Projection methods to solve SDP

Franz Rendl

http://www.math.uni-klu.ac.at

Alpen-Adria-Universität Klagenfurt

Austria

Overview

- Augmented Primal-Dual Method
- Boundary Point Method

Semidefinite Programs

 $\max\{\langle C, X \rangle : A(X) = b, X \succeq 0\} = \min\{b^T y : A^T(y) - C = Z \succeq 0\}$

Some notation and assumptions:

X, Z symmetric $n \times n$ matrices

The linear equations A(X) = b read $\langle A_i, X \rangle = b_i$ for given symmetric matrices $A_i, i = 1, ..., m$. The adjoint map A^T is given by $A^T(y) = \sum y_i A_i$.

We assume that both the primal and the dual problem have strictly feasible points ($X, Z \succ 0$), so that strong duality holds, and optima are attained.

Optimality conditions

Under these conditions, (X, y, Z) is optimal if and only if the following conditions hold:

 $A(X) = b, X \succeq 0$, primal feasibility $A^T(y) - Z = C, Z \succeq 0$, dual feasibility $\langle X, Z \rangle = 0$ complementarity. Last condition is equivalent to $\langle C, X \rangle = b^T y$.

It could also be replaced by the matrix equation

$$ZX = 0.$$

Other solution approaches

- Spectral Bundle method, see Helmberg, Rendl: SIOPT (2000): works on dual problem as eigenvalue optimization problem.
- Low-Rank factorization, see Burer, Monteiro: Math Prog (2003): express $X = LL^T$ and work with L. Leads to nonlinear optimization techniques.
- Iterative solvers for augmented system, see Toh: SIOPT (2004): use iterative methods to solve Newton system.
- Iterative solvers and modified barrier approach, see Kocvara, Stingl: Math Prog (2007): strong computational results using the package PENNSDP.
- and many other methods: sorry for not mentioning them all

Other solution approaches

- Spectral Bundle method
- Low-Rank factorization
- Iterative solvers for augmented system, Toh (2004)
- Iterative solvers and modified barrier approach, Kocvara, Stingl (2007)

Methods based on projection

- boundary point approach: (Povh, R., Wiegele: Computing 2006)
- regularization methods: Malick, Povh, R., Wiegele, 2009
- augmented primal-dual approach: (Jarre, R.: SIOPT 2009)

Comparing IP and projection methods

constraint	IP	BPM	APD
A(X) = b	yes	***	yes
$X \succeq 0$	yes	yes	***
$A^T(y) - C = Z$	yes	***	yes
$Z \succeq 0$	yes	yes	***
$\langle Z, X \rangle = 0$			yes
ZX = 0	***	yes	

IP: Interior-point approach

BPM: boundary point method

APD: augmented primal-dual method

***: means that once this condition is satisfied, the method stops.

Augmented Primal-Dual Method

(This is joint work with Florian Jarre.)

 $FP := \{X : A(X) = b\}$ primal linear space, $FD := \{(y, Z) : Z = C + A^T(y)\}$ dual linear space $OPT := \{(X, y, Z); \langle C, X \rangle = b^T y\}$ optimality hyperplane. From Linear Algebra:

$$\Pi_{FP}(X) = X - A^T \left((AA^T)^{-1} (A(X) - b) \right),$$
$$\Pi_{FD}(Z) = C + A^T \left((AA^T)^{-1} (A(Z - C)) \right)$$

are the projections of (X, Z) onto FP and FD.

Augmented Primal-Dual Method (2)

Note that both projections essentially need one solve with matrix AA^T . (Needs to be factored only once.) Projection onto OPT is trivial. Let $K = FP \cap FD \cap OPT$. Given (X, y, Z), the projection $\Pi_K(X, y, Z)$ onto K requires two solves.

This suggests the following iteration:

Start: Select $(X, y, Z) \in K$ Iteration: while not optimal

• $X^+ = \Pi_{SDP}(X), \ Z^+ = \Pi_{SDP}(Z).$

•
$$(X, y, Z) \leftarrow \Pi_K(X^+, y, Z^+)$$

The projection $\Pi_{SDP}(X)$ of X onto SDP can be computed through an eigenvalue decomposition of X.

Augmented Primal-Dual Method (3)

This approach converges, but possibly very slowly. The computational effort is two solves (order m) and two factorizations (order n).

An improvement: Consider

 $\phi(X,Z) := dist(X,SDP)^2 + dist(Z,SDP)^2.$

Here dist(X, SDP) denotes the distance of the matrix X from the cone of semidefinite matrices. The (convex) function ϕ is differentiable with Lipschitz-continuous gradient:

$$\nabla \phi(X, Z) = (X, Z) - \Pi_K(\Pi_{SDP}(X, Z))$$

We solve SDP by minimizing ϕ over K.

Augmented Primal-Dual Method (4)

Practical implementation currently under investigation. The function ϕ could be modified by

 $\phi(X,Z) + \|XZ\|_F^2$

Apply some sort of conjugate gradient approach (Polak-Ribiere) to minimize this function. Computational work:

• Projection onto K done by solving a system with matrix AA^{T} .

• Evaluating ϕ involves spectral decomposition of X, Z.

This approach is feasible if n not too large ($n \le 1000$), and if linear system with AA^T can be solved.

Augmented Primal-Dual Method (5)

Recall: (X, y, Z) is optimal once $X, Z \succeq 0$. A typical run: n = 400, m = 10000.

iter	Secs	$\langle C, X \rangle$	$\lambda_{\min}(X)$	$\lambda_{\min}(Z)$
1	9.7	11953.300	-0.00209	-0.00727
10	55.8	11942.955	-0.00036	-0.00055
20	103.8	11948.394	-0.00013	-0.00015
30	150.7	11950.799	-0.00007	-0.00005
40	196.7	11951.676	-0.00005	-0.00002
50	242.6	11951.781	-0.00004	-0.00001

The optimal value is 11951.726.

Random SDP

n	m	opt	apd	$\lambda_{ m min}$
400	40000	-114933.8	-114931.1	-0.0002
500	50000	-47361.2	-47353.4	-0.0003
600	60000	489181.8	489194.5	-0.0004
700	70000	-364458.8	-364476.1	-0.0004
800	80000	-112872.6	-112817.4	-0.0011
1000	100000	191886.2	191954.5	-0.0012

50 iterations of APD. Largest instance takes about 45 minutes. λ_{\min} is most negative eigenvalue of X and Z.

Boundary Point method

Augmented Lagrangian for (D) $\min\{b^T y : A^T(y) - C = Z \succeq 0\}.$ $X \dots$ Lagrange Multiplier for dual equations $\sigma > 0$ penalty parameter

$$L_{\sigma}(y, Z, X) = b^{T} y + \langle X, Z + C - A^{T}(y) \rangle + \frac{\sigma}{2} \|Z + C - A^{T}(y)\|^{2}$$

Generic Method:

repeat until convergence

(a) Keep X fixed: solve min_{y,Z≥0} L_σ(y, Z, X) to get y, Z ≥ 0
(b) update X: X ← X + σ(Z + C - A^T(y))
(c) update σ
Original version: Powell, Hestenes (1969)

 σ carefully selected gives linear convergence

Inner Subproblem

Inner minimization: X and σ are fixed.

$$W(y) := A^T(y) - C - \frac{1}{\sigma}X$$

$$L_{\sigma} = b^{T} y + \langle X, Z + C - A^{T}(y) \rangle + \frac{\sigma}{2} \| Z + C - A^{T}(y) \|^{2} =$$

$$= b^{T}y + \frac{\sigma}{2} \|Z - W(y)\|^{2} + const = f(y, Z) + const.$$

Note that dependence on Z looks like projection problem, but with additional variables y. Altogether this is convex quadratic SDP!

Optimality conditions (1)

Introduce Lagrange multiplier $V \succeq 0$ for $Z \succeq 0$:

$$L(y, Z, V) = f(y, Z) - \langle V, Z \rangle$$

Recall:

$$f(y,Z) = b^T y + \frac{\sigma}{2} \|Z - W(y)\|^2, \quad W(y) = A^T(y) - C - \frac{1}{\sigma} X.$$

$$\nabla_y L = 0 \text{ gives } \sigma A A^T(y) = \sigma A(Z + C) + A(X) - b,$$

$$\nabla_Z L = 0 \text{ gives } V = \sigma(Z - W(y)),$$

$$V \succeq 0, \ Z = \succeq 0, \ VZ = 0.$$

Since Slater constraint qualification holds, these are necessary and sufficient for optimality.

Optimality conditions (2)

Note also: For *y* fixed we get *Z* by projection: $Z = W(y)_+$. From matrix analysis:

 $W = W_{+} + W_{-}, \quad W_{+} \succeq 0, \quad -W_{-} \succeq 0, \quad \langle W_{+}, W_{-} \rangle = 0.$

We have: (y, Z, V) is optimal if and only if:

$$AA^{T}(y) = \frac{1}{\sigma}(A(X) - b) + A(Z + C),$$

$$Z = W(y)_+, V = \sigma(Z - W(y)) = -\sigma W(y)_-.$$

Solve linear system (of order m) to get y. Compute eigenvalue decomposition of W(y) (order n). Note that AA^T does not change during iterations.

Boundary Point Method

Start: $\sigma > 0, X \succeq 0, Z \succeq 0$ repeat until $||Z - A^T(y) + C|| \le \epsilon$: • repeat until $||A(V) - b|| \le \sigma \epsilon$ (X, σ fixed): - Solve for y: $AA^T(y) = rhs$ - Compute $Z = W(y)_+, V = -\sigma W(y)_-$ • Update X: $X = -\sigma W(y)_-$

Inner stopping condition is primal feasibility.

Outer stopping condition is dual feasibility.

See: Povh, R, Wiegele (Computing, 2006)

Theta: big DIMACS graphs

graph	n	m	ϑ	ω
keller5	776	74.710	31.00	27
keller6	3361	1026.582	63.00	\geq 59
san1000	1000	249.000	15.00	15
san400-07.3	400	23.940	22.00	22
brock400-1	400	20.077	39.70	27
brock800-1	800	112.095	42.22	23
p-hat500-1	500	93.181	13.07	9
p-hat1000-3	1000	127.754	84.80	≥68
p-hat1500-3	1500	227.006	115.44	≥ 94

see Malick, Povh, R., Wiegele (2008): The theta number for the bigger instances has not been computed before.

Random SDP

n	m	Secs	iter	secs $chol(AA')$
300	5000	43	168	1
300	10000	158	229	56
400	10000	130	211	8
400	20000	868	204	593
500	10000	144	136	1
500	20000	431	205	140
600	10000	184	96	1
600	20000	345	155	23
600	30000	975	152	550
800	40000	1298	155	345

relative accuracy of 10^{-5} , coded in MATLAB.

Conclusions and References

• Both methods need more theoretical convergence analysis.

• Speed-up possible making use of limited-memory BFGS type methods.

• The spectral decomposition limits the matrix size n.

• Practical convergence may vary greatly depending on data.

3 papers:

Povh, R., Wiegele: Boundary point method (Computing 2006)

Malick, Povh, R., Wiegele: (SIOPT 2009)

Jarre, R.:, Augmented primal-dual method, (SIOPT 2008)

Large-Scale SDP

Projection methods like the boundary point method assume that a full spectral decomposition is computationally feasible. This limits n to $n \leq 2000$ but m could be arbitrary.

What if n is much larger?

Spectral Bundle Method

What if m and n is large?

In addition to before, we now assume that working with symmetric matrices X of order n is too expensive (no Cholesky, no matrix multiplication!) One possibility: Get rid of $Z \succeq 0$ by using eigenvalue arguments.

Constant trace SDP

A has constant trace property if I is in the range of A^T , equivalently

 $\exists \eta \text{ such that } A^T(\eta) = I$

The constant trace property implies:

$$A(X) = b, A^T(\eta) = I$$
 then

$$\operatorname{tr}(X) = \langle I, X \rangle = \langle \eta, A(X) \rangle = \eta^T b =: a$$

Constant trace property holds for many combinatorially derived SDP!

Reformulating Constant Trace SDP

Reformulate dual as follows:

$$\min\{b^T y : A^T(y) - C = Z \succeq 0\}$$

Adding (redundant) primal constraint tr(X) = a introduces new dual variable, say λ , and dual becomes:

$$\min\{b^T y + a\lambda : A^T(y) - C + \lambda I = Z \succeq 0\}$$

At optimality, Z is singular, hence $\lambda_{\min}(Z) = 0$. Will be used to compute dual variable λ explicitly.

Dual SDP as eigenvalue optimization

Compute dual variable λ explicitly:

$$\lambda_{\max}(-Z) = \lambda_{\max}(C - A^T(y)) - \lambda = 0, \Rightarrow \lambda = \lambda_{\max}(C - A^T(y))$$

Dual equivalent to

$$\min\{a \ \lambda_{\max}(C - A^T(y)) + b^T y : y \in \Re^m\}$$

This is non-smooth unconstrained convex problem in y. Minimizing $f(y) = \lambda_{\max}(C - A^T(y)) + b^T y$: Note: Evaluating f(y) at y amounts to computing largest eigenvalue of $C - A^T(y)$. Can be done by iterative methods for very large (sparse) matrices.

Spectral Bundle Method (1)

If we have some *y*, how do we move to a better point?

$$\lambda_{\max}(X) = \max\{\langle X, W \rangle : \operatorname{tr}(W) = 1, W \succeq 0\}$$

Define

$$L(W, y) := \langle C - A^T(y), W \rangle + b^T y.$$

Then $f(y) = \max\{L(W, y) : \operatorname{tr}(W) = 1, W \succeq 0\}$. Idea 1: Minorant for f(y)

Fix some $m \times k$ matrix P. $k \ge 1$ can be chosen arbitrarily. The choice of P will be explained later.

Consider W of the form $W = PVP^T$ with new $k \times k$ matrix variable V.

$$\hat{f}(y) := \max\{L(W, y) : W = PVP^T, V \succeq 0\} \leq f(y)$$

Spectral Bundle Method (2)

Idea 2: Proximal point approach

The function \hat{f} depends on P and will be a good approximation to f(y) only in some neighbourhood of the current iterate \hat{y} . Instead of minimizing f(y) we minimize

$$\hat{f}(y) + \frac{u}{2} \|y - \hat{y}\|^2.$$

This is a strictly convex function, if u > 0 is fixed. Substitution of definition of \hat{y} gives the following min-max problem

Quadratic Subproblem (1)

$$\min_{y} \max_{W} L(W, y) + \frac{u}{2} \|y - \hat{y}\|^2 = \dots$$

$$= \max_{W, \ y = \hat{y} + \frac{1}{u}(A(W) - b)} L(W, y) + \frac{u}{2} \|y - \hat{y}\|^2$$

$$= \max_{W} \langle C - A^T(\hat{y}), W \rangle + b^T \hat{y} - \frac{1}{2u} \langle A(W) - b, A(W) - b \rangle.$$

Note that this is a quadratic SDP in the $k \times k$ matrix V, because $W = PVP^T$. *k* is user defined and can be small, independent of *n*!!

Quadratic Subproblem (2)

Once *V* is computed, we get with $W = PVP^T$ that $y = \hat{y} + \frac{1}{u}(A(W) - b)$ see: Helmberg, Rendl: SIOPT 10, (2000), 673ff

Update of *P*:

Having new point y, we evaluate f at y (sparse eigenvalue computation), which produces also an eigenvector v to λ_{\max} .

The vector v is added as new column to P, and P is purged by removing unnecessary other columns. Convergence is slow, once close to optimum

- solve quadratic SDP of size k
- compute λ_{\max} of matrix of order n

Last Slide

- Interior Point methods are fine and work robustly, but $n \le 1000$ and $m \le 10,000$ is a severe limit.
- If *n* small enough for matrix operations ($n \le 2,000$), then projection methods allow to go to large *m*. These algorithms have weaker convergence properties and need some nontrivial parameter tuning.
- Partial Lagrangian duality can always be used to deal with only a part of the constraints explicitly. But we still need to solve some basic SDP and convergence of bundle methods for the Lagrangian dual may be slow.
- Currently, only spectral bundle is suitable as a general tool for very-large scale SDP.