00 15
san400-07.3 400 23.940 22.00 22
brock400-1 400 20.077 39.70 27
brock800-1 800 112.095 42.22 23
p-hat500-1 500 93.181 13.07 9
p-hat1000-3 1000 127.754 84.80 ≥68
p-hat1500-3 1500 227.006 115.44 ≥94

see Malick, Povh, R., Wiegele (2008): The theta number for
the bigger instances has not been computed before.
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Random SDP

n m secs iter secs chol(AA′)

300 5000 43 168 1
300 10000 158 229 56
400 10000 130 211 8
400 20000 868 204 593
500 10000 144 136 1
500 20000 431 205 140
600 10000 184 96 1
600 20000 345 155 23
600 30000 975 152 550
800 40000 1298 155 345

relative accuracy of 10−5, coded in MATLAB.
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Conclusions and References

• Both methods need more theoretical convergence
analysis.
• Speed-up possible making use of limited-memory BFGS
type methods.
• The spectral decomposition limits the matrix size n.
• Practical convergence may vary greatly depending on
data.

3 papers:
Povh, R., Wiegele: Boundary point method (Computing
2006)
Malick, Povh, R., Wiegele: (SIOPT 2009)
Jarre, R.:, Augmented primal-dual method, (SIOPT 2008)
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Large-Scale SDP

Projection methods like the boundary point method assume
that a full spectral decomposition is computationally
feasible.
This limits n to n ≤ 2000 but m could be arbitrary.

What if n is much larger?
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Spectral Bundle Method

What if m and n is large?
In addition to before, we now assume that working with
symmetric matrices X of order n is too expensive (no
Cholesky, no matrix multiplication!)
One possibility: Get rid of Z # 0 by using eigenvalue
arguments.
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Constant trace SDP

A has constant trace property if I is in the range of AT ,
equivalently

∃η such that AT (η) = I

The constant trace property implies:

A(X) = b, AT (η) = I then

tr(X) = 〈I, X〉 = 〈η, A(X)〉 = ηT b =: a

Constant trace property holds for many combinatorially
derived SDP!
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Reformulating Constant Trace SDP

Reformulate dual as follows:

min{bT y : AT (y) − C = Z # 0}

Adding (redundant) primal constraint tr(X) = a introduces
new dual variable, say λ, and dual becomes:

min{bT y + aλ : AT (y) − C + λI = Z # 0}

At optimality, Z is singular, hence λmin(Z) = 0.
Will be used to compute dual variable λ explicitely.

F. Rendl, Oberwolfach Seminar, May 2010 – p.25/32



Dual SDP as eigenvalue optimization

Compute dual variable λ explicitely:

λmax(−Z) = λmax(C −AT (y))−λ = 0,⇒ λ = λmax(C −AT (y))

Dual equivalent to

min{a λmax(C − AT (y)) + bT y : y ∈ 0m}

This is non-smooth unconstrained convex problem in y.
Minimizing f(y) = λmax(C − AT (y)) + bT y:
Note: Evaluating f(y) at y amounts to computing largest
eigenvalue of C − AT (y).
Can be done by iterative methods for very large (sparse)
matrices.
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Spectral Bundle Method (1)

If we have some y, how do we move to a better point?

λmax(X) = max{〈X,W 〉 : tr(W ) = 1, W # 0}

Define
L(W, y) := 〈C − AT (y), W 〉 + bT y.

Then f(y) = max{L(W, y) : tr(W ) = 1, W # 0}.
Idea 1: Minorant for f(y)
Fix some m × k matrix P . k ≥ 1 can be chosen arbitrarily.
The choice of P will be explained later.
Consider W of the form W = PV P T with new k × k matrix
variable V .

f̂(y) := max{L(W, y) : W = PV P T , V # 0} ≤ f(y)
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Spectral Bundle Method (2)

Idea 2: Proximal point approach
The function f̂ depends on P and will be a good
approximation to f(y) only in some neighbourhood of the
current iterate ŷ.
Instead of minimizing f(y) we minimize

f̂(y) +
u

2
‖y − ŷ‖2.

This is a strictly convex function, if u > 0 is fixed.
Substitution of definition of ŷ gives the following min-max
problem
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Quadratic Subproblem (1)

min
y

max
W

L(W, y) +
u

2
‖y − ŷ‖2 = . . .

= max
W, y=ŷ+ 1

u
(A(W )−b)

L(W, y) +
u

2
‖y − ŷ‖2

= max
W

〈C − AT (ŷ), W 〉 + bT ŷ −
1

2u
〈A(W ) − b, A(W ) − b〉.

Note that this is a quadratic SDP in the k × k matrix V ,
because W = PV P T .
k is user defined and can be small, independent of n!!
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Quadratic Subproblem (2)

Once V is computed, we get with W = PV P T that
y = ŷ + 1

u(A(W ) − b)
see: Helmberg, Rendl: SIOPT 10, (2000), 673ff
Update of P :
Having new point y, we evaluate f at y (sparse eigenvalue
computation), which produces also an eigenvector v to
λmax.
The vector v is added as new column to P , and P is purged
by removing unnecessary other columns.
Convergence is slow, once close to optimum
• solve quadratic SDP of size k
• compute λmax of matrix of order n
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Last Slide

• Interior Point methods are fine and work robustly, but
n ≤ 1000 and m ≤ 10, 000 is a severe limit.
• If n small enough for matrix operations (n ≤ 2, 000), then
projection methods allow to go to large m. These algorithms
have weaker convergence properties and need some
nontrivial parameter tuning.
• Partial Lagrangian duality can always be used to deal with
only a part of the constraints explicitely. But we still need to
solve some basic SDP and convergence of bundle methods
for the Lagrangian dual may be slow.
• Currently, only spectral bundle is suitable as a general
tool for very-large scale SDP.
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