Projection methods to solve SDP

Franz Rendl
http://www.math.uni-klu.ac.at
Alpen-Adria-Universität Klagenfurt
Austria

Overview

- Augmented Primal-Dual Method
- Boundary Point Method

Semidefinite Programs

$\max \{\langle C, X\rangle: A(X)=b, X \succeq 0\}=\min \left\{b^{T} y: A^{T}(y)-C=Z \succeq 0\right\}$
Some notation and assumptions:

X, Z symmetric $n \times n$ matrices

The linear equations $A(X)=b$ read $\left\langle A_{i}, X\right\rangle=b_{i}$ for given symmetric matrices $A_{i}, i=1, \ldots, m$. The adjoint map A^{T} is given by $A^{T}(y)=\sum y_{i} A_{i}$.

We assume that both the primal and the dual problem have strictly feasible points ($X, Z \succ 0$), so that strong duality holds, and optima are attained.

Optimality conditions

Under these conditions, (X, y, Z) is optimal if and only if the following conditions hold:

$$
\begin{gathered}
A(X)=b, X \succeq 0, \text { primal feasibility } \\
A^{T}(y)-Z=C, Z \succeq 0, \text { dual feasibility } \\
\langle X, Z\rangle=0 \text { complementarity. }
\end{gathered}
$$

Last condition is equivalent to $\langle C, X\rangle=b^{T} y$.
It could also be replaced by the matrix equation

$$
Z X=0 .
$$

Other solution approaches

- Spectral Bundle method, see Helmberg, Rendl: SIOPT (2000): works on dual problem as eigenvalue optimization problem.
- Low-Rank factorization, see Burer, Monteiro: Math Prog (2003): express $X=L L^{T}$ and work with L. Leads to nonlinear optimization techniques.
- Iterative solvers for augmented system, see Toh: SIOPT (2004): use iterative methods to solve Newton system.
- Iterative solvers and modified barrier approach, see Kocvara, Stingl: Math Prog (2007): strong computational results using the package PENNSDP.
- and many other methods: sorry for not mentioning them all

Other solution approaches

- Spectral Bundle method
- Low-Rank factorization
- Iterative solvers for augmented system, Toh (2004)
- Iterative solvers and modified barrier approach, Kocvara, Stingl (2007)

Methods based on projection

- boundary point approach: (Povh, R., Wiegele: Computing 2006)
- regularization methods: Malick, Povh, R., Wiegele, 2009
- augmented primal-dual approach: (Jarre, R.: SIOPT 2009)

Comparing IP and projection methods

constraint	IP	BPM	APD
$A(X)=b$	yes	$* * *$	yes
$X \succeq 0$	yes	yes	$* * *$
$A^{T}(y)-C=Z$	yes	$* * *$	yes
$Z \succeq 0$	yes	yes	$* * *$
$\langle Z, X\rangle=0$	-	-	yes
$Z X=0$	$* * *$	yes	-

IP: Interior-point approach
BPM: boundary point method
APD: augmented primal-dual method
***: means that once this condition is satisfied, the method stops.

Augmented Primal-Dual Method

(This is joint work with Florian Jarre.)

$$
\begin{gathered}
F P:=\{X: A(X)=b\} \text { primal linear space, } \\
F D:=\left\{(y, Z): Z=C+A^{T}(y)\right\} \text { dual linear space }
\end{gathered}
$$

$$
O P T:=\left\{(X, y, Z) ;\langle C, X\rangle=b^{T} y\right\} \text { optimality hyperplane. }
$$

From Linear Algebra:

$$
\begin{gathered}
\Pi_{F P}(X)=X-A^{T}\left(\left(A A^{T}\right)^{-1}(A(X)-b)\right), \\
\Pi_{F D}(Z)=C+A^{T}\left(\left(A A^{T}\right)^{-1}(A(Z-C))\right)
\end{gathered}
$$

are the projections of (X, Z) onto FP and FD .

Augmented Primal-Dual Method (2)

Note that both projections essentially need one solve with matrix $A A^{T}$. (Needs to be factored only once.) Projection onto OPT is trivial.
Let $K=F P \cap F D \cap O P T$. Given (X, y, Z), the projection $\Pi_{K}(X, y, Z)$ onto K requires two solves.

This suggests the following iteration:
Start: Select $(X, y, Z) \in K$ Iteration: while not optimal

- $X^{+}=\Pi_{S D P}(X), Z^{+}=\Pi_{S D P}(Z)$.
- $(X, y, Z) \leftarrow \Pi_{K}\left(X^{+}, y, Z^{+}\right)$

The projection $\Pi_{S D P}(X)$ of X onto SDP can be computed through an eigenvalue decomposition of X.

Augmented Primal-Dual Method (3)

This approach converges, but possibly very slowly.
The computational effort is two solves (order m) and two factorizations (order n).

An improvement: Consider

$$
\phi(X, Z):=\operatorname{dist}(X, S D P)^{2}+\operatorname{dist}(Z, S D P)^{2} .
$$

Here $\operatorname{dist}(X, S D P)$ denotes the distance of the matrix X from the cone of semidefinite matrices. The (convex) function ϕ is differentiable with Lipschitz-continuous gradient:

$$
\nabla \phi(X, Z)=(X, Z)-\Pi_{K}\left(\Pi_{S D P}(X, Z)\right)
$$

We solve SDP by minimizing ϕ over K.

Augmented Primal-Dual Method (4)

Practical implementation currently under investigation.
The function ϕ could be modified by

$$
\phi(X, Z)+\|X Z\|_{F}^{2}
$$

Apply some sort of conjugate gradient approach (Polak-Ribiere) to minimize this function. Computational work:

- Projection onto K done by solving a system with matrix $A A^{T}$.
- Evaluating ϕ involves spectral decomposition of X, Z.

This approach is feasible if n not too large ($n \leq 1000$), and if linear system with $A A^{T}$ can be solved.

Augmented Primal-Dual Method (5)

Recall: (X, y, Z) is optimal once $X, Z \succeq 0$.
A typical run: $n=400, m=10000$.

iter	secs	$\langle C, X\rangle$	$\lambda_{\min }(X)$	$\lambda_{\min }(Z)$
1	9.7	11953.300	-0.00209	-0.00727
10	55.8	11942.955	-0.00036	-0.00055
20	103.8	11948.394	-0.00013	-0.00015
30	150.7	11950.799	-0.00007	-0.00005
40	196.7	11951.676	-0.00005	-0.00002
50	242.6	11951.781	-0.00004	-0.00001

The optimal value is 11951.726 .

Random SDP

n	m	opt	apd	$\lambda_{\min }$
400	40000	-114933.8	-114931.1	-0.0002
500	50000	-47361.2	-47353.4	-0.0003
600	60000	489181.8	489194.5	-0.0004
700	70000	-364458.8	-364476.1	-0.0004
800	80000	-112872.6	-112817.4	-0.0011
1000	100000	191886.2	191954.5	-0.0012

50 iterations of APD.
Largest instance takes about 45 minutes.
$\lambda_{\min }$ is most negative eigenvalue of X and Z.

Boundary Point method

Augmented Lagrangian for (D)
$\min \left\{b^{T} y: A^{T}(y)-C=Z \succeq 0\right\}$.
$X \ldots$. Lagrange Multiplier for dual equations
$\sigma>0$ penalty parameter
$L_{\sigma}(y, Z, X)=b^{T} y+\left\langle X, Z+C-A^{T}(y)\right\rangle+\frac{\sigma}{2}\left\|Z+C-A^{T}(y)\right\|^{2}$
Generic Method:
repeat until convergence
(a) Keep X fixed: solve $\min _{y, Z \succeq 0} L_{\sigma}(y, Z, X)$ to get $y, Z \succeq 0$
(b) update $X: X \leftarrow X+\sigma\left(Z+C-A^{T}(y)\right)$
(c) update σ

Original version: Powell, Hestenes (1969)
σ carefully selected gives linear convergence

Inner Subproblem

Inner minimization:
X and σ are fixed.

$$
\begin{gathered}
W(y):=A^{T}(y)-C-\frac{1}{\sigma} X \\
L_{\sigma}=b^{T} y+\left\langle X, Z+C-A^{T}(y)\right\rangle+\frac{\sigma}{2}\left\|Z+C-A^{T}(y)\right\|^{2}= \\
=b^{T} y+\frac{\sigma}{2}\|Z-W(y)\|^{2}+\text { const }=f(y, Z)+\text { const. }
\end{gathered}
$$

Note that dependence on Z looks like projection problem, but with additional variables y.
Altogether this is convex quadratic SDP!

Optimality conditions (1)

Introduce Lagrange multiplier $V \succeq 0$ for $Z \succeq 0$:

$$
L(y, Z, V)=f(y, Z)-\langle V, Z\rangle
$$

Recall:

$$
\begin{gathered}
f(y, Z)=b^{T} y+\frac{\sigma}{2}\|Z-W(y)\|^{2}, \quad W(y)=A^{T}(y)-C-\frac{1}{\sigma} X . \\
\nabla_{y} L=0 \text { gives } \sigma A A^{T}(y)=\sigma A(Z+C)+A(X)-b, \\
\nabla_{Z} L=0 \text { gives } V=\sigma(Z-W(y)), \\
V \succeq 0, \quad Z=\succeq 0, \quad V Z=0 .
\end{gathered}
$$

Since Slater constraint qualification holds, these are necessary and sufficient for optimality.

Optimality conditions (2)

Note also: For y fixed we get Z by projection: $Z=W(y)_{+}$. From matrix analysis:

$$
W=W_{+}+W_{-}, \quad W_{+} \succeq 0, \quad-W_{-} \succeq 0, \quad\left\langle W_{+}, W_{-}\right\rangle=0 .
$$

We have: (y, Z, V) is optimal if and only if:

$$
\begin{gathered}
A A^{T}(y)=\frac{1}{\sigma}(A(X)-b)+A(Z+C), \\
Z=W(y)_{+}, \quad V=\sigma(Z-W(y))=-\sigma W(y)_{-} .
\end{gathered}
$$

Solve linear system (of order m) to get y. Compute eigenvalue decomposition of $W(y)$ (order n). Note that $A A^{T}$ does not change during iterations.

Boundary Point Method

Start: $\sigma>0, X \succeq 0, Z \succeq 0$
repeat until $\left\|Z-A^{T}(y)+C\right\| \leq \epsilon$:

- repeat until $\|A(V)-b\| \leq \sigma \epsilon(X, \sigma$ fixed):
- Solve for $y: A A^{T}(y)=r h s$
- Compute $Z=W(y)_{+}, \quad V=-\sigma W(y)_{-}$
- Update $X: \quad X=-\sigma W(y)_{-}$

Inner stopping condition is primal feasibility.
Outer stopping condition is dual feasibility.
See: Povh, R, Wiegele (Computing, 2006)

Theta: big DIMACS graphs

graph	n	m	ϑ	ω
keller5	776	74.710	31.00	27
keller6	3361	1026.582	63.00	≥ 59
san1000	1000	249.000	15.00	15
san400-07.3	400	23.940	22.00	22
brock400-1	400	20.077	39.70	27
brock800-1	800	112.095	42.22	23
p-hat500-1	500	93.181	13.07	9
p-hat1000-3	1000	127.754	84.80	≥ 68
p-hat1500-3	1500	227.006	115.44	≥ 94

see Malick, Povh, R., Wiegele (2008): The theta number for the bigger instances has not been computed before.

Random SDP

n	m	secs	iter	secs chol $\left(A A^{\prime}\right)$
300	5000	43	168	1
300	10000	158	229	56
400	10000	130	211	8
400	20000	868	204	593
500	10000	144	136	1
500	20000	431	205	140
600	10000	184	96	1
600	20000	345	155	23
600	30000	975	152	550
800	40000	1298	155	345

relative accuracy of 10^{-5}, coded in MATLAB.

Conclusions and References

- Both methods need more theoretical convergence analysis.
- Speed-up possible making use of limited-memory BFGS type methods.
- The spectral decomposition limits the matrix size n.
- Practical convergence may vary greatly depending on data.

3 papers:
Povh, R., Wiegele: Boundary point method (Computing 2006)

Malick, Povh, R., Wiegele: (SIOPT 2009) Jarre, R.:, Augmented primal-dual method, (SIOPT 2008)

Large-Scale SDP

Projection methods like the boundary point method assume that a full spectral decomposition is computationally feasible.
This limits n to $n \leq 2000$ but m could be arbitrary.
What if n is much larger?

Spectral Bundle Method

What if m and n is large?
In addition to before, we now assume that working with symmetric matrices X of order n is too expensive (no Cholesky, no matrix multiplication!)
One possibility: Get rid of $Z \succeq 0$ by using eigenvalue arguments.

Constant trace SDP

A has constant trace property if I is in the range of A^{T}, equivalently

$$
\exists \eta \text { such that } A^{T}(\eta)=I
$$

The constant trace property implies:

$$
\begin{gathered}
A(X)=b, A^{T}(\eta)=I \text { then } \\
\operatorname{tr}(X)=\langle I, X\rangle=\langle\eta, A(X)\rangle=\eta^{T} b=: a
\end{gathered}
$$

Constant trace property holds for many combinatorially derived SDP!

Reformulating Constant Trace SDP

Reformulate dual as follows:

$$
\min \left\{b^{T} y: A^{T}(y)-C=Z \succeq 0\right\}
$$

Adding (redundant) primal constraint $\operatorname{tr}(X)=a$ introduces new dual variable, say λ, and dual becomes:

$$
\min \left\{b^{T} y+a \lambda: A^{T}(y)-C+\lambda I=Z \succeq 0\right\}
$$

At optimality, Z is singular, hence $\lambda_{\min }(Z)=0$. Will be used to compute dual variable λ explicitely.

Dual SDP as eigenvalue optimization

Compute dual variable λ explicitely:
$\lambda_{\max }(-Z)=\lambda_{\max }\left(C-A^{T}(y)\right)-\lambda=0, \Rightarrow \lambda=\lambda_{\max }\left(C-A^{T}(y)\right)$
Dual equivalent to

$$
\min \left\{a \lambda_{\max }\left(C-A^{T}(y)\right)+b^{T} y: y \in \Re^{m}\right\}
$$

This is non-smooth unconstrained convex problem in y. Minimizing $f(y)=\lambda_{\max }\left(C-A^{T}(y)\right)+b^{T} y$:
Note: Evaluating $f(y)$ at y amounts to computing largest eigenvalue of $C-A^{T}(y)$.
Can be done by iterative methods for very large (sparse) matrices.

Spectral Bundle Method (1)

If we have some y, how do we move to a better point?

$$
\lambda_{\max }(X)=\max \{\langle X, W\rangle: \operatorname{tr}(W)=1, W \succeq 0\}
$$

Define

$$
L(W, y):=\left\langle C-A^{T}(y), W\right\rangle+b^{T} y .
$$

Then $f(y)=\max \{L(W, y): \operatorname{tr}(W)=1, W \succeq 0\}$. Idea 1: Minorant for $f(y)$
Fix some $m \times k$ matrix P. $k \geq 1$ can be chosen arbitrarily. The choice of P will be explained later.
Consider W of the form $W=P V P^{T}$ with new $k \times k$ matrix variable V.

$$
\hat{f}(y):=\max \left\{L(W, y): W=P V P^{T}, V \succeq 0\right\} \leq f(y)
$$

Spectral Bundle Method (2)

Idea 2: Proximal point approach
The function \hat{f} depends on P and will be a good approximation to $f(y)$ only in some neighbourhood of the current iterate \hat{y}.
Instead of minimizing $f(y)$ we minimize

$$
\hat{f}(y)+\frac{u}{2}\|y-\hat{y}\|^{2} .
$$

This is a strictly convex function, if $u>0$ is fixed. Substitution of definition of \hat{y} gives the following min-max problem

Quadratic Subproblem (1)

$$
\begin{gathered}
\min _{y} \max _{W} L(W, y)+\frac{u}{2}\|y-\hat{y}\|^{2}=\ldots \\
=\max _{W, y=\hat{y}+\frac{1}{u}(A(W)-b)} L(W, y)+\frac{u}{2}\|y-\hat{y}\|^{2} \\
=\max _{W}\left\langle C-A^{T}(\hat{y}), W\right\rangle+b^{T} \hat{y}-\frac{1}{2 u}\langle A(W)-b, A(W)-b\rangle .
\end{gathered}
$$

Note that this is a quadratic SDP in the $k \times k$ matrix V, because $W=P V P^{T}$.
k is user defined and can be small, independent of $n!!$

Quadratic Subproblem (2)

Once V is computed, we get with $W=P V P^{T}$ that
$y=\hat{y}+\frac{1}{u}(A(W)-b)$
see: Helmberg, Rendl: SIOPT 10, (2000), 673ff
Update of P :
Having new point y, we evaluate f at y (sparse eigenvalue computation), which produces also an eigenvector v to
$\lambda_{\text {max }}$.
The vector v is added as new column to P, and P is purged by removing unnecessary other columns.
Convergence is slow, once close to optimum

- solve quadratic SDP of size k
- compute $\lambda_{\text {max }}$ of matrix of order n

Last Slide

- Interior Point methods are fine and work robustly, but $n \leq 1000$ and $m \leq 10,000$ is a severe limit.
- If n small enough for matrix operations ($n \leq 2,000$), then projection methods allow to go to large m. These algorithms have weaker convergence properties and need some nontrivial parameter tuning.
- Partial Lagrangian duality can always be used to deal with only a part of the constraints explicitely. But we still need to solve some basic SDP and convergence of bundle methods for the Lagrangian dual may be slow.
- Currently, only spectral bundle is suitable as a general tool for very-large scale SDP.

