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Abstract
We survey some recent developments in the area of semidefinite optimization

applied to integer programming. After recalling some generic modeling techniques
to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical
power of semidefinite optimization in the context of the Max-Cut and the Coloring
Problem. In the second part, we consider algorithmic questions related to semidef-
inite optimization, and point to some recent ideas to handle large scale problems.
The survey is concluded with some more advanced modeling techniques, based on
matrix relaxations leading to copositive matrices.

1 Introduction

Looking back at fifty years of integer programming, there is wide agreement that
Polyhedral Combinatorics is a major ingredient to approach NP-hard integer opti-
mization problems. Having at least a partial description of the convex hull of all
feasible solutions of an integer program can be exploited by the strong algorithmic
machinery available to solve linear programming problems, notably the Simplex
method. First systematic attempts to use polyhedral techniques to solve 0-1 integer
optimization go back to [DFJ54].
We consider an abstract combinatorial optimization problem (COP) given as fol-

lows. Let E be a finite set and letF be a (finite) family of subsets of E . The family
F denotes the set of feasible solutions of (COP). Each e ∈ E has a given integer
cost ce. We define the cost c(F) of F ∈ F to be
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c(F) := ∑
e∈F

ce.

The problem (COP) now consists in finding a feasible solution F of minimum
cost:

(COP) z∗ =min{c(F) : F ∈ F}.

The traveling salesman problem (TSP) for instance could be modeled with E being
the edge set of the underlying graph G. An edge set F is in F exactly if it is the
edge set of a Hamiltonian cycle in G.
By assigning to each F ∈ F a characteristic vector xF ∈ {0,1}n with (xF)e =

1 if and only if e ∈ F , we can write (COP) as a linear program as follows. Let
P := conv{xF : F ∈ F} denote the convex hull of the incidence vectors of feasible
solutions. Then it is clear that

z∗ =min{cTxF : F ∈ F} =min{cTx : x ∈ P}.

This is the basic principle underlying the polyhedral approach to solve combinato-
rial optimization problems.
As an example, considerF to be the set of all permutation matrices. Birkhoff’s

theorem states that the convex hull of permutation matrices is the polyhedron of
doubly stochastic matrices:

conv{X : X ∈Π} =Ω .

For notation, see the end of this section. Hence the combinatorial problem of finding
a permutation φ minimizing ∑i ci,φ(i) can be solved through the linear program

min{〈C,X〉 : X ∈Ω}.

The practical difficulty lies in the fact that in general the polyhedron P is not easily
available. The use of a computationally tractable partial description of P in combi-
nation with systematic enumeration, like Branch and Bound, has led to quite suc-
cessful solution methods for a variety of combinatorial optimization problems like
the TSP, see for instance [LLRKS85]. It turned out however, that for some promi-
nent NP-hard problems like Stable-Set or Max-Cut, this polyhedral approach was
not as successful as one might have hoped in view of the results for TSP, see for
instance [BJR89].
This motivated the study of more powerful approximation techniques for (COP).

One such possibility consists in studying matrix liftings of the form

M := conv{xFxTF : F ∈ F}, (1)

see for instance [LS91, SA90, SA94]. Any relaxation based onM lies in the space
Sn of symmetric matrices, rather than Rn, the ’natural’ space of (COP). The mod-
eling power of usingM comes from the fact that any quadratic constraint on x ∈ P,
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such as xix j = 0, translates into a linear constraint on X ∈M , such as xi j = 0. More-
over, any X ∈ M is positive semidefinite.
Polyhedral implications of working with M instead of P are investigated for

instance in [LS91, BCC93, SA90] under the key words ’lift and project’. Using the
condition thatM is contained in the cone

S +
n := {X ∈ Sn : X % 0}

of positive semidefinite matrices leads to semidefinite relaxations which are a gen-
eralization of linear programs. Formally, a semidefinite program, SDP for short, is
defined by the dataC,A1, . . . ,Am ∈ Sn and b ∈ Rm and consists of the following

(SDP) zp = inf{〈C,X〉 : 〈Ai,X〉 = bi, i= 1, . . . ,m, X % 0}. (2)

In this chapter we will consider relaxations of integer programs which are based
on SDP, rather than purely polyhedral combinatorics. We first recall some basics
about SDP in Section 2. In Section 3 various modeling ideas are described which
all lead to SDP relaxations. SDP as generalization of LP often provides tighter ap-
proximations, at increased computational cost. The theoretical power of SDP to
approximate some NP-hard optimization problems is presented in Section 4. The
hyperplane rounding idea of Goemans and Williamson [GW95] turns out to be a
generic method to generate provably good feasible solutions for a variety of prob-
lems. In Section 5 we turn to algorithms for solving SDP. While interior-point based
algorithms are still the method of choice, it turns out that large scale problems are
beyond the scope of these algorithms and alternatives, capable of handling an arbi-
trary number of constraints at least approximately, are necessary. Several of these
are discussed in 5. Finally, we touch some more recent modeling techniques which
go beyond SDP in Section 6.

This article lines up with several survey papers devoted to the connection be-
tween semidefinite optimization and integer programming. The interested reader
is referred to [LR05] for an extensive summary on the topic covering the develop-
ment until 2003. The surveys by Lovasz [Lov03], Goemans [GOE97] and Helmberg
[Hel02] all focus on the same topic, but also reflect the scientific interests and pref-
erences of the respective authors. The present paper is no exception to this principle.
The material selected, and also omitted, reflects the author’s subjective view on the
subject. Since the scientific area covered here is still under rapid development, the
present survey is far from complete. Some discussion and pointers to material not
covered will be given at the end of each chapter.

Notation:We use the following notation. The vector of all ones is denoted e, and
J = eeT is the all-ones matrix. The identity matrix is denoted by I = (e1, . . . ,en).
Thus the ei represent the standard unit vectors. For i &= j we define Ei j = eieTj +e jeTi .
The set of symmetric matrices is denoted by S . S + denotes the closed con-

vex cone of semidefinite matrices. Its interior is the set of definite matrices, de-
noted S ++. We also use the cone C of copositive matrices, given by C = {X :
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vTXv ≥ 0 ∀ vectors v ≥ 0}. Its dual cone C ∗ consists of the set of completely
positive matrices, C ∗ = {X : X = VVT , V ≥ 0 is n× k}. The standard simplex is
Δ = {x : x ≥ 0, eT x = 1}. The convex hull of a set S is denoted by conv(S). We
denote by Π the set of permutation matrices and by Ω the set of doubly stochastic
matrices, Ω = {X : Xe= XTe = e,X ≥ 0}. For a,b ∈ Rn,〈a,b〉+ denotes maximal
scalar product of a and b, if the entries in a and b can be permuted arbitrarily. It is
given for instance by sorting the entries in both a and b in nondecreasing order. The
minimal scalar product 〈a,b〉− is defined analogously.
If A and B are matrices of the same order, then the Hadamard or elementwise

product is C = A ◦B with ci j = ai jbi j. The Kronecker product (or tensor product),
A⊗B, of two matrices A and B consists of the matrix of all pairwise products of
elements from A and B. Formally, if A= (ai j) is m×n and B is p×q, then

A×B=







a11B . . . a1nB
...

...
...

am1B . . . amnB






.

The operator Diag : Rn -→ Sn maps a vector y to the diagonal matrix Diag(y), its
adjoint mapping diag(X) extracts the main diagonal from the matrix X .
IfG is a graph, and S⊆V (G) is a subset of its vertices, we denote by δ (S) the set

of all edges i j such that i ∈ S, j /∈ S. The neighbourhoodN(i) of vertex i ∈V (G) is
the set of all vertices, adjacent to i,N(i) = { j : i j ∈ E(G)}. The complement graph
G of a graph G has edges i j ∈ E(G) whenever i &= j and i j /∈ E(G).

2 Basics on Semidefinite Optimization

Problem (2) is a convex optimization problem, because a linear function is optimized
over the convex set

Fp := {X : A(X) = b, X % 0}.

The linear operator A(X)maps matrices intoRm and has A(X)i = 〈Ai,X〉. Its adjoint
AT , defined through the adjoint identity

yTA(X) = 〈AT (y),X〉

is given by AT (y) = ∑i yiAi. The problem (SDP) as a convex problem possesses a
dual, which is most conveniently derived through the Lagrangian

L(X ,y) = 〈C,X〉+ yT (b−A(X)) = bTy+ 〈C−AT (y),X〉 (3)

and the Minimax inequality

inf
u∈U

sup
v∈V

f (u,v) ≥ sup
v∈V

inf
u∈U

f (u,v),
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which holds for any function f :U×V -→ R. To get the dual, we first observe

sup
y
L(X ,y) =

{

〈C,X〉 if A(X) = b
+∞ otherwise.

To see what happens to infX%0L(X ,y) we recall Fejer’s theorem.

Theorem 1. The matrix M ∈ S + if and only if 〈M,X〉 ≥ 0 ∀X ∈ S +.

In the language of convex analysis, this translates into the fact that the cone dual to
the semidefinite matrices is again the cone of semidefinite matrices. Recall that the
dual cone K∗ of the cone K ⊆ Rd is by definition

K∗ := {y ∈ R
d : 〈y,x〉 ≥ 0 ∀x ∈ K}.

Now if C− AT (y) % 0, then by Fejer’s theorem infX%0 〈C− AT (y),X〉 = 0. On
the other hand, if C− AT (y) /∈ S +, then there must exist some X % 0 such that
〈C−AT (y),X〉 < 0. We conclude

inf
X%0

L(X ,y) =

{

bT y ifC−AT (y) % 0
−∞ otherwise. (4)

Therefore (2) is equivalent to zp = infX%0 supy L(X ,y) and the Minimax inequality
implies

zp ≥ sup
y

inf
X%0

L(X ,y) =: zd .

The problem defining zd can be rewritten using (4) to yield

zd = sup bT y such thatC−AT (y) % 0. (5)

The last problem is again a semidefinite program, which is usually called the dual
of (2). In contrast to linear programming, strong duality (zp = zd) does not hold
in general. Moreover, attainment of sup and inf only holds under some additional
conditions. The following condition, often called Slater’s constraint qualification,
insures zp = zd . Problem (2) satisfies the Slater constraint qualification if there exists
a positive definite matrix X 0 0 such that A(X) = b. Such matrices are often called
strictly feasible.

Theorem 2. (see for instance Duffin [Duf56]) If (2) satisfies the Slater condition
and zp is finite, then the dual problem is feasible, the dual supremum is attained,
and zp = zd.

In most of the semidefinite relaxations considered in this chapter, both the primal
and the dual problem satisfy the Slater condition, therefore we have the following
situation. Suppose

∃X 0 0 such that A(X) = b, and ∃y withC−AT (y) 0 0. (6)

Then (X ,y,Z) is optimal for (2) and (5) if and only if
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A(X) = b, X % 0, C−AT (y) = Z % 0, 〈Z,X〉 = 0. (7)

Note that in the dual problem, we have introduced for notational and algorithmic
convenience the slack matrix Z in the formulation. The condition 〈Z,X〉 = 0 is a
consequence of 0= zp− zd = 〈C,X〉−bTy= 〈C−AT (y),X〉.

3 Modeling with Semidefinite Programs

The basic idea to come to semidefinite relaxations of (COP), and more generally
integer programs, consists in working with M from (1), instead of P. Going from
Rn to the space of symmetric matrices Sn allows to replace quadratic constraints
and cost functions by linear ones. As a first example we consider a semidefinite
relaxation of quadratic 0,1 optimization.

3.1 Quadratic 0,1 optimization

For given Q ∈ Sn we consider

(QP) min
x∈{0,1}n

xTQx. (8)

This problem is equivalent to Max-Cut, see for instance [Ham65, BJR89], and there-
fore NP-hard. We may assume without loss of generality that there is no additional
linear term cT x in the objective function (8), because x2i = xi allows us to add c to
the main diagonal of Q. The cost function can be rewritten as

xTQx= 〈Q,xxT 〉.

Following the linearization idea we introduce a matrix variable X taking the role of
xxT . Since x2i = xi, the main diagonal of X is equal to x. The nonconvex constraint
X − xxT = 0 is relaxed to X − xxT % 0. The Schur-complement lemma shows that
this set is convex.

Lemma 1. Let M =

(

A B
BT C

)

be symmetric and A invertible. Then M % 0 if and

only if A% 0 and C−BTA−1B% 0.

Proof. This well known fact follows from the similarity transformation
(

I 0
−BTA−1 I

)(

A B
BT C

)(

I 0
−BTA−1 I

)T
=

(

A 0
0 C−BTA−1B

)

.

23
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Hence we get the following SDP relaxation of (QP):

min〈Q,X〉 such that X− xxT % 0, diag(X) = x. (9)

We use the Schur-complement lemma to replace the quadratic conditionX−xxT % 0

by
(

1 xT
x X

)

% 0.

3.2 Max-Cut and graph bisection

Let A be the (weighted) adjacency matrix of a graph G on n vertices. A basic graph
optimization problem consists in separating the vertex setV ofG into two sets S,V\S
such that

∑
i j∈δ (S)

ai j

is optimized. In case of Max-Cut one has

(MC) zmc =max
S⊆V ∑

i j∈δ (S)
ai j. (10)

The bisection problem has an additional input parameter s, specifying |S| = s, and
is defined as follows.

(BS) zbs = min
S⊆V,|S|=s

∑
i j∈δ (S)

ai j (11)

The special case s = n
2 is often called Equicut. Kernighan and Lin [KL70] inves-

tigated various local improvement heuristics for this problem, see also [JAMS89].
All these bisection problems are well known to be NP-hard. A simple integer pro-
gram for these problems can be obtained as follows. Subsets S ⊆ V are modeled
by vectors x ∈ {−1,1}n with xi = 1 exactly if i ∈ S. Then e = i j ∈ δ (S) precisely
if xix j = −1. A convenient way to model the objective function makes use of the
Laplacian, associated to A, which is defined as follows.

L= LA = Diag(Ae)−A (12)

A simple calculation shows that

∑
i j∈δ (S)

ai j = ∑
i j∈E

ai j
1− xix j
2

=
1
4
xTLx, (13)

if x ∈ {−1,1}n represents S. Hence we have

zmc = max
x∈{−1,1}n

1
4
xTLx,
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zbs = min
x∈{−1,1}n,eT x=n−2s

1
4
xTLx.

The linearization idea gives again xTLx = 〈L,xxT 〉, and we introduce X = xxT and
now have diag(X) = e. The cardinality constraint is easily incorporated using

|eT x| = n−2s if and only if 〈J,xxT 〉 = (n−2s)2.

Hence we get the SDP relaxation of Max-Cut as

zmc,sdp =max
1
4
〈L,X〉 such that diag(X) = e, X % 0, (14)

and for bisection as

zbs,sdp =min
1
4
〈L,X〉 such that diag(X) = e, 〈J,X〉 = (n−2s)2, X % 0.

Quadratic 0,1 optimization can linearly (and bijectively) be mapped to optimization
in -1,1 variables, showing the claimed equivalence between Max-Cut and quadratic
0,1 optimization. One may therefore wonder whether there is also some relation
between the two relaxations (9) and (14). It is not too difficult to verify that these
relaxations are in fact also equivalent, see for instance [HPRW95, LPR97]. Helm-
berg [Hel00] provides an explicit transformation between these problems, which
preserves structure, like sparsity. The equivalence of Max-Cut and quadratic 0,1
optimization was already pointed out by Hammer, see [Ham65].

3.3 Stable sets, cliques and the Lovasz theta function

Perhaps the earliest use of SDP to get relaxations of NP-hard problems goes back
to a fundamental paper by Lovasz in 1979, see [Lov79]. Consider the stable set
problem in an unweighted graph G. We recall that a set S ⊆ V (G) is stable if the
vertices in S are pairwise nonadjacent. Consequently, S forms a complete subgraph
in the complement graph G of G. The stable set problem asks to find a stable set
of maximum cardinality in G. The cardinality of a largest stable set in G, denoted
α(G), is called the stability number ofG. Modeling stable sets by their characteristic
vectors, we get

(STAB) α(G) =max{eT x : xix j = 0 ∀i j ∈ E(G), x ∈ {0,1}n}. (15)

Following our linearization idea for 0,1 optimization, we obtain the following SDP
relaxation, which was studied in some detail in [LS91].

α(G) ≤ ϑ1(G) =max{eT x : X− xxT % 0, diag(X) = x, xi j = 0 ∀i j ∈ E}. (16)
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Note in particular that the quadratic equations in x are now linear in X . This model
can in fact be simplified by eliminating x. Supppose x is the characteristic vector of
a (nonempty) stable set. Then

X =
1
xT x

xxT

satisfies the following conditions:

X % 0, tr(X) = 1, xi j = 0 ∀i j ∈ E, rank(X) = 1.

Moreover
〈J,X〉 =

1
xT x

(eT x)2 = eT x,

because eT x= xT x. The following result is well known.

Lemma 2.

α(G) =max{〈J,X〉 : X % 0, tr(X) = 1, xi j = 0 ∀i j ∈ E, rank(X) = 1}. (17)

Proof. Feasibility of X implies X = aaT where the vector a is nonzero only on some
stable set S, because xi j = aia j = 0 ∀i j ∈ E . Looking at the nonzero submatrix aSaTS
indexed by S, the cost function becomes (eT aS)2, which is maximal exactly if aS is
parallel to the all ones vector e. Hence a is (a multiple of) the characteristic vector
of S and the maximization forces S to be a maximum stable set. 23

Leaving out the (nonconvex) rank condition, we obtain another SDP relaxation for
α(G):

α(G) ≤ ϑ2(G) =max{〈J,X〉 : tr(X) = 1, xi j = 0 ∀i j ∈ E, X % 0}.

This is in fact the relaxation proposed by Lovasz in [Lov79]. Lovasz and Schrijver
[LS91] show that ϑ1(G) =ϑ2(G) and this function is usually called the Lovasz theta
function ϑ(G).
Let us introduce the linear operator AG :Sn -→ RE associated to the edge set E

of G,
AG(X)i j = 〈X ,Ei j〉 = xi j + x ji = 2xi j ∀i j ∈ E

and its adjoint
ATG(y) = ∑

i j∈E
yi jEi j.

Using these operators, we get the following primal-dual pair of semidefinite pro-
grams for ϑ(G).

ϑ(G) =max{〈J,X〉 : tr(X) = 1, AG(X) = 0, X % 0} (18)

=min{t : tI+ATG(y) % J}.

Strong duality is justified by the observation that 1n I is strictly feasible for the max-
imization, and setting y= 0 and t = n+1 gives a strictly feasible point for the min-
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imization problem. We will now use the adjoint AT to express symmetric matrices
in the following way: Let Z ∈ Sn. Then

Z = Diag(y)+ATG(u)+ATG(v),

if we define

yi = zii, ui j = zi j ∀i j ∈ E(G), vi j = zi j ∀i j ∈ E(G),

Suppose that X is feasible for (18). Then

X = Diag(x)+ATG(ξ ),

if we set xi = xii and ξi j = xi j ∀i j ∈ E(G). By construction xi j = 0 ∀i j ∈ E(G). We
substitute for X and obtain

ϑ(G) =max{eTx+2eTξ : eT x= 1, Diag(x)+ATG(ξ ) % 0}. (19)

Both models are mathematically equivalent, but from a computational point of view
(18) is preferable in case |E| is small. If |E| is large (G is dense), then the sec-
ond formulation (19) is more efficient, because in this case the number of variables
|E(G)| is small. Computational experience with both models is given in [DR07]. It
turns out that ϑ(G) can be computed for graphs with n≤ 200 in acceptable time us-
ing interior-point methods and the sparse or the dense model depending on |E(G)|.
From [DR07] it is also clear that interior-point methods can not handle graphs with
n ≥ 200 and |E(G)| ≈ n2

4 , which is the worst case in terms of computational effort
for both models, see also Table 5.1 below.

3.4 Chromatic number

A k-coloring of a graph G is a k-partition (V1, . . . ,Vk) of the vertex set V (G) such
that each Vi is a stable set in G. The chromatic number χ(G) is the smallest value k,
such thatG has a k-coloring. Let us encode k-partitions ofV (G) by the characteristic
vectors si for Vi, thus

si ∈ {0,1}n and (si)u = 1 if u ∈Vi and 0 otherwise. (20)

The partition property implies that si &= 0 and that ∑i si = e. Let ni := |Vi| denote the
cardinality of Vi. We call the matrix

M =∑
i
sisTi (21)

the partition matrix associated to the k-partition (V1, . . . ,Vk). Note that rank(M) =
k. It is clear from the definition that for any k-partition matrix M there exists a
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permutation matrix P ∈Π such that

M = P













Jn1 0 . . . 0

0 Jn2
. . .

...
...
. . . . . . 0

0 . . . 0 Jnk













PT .

Partition matrices have the following characterization.

Lemma 3. Let M be a symmetric 0,1 matrix. Then M is a k-partition matrix if and
only if

diag(M) = e, rank(M) = k, M % 0. (22)

Proof. Suppose that M is a k-partition matrix. Then this matrix obviously satisfies
(22). Conversely let M satisfy (22). We need to show that M is (after appropriate
renumbering) a direct sum of all ones blocks. Thus we need to show that mi j =
mik = 1 implies mjk = 1. If this is not the case then the submatrix of M, indexed by
i, j,k is





1 1 1
1 1 0
1 0 1



 ,

which has negative determinant, contradictingM% 0. ThereforeM is indeed a direct
sum of all ones blocks, and the rank condition shows that there must be k such
blocks. 23

This leads to the following somewhat nonstandard way to define χ(G).

χ(G) =min{rank(M) : mi j ∈ {0,1}, diag(M) = e, mi j = 0 ∀i j ∈ E, M % 0}.

It turns out that in fact we can get rid of both the rank and the semidefiniteness
condition onM by introducing another semidefiniteness constraint.

Lemma 4. Let M be a symmetric 0,1 matrix. Then M is a k-partition matrix if and
only if

diag(M) = e, (tM− J % 0 ⇐⇒ t ≥ k). (23)

This result is implicitly proved in many sources, see for instance [Lov79]. A sim-
ple argument can be found also in [DR07]. Here we only take a closer look at how
the semidefiniteness condition comes about. Looking at principal submatrices of
tM−J, we first observe that any minor with two rows from the same partition block
is singular, because it contains two identical rows. Hence nonsingular principal sub-
matrices can have at most one row from each partition block. Therefore these must
be of the form

tIs− Js
where s ≤ k denotes the order of the submatrix. Clearly, this matrix is semidefinite
if and only if t ≥ s, and since s could be as large as k we get the desired condition.
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Using this result we can express the chromatic number as the optimal solution of
the following SDP in binary variables.

χ(G) =min{t : tM− J % 0, diag(M) = e, mi j = 0 ∀i j ∈ E,mi j ∈ {0,1}}. (24)

To get a tractabable relaxation, we leave out the 0,1 condition and parametrize the
matrix tM as tM = tI+ATG(y). We get the following SDP as lower bound on χ(G):

χ(G) ≥ ϑ(G) =min{t : tI+ATG(y) % J}. (25)

Comparing with the minimization problem in (18), we see that the above SDP is in-
deed the dual applied to the complement graph. Hence we have shown the sandwich
theorem of Lovasz [Lov79].

Theorem 3.
α(G) ≤ ϑ(G) ≤ χ(G).

The notation for ϑ is not uniform in the literature. If one starts from the clique
number of a graph G, it seems more natural to denote by ϑ(G) what we denote by
ϑ(G).
The problem (25) can be rephrased in the following way: Minimize z11 where the

matrix Z = (zi j) % 0,zii = z11 ∀i, zi j = −1 ∀i j ∈ E(G). This follows simply from
Z = tI+ATG(y)− J. This problem in turn can be rewritten as

min{λ : V % 0,vii = 1 ∀i, vi j = λ ∀i j ∈ E(G)}. (26)

The optimal value ϑ in (25) gives λ = − 1
ϑ−1 . This last model will be used later on

to analyze algorithms for graph coloring, see [KMS98].

3.5 General graph partition

The concept of partition matrices from (23) in the context of coloring can also be
recycled to model the following general partition problems. Given the weighted
adjacency matrix A of a graph G on n nodes and an integer 2≤ k≤ n, the general k-
partition problem consists in finding a k-partition (S1, . . . ,Sk) of V (G) with |Si|≥ 1
such that the total weight of edges joining different partition blocks is optimized. In
case of maximization, this problem also runs under the name of Max-k-Cut. Max-
Cut, see the previous sections, corresponds to the special case k = 2. We represent
partitions again through the respective characteristic vectors si, see (20), which we
collect in the matrix S = (s1, . . . ,sk). The characteristic vector si ∈ {0,1}n for the
partition block Si allows us to express the weight of the edges in δ (Si) using the
Laplacian L, see (12) as follows,

∑
rs∈δ (Si)

ars = sTi Lsi.
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Therefore
1
2
〈S,LS〉=

1
2∑i

sTi Lsi

gives the total weight of all edges joining different partition blocks. We obtain a
semidefinite relaxation of Max-k-Cut using (23), once 〈S,LS〉 = 〈L,SST 〉 is used to
replace SST by a new matrix variable. For notational convenience we introduce the
matrix variable Y = 1

k−1 (kSS
T − J). (Note that SST takes the role of M in (23) and

that Le= 0 implies 〈L,J〉 = 0.)

max{k−1
2k

〈L,Y 〉 : diag(Y ) = e, Y % 0, yi j ≥−
1

k−1
∀i &= j}. (27)

The sign constraints follow from SST ≥ 0. This model has been investigated theo-
retically by Frieze and Jerrum, see [FJ97] and also by DeKlerk et al [dKPW04].

A more restrictive version of k-partition, called k-Equicut, asks for k-partitions
with |Si| = n

k ∀i. In this case the objective is to minimize the total weight of edges
cut. A feasible partition (S1, . . . ,Sk) for this problem implies the following additional
constraint

STe=
n
k
e

which together with Se= e (note the varying dimension of e ) gives

SSTe=
n
k
e,

hence n
k is eigenvalue of SS

T with eigenvector e, for any feasible partition matrix S.
Setting X = SST , this gives the following relaxation of k-Equicut.

min{1
2
〈L,X〉 : diag(X) = e, Xe=

n
k
e, X % 0, X ≥ 0}. (28)

We note that this model does not contain the condition kX % J % 0, but only the
weaker X % 0. The following simple observation explains why.

Lemma 5. Let A ∈ S +
n and suppose Av= λv holds with ‖v‖ = 1. Then

A−λvvT % 0.

Proof. The spectral decomposition theorem for A yields A = λvvT + ∑i λivivTi
where we identified one of the eigenvalues of A as λ . A % 0 implies λi ≥ 0 hence
A−λvvT = ∑iλivivTi % 0. 23

This justifies the semidefiniteness constraint X % 0 in (28). It is also interesting to
note that the sign constraint X ≥ 0 together with the eigenvector condition Xe= n

k e
implies that

n
k
I−X % 0
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because in this case ‖X‖1 = n
k . Therefore, any eigenvalue λ of X satisfies |λ |≤

n
k .

In summary, the constraints in (28) imply

n
k
I % X %

1
k
J.

It should be observed that both SDP relaxations for partitioning are formulated in
the space of symmetric n×n matrices, but the models include roughly n2

2 sign con-
straints, which we will later see to be a computational challenge. Further details in
this direction can be found for instance in [KR98] and [LR02].

We close this section with a bound on general k−partition, proposed by Donath
and Hoffman in 1973, see [DH73]. In view of the results from the subsequent Sec-
tion 3.7 on connections between eigenvalue optimization and semidefinite program-
ming, this result may well be the first SDP bound of a combinatorial optimization
problem, but in disguised form, see below.
We consider k−partition, where the cardinalities mi of Si are also specified

through integers
m1 ≥ . . .mk ≥ 1 and ∑

i
mi = n.

Minimizing the weight cut by S is equivalent to maximizing the weight not cut by
S, which is equal to 1

2 〈S,AS〉.
The starting point in [DH73] is the observation that any feasible partition matrix

S satisfies
STS = diag(m1, . . . ,mk) =:M.

In words, the columns of S are pairwise orthogonal. An upper bound on the total
weight not cut is therefore given by

max
ST S=M

〈S,AS〉= max
YTY=Ik

〈Y,AYM〉 =
k

∑
i=1

miλi(A), (29)

where λ1(A) ≥ . . . ≥ λn(A) are the eigenvalues of A in nonincreasing order.
The first equality follows from the substitution S = YM 1

2 and the second from
Theorem 4 below. The last problem can in fact be expressed as the optimal solution
of a semidefinite program, see Section 3.7. Further details and extensions on using
this approach are contained for instance in [RW95, KR98].

3.6 Generic cutting planes

In the previous sections we saw SDP relaxations of a variety of graph optimization
problems. The matrix dimension typically was n = |V (G)| and the number of (pri-
mal) constraints was n in case of (14) and (9). The SDP model of ϑ(G) can have up
to n2

4 equations, depending on |E(G)|, and which of the two computational models
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(18) and (19) is used. The graph partition models (27) and (28) both have roughly
n2
2 sign constraints. All these models can of course be tightened by adding further
constraints valid for all points inM .
In the following we explain a generic way to tighten these semidefinite relax-

ations by adding further valid constraints. The class of hypermetric inequalities
provides a huge source of additional cutting planes, some of which also have an
explicit combinatorial interpretation. To explain this class we concentrate first on
the -1,1 model and the related relaxation (14).
Suppose b is an integer vector and bT e = 1. This implies that bT x is odd

∀x ∈ {−1,1}n, because any x ∈ {−1,1}n can be obtained from e by successively
changing the sign of some component i, which changes the inner product with b by
2bi, hence the parity is unchanged. LetB denote the set of all such vectors b,

B := {b integer : eT b= 1}.

As a consequence, b ∈ B implies |bTx|≥ 1 ∀x ∈ {−1,1}n, and therefore

〈bbT ,xxT 〉 ≥ 1.

Let us consider the (convex) set

HYP := {X : 〈bbT ,X〉 ≥ 1 ∀b ∈ B},

which is the intersection of infinitely many halfspaces. Deza et al [DGL93] show
that this set is in fact polyhedral, but it is currently open whether the separation
problem X ∈ HYP can be decided efficiently. The inequalities defining HYP are
called hypermetric inequalities. Further information can be found for instance in
[AU03].
The following subclass of hypermetric inequalities is generated by b ∈ B with

bi ∈ {−1,0,1} and only three nonzero entries, say bi,b j,bk. Elements in this class
are called triangle inequalities. The resulting polytope is sometimes called the metric
polytope MET,

MET = {X : xi j + xik+ x jk ≥−1,xi j− xik− x jk ≥−1 ∀ distinct i, j,k}.

These conditions follow from bTXb= xii+ x j j + xkk +2(xi j + xik+ x jk) ≥ 1 in case
bi = b j = bk = 1 and the implicit assumption diag(X) = e. The other inequalities
follow by changing one of the signs in b.
Polynomial time separation for X ∈MET can be done trivially by enumerating

all 4
(n
3
)

constraints defining MET. This idea can be generalized to cliques of odd
size k > 3.
Including all the constraints from MET in (14) results in the following SDP

max{1
4
〈L,X〉 : diag(X) = e, X ∈MET, X % 0} (30)
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with O(n3) constraints, which is a computational challenge for current state of the
art software to solve SDP. Some computational experience with triangle inequalities
and odd order clique constraints combined with (14) is given in [HR98].
Just as it was straightforward to transform 0,1 QP into MC, it is also possible to

transform the triangle inequalities into the 0,1 setting. The resulting polyhedron was
in fact studied independently under the name of quadric Boolean polytope, see for
instance [Pad89, Sim90].

3.7 SDP, eigenvalues and the Hoffman-Wielandt inequality

We are now going to take a closer look at connections between eigenvalues of
symmetric matrices, optimization over (sets of pairwise) orthogonal vectors and
semidefinite programming. To illustrate these connections, we recall the following
well known facts. Let A ∈ Sn. Then we can express the largest eigenvalue λmax(A)
of A as

λmax(A) = max
xT x=1

xTAx. (31)

On the other hand, it is trivial to note that

λmax(A) =minλ such that λ I−A% 0,

and this is a semidefinite program with dual

λmax(A) =max〈A,X〉 such that tr(X) = 1, X % 0. (32)

Both problems have strictly feasible solutions, hence strong duality holds. The rela-
tions (31) and (32) are the simplest connections relating eigenvalues to optimization
over orthogonal vectors on one hand and SDP on the other. It turns out that the
following theorem provides a generalization of (31) with many applications in com-
binatorial optimization.

Theorem 4. Let A ∈ Sn, B ∈ Sk and 1≤ k ≤ n. Let B̃=

(

B 0
0 0

)

∈ Sn. Then

min
XT X=Ik

〈X ,AXB〉= min
φ injection ∑i

λi(B)λφ(i)(A) = 〈λ (B̃),λ (A)〉−. (33)

Remark 1. This theorem has a long history. John von Neumann [Neu37] looks at
the more general problem maxRe(tr(AUBV)), where A and B are square complex
matrices and the maximization is carried out over unitary U and V . Re(x) denotes
the real part of the complex number x. The above result follows as a special case.
Hoffman and Wielandt [HW53] study the question of the ’distance’ of the eigen-
values of two normal matrices in terms of the matrix distance, and also prove the
above result in disguised form for the case k = n. Berkowitz [Ber74] and Marcus
[Mar75] investigate the problem minXT X=Ik Em(B+XTAX) where A and B are as
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in the theorem and Em(Y ) is the m-th elementary symmetric function of degreem of
the eigenvalues of Y , hence E1(Y ) = tr(Y ). Therefore, their result proves the above
theorem for the case that the smaller matrix is the identity.

Since we consider this a fundamental result, we include the following proof, which
is inspired by [HW53] and which is in the spirit of combinatorial optimization.
An argument based on first order optimality conditions in nonlinear optimization is
given in [RW92].
Proof. First we observe that for k < n we can extend X to an orthogonal matrix
Z = (X Y ) through an appropriate choice of Y . Therefore

〈Z,AZB̃〉 = 〈X ,A(X Y )

(

B
0

)

〉+ 〈Y,AZ0〉= 〈X ,AXB〉.

We also note for later use that I = ZZT = XXT +YYT , therefore

I−XXT % 0. (34)

Hence we may consider k = n. A and B are symmetric, therefore they have an or-
thogonal diagonalization:

A= PDAPT , B= QDBQT , (35)

with DA = Diag(λ (A)) and DB = Diag(λ (B)). Let us assume that P and Q are
chosen in such a way that the scalar product of the eigenvalues 〈λ (A),λ (B)〉 is
minimal. This holds for instance if the elements in λ (A) are in nondecreasing order,
and those of λ (B) in nonincreasing order. Therefore we have

min
XT X=I

〈X ,AXB〉 ≤ 〈PQT ,A(PQT )B〉 = 〈λ (A),λ (B)〉−.

On the other hand, for any orthogonal X we have

〈X ,AXB〉 = trDA(PTXQ)DB(PTXQ)T = 〈λ (A)λ (B)T ,(PTXQ)◦ (PTXQ)〉.

Now we observe that for the orthogonal matrix Y = PTXQ we have Y ◦Y ∈ Ω .
Therefore we get

〈λ (A)λ (B)T ,Y ◦Y 〉 ≥ min
Z∈Ω∑i j

λi(A)λ j(B)zi j = 〈λ (A),λ (B)〉−.

If k < n, it is a simple exercise to show that

min
φ injection ∑i

λi(B)λφ(i)(A) = 〈λ (B̃),λ (A)〉−.

23
The semidefinite counterpart of this theorem, generalizing (32) has only recently

been shown by Anstreicher and Wolkowicz [AW00] for the case k= n.
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Theorem 5. Let A,B ∈ Sn. Then

min
XT X=I

〈X ,AXB〉 =max{trS+ trT : B⊗A− I⊗S−T ⊗ I % 0}.

This result is obtained by taking the Lagrangian dual of the first term with respect
to the constraints XTX = I, XXT = I. Hence there are two matrices S and T in the
SDP. Moreover this is an SDP in the matrix spaceSn2 . The general case k≤ n needs
some slight modifications.

Theorem 6. Let A ∈ Sn, B ∈ Sk and 1≤ k ≤ n. Then

min
XT X=Ik

〈X ,AXB〉=max{trS− trT : B⊗A−S⊗ In+ Ik⊗T % 0, T % 0}.

Remark 2. It is not hard to see that the case k = n, considered in [AW00] can be
recovered from this result. We refer to [PR08] for further details.

Proof. We first recall that

z∗ := min
φ injection∑i

λi(B)λφ(i)(A)

=min{∑
i j
λi(B)λ j(A)zi j : Z = (zi j) k×n, Ze= e, ZT e≤ e, Z ≥ 0}.

Linear programming duality shows that the last term is equal to

max{∑
i
si−∑

i
ti : si− t j ≤ λi(B)λ j(A), t ≥ 0}. (36)

On the other hand, we also have

z∗ =min{〈X ,AXB〉 : XTX = Ik, In−XXT % 0}

after adding the redundant constraint I−XXT % 0, see (34). The factorization (35)
suggests the transformation of variables Y = PTXQ and we get

z∗ =min{〈Y,DAYDB〉 : YTY = Ik, I−YYT % 0}.

Duality for semidefinite programs shows that the last term is equal to

max{tr(S)− tr(T ) : DB⊗DA−S⊗ In+ Ik⊗T % 0,T % 0}.

Here we introduced the multiplier S ∈ Sk for the equation YTY = Ik and T ∈ S +
n

for I−YYT % 0. By restricting S and T to diagonal matrices we get

z∗ ≤ {max∑
i
si−∑

i
ti : λi(B)λ j(A)− si+ t j ≥ 0,ti ≥ 0}.

But this is again equal to (36), hence there is equality throughout. 23
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The Hoffman-Wielandt theorem was used in [HRW92] to get eigenvalue based
bounds for the Quadratic Assignment Problem

min
X∈Π

tr〈X ,AXB〉.

Donath and Hoffman [DH73] use it to formulate the eigenvalue bound (29) for gen-
eral k-partition.

Further reading:The previous sections have shown the rich structure of semidef-
inite optimization models applied to integer programming. The idea of using ’matrix
liftings’ such as (1), has immediate generalizations. Since the extreme points of (1)
have again 0-1 coordinates, one could apply another lifting based on this set. This
iterated lifting raises interesting research questions. In [LS91] it is shown for in-
stance, that n such liftings suffice to get to the integer optimum for a problem in n
binary variables, see also [BCC93, SA90].
Optimization with polynomials has recently also turned out to be another fruitful

area for the use of semidefinite optimization. The key observation here is that a
polynomial p(x) in n variables x = (x1, . . . ,xn) is certainly nonnegative for all x ∈
Rn, if p(x) can be written as a sum of squares of other polynomials in x. Such a sum
of square representation can be found by solving a related SDP. Recent results on
this can be found for instance in [JL05, Las06].

4 The theoretical power of SDP

Up to now we looked at semidefinite programs as a modeling tool for combinato-
rial optimization problems having some inherent ’quadratic structure’ in their inte-
ger formulations. The seminal work of Goemans and Williamson [GW95] from the
early 1990’s shows that SDP can also be used to generate provably good integer
solutions. This approach now runs under the keyword ’hyperplane rounding’ and
exploits the Gram representation of semidefinite matrices. It was applied quite suc-
cessfully to various graph partition problems, the most prominent being Max-Cut.
In this section we consider the hyperplane rounding idea applied to Max-Cut and
graph coloring.

4.1 Hyperplane rounding for Max-Cut

Let us recall the cost function (13) of Max-Cut and its basic semidefinite relaxation
(14). Given any matrix X % 0 with diag(X) = e, Goemans and Williamson suggest
to use it in the following way to generate a random bisection, given by ξ ∈ {−1,1}n.
Goemans and Williamson observe the remarkable fact that the expectation value

of the solution ξ has a simple form.
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Goemans-Williamson Hyperplane Rounding Algorithm

Input: X % 0 with diag(X) = e, given by X =VTV with n×n matrix V = (v1, . . . ,vn).
Output: Bisection ξ ∈ {−1,1}n.

Select random vector r ∈ Rn, uniformly distributed on the unit sphere.
ξi = 1 ⇐⇒ rT vi ≥ 0.

Theorem 7. The expectation value of the solution ξ from the hyperplane rounding
routine has value

E(∑
i j∈E

ai j
1− ξiξ j
2

) = ∑
i j∈E

ai j
arccos(vTi v j)

π
. (37)

The proof of this result uses the following geometric fact. The probability that vi
and v j are separated by the random vector r, drawn uniformly on the sphere, is
proportional to the angle between the two vectors.

Prob( r separates vi and v j) =
arccos(vTi v j)

π
. (38)

This together with the linearity of the expectation value gives the final result.
The idea now is to use the optimal solution X of the semidefinite relaxation (14)

for hyperplane rounding. In order to estimate the quality of the resulting partition ξ ,
we need to relate the expectation value (37) somehow to the optimal solution value
of (14). Goemans and Williamson observe the following lower bound on arccos(x).

Lemma 6. For all −1≤ x≤ 1 and .87856< αGW < .87857 it holds that

arccos(x)
π

≥ αGW
1
2
(1− x).

They use it to show that a term by term lower estimate of the expectation value in
theorem 7 in case ai j ≥ 0 leads to

∑
i j∈E

ai j
1
π
arccosxi j ≥ αGW∑

i j
ai j
1− xi j
2

= αGWzsdp.

This is summarized as follows.

Theorem 8. [GW95] Let A≥ 0. Then

zmc > 0.87856zsdp.

Nesterov [Nes97] proposes a different analysis. He uses the identity
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∑
i< j

ai j
arccos(xi j)

π
=
1
2π ∑i j

li j arcsin(xi j), (39)

which follows easily from the definition of the Laplacian L= (li j) and the fact that

arccos(x)+ arcsin(x) =
π
2

.

Let us set Y = (yi j) with yi j = arcsin(xi j). Then the right hand side in (39) becomes

1
2π

〈L,Y 〉.

To compare this to the optimal solution 14 〈L,X〉 of (14), Nesterov shows that Y % X .
The proof of this result is based on the Schur-product theorem.

Theorem 9.
A,B ∈ S + =⇒ A◦B∈ S +.

Proof. The following very elegant one-line proof of this result can be found in
[BTN01], see Lemma 4.3.1. We have the Gram representation ai j = aTi a j and
bi j = bTi b j for appropriate choices of vectors ai,bi. Setting C = (ci j) = (ai jbi j),
we have

ci j = aTi a jbTi b j = 〈aibTi ,a jbTj 〉,

showing thatC also has a Gram representation, and hence is semidefinite. 23

Lemma 7. Let X % 0 with diag(X) = e be given. Set Y = (yi j) with yi j = arcsin(xi j).
Then Y −X % 0.

Proof. Since arcsin(x) = x+ 1
2·3x

3+ 1·3
2·4·5x

5 . . . we have

Y −X =
1
6
X ◦X ◦X+

3
40
X ◦X ◦X ◦X ◦X . . .

The Schur-product theorem shows that the right hand side is positive semidefinite.
23

This gives the following more general estimate.

Theorem 10. Suppose that the Laplacian L% 0. Then

zmc ≥
2
π
zsdp.

Since 2
π ≈ 0.636, this result is weaker than the Goemans-Williamson analysis, but

it is also more general, as A ≥ 0 implies L % 0, but L can be semidefinite even if A
has negative entries.

Proof. If L % 0, then 〈L,Y −X〉 ≥ 0, using the previous lemma. Therefore the ex-
pectation value
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1
2π

〈L,Y 〉 ≥
1
2π

〈L,X〉 =
2
π
zsdp.

23

Subsequently, the hyperplane rounding idea has been extended by Frieze and
Jerrum [FJ97] to the maximization version of bisection with s= n

2 . Since the hyper-
plane rounding routine does not necessarily give a balanced bisection, the solution
has to be modified to ensure s = n

2 . Frieze and Jerrum [FJ97] propose a 0.651-
approximation algorithm. Later, Halperin and Zwick [HZ01] improve this perfor-
mance ratio to 0.7016 by strengthening the underlying SDP with triangle inequali-
ties, and also by employing a more refined rounding heuristic.
It seems also quite natural to extend the hyperplane rounding idea to Max-k-Cut,

starting from the SDP (27). We first note that a random partition into k blocks has
two vertices i and j with probability 1

k in the same partition block. Therefore the
expected weight of this partition is

∑
i< j

ai j(1−
1
k
).

This immediately gives an approximation ratio of 1− 1
k for Max-k-Cut. Frieze and

Jerrum [FJ97] provide better approximation ratios for all values of k. In particular,
they have (not surprisingly) aGW for k = 2, 0.8327 for k = 3 and 0.8503 for k = 4.
The last two values have been improved later on by De Klerk et al [dKPW04] to
0.836 for k = 3 and 0.8574 for k = 4. The minimization versions of these problems
are much harder.

4.2 Coloring

The hyperplane rounding idea underlying the theoretical estimate of theorem 8 can
be applied to other types of graph problems. Karger, Motwani and Sudan [KMS98]
extend this approach to graph coloring.
Determining χ(G) is well known to be NP-hard. Lund and Yannakakis [LY93]

show that, even worse, there exists a constant ε > 0 for which no polynomial al-
gorithm can color any graph with at most nε χ(G) colors, unless P=NP. In particu-
lar, coloring a three-colorable graph with at most four colors is NP-complete, see
[KLS00].
In view of these theoretical complexity results it is therefore a challenge to design

polynomial algorithms to color three-colorable graphs with nontrivial upper bounds
on the colors used. We first recall the following easy facts.

Lemma 8. If χ(G) = 3 then N(v) is bipartite for any v ∈V (G).

Lemma 9. Let G be a graph with maximum vertex degree Δ . Then G can be colored
in polynomial time with Δ +1 colors.
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Widgerson [Wid83] observes that if Δ >
√
n, then 2 colors suffice to color the

neighbourhood of the vertex with largest degree, thereby legally coloring at least√
n vertices. If Δ ≤

√
n, then the graph can be colored with

√
n+ 1 colors. Hence

the following simple algorithm fromWidgerson [Wid83] colors any three-colorable
graph with at most 3

√
n colors.

Widgerson Algorithm for three-colorable graphs

Input: A graph G on n vertices with χ(G) = 3.
Output: A coloring of G with at most O(

√
n) colors.

(1) While ∃v ∈V (G) with degree ≥
√
n

Color v with color 1 and N(v) with (at most) two new colors.
Remove v and N(v) from G and call the remaining graph G.
(2) Color G with at most Δ <

√
n colors.

It turns out that the semidefinite program, underlying the ϑ function, can be used
to improve Widgerson’s algorithm. In fact, ϑ(G) is one of the ingredients for the
currently strongest algorithms for three-colorable graphs.
Here is a first analysis. Suppose we have computed the optimal solution V =

(v1, . . . ,vn) of (26). Therefore ‖vi‖ = 1 and vTi v j = λ ≤− 1
2 for i j ∈ E(G), because

λ ≤− 1
χ(G)−1 . We associate the vectors vi to the vertices ofG, and use them to define

the following vertex partition of V (G).
We first select t random hyperplanes through the origin. t will be specified later.

These hyperplanes partition Rn into 2t regions and each vi belongs to exactly one
region. All vertices i with vi in the same region Rj now are assigned to partition
block j.
The main task now is to show that an appropriate choice of t will ensure that with

high probability at least n2 vertices in this partition are legally colored (= adjacent
vertices are in different partition blocks).
First note that the probability that two vertices i and j are in the same region is

equal to the probability that none of the t hyperplanes separates vi and v j, which is
equal to

(1−
1
π
arccos(vTi v j))t ,

see (38).We have just seen that i j ∈ E implies vTi v j = λ ≤− 1
2 = cos( 2π3 ). Therefore

arccos(vTi v j) ≥ 2π
3 , so

(1− 1
π
arccos(vTi v j))t ≤

1
3t

.

The expected value of edges with both endpoints in the same partition block (=
monochromatic edges) is at most
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|E|
1
3t

≤
nΔ
2
3−t .

Markov’s inequality now tells us that with probability less than 12 there are more than
nΔ3−t monochromatic edges. After repeating this process several times, we have,
with high probability, a coloring with 2t colors, where at most nΔ3−t edges are
monochromatic. Selecting t = 2+ log3(Δ) gives at most n4 monochromatic edges.
Therefore at most n2 vertices are not colored legally. In other words, with high prob-
ability at least n2 vertices are legally colored with at most 2

t ≤ 8Δ log3(2) colors.
As log3(2)≈ 0.631 and Δ can be O(n), this technique by itself does not improve

Widgerson’s result. In [KMS98] it is suggested to run the while-loop of Widger-
son’s algorithm as long as Δ > n0.613. This uses up O(n0.387) colors. Coloring the
remaining graph, having Δ <O(n0.613), can now be done using O((n0.613)log3(2)) =
O(n0.387) colors. This gives, with high probability, a coloring using at mostO(n0.387)
colors.
Karger, Motwani and Sudan provide another more refined analysis, which shows

that in fact Õ(n0.25) colors suffice. We use the Õ notation to suppress polyloga-
rithmic terms. We sketch this analysis, but follow the simplified presentation from
[ACC06]. The first observation is that if we can find a stable set of size O( n

s(n) ) for
some function s(n), then we can use up one color for this stable set, and iterate at
most s(n) times to get a coloring using at most Õ(s(n)) colors. In [KMS98] it is
shown that a stable set of size Õ( n

Δ1/3
) can be found by hyperplane rounding, see

below. This is used as follows. Apply the while loop of Widgerson’s algorithm as
long as Δ ≥ n0.75. This uses up O(n0.25) colors and leaves a graph with Δ < n0.75.
Now we apply the above stable set argument with Δ1/3 = O(n0.25) to find a color-
ing in the remaining graph using Õ(n0.25) colors. In summary, we obtain a coloring
using Õ(n0.25) colors, once we can find stable sets of size O( n

Δ1/3
).

We start with a solution of (26) of value λ =− 1
2 , which exists because χ(G) = 3.

We consider for a random vector r and ε > 0 to be specified later the set

Vr(ε) := {i ∈V : 〈r,vi〉 ≥ ε}.

We assume that the entries r j of r are drawn independently from the standard normal
distribution. This implies that for any unit vector v, vT r also has the standard normal
distribution. Therefore

Prob(i ∈Vr(ε)) =
∫ ∞

ε

1√
2π

e−
t2
2 dt =: N(ε).

Let I ⊆Vr(ε) be the set of isolated vertices in Vr(ε). Next note that

Prob(i /∈ I|i ∈Vr(ε)) = Prob(∃ j ∈ N(i) : 〈r,v j〉 ≥ ε|〈r,vi〉 ≥ ε).

Having j ∈ N(i) means that 〈vi,v j〉 = − 1
2 . Therefore we can introduce ṽ j ⊥ vi such

that

v j = −
1
2
vi+

√
3
2
ṽ j.
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Therefore ṽ j = 2√
3v j+

1√
3vi. If 〈r,v j〉 ≥ ε and 〈r,vi〉 ≥ ε , then 〈r, ṽ j〉 ≥

√
3ε . There-

fore
Prob(i /∈ I|i ∈Vr(ε)) ≤

Prob(∃ j ∈ N(i) : 〈r, ṽ j〉 ≥
√
3ε) ≤ ∑

j∈N(i)
Prob(〈r, ṽ j〉 ≥

√
3ε) ≤ ΔN(

√
3ε).

Now ε > 0 is selected such that

N(
√
3ε) <

1
2Δ . (40)

This implies that with probability less than 1
2 , a vertex is not in I, thus Prob(i ∈

I) ≥ 1
2Prob(i ∈ Vr(ε)) = 1

2N(ε). Hence the expected cardinality of the stable set I
is n
2N(ε). To get the final result, one needs to see how the choice of ε in (40) relates

to Δ and N(ε). It can be shown that Δ is less than Θ̃(N(ε)3), see [ACC06], hence
n
2N(ε) = Ω̃(Δ−1/3n).
In [ACC06], a further refinement of the analysis is proposed, which together with

a strengthened version of (26) gives the an approximation of Õ(n0.2111) colorings for
three-colorable graphs, see also the recent dissertation [Chl09].

5 Solving SDP in practice

We have just seen the great variety of modeling ideas leading to SDP. Moreover,
some of these models even lead to relaxations where the approximation error can
be determined a priori. It is therefore natural to ask for efficient methods to solve
SDP. In this section we are going to describe the algorithmic machinery currently
available for SDP.

5.1 Interior Point algorithms

The most elegant way to solve SDP, and more generally linear optimization over
closed convex cones, is based on Newton’s method applied to a slightly modified
version of the problem. The theoretical background for this approach goes back to
the seminal work of Nesterov and Nemirovski from the late 1980’s, see [NN94].
They showed that a family of convex optimization problems can be solved in poly-
nomial time using self-concordant barrier functions.
Practical experience indicates that Newton’s method in combinationwith the bar-

rier idea works most efficiently in the primal-dual path-following setting, which will
be briefly explained now. We recall the primal problem (2) and its dual (5),

min〈C,X〉 such that A(X) = b, X % 0,
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maxbT y such that Z =C−AT (y) % 0.

In the following we assume that both problems satisfy the Slater constraint qual-
ification (6). In this case (X ,y,Z) is optimal if and only if (7) holds. This is a sys-
tem of m+

(n+1
2

)

+ 1 equations with the additional semidefiniteness constraints in
m+ 2

(n+1
2

)

variables. It is perhaps surprising that the additional semidefinitenes
conditions in fact lead to an overdetermined system. Indeed note that X % 0,Z % 0
implies X =UUT ,Z =VVT forU and V of appropriate size. But then

0= 〈Z,X〉 = 〈VVT ,UUT 〉 = ‖VTU‖2

implies VTU = 0 and therefore

ZX =VVTUUT = 0.

Thus the scalar equation
〈Z,X〉 = 0

together with X % 0,Z % 0 implies the matrix equation

ZX = 0.

Since ZX need not be symmetric, even if X and Z are symmetric, this equation has
n2 components.
Primal-dual path-following interior-point methods are based on solutions X % 0,

Z % 0, of the following slightly modified optimality conditions for parameter µ > 0.

A(X)−b= 0, C−Z−AT (y) = 0, ZX− µI = 0. (41)

Clearly, any solution of this system must satisfy X 0 0,Z 0 0, as ZX = µI forces X
and Z to be nonsingular. It turns out that strict feasibility in fact characterizes unique
solvability of (41).

Theorem 11. (see for instance Theorem 10.2.1 in [WSe00]) The following state-
ments are equivalent:
(2) and (5) both have strictly feasible points.
(41) has a unique solution (Xµ ,yµ ,Zµ) for all µ > 0.

The proof is based on the following observation. Let f : S ++
n -→ R, f (X) =

logdetX . This function is strictly concave with ∇ f = X−1,

f (X +h) = f (X)+ 〈X−1,h〉+o(‖h‖).

Consider the auxiliary problem, for fixed parameter µ > 0.

(PB) min〈C,X〉− µ f (X) such that A(X) = b, X 0 0.

This is a convex optimization problem with Lagrangian
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L(X ,y) = 〈C,X〉− µ logdetX+ yT (b−A(X)).

The necessary and sufficient optimality conditions therefore are

∇XL=C− µX−1−AT (y) = 0,

∇yL= b−A(X) = 0,

together with the open set constraint X 0 0. Setting Z = µX−1, we recover (41).
Problem (PB) is sometimes called the primal barrier problem. The term−µ logdetX
goes to infinity as X 0 0 approaches the boundary of the cone of semidefinite ma-
trices. The value of µ controls the influence of this term. The conditions (41) can
also be derived by setting up a barrier problem for the dual SDP. Strict convexity
of the cost function from the primal barrier problem shows that a minimizer, if it
exists, must be unique. To show the existence of a minimizer requires an additional
compactness argument. We refer to [WSe00] for further details.

In summary, strict feasibility of (2) and (5) insures unique solutions (Xµ ,yµ ,Zµ)
for all µ > 0. To show that these solutions form a smooth curve, parametrized by µ ,
we need to show that the system is differentiable with a nonsingular Jacobian. While
differentiability is obvious, the Jacobian of (41) is certainly not invertible, as it is
not even square. The remedy is to replace the nonsymmetric equation ZX − µI = 0
by an equivalent symmetric one. A general setup for this goes as follows. Let P be
nonsingular and define

HP(M) := 1
2
(PMP−1+(PMP−1)T ).

Replacing ZX − µI = 0 by HP(ZX)− µI = 0 in (41) makes the Jacobian a square
matrix, which can be shown to be nonsingular for any invertible P and for all points
(X ,y,Z) ’close’ to solutions (Xµ ,yµ ,Zµ) of (41). Hence the solution set of (41)
indeed defines a smooth curve which is often called (primal-dual) central path. Let
us denote it byCP := {Pµ = (Xµ ,yµ ,Zµ) : µ > 0}.

Primal-dual interior-point path-followingmethods use the Newton method to fol-
low the primal-dual central path, maintaining X 0 0, Z 0 0 (interior points) for
µ → 0. To follow the central path (at least approximately), we first need to come
close to it. We do this iteratively as follows. Having the current interior iterate
(X ,y,Z) and a target value for µ , we try to reach a new interior point (X+,y+,Z+)
close to Pµ for given µ . Then the target value µ is reduced and we iterate. The main
work is done in determining the search direction (ΔX ,Δy,ΔZ) whichmoves us from
the current iterate to the new point. As mentioned before, there is a great variety to
do so and here we show a very simple, popular and efficient variant. It was one of
the first search directions proposed to solve SDP, see [HRVW96, KSH97, Mon97].
We linearize the equations in (41) and get

A(ΔX) = b−A(X) := rp, (42)
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ΔZ+AT (Δy) =C−AT (y)−Z := rd , (43)

ZΔX +ΔZX = µI−ZX . (44)

The vectors rp and rd express primal and dual infeasibility and would be 0 if feasible
starting points were used. The last equation can be used to eliminate ΔX ,

ΔX = µZ−1−X−Z−1ΔZX ,

the second one gives
ΔZ = rd−AT (Δy).

Substitution into the first equation gives

A(Z−1AT (Δy)X) = v with v= rp−A(µZ−1−X)+A(Z−1rdX).

The linear operator on the left hand side has the matrix representation

MΔy= v, (45)

withmi j = tr(AiZ−1AjX). This matrix can be shown to be positive definite (if X 0 0,
Z0 0 and the equationsA(X) = b are linearly independent). To determine the search
direction we therefore need to solve the equation MΔy = v. Having Δy we get ΔZ
and ΔX from backsubstitution. ΔX need not be symmetric, so the symmetric part of
ΔX is taken.
This would give the new point X+ΔX ,y+Δy,Z+ΔZ except that the new point

need not have definite matrices. This is repaired by a backtracking strategy, where
starting with t = 1, t is reduced to a value t∗ > 0 such that X+ = X+t∗ΔX 0 0,Z+ =
Z+ t∗ΔZ 0 0. This gives a new trial point (X+,y+,Z+). The new target parameter
for this point can be estimated to be

µ+ =
1
n
tr(X+Z+),

and a new iteration is started with µ+ reduced by a multiplicative factor.
It was shown by Monteiro [Mon97] that this rather simple and pragmatic ap-

proach in fact falls in the general class of search directions mentioned above.
To give some idea on the actual work involved, we consider the basic semidefinite

relaxation for Max-Cut. Here A(X) = diag(X) and AT (y) = Diag(y). It is not too
hard to verify that in this case the matrixM in (45) has the simple form

M = X ◦Z−1.

Hence the work in each iteration involves computing Z−1, solving the equation
(45) and doing a few matrix multiplications to get ΔX . An efficient way to do the
backtracking to stay inside the cone of semidefinite matrices consists in checking
whether the Cholesky decomposition of X + tΔX terminates successfully. This is
a certificate that the matrix is semidefinite, hence an additional small reduction of
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t insures definiteness. To give some practical impression we tabulate computation
times to solve this relaxation for some representative values of n. The iterations
were stopped, once the relative error was below 10−7, and it always took less than
20 iterations to reach this level of accuracy. The results clearly show that interior-
point methods are indeed very efficient on smaller problems (n≤ 1000), but become
prohibitive with respect to both time and space requirements, once n gets large.
We also tabulate timings to compute the ϑ -function in the computationally most

expensive case of m = 1
2
(n
2
)

equations, see Table 5.1. It is clear that once n ≈ 200,
the effort of interior point methods gets prohibitive.
Looking at the computation times in these two tables, it should be clear that

interior-point methods become impractical, once m is substantially larger than say
5000, or once n is larger than about 1000. In the following sections we will consider
algorithmic alternatives for larger problems.

n time (secs.)
500 12
1000 75
1500 237
2000 586
2500 1109
3000 1900

Table 1 Interior-point computation times to solve (14) with relative accuracy 10−7. Here m= n.

n m time (secs.)
100 2475 57
120 3570 161
140 4865 353
160 6360 757
180 8055 1520
200 9950 2817

Table 2 Interior-point computation times to solve (18) with relative accuracy 10−7, m= 1
2
(n
2
)

.

5.2 Partial Lagrangian and the bundle method

We have just seen that interior-point methods are the method of choice to solve SDP
and we also saw the limits of this approach both in terms of the dimension n of the
matrix space and also in the numberm of (primal) constraints. We also saw the need
to be able to handle large-scale SDP to get good approximations of the underlying
combinatorial optimization problem.
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We are now going to describe a rather generic ’work-around’ for problems, where
the matrix dimension is reasonable, but m can be arbitrary. Let us consider an SDP
of the form

z=max{〈C,X〉 : A(X) = a, B(X) = b, X % 0}.

We have split the constraints into two sets. The motivation is that maintaining only
the first set A(X) = a would result in an SDP that is still manageable by interior
point methods, but the inclusion of B(X) = b makes the problem impractical for
interior-point methods. For simplicity of exposition, we consider only equations.
The presence of inequalities only leads to minor modifications (sign constraints on
dual multipliers), which can be dealt with in the approach to be described.
Let us denoteX := {X : A(X) = a, X % 0}. The idea now is to maintain X ∈X

explicitly and to put B(X) = b into the cost function by taking the partial Lagrangian
dual. Hence we get

z=max{〈C,X〉 : A(X) = a, B(X) = b, X % 0} = max
X∈X

min
y
L(X ,y),

where the partial Lagrangian L is given by L(X ,y) = 〈C,X〉+ yT (b−B(X)). Ap-
plying the Minimax inequality we get under the usual strict feasibility conditions
that

z=min
y
f (y) ≤ f (y) ∀y,

where f (y) = maxX∈X L(X ,y). Evaluating f amounts to solving an SDP over X ∈
X which we assume to be manageable. Suppose that for some y∗, we have f (y∗) =
L(X∗,y∗), so the maximum is attained at X∗ ∈ X . By setting

g∗ = b−B(X∗)

we get for any y
f (y) ≥ L(X∗,y) = f (y∗)+ 〈g∗,y− y∗〉. (46)

The inequality follows from the definition of f , the equality comes from substituting
g∗. In the language of convex analysis, this inequality defines g∗ to be a subgradient
of f at y∗.
To compute z, we minimize f . This function is continuous and convex (point-

wise maximum of linear functions), but it is not differentiable at points where the
maximum is not unique. Hence we use some tools from nonsmooth optimization to
minimize f .
The bundle method will serve our purposes. It was introduced in the 1970’s by

Lemarechal, see [Lem75, Lem78]. A comprehensive survey is also contained in
[HUL93]. We briefly explain its key features. The method iteratively approaches a
minimizer of f . Let the current iterate be ŷ. Suppose we have evaluated f at k ≥ 1
points y1, . . . ,yk with respective optimizers X1, . . . ,Xk and subgradients gi = b−
B(Xi). We also set fi = f (yi). It is assumed that ŷ ∈ {y1, . . . ,yk}. To get started we
evaluate f at ŷ= 0 and set y1 = ŷ,k= 1.
The subgradient inequality (46) implies that for all y
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f (y) ≥max
i
{ fi+gTi (y− yi)} =: f̃ (y).

To simplify the presentation we set hi = fi − gTi yi, H = (h1, . . . ,hk)T and G =
(g1, . . . ,gk). Then

f̃ (y) = max
λ∈Δk

λ T (H+GTy).

The bundle method now uses the minorant f̃ (y) as an approximation of the original
f ’close’ to the current iterate ŷ. This is plausible because ŷ ∈ {y1, . . . ,yk} implies
f̃ (ŷ) = f (ŷ). To insure that we stay close to ŷ, we add a regularization term and
consider the following function

fbdl(y) := f̃ (y)+
1
2t
‖y− ŷ‖2.

The bundle method minimizes this function over y to obtain a new iterate. The pa-
rameter t > 0 controls how close we stay to ŷ. Minimizing fbdl(y) is again a Min-
Max problem which can be simplified as follows.

min
y
fbdl(y) =max

λ∈Δ
min
y
λ T (H+GTy)+

1
2t
‖y− ŷ‖2.

The inner minimization is a strictly convex unconstrained quadratic optimization
problem, hence we can replace the minimization by asking that the first order opti-
mality conditions hold. Setting the derivative with respect to y equal to 0 gives

y= ŷ− tGλ .

After substitution, we get the equivalent problem

max
λ∈Δ

λ T (H+GT ŷ)−
t
2
‖Gλ‖2.

This is a convex quadratic problem over the standard simplex Δ in Rk and can be
solved by standard methods from convex optimization. The solution effort depends
on k, which can be controlled by the user. Having the optimizer λ ∗ of this problem,
we get the new estimate

ynew = ŷ− tGλ ∗.

The bundle method now asks to evaluate the original function f at ynew. Some stan-
dard criteria are used to decide whether ynew becomes the new trial point, or whether
we stay at ŷ. In any case, information from the new point is included as yk+1 = ynew
and the iteration is continued. The convergence theory of the bundle method is quite
elaborate and can be found for instance in [HUL93].

Remark 3. Let us take a careful look at the above derivation of the bundle method.
The specific form of the function f (y) is in fact irrelevant, once the following prop-
erty of f is satisfied. For any y∗ we can determine a vector g∗ such that
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f (y) ≥ f (y∗)+ 〈g∗,y− y∗〉 ∀y

holds. In words, we assume that f is convex and we are able to determine a subgra-
dient of f at any point.

We close with an application of the bundle method applied to the semidefinite
relaxation of Max-cut which also includes the triangle inequalities, see (30). We
maintain the equation diag(X) = e explicitly and dualize the triangle inequalities,
which we formally denote by B(X) ≤ b. Recall that there are 4

(n
3
)

inequality con-
straints. Let us denote the violation of these contraints by

r :=min{0,b−B(X)}.

In the table 5.2 we consider the instance g3s of size n = 300 from [FGRS06]. This
is a rudy-generated random graph with edge density of 10% and edge weights 1 and
-1. The optimal value of the relaxation, as reported in [FGRS06] is 635.05. In the
table we also provide information about the error r. We include the total violation
of all constraints, ‖r‖1, the maximal violation ‖r‖∞ and the total number of violated
constraints (last column). The results in this table clearly indicate that the bundle
method is very efficient in getting close to the optimum quickly. The computation
time for 100 bundle iterations was a few minutes only. The local convergence be-
haviour is obviously much weaker than in the case of interior-point methods. We
refer to [FGRS06] for further details of this approach applied to (30).

iter f (y) ‖r‖1 ‖r‖∞ contrs. viol.
1 679.3 152541.0 0.96 680822
10 660.4 21132.7 0.73 147094
20 648.1 1234.6 0.52 13605
30 642.2 193.7 0.32 2979
40 639.5 50.8 0.32 957
50 638.2 29.5 0.25 647
60 637.6 25.3 0.26 570
70 637.1 28.9 0.20 688
80 636.9 17.1 0.23 397
90 636.6 18.2 0.18 448
100 636.5 13.5 0.18 369

Table 3 The semidefinite relaxation of Max-Cut from (30) for a graph with n= 300. The vector r
contains the violation of the triangle inequalities. The last column provides the number of violated
constraints.
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5.3 The spectral bundle method

The spectral bundle method introduced in [HR00] reduces the solution of SDP to
the computation of the largest eigenvalue of a sequence of symmetric matrices. The
algorithmic machinery from numerical linear algebra provides methods to compute
λmax(C), which do not require to have C explicitly available, but only need a sub-
routine that evaluates the action of C. In other words, given x, we only need to be
able to compute y=Cx.
Before describing the spectral bundle method in detail we first show that SDP

with the constant trace property can equivalently be reformulated as an eigenvalue
optimization problem.
The mapping A from (2) satisfies the constant trace property if the identity matrix

is in the range of AT , which means ∃η such that AT (η) = I. In this case any X such
that A(X) = b, X % 0 satisfies

tr(X) = 〈X ,AT (η)〉 = 〈A(X),η〉 = bTη = a,

for some constant a≥ 0. The constant trace property therefore implies that feasible
solutions of (2) have constant trace, equal to a. Excluding the case a = 0, which
only has the zero matrix as feasible solution of SDP, we can assume without loss of
generality that a= 1.
Let us consider SDP with the constant trace property. In this case we can add the

redundant equation
tr(X) = 1

to (2) and get for the dual, with multiplier λ for the new constraint:

min{bTy+λ : AT (y)+λ I−C= Z % 0}.

The optimality condition ZX = 0 together with tr(X) = 1 implies that any optimal
Z is singular. Hence, at the optimum we have

0= λmin(Z) = λmax(−Z) = λmax(C−AT (y))−λ .

We conclude that the multiplier λ satisfies λ = λmax(C−AT (y)). Substitution gives
the following function f (y) = bT y+λmax(C−AT (y)). Solving the dual is therefore
equivalent to the eigenvalue optimization problem

min
y

f (y).

The condition Z% 0 is hidden in λmin(Z) = 0, which moves λmax(C−AT (y)) into the
cost function. It can easily be shown that f is convex. The cost function is smooth
but not differentiable in case the largest eigenvalue has multiplicity larger than one.
Suppose now that x∗ is a unit-norm eigenvector to λmax(C−AT (y∗)). Then, see (31),

λmax(C−AT (y)) ≥ 〈x∗,(C−AT (y))x∗〉 ∀y.
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Let us define
g∗ := b−A(x∗x∗T ).

Then the above inequality shows that

f (y) ≥ f (y∗)+ 〈g∗,y− y∗〉 ∀y.

Therefore g∗ is subgradient of f at y∗. Moreover, if the multiplicity of λmax(C−
AT (y∗)) is one, then x∗ is unique up to multiplication by -1, hence g∗ is unique
as well, and ∇ f (y∗) = g∗. In view of all this, a first idea would be to use again
the bundle method to minimize f . Indeed, Schramm and Zowe [SZ92] apply it to
compute ϑ(G). We will now see that we can in fact do better by exploiting the
special form of the objective function. We recall from (32) that

λmax(A) =max{〈A,W〉 : tr(W ) = 1, W % 0}.

After substitution, we get the following min-max problem for the dual SDP.

min
y

max
tr(W )=1,W%0

bTy+ 〈C−AT (y),W 〉 (47)

In the spectral bundle method, this problem is solved iteratively. We observe that
evaluating f at ŷ amounts to compute λmax(C−AT (ŷ)) together with an eigenvector
v. Having a current iterate ŷ, the following modifications are made in (47). First, the
maximization is simplified by constrainingW to be of the form

W = PVPT

for given n× k matrix P such that PTP = Ik. The idea is that P should contain
’local’ information of f around ŷ. In particular, we assume that the eigenvector v is
contained in P. The new variable now is V ∈ S +

k . Since

λmax(C) = max
W%0, tr(W)=1

〈C,W 〉 ≥ max
W%0, tr(W )=1, W=PVPT

〈C,W 〉 = λmax(PTCP),

we get the follwowing minorant

f̃ (y) = max
V%0, tr(V )=1

bTy+ 〈C−AT (y),PVPT 〉 ≤ f (y)

of f . The inclusion of v in P insures that f (ŷ) = f̃ (ŷ). To insure that the next iterate
stays close to ŷ, we consider the following replacement of (47) for fixed parameter
t > 0.

min
y

max
V%0, tr(V )=1

bT y+ 〈C−AT (y),PVPT 〉+
1
2t
‖y− ŷ‖2.

Note the similarity to the standard bundlemethod from before. In the spectral bundle
method, this min-max problem is solved to get the next trial point y. As before we
exchange min and max and exploit the fact that the minimization with respect to y is
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again an unconstrained strictly convex quadratic problem. Therefore y is minimizer
if and only if the partial derivative with respect to y is zero. This results in

y= ŷ− t(b−A(PVPT )).

We now substitute this for y and get the following quadratic SDP

max
V%0, tr(V )=1

bT ŷ+ 〈C−AT (ŷ),PVPT 〉−
t
2
‖b−A(PVPT )‖2.

This problem has just one scalar equation and can be solved by interior-point meth-
ods to get the optimal V ∗ ∈ S +

k . The new trial point y
new = ŷ− t(b−A(PV ∗PT ))

is now used to compute the function value f , together with an eigenvector to λmax.
We follow the usual bundle concept to decide whether or not ynew becomes the new
trial point. In any case the matrix P is updated and a new iteration can be started.
Helmberg and Rendl [HR00] explain in detail how the above quadratic SDP can be
solved. Various update strategies for P are discussed and an elementary convergence
analysis is given. Helmberg [Hel03] describes implementation issues and presents
computational results on a wide variety of SDP. Refinements of the spectral bundle
method are given in [HKR98] and [HO00].

Remark 4. The similarities of the spectral to the standard bundle method are quite
obvious. In fact, constraining V to be a diagonal matrix (with diagonal entries λi)
simplifies the above SDP to optimizing over λ ∈ Δ , and we recover the standard
bundle method in this case.

6 SDP and beyond

6.1 Copositive and completely positive matrices

In this section we will see that besides the cone of semidefinite matrices, there are
several other cones in the space of symmetric matrices which have a close connec-
tion to integer programming. Let us define

C ∗ := {X ∈ Sn : X =VVT with n× k matrix V ≥ 0} = conv{vvT : v ∈ R
n, v≥ 0}.

Matrices in C ∗ are often called completely positive. The cone C ∗ has a dual, which
we denote by C and which by definition is given as follows.

Y ∈ C ⇐⇒ 〈Y,X〉 ≥ 0 ∀X ∈ C ∗.

This obviously holds if and only if

vTYv≥ 0 ∀v≥ 0. (48)
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Matrices in this cone are usually called completely positive. While X ∈ S + has an
efficient certificate, given for instance through the Cholesky decomposition of X , it
is NP-hard to decide whether X /∈ C , see [MK87].
We call problems of the form

in f{〈C,X〉 : A(X) = b, X ∈ C } and

in f{〈C,X〉 : A(X) = b, X ∈ C ∗}

copositive programs because either the problem or its dual involves optimization
over copositive matrices.

6.2 Copositive relaxations

To see that copositive programs have some relevance in connection with integer
programs we recall the following theorem from Motzkin and Strauss.
Theorem 12. ([MS65]) Let A be the adjacency matrix of a graph. Then

1
α(G)

=min{xT (A+ I)x : x ∈ Δ}.

Starting from this fact, it is not hard to show the following result, which was pointed
out by De Klerk and Pasechnik, see [dKP02].
Theorem 13. Let A be the adjacency matrix of a graph. Then

α(G) =max{〈J,X〉 : 〈A+ I,X〉= 1, X ∈ C ∗} =min{λ : λ (A+ I)− J ∈ C }.

Proof. Let S be a stable set of maximum cardinality α(G) with characteristic vector
ξ ∈ {0,1}n. Then 1

α ξξ
T is feasible for the maximization problem and we get the

first inequality in

α ≤ sup{〈J,X〉 : 〈A+ I,X〉= 1, X ∈ C ∗}≤ inf{λ : λ (A+ I)− J ∈ C }.

Weak duality for conic programs implies the second inequality.
The Motzkin-Strauss theorem shows that

0=min{xT (A+ I−
1
α
eeT )x : x ∈ Δ} =min{xT (α(A+ I)− J)x : x≥ 0}.

The second minimization being zero is the defining condition for α(A+ I)−J to be
in C , see (48). Therefore the infimum above is at most α , but weak duality states
that it is also at least α , hence there is equality throughout, and both the supremum
and the infimum are attained (at 1α ξξ

T and λ = α respectively). 23

DeKlerk and Pasechnik provide a proof for this result which is independent of the
Motzkin-Strauss theorem. Let us put this result into perspective by recalling ϑ(G).
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ϑ(G) =max{〈J,X〉 : AG(X) = 0, tr(X) = 1, X % 0}.

Suppose now that we include the additional constraintX ≥ 0, leading to an improved
approximation ϑ+(G) of α(G). This improvement was in fact suggested by Schri-
jver [Sch79] and independently by [MRJ78]. The condition AG(X) = 0 together
with X ≥ 0 can be simplified to 〈A,X〉= 0. In other words, the equations AG(X) = 0
are added into just a scalar equation. We get

α(G) ≤ ϑ+(G) =max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X % 0, X ≥ 0}. (49)

The above theorem therefore shows that replacing the cone {X : X % 0, X ≥ 0} by
C ∗ leaves no gap in (49).
This suggests to try a similar idea on the dual (25) of ϑ(G). Looking at the

matrix tM with M from (21), it is clear thatM ∈ C ∗, therefore we get the following
improvement of ϑ(G) towards χ(G).

χ(G) ≥ ϑC(G) =min{t : tI+AḠ(y) ∈ C , tI+AḠ(y) % J}≥ ϑ(G).

It was recently shown in [DR07] that the improvement ϑC(G) is in fact equal to
the fractional chromatic number χ f (G). Another version to model the chromatic
number was recently proposed by Gvozdenovic and Laurent, see [GL08a, GL08b].
These results indicate that the modeling power of copositive programs is stronger

than SDP. Burer [Bur08] shows the following general result.

Theorem 14. Let c and a j be vectors from Rn, b ∈ Rk, Q ∈ Sn and m ≤ n. The
optimal values of the following two problems are equal.

min{xTQx+ cTx : aTj x= b j, x≥ 0, xi ∈ {0,1}∀1≤ i≤ m},

min{tr(QX)+ cTx : aTj x= b j,aTj Xa j = b2j , Xii = xi ∀i≤ m,

(

1 xT
x X

)

∈ C ∗}.

This result shows that it would be extremely interesting to have a better understand-
ing of the cone of completely positive matrices. Outer approximations of C ∗, or
equivalently, inner approximations of C would result in relaxations of the underly-
ing optimization problem. First systematic attempts in this direction were proposed
by Parrilo [Par00] and De Klerk and Pasechnik [dKP02] who introduced hierarchies
of relaxations based on sum of squares relaxations of polynomials. These relaxations
are formulated as SDP of increasing dimension. A summary of this approach, which
is far beyond the scope of this article, can be found in [LR05].
Inner approximations of C ∗ can be used as starting points for primal heuristics

to combinatorial optimization problems. This is an area open for current research.
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