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Positive semidefinite matrices

Definition: For a symmetric n × n matrix X , the following
conditions are equivalent:

1. X is positive semidefinite (written X � 0) if

all eigenvalues of X are nonnegative.

2. uTXu ≥ 0 for all u ∈ Rn.

3. X = UUT for some matrix U ∈ Rn×p.

4. For some vectors v1, . . . , vn ∈ Rp, Xij = vT
i vj ( i , j ∈ [n]).

Say that X is the Gram matrix of the vi ’s.

5. All principal minors of X are nonnegative.

Definition: X is positive definite (written X � 0) if all eigenvalues
of X are positive.
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Notation

I Sn: the space of n × n symmetric matrices.

I S+n : the cone of positive semidefinite matrices.

I S++
n : the cone of positive definite matrices.

 S++
n is the interior of the cone S+n .

Trace inner product on Sn:

A·B = Tr(ATB) =
n∑

i ,j=1

AijBij

The PSD cone is self-dual: For X ∈ Sn,

A ∈ S+n ⇐⇒ A·B ≥ 0 ∀B ∈ S+n
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Primal/dual semidefinite programs

Given matrices C ,A1, . . . ,Am ∈ Sn and a vector b ∈ Rm

Primal SDP:

p∗ := maxX C ·X such that Aj · X = bj (j = 1, . . . ,m), X � 0

Dual SDP:

d∗ := miny b·y such that
∑m

j=1 yjAj − C � 0

Weak duality: p∗ ≤ d∗

Pf: If X is primal feasible and y is dual feasible, then

0 ≤
( m∑

j=1

yjAj − C
)
·X =

∑
j

yj(Aj ·X )− C ·X = b·y − C ·X
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Analogy between LP and SDP

Given vectors c , a1, . . . , am ∈ Rn and b ∈ Rm

Primal/dual LP:

max
x

c ·x such that aj ·x = bj (∀j ≤ m), x ∈ Rn
+

min
y

b·y such that
m∑
j=1

yjaj − c ≥ 0

Primal SDP:

max
X

C ·X such that Aj · X = bj (j = 1, . . . ,m), X ∈ S+n

I SDP is the analogue of LP, replacing Rn
+ by S+n .

I Get LP when C ,Aj are diagonal matrices.
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Strong duality: p∗ = d∗?

Strong duality holds for LP, but we need some regularity condition
(e.g., Slater condition) to have strong duality for SDP !

Primal (P) / Dual (D) SDP’s: p∗ ≤ d∗

(P) p∗ = sup C ·X s.t. Aj · X = bj (j = 1, . . . ,m), X � 0

(D) d∗ = inf b·y s.t.
∑m

j=1 yjAj − C � 0

Strong duality Theorem:

1. If (P) is strictly feasible (∃X � 0 feasible for (P)) and
bounded (p∗ <∞), then p∗ = d∗ and (D) attains its
infimum.

2. If (D) is strictly feasible (∃y with
∑

j yjAj − C � 0) and
bounded (d∗ > −∞), then p∗ = d∗ and (P) attains its
supremum.

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut



Introduction
Applications to Combinatorial Optimization

Semidefinite programming duality
Complexity

Proof of 2. Assume d∗ ∈ R and
∑

j ỹjAj − C � 0 ∃ỹ

p∗ = maxX�0 C ·X
?
≥ d∗ = infy b·y

Aj ·X = bj
∑

j yjAj − C � 0

Goal: There exists X feasible for (P) with C ·X ≥ d∗.

WMA b 6= 0 (else, b = 0 implies d∗ = 0 and choose X = 0). Set

M :=
{∑

j

yjAj − C | y ∈ Rm, b·y ≤ d∗
}
.

Fact: M∩S++
n = ∅.

Pf: Otherwise, let y for which b·y ≤ d∗ and
∑

j yjAj − C � 0.

Then one can find y ′ with b·y ′ < b·y ≤ d∗ and
∑

j y ′j Aj − C � 0.

 This contradicts the minimality of d∗.
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Sketch of proof for 2. (continued)

As M∩S++
n = ∅, there is a hyperplane separating M and S++

n .

That is, there exists Z � 0 non-zero with Z ·Y ≤ 0 ∀Y ∈M, i.e.,

b·y ≤ d∗ =⇒ Z ·(
∑
j

yjAj − C ) ≤ 0

By Farkas’ lemma, there exists µ ∈ R+ for which

(Z ·Aj)j = µb and µd∗ ≤ Z ·C

If µ = 0, then 0 ≥ Z︸︷︷︸
�0

·(
∑
j

ỹjAj − C︸ ︷︷ ︸
�0

) > 0, a contradiction.

Hence µ > 0 and Z/µ is feasible for (P) with C ·(Z/µ) ≥ d∗.
QED.
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An example with duality gap

p∗ = min x12 s.t.

 0 x12 0
x12 x22 0
0 0 1 + x12

 � 0

= min 1
2E12·X s.t. E11·X = 0  a

E13·X = 0  b
E23·X = 0  c
(E33 − 1

2E12)·X = 1  y
X � 0

d∗ = max y s.t. 1
2E12 − aE11 − bE13 − cE23 − y(E33 − 1

2E12) � 0

= max y s.t.

−a y+1
2 −b

y+1
2 0 −c
−b −c −y

 � 0

Thus, p∗ = 0, d∗ = −1  non-zero duality gap
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Complexity

Recall: An LP with rational data has a rational optimum solution
whose bit size is polynomially bounded in terms of the bit length of
the input data.

Not true for SDP:

I
√

2 = max x s.t.

(
1 x
x 2

)
� 0

I Any solution to(
x1 − 2 0

0 1

)
� 0,

(
x2 x1
x1 1

)
� 0, . . . ,

(
xn xn−1

xn−1 1

)
� 0

satisfies x1 ≥ 22
n−1

.
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Complexity (continued)

Theorem: SDP can be solved in polynomial time to an arbitrary
prescribed precision. [Assuming certain technical conditions hold.]

I Theoretically: Use the ellipsoid method [since checking
whether X � 0 is in P, e.g. with Gaussian elimination]

I Practically: Use e.g. interior-point algorithms.

More precisely: Let K denote the feasible region of the SDP.
Assume we know R ∈ N s.t. ∃X ∈ K with ‖X‖ ≤ R if K 6= ∅.

Given ε > 0, the ellipsoid based algorithm, either finds X ∗ at
distance at most ε from K such that C ·X ∗ ≥ C ·X − ε ∀X ∈ K at
distance at least ε from the border, or claims: there is no such X .

The rumnning time is polynomial in n, m, the bit size of Aj ,C , b,
log R, and log(1/ε).
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Feasibility of SDP

Feasibility SDP problem (F): Given integer A0,Aj ∈ Sn, decide
whether there exists x ∈ Rm s.t. A0 +

∑m
j=1 xjAj � 0 ?

I (F) ∈ NP ⇐⇒ (F) ∈ co-NP. [Ramana 97]

I (F) ∈ P for fixed n or m. [Porkolab-Khachiyan 97]

I Testing existence of a rational solution is in P for fixed
dimension m.

[Porkolab-Khachiyan 97]

 More on complexity and algorithms for SDP in other lectures.
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Use SDP to express convex quadratic constraints

Consider the convex quadratic constraint:

xTAx ≤ bT x + c

where A � 0.

I Write A = BTB for some B ∈ Rp×n.

I Then: xTAx ≤ bT x + c ⇐⇒
(

Ip Bx
xTBT bT x + c

)
� 0

 Use Schur complement: Given C � 0,(
C B

BT A

)
� 0⇐⇒ A− BTC−1B � 0
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The S-lemma [Yakubovich 1971]

Consider the quadratic polynomials:

f (x) = xTAx + 2aT x + α = (1 xT )

(
α aT

a A

)(
1
x

)
g(x) = xTBx + 2bT x + β = (1 xT )

(
β bT

b B

)(
1
x

)
Question: Characterize when

(*) f (x) ≥ 0 =⇒ g(x) ≥ 0

Answer: Assume f (x) > 0 for some x . Then, (*) holds IFF(
β bT

b B

)
− λ

(
α aT

a A

)
� 0 for some λ ≥ 0
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Testing sums of squares of polynomials

Question: How to check whether a polynomial

p(x) =
∑

α∈Nn||α|≤2d pαxα can be written as a sum of squares:

p(x)
?
=
∑m

j=1(uj(x))2 for some polynomials uj?
xα = xα1

1 · · · xαn
n

Answer: Use semidefinite programming:

I Write uj(x) = (aj)
T [x ]d [x ]d = (xα)|α|≤d

I
∑

j(uj(x))2 = ([x ]d)T (
∑
j

aja
T
j︸ ︷︷ ︸

 A�0

) [x ]d

 Test feasibility of SDP:∑
β,γ:|β|,|γ|≤d
β+γ=α

Aβ,γ = pα (|α| ≤ 2d), A � 0

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut



Introduction
Applications to Combinatorial Optimization

The theta number
Basic SDP relaxation for Max-Cut
Matrix completion

Two milestone applications of SDP to combinatorial
optimization

I Approximate maximum stable sets and minimum vertex
coloring with the theta number.

Work of Lovász [1979], Grötschel-Lovász-Schrijver [1981]

I (First non-trivial) 0.878-approximation algorithm for max-cut
of Goemans-Williamson [1995]
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The theta number

G = (V ,E ) graph.

S ⊆ V stable set if S contains no edge.

I α(G ):= maximum size of a stable set  stability number

I χ(G ):= minimum number of colors needed to color the
vertices so that adjacent vertices receive distinct colors.

 Computing α(G ), χ(G ) is an NP-hard problem.

I The theta number of Lovász [1979]:

ϑ(G ) := max J·X s.t. Tr(X ) = 1, Xij = 0 (ij ∈ E ), X � 0

I Lovász ’sandwich’ theorem: α(G ) ≤ ϑ(G ) ≤ χ(Ḡ ).

 Can compute α(G ), χ(Ḡ ) via SDP for graphs with
α(G ) = χ(Ḡ ).
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Maximum cuts in graphs

G = (V ,E ), n = |V |, w = (we)e∈E edge weights.

S ⊆ V  cut δ(S) := all edges cut by the partition (S ,V \ S).

Max-Cut problem: Find a cut of maximum weight.  mc(G )

I Max-Cut is NP-hard.
No (16/17 + ε)-approximation algorithm unless P=NP.

I Max-Cut is in P for graphs with no K5 minor, since it can be
computed with the LP: [Barahona-Mahjoub 86]

max wT x s.t. xij−xik−xjk ≤ 0, xij+xik+xjk ≤ 2 ∀i , j , k ∈ V

An easy 1/2-approximation algorithm for w ≥ 0: Consider the
random partition (S ,V \ S), where i ∈ S with prob. 1/2 :

E (w(S)) = w(E )/2 ≥ mc(G )/2

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut



Introduction
Applications to Combinatorial Optimization

The theta number
Basic SDP relaxation for Max-Cut
Matrix completion

Goemans-Williamson approximation algorithm for Max-Cut

I Encode a partition (S ,V \ S) by a vector x ∈ {±1}n.

 Encode the cut δ(S) by the matrix X = xxT .

 Reformulate Max-Cut:

max 1
2

∑
ij∈E wij(1− xixj) s.t. x ∈ {±1}n

I Solve the SDP relaxation:

max 1
2

∑
ij∈E wij(1− Xij) s.t. X � 0, diag(X ) = e

 v1, . . . , vn unit vectors s.t. X = (vT
i vj) is opt. for SDP.

I Randomized rounding: Pick a random hyperplane H with
normal r .

 partition (S ,V \ S) depending on the sign of vT
i r .
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Performance analysis

Theorem: For w ≥ 0,

mc(G ) ≥ E (w(δ(S))) ≥ 0.878 sdp(G )︸ ︷︷ ︸ ≥ 0.878 mc(G ).

Basic lemma: Prob(ij ∈ δ(S)) =
arccos(vT

i vj )
π .

E (w(δ(S))) =
∑

ij∈E wij Prob(ij ∈ δ(S))

=
∑

ij∈E wij
arccos(vT

i vj )
π

=
∑

ij∈E wij
(1−vT

i vj )
2

2

π

arccos(vT
i vj)

1− vT
i vj︸ ︷︷ ︸

≥αGW∼0.878
≥ sdp(G ) αGW
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Extension to ±1 quadratic programming

Given A ∈ Sn
Integer problem: ip(A) := max xTAx s.t. x ∈ {±1}n

SDP relaxation: sdp(A) := max A·X s.t. X � 0, diag(X ) = e.

I A = 1
4Lw , Lw : Laplacian matrix of (G ,w)  Max-Cut

where Lw (i , i) = w(δ(i)), Lw (i , j) = −wij .

 When A � 0, Ae = e, Aij ≤ 0 (i 6= j)  0.878-approx. alg.

I When A � 0  2
π (∼ 0.636)-approx. alg. [Nesterov 97]

I When diag(A) = 0  Grothendieck constant
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Nesterov 2
π -approximation algorithm

I Solve SDP: Let v1, . . . , vn unit vectors s.t. X = (vT
i vj)

maximizes A·X .

I Random hyperplane rounding: Pick a random unit vector r .

 random ±1 vector: x = (sgn(rT vi ))ni=1

Lemma 1 [identity of Grothendieck] E (xxT ) = 2
π arcsin X .

Proof:

E (sgn(rT vi ) sgn(rT vj)) = 1− 2 Prob(sgn(rT vi ) 6= sgn(rT vj))

= 1− 2
arccos(vT

i vj )
π = 2

π (π2 − arccos(vT
i vj))

= 2
π arcsin(vT

i vj).
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Global performance analysis

Lemma 2: arcsin X − X � 0

Proof: arcsin x − x =
∑

k akx2k+1 where ak ≥ 0.

Global analysis:
E (xTAx) = A·E (xxT ) = A·(E (xxT )− 2

πX ) + 2
πA·X

= A︸︷︷︸
�0

·( 2

π
arcsin X − 2

π
X︸ ︷︷ ︸

�0

)

︸ ︷︷ ︸
≥0

+ 2
πA·X

≥ 2
πA·X .

Therefore: For A � 0, ip(A) ≥ 2
π sdp(A).
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Grothendieck inequality

Assume diag(A) = 0.
The support graph GA has as edges the pairs ij with Aij 6= 0.

Definition: The Grothendieck constant K (G ) of a graph G is
the smallest constant K for which

sdp(A) ≤ K ip(A) for all A ∈ Sn with GA ⊆ G .

Theorem: ([Gr. 53] [Krivine 77] [Alon-Makarychev(x2)-Naor 05])

I For G complete bipartite, π
2 ≤ K (G ) ≤ π

2
1

ln(1+
√
2)
∼ 1.782

I Ω(log(ω(G ))) ≤ K (G ) ≤ O(log(ϑ(Ḡ ))).
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Sketch of proof for Krivine’s upper bound: π
2

1
ln(1+

√
2)

Show: K (Kn,m) ≤ π
2

1
ln(1+

√
2)

=: π
2c ? c := ln(1 +

√
2)

1. Let A ∈ Rn×m. Let ui (i ≤ n) and vj (j ≤ m) be unit vectors
in H maximizing sdp(A) =

∑
i≤n, j≤m aijui ·vj .

2. Construct new unit vectors S(ui ), T (vj) ∈ Ĥ satisfying

arcsin(S(ui )·T (vj)) = c ui ·vj

3. Pick a random unit vector r ∈ Ĥ. Define the ±1 vectors x , y

xi = sgn(rTS(ui )), yj = sgn(rTT (vj))

4. Analysis:
E (xTAy) =

∑
i ,j aij E (xiyj) =

∑
i ,j aij

2
π arcsin(S(ui )·T (vj))

=
∑

i ,j aij
2
π c ui ·vj = 2

π c sdp(A).
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Proof (continued)

Step 2. Given unit vectors u, v ∈ H, construct S(u),T (v) ∈ Ĥ
satisfying arcsin(S(u)·T (v)) = c u·v .

I sin x =
∑

k≥0(−1)k x2k+1

(2k+1)! , sinh x =
∑

k≥0
x2k+1

(2k+1)!

I Set c := sinh−1(1) = ln(1 +
√

2).

I Set S(u) =
(√

c2k+1

(2k+1)!u
⊗(2k+1)

)
k
∈ Ĥ := ⊕k≥0H⊗(2k+1),

T (v) =
(

(−1)k
√

c2k+1

(2k+1)!v
⊗(2k+1)

)
k
∈ Ĥ.

I Then, S(u)·T (v) =
∑

k(−1)k c2k+1

(2k+1)!(u·v)2k+1 = sin(c u·v).

Thus: arcsin(S(u)·T (v)) = c u·v .
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A reformulation of the theta number

Theorem [Alon-Makarychev(x2)-Naor 05]
The smallest constant C for which

sdp(−A) ≤ C sdp(A) for all A ∈ Sn with GA ⊆ G

is C = ϑ(Ḡ )− 1.

Geometrically:

I En := {X ∈ Sn | X � 0, diag(X ) = e}  the elliptope

I E(G ) ⊆ RE : the projection of En onto the edge set of G .

I Theorem [AMMN]: −E(G ) ⊆ (ϑ(Ḡ )− 1) E(G ).
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Link with matrix completion

Matrix completion: Given a partial n × n matrix, whose entries
are specified on the diagonal (say equal to 1) and on a subset E
of the positions (given by x ∈ RE ), decide whether it can be
completed to a PSD matrix.

Equivalently, decide whether x ∈ E(G )?

I A necessary condition: Each fully specified principal
submatrix is PSD. [Clique condition]

I The clique condition is sufficient IFF G is a chordal graph (i.e.
no induced circuit of length ≥ 4).

1 1 a? −1
1 1 1 b?
a? 1 1 1
−1 b? 1 1

 is not completable to PSD
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Another necessary condition

Fact:

 1 cos a cos b
cos a 1 cos c
cos b cos c 1

 � 0⇐⇒


a + b + c ≤ 2π
a− b − c ≤ 0
−a + b − c ≤ 0
−a− b + c ≤ 0

I Write x = cos a for some a ∈ [0, π]E .
If x ∈ E(G ) then [Metric condition]

a(F )− a(C \ F ) ≤ π(|F | − 1) ∀ C circuit, F ⊆ C odd.

I The metric condition is sufficient IFF G has no K4 minor. 1 −1/2 −1/2 −1/2
−1/2 1 −1/2 −1/2
−1/2 −1/2 1 −1/2
−1/2 −1/2 −1/2 1

 6� 0

while 2π
3 (1, 1, 1, 1) satisfies the triangle inequalities.
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Geometrically

I CUT±1(G ) ⊆ E(G ), with equality IFF G has no K3 minor.

I E(G ) ⊆ cos(π MET01(G )), with equality IFF G has no K4

minor.

I E(G ) ⊆ cos(π CUT01(G )), with equality IFF G has no K4

minor.

I The Goemans-Williamson randomized rounding argument
shows: If v1, . . . , vn are unit vectors and aij := arccos(vT

i vj)
are their pairwise angles, then∑

1≤i<j≤n
cijaij ≤ π c0

if c ·z ≤ c0 is any inequality valid for the cuts of Kn.
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Extension to max k-cut [Frieze Jerrum 95]

Max k-cut: Given G = (V ,E ), w ∈ RE
+, k ≥ 2, find a partition

P = (S1, . . . ,Sk) maximizing w(P) =
∑

e∈E |e is cut by P we .

I Pick unit vectors a1, . . . , ak ∈ Rk with aTi aj = − 1
k−1 for i 6= j .

 Model max k-cut:

mck(G ) = max k−1
k

∑
ij∈E wij(1− xT

i xj)

s.t. x1, . . . , xn ∈ {a1, . . . , ak}.

I SDP relax.:
sdpk(G ) = max k−1

k

∑
ij∈E wij(1− vT

i vj)

s.t. vi unit vectors, vT
i vj ≥ − 1

k−1 .

I Randomized rounding: Pick k independent random unit
vectors r1, . . . , rk  partition P = (S1, . . . ,Sk) where
Sh = {i | vT

i rh ≥ vT
i rh′ ∀h′}.
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Analysis

I The probability that edge ij is not cut, i.e., vi , vj are both
closer to the same rh, is equal to k times a function f (vT

i vj).

E (w(P)) =
∑

ij∈E wij(1− kf (vT
i vj))

=
∑

ij∈E wij
1− kf (vT

i vj)

1− vT
i vj

k

k − 1︸ ︷︷ ︸
≥αk :=min− 1

k−1
≤t≤1

1−kf (t)
1−t

k
k−1

k−1
k (1− vT

i vj)

≥ αk sdpk(G ).

I α2 = αGW ∼ 0.878: GW approximation ratio for max-cut.

α3 = 7
12 + 3

4π2 arccos2(−1/4) > 0.836 [de Klerk et al.]

α100 > 0.99.
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