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Overview

Part 1:
A short review of conic duality
Part 2:
Central path and interior-point methods
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Conic duality

K closed convex cone in IRn. Data:
c ∈ IRn, b ∈ IRm,A . . . m × n matrix
Linear Program over K:

M := inf{cT x : Ax = b, x ∈ K}

dual cone K∗ := {y ∈ IRn : 〈x, y〉 ≥ ∀x ∈ K}

ordinary LP, second-order cone LP, semidefinite
Programming
SDP: inf〈C,X〉 : A(X) = b, X ' 0

A(X) is linear operator, given through A(X)i = 〈Ai, X〉
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Examples

M = inf{x11 : X =

(

x11 1

1 1

)

' 0}.

In this case M = 1 and inf is attained.

M = inf{x11 : X =

(

x11 1

1 x22

)

' 0}.

Here M = 0, inf not attained.
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Examples

M = inf{x11 : X =

(

x11 1

1 1

)

' 0}.

In this case M = 1 and inf is attained.

M = inf{x11 : X =

(

x11 1

1 x22

)

' 0}.

Here M = 0, inf not attained.

M = inf{2x12 : X =

(

0 1

1 x22

)

' 0}.

This problem is infeasible, M = +∞.
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Dual Problem

Use Lagrange dual and Minimax Inequality to get Weak
duality :

M = inf
Ax=b, x∈K

cT x = inf
x∈K

sup
y

cT x + yT (b − Ax)
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Dual Problem

Use Lagrange dual and Minimax Inequality to get Weak
duality :

M = inf
Ax=b, x∈K

cT x = inf
x∈K

sup
y

cT x + yT (b − Ax)

≥ sup
y

inf
x∈K

bT y + (c − AT y)T x

= sup
c−AT y∈K∗

bT y =: M ′.

F. Rendl, Oberwolfach - Part 1, May 2010 – p.7/35



Dual Problem

Use Lagrange dual and Minimax Inequality to get Weak
duality :

M = inf
Ax=b, x∈K

cT x = inf
x∈K

sup
y

cT x + yT (b − Ax)

≥ sup
y

inf
x∈K

bT y + (c − AT y)T x

= sup
c−AT y∈K∗

bT y =: M ′.

In general, sup and inf need not be attained, there can be
strict inequality after exchanging sup and inf and also a
finite (nonzero) duality gap between primal and dual value.
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Asymptotically feasible solutions

The sequence (xk) is primal asymptotically feasible, if

(xk) ⊆ K, lim
k

Axk = b.

m := inf
(xk)p.a.f.

lim inf
k

cT xk

The sequence (yk) is dual asymptotically feasible if there
exists a sequence (wk) ⊆ K∗ such that

lim
k

AT yk + wk = c.

m′ := sup
(yk)d.a.f

lim sup
k

bT yk.
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Duality Theorems

by definition: m ≤ M, M ′ ≤ m′

weak duality: if x primal feasible and (yk) dual
asymptotically feasible, then m′ ≤ M

strong duality: If M or m′ finite, then M = m′.
x is strictly feasible if Ax = b, x ∈ int(K).
Attainment: If the dual has a strictly feasible solution and M ′

is finite, then M = m = M ′ = m′ and the primal infimum is
attained.
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An example

inf{x11 : x22 = 0, x11 + 2x23 = 1, X ' 0.}

In this case

X =







x11 x12 x13

x12 0 1
2(1 − x11)

x13
1
2(1 − x11) x33






' 0,

implies x12 = 0, x11 = 1, hence M = 1. Taking

Xk =







1
k 0 0

0 1
k

1
2(1 − 1

k )

0 1
2(1 − 1

k ) k






' 0,

and A(Xk) → b. Note also that (Xk)11 = 1
k → 0 ≥ m.
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Back to Semidefinite Programs

primal problem:

(P ) max{〈C,X〉 : A(X) = b,X ' 0}

dual problem:

(D) min{bT y : AT (y) − C = Z ' 0}

Strong duality (primal=dual and optima are attained) holds
if we assume that both the primal and the dual problem
have strictly feasible points (X,Z - 0).
Then (X, y, Z) is optimal if and only if

A(X) = b, X ' 0, AT (y) − Z = C, Z ' 0, 〈X,Z〉 = 0.

We have m +
(n+1

2

)

+ 1 equations, and m + 2
(n+1

2

)

variables.
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Optimality conditions

X, Z ' 0 means X = UUT , Z = V V T , so we conclude that
0 = 〈X,Z〉 = ‖UT V ‖2 implies

ZX = UUT V V T = 0.

Therefore (X, y, Z) is optimal if and only if

A(X) = b, X ' 0, AT (y) − Z = C, Z ' 0, ZX = 0.

Now m +
(n+1

2

)

+ n2 equations, and m + 2
(n+1

2

)

variables.
Too many equations as ZX need not be symmetric.
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Central Path

We assume:

(A) ∃ primal and dual feasible points X,Z - 0.

Consider, for µ > 0 the system:

(CP ) A(X) = b, Z = AT y − C, ZX = µI

over X,Z ' 0.
Fundamental Theorem for Interior-Point methods:

(CP ) has unique solution ∀µ > 0 ⇐⇒ (A) holds.

This solution (X(µ)), y(µ), Z(µ)) forms smooth curve, called
Central Path.
Basic idea: follow this path until µ ≈ 0.

F. Rendl, Oberwolfach - Part 1, May 2010 – p.14/35



Central Path Equations

The system defining (CP) is overdetermined. Several ways
to fix this:
Replace ZX − µI = 0 by
1. Z − µX−1 = 0

2. X − µZ−1 = 0

3. ZX + XZ − 2µI = 0

4. P (.)P−1 + (P (.)P−1)T Monteiro-Zhang family
These lead to different linearizations.
Path following methods: Follow the central path by finding
points (close to it) for a decreasing sequence of µ.
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Interior-Point Methods to solve SDP (1)

Primal-Dual Path-following Methods:
maintain X,Z ' 0 and try to reach feasibility and optimality.
Use Newton’s method applied to perturbed problem
ZX = µI or variant from before, and iterate for µ → 0.
At start of iteration: (X - 0, y, Z - 0)
Linearized system (CP) to be solved for (∆X, ∆y, ∆Z):

A(∆X) = rP := b − A(X) primal residue

AT (∆y) − ∆Z = rD := Z + C − AT (y) dual residue
Z∆X + ∆ZX = µI − ZX path residue

The last equation can be reformulated in many ways, which
all are derived from the complementarity condition ZX = 0
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Interior-Point Methods to solve SDP (2)

Direct approach with partial elimination:
Using the second and third equation to eliminate ∆X and
∆Z, and substituting into the first gives

∆Z = AT (∆y) − rD, ∆X = µZ−1 − X − Z−1∆ZX,

and the final system to be solved:

A(Z−1AT (∆y)X) = µA(Z−1) − b + A(Z−1rDX)

Note that
A(Z−1AT (∆y)X) = M∆y,

but the m × m matrix M may be expensive to form.

F. Rendl, Oberwolfach - Part 1, May 2010 – p.17/35



Computational effort

• explicitely determine Z−1 O(n3)

• several matrix multiplications O(n3)

• final system of order m to compute ∆y O(m3)

• forming the final system matrix O(mn3 + m2n2)

recall mij = tr(AiZ
−1AjX)

• line search to determine
X+ := X + t∆X,Z+ := Z + t∆Z is at least O(n3)

Effort to form system matrix M depends on structure of A(.)
Limitations: n ≈ 1000, m ≈ 5000.
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Timings: Random SDP

Each Ai is nonzero only on randomly chosen 4 × 4
submatrix, main diagonal is 0.
SEDUMI seconds with default setting.

n m secs.
100 1000 11
100 2000 159
200 2000 151
200 5000 2607
300 5000 2395

No attempt with larger m. Memory (!!) and time (!!)

For more results, see Mittelmann’s site:
http://plato.asu.edu/ftp/sdplib.html
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Exploit Structure

SDP relaxation for Max-Cut:

max〈L, X〉 : diag(X) = e, X ' 0.

Here 〈Ai, X〉 = eT
i Xei = xii.

Therefore the system matrix M = (mij) has

mij = trAiZ
−1AjX = eT

i Z−1eje
T
j Xei = Z−1

ij · Xij ,

therefore M = Z−1 ◦ X. Can be formed in O(n2) instead of
O(n4) steps.
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Basic SDP Relaxation of Max-Cut

We solve max〈L, X〉 : diag(X) = e, X ' 0.
Matrices of order n, and n simple equations xii = 1

n seconds
1000 12
2000 102
3000 340
4000 782
5000 1570

Seconds on a PC. Implementation of primal-dual
interior-point method in MATLAB, 30 lines of source code
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Representation of linear equations

Given a graph G = (V, E) with |V | = n, |E| = m. Notation:
We write AG(X) = 0 for xij = 0, (ij) ∈ E(G). Hence
AG(X)ij = 〈Eij , X〉 with Eij = eieT

j + ejeT
i .

Any symmetric matrix M can therefore be written as

M = Diag(m) + AG(u) + AḠ(v).

Recall theta function

ϑ(G) = max{〈J, X〉 : tr(X) = 1, AG(X) = 0, X ' 0}

= min{t : tI + AT
G(y) − J ' 0}.

The number of equations depends on the edge set E.
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Theta for sparse and dense graphs

For dense graphs, we can use the following reformulation.
Let Y = tI + AT

G(y) and set Z = Y − J which has the
following properties:
AḠ(Z) = −2e, because zij = −1 for [ij] /∈ E.
te − diag(Z) = e, because diag(Y ) = te. Hence we get the
theta function equivalently as

ϑ(G) = min{t : te − diag(Z) = e, −AḠ = 2e, Z ' 0} =

max{eT x + 2eT ξ : Diag(x) + AḠ(ξ) ' 0, eT x = 1}.

Here the dual has m̄ + n equations, hence this is good for
dense graphs (m̄ small in this case).
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Comparing the two models

The two models have the following running times on graphs
with n = 100 and various edge densities.

density 0.90 0.75 0.50 0.25 0.10
m 4455 3713 2475 1238 495

dense 1 7 42 130 238
sparse 223 118 34 5 1

Comparison of the computation times (in seconds) for ϑ on
five random graphs with 100 vertices and different densities
in the dense and the sparse model.
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Theta Function -limits of Interior Points

Sparse model, m ≤ 1
4n2 The system to be solved is of size

|E|.
n 100 200 300 400

|E| 487 2047 4531 7949
time 1 30 309 1583
|E| 1240 5099

time 7 371
|E| 2531 10026

time 34 2735
Impractical, once system size is of order 104.
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What ifm is too large?

We consider

max〈C,X〉 such that A(X) = b, X ' 0,

where b ∈ IRm and m is large, for instance m > 10, 000.
Some ideas:
• Suppose we can split the constraints into two parts so that
including only one part makes SDP easy → work on partial
Lagrangian dual
• Use projection methods
• Spectral Bundle methods
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Partial Lagrangian

Now we consider

z∗ := max〈C,X〉 such that A(X) = a, B(X) = b, X ' 0.

The idea: Optimizing over A(X) = a without B(X) = b is
’easy’, but inclusion of B(X) = b makes SDP difficult.
(Could also have inequalities B(X) ≤ b.)
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Partial Lagrangian

Now we consider

z∗ := max〈C,X〉 such that A(X) = a, B(X) = b, X ' 0.

The idea: Optimizing over A(X) = a without B(X) = b is
’easy’, but inclusion of B(X) = b makes SDP difficult.
(Could also have inequalities B(X) ≤ b.)
Partial Lagrangian Dual (y dual to b):

L(X, y) := 〈C,X〉 + yT (b − B(X))

Dual functional: (F = {X : A(X) = a, X ' 0}):

f(y) := max
X∈F

L(X, y) = bT y + max
x∈F

〈C − BT (y), X〉
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Properties of f (y)

Recall: f(y) = bT y + maxx∈F 〈C − BT (y), X〉
f is convex (max of linear functions)
Evaluation of f(y) for given y means solving ’simple’ SDP.
weak duality: z∗ ≤ f(y) ∀y (holds by construction)
strong duality: z∗ = miny f(y) (holds under Slater condition)

Basic idea: Minimize f(y) approximately by applying some
first order descent methods
Problem: f(y) is nonsmooth (max of linear functions)
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Properties of f (y) (2)

Basic assumption: We can compute f(y) easily, yielding
also maximizer X∗ and g∗ := b − B(X∗).
f(y) = bT y + 〈C − BT (y), X∗〉 = yT g∗ + 〈C,X∗〉, so

f(v) ≥ vT g∗ + 〈C,X∗〉,

therefore, using 〈C,X∗〉 = f(y) − yT g∗ we get

f(v) ≥ f(y) + 〈g∗, v − y〉

(This means g∗ is subgradient of f at y.)
Thus, evaluating f(y) at y gives function value and
subgradient, so use some sort of subgradient optimization
to minimize f(y) (at least) approximately.
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Minimize f using Bundle Method (2)

Current iterate: ŷ with maximizer X̂, i.e. f(ŷ) = L(X̂, ŷ). We
also assume to have a ’bundle’ of other Xi ∈ F, i = 1, . . . , k

with X̂ being one of them.
Compute gi := b − B(Xi),φi := 〈C,Xi〉.
Using subgradient inequalities for gi we can minorize f by

f(y) ≥ l(y) := max
i

{〈C,Xi〉 + 〈gi, y〉} = max
λ∈Λ

φTλ+ 〈Gλ, y〉.

The key idea:
min

y
l(y) +

1

2t
‖y − ŷ‖2
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Minimize f using Bundle Method (3)

This is essentially convex quadratic programming in k
variables. After exchanging min and max we get:

max
λ∈Λ

(φ+ GT ŷ)Tλ−
t

2
‖Gλ‖2,

and new trial point is given by

y = ŷ − tGλ.
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SDP for Max-Cut + Triangles

As example consider

max{〈C,X〉 : diag(X = e), X ' 0, X ∈ MET}

MET = {X : xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1} asks
that X satisfies all the triangle inequalities.
Formally write

MET = {X : B(X) ≤ b}

for all 4
(n
3

)

triangle constraints. For y ≥ 0, we have the
partial Lagrangian:

f(y) = bT y + max{〈C − BT y, X〉 : X ' 0, diag(X) = e}.
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A Snapshot

iter f(y) ‖r‖1 ‖r‖∞ contrs. viol.
1 679.3 152541.0 0.96 680822

10 660.4 21132.7 0.73 147094
20 648.1 1234.6 0.52 13605
30 642.2 193.7 0.32 2979
40 639.5 50.8 0.32 957
60 637.6 25.3 0.26 570
80 636.9 17.1 0.23 397

100 636.5 13.5 0.18 369

Max-Cut plus triangles for a graph with n = 300. The vector
r contains the violation of triangles. Last column has
number of violated constraints.
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SDP + triangles during Bundle iterations

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
gap (in %) during bundle iterations for spin graphs

bundle iterations

: spin5
: spin6
: spin7
: spin8

The gap drops quickly at beginning, then there is tailing off.
Spin Graph instances of order 125 to 512.
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Partial Lagrangian: Summary

• first few function evaluations give fast improvent
• tayling off effect (of first order methods)
• high accuracy dificult to achieve
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