Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut

MFO seminar on Semidefinite Programming

Monique Laurent - CWI, Amsterdam, and Tilburg University

May 30, 2010

Positive semidefinite matrices

Definition: For a symmetric $n \times n$ matrix X, the following conditions are equivalent:

- X is positive semidefinite (written X ≥ 0) if all eigenvalues of X are nonnegative.
- 2. $u^T X u \ge 0$ for all $u \in \mathbb{R}^n$.
- 3. $X = UU^T$ for some matrix $U \in \mathbb{R}^{n \times p}$.
- 4. For some vectors $v_1, \ldots, v_n \in \mathbb{R}^p$, $X_{ij} = v_i^T v_j$ ($i, j \in [n]$). Say that X is the *Gram matrix* of the v_i 's.
- 5. All principal minors of X are nonnegative.

Definition: X is *positive definite* (written $X \succ 0$) if all eigenvalues of X are positive.

Semidefinite programming duality Complexity

Notation

- S_n : the space of $n \times n$ symmetric matrices.
- S_n^+ : the cone of positive semidefinite matrices.
- S_n^{++} : the cone of positive definite matrices.
- $\rightsquigarrow S_n^{++}$ is the interior of the cone S_n^+ .

Trace inner product on S_n :

$$A \cdot B = Tr(A^T B) = \sum_{i,j=1}^n A_{ij} B_{ij}$$

The PSD cone is self-dual: For $X \in S_n$,

$$A \in \mathcal{S}_n^+ \iff A \cdot B \ge 0 \quad \forall B \in \mathcal{S}_n^+$$

Primal/dual semidefinite programs

Given matrices $C, A_1, \ldots, A_m \in S_n$ and a vector $b \in \mathbb{R}^m$ Primal SDP:

 $p^* := \max_X C \cdot X$ such that $A_j \cdot X = b_j$ $(j = 1, ..., m), X \succeq 0$ Dual SDP:

$$d^* := \min_y b \cdot y$$
 such that $\sum_{j=1}^m y_j A_j - C \succeq 0$

Weak duality: $p^* \leq d^*$

Pf: If X is *primal feasible* and y is *dual feasible*, then

$$0 \leq \Big(\sum_{j=1}^m y_j A_j - C\Big) \cdot X = \sum_j y_j (A_j \cdot X) - C \cdot X = b \cdot y - C \cdot X$$

Semidefinite programming duality Complexity

Analogy between LP and SDP

Given vectors $c, a_1, \ldots, a_m \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$ Primal/dual LP:

$$\max_{x} c {\cdot} x \;\; ext{such that} \;\; a_j {\cdot} x = b_j \; (orall j \leq m), \; x \in \mathbb{R}^n_+$$

$$\min_{y} \ b{\cdot}y \ \text{ such that } \sum_{j=1}^m y_j a_j - c \geq 0$$

Primal SDP:

$$\max_X \ C \cdot X$$
 such that $A_j \cdot X = b_j \ (j = 1, \dots, m), \ X \in \mathcal{S}_n^+$

- ▶ SDP is the analogue of LP, replacing \mathbb{R}^n_+ by \mathcal{S}^+_n .
- Get LP when C, A_j are diagonal matrices.

Strong duality: $p^* = d^*$?

Strong duality holds for LP, but we need some regularity condition (e.g., *Slater condition*) to have strong duality for SDP !

Primal (P) / Dual (D) SDP's: $p^* \le d^*$ (P) $p^* = \sup C \cdot X$ s.t. $A_j \cdot X = b_j$ $(j = 1, ..., m), X \succeq 0$ (D) $d^* = \inf b \cdot y$ s.t. $\sum_{j=1}^m y_j A_j - C \succeq 0$

Strong duality Theorem:

- If (P) is strictly feasible (∃X ≻ 0 feasible for (P)) and bounded (p* < ∞), then p* = d* and (D) attains its infimum.
- 2. If (D) is strictly feasible ($\exists y \text{ with } \sum_j y_j A_j C \succ 0$) and bounded ($d^* > -\infty$), then $p^* = d^*$ and (P) attains its supremum.

Proof of 2. Assume $d^* \in \mathbb{R}$ and $\sum_j \tilde{y}_j A_j - C \succ 0 \quad \exists \tilde{y}$

$$p^* = \max_{X \succeq 0} \quad \begin{array}{c} C \cdot X \\ A_j \cdot X = b_j \end{array} \stackrel{?}{\geq} d^* = \inf_y \quad \begin{array}{c} b \cdot y \\ \sum_j y_j A_j - C \succeq 0 \end{array}$$

Goal: There exists X feasible for (P) with $C \cdot X \ge d^*$.

WMA $b \neq 0$ (else, b = 0 implies $d^* = 0$ and choose X = 0). Set

$$\mathcal{M} := \Big\{ \sum_j y_j A_j - C \mid y \in \mathbb{R}^m, \ b \cdot y \leq d^* \Big\}.$$

Fact: $\mathcal{M} \cap \mathcal{S}_n^{++} = \emptyset$.

Pf: Otherwise, let y for which $b \cdot y \leq d^*$ and $\sum_j y_j A_j - C \succ 0$. Then one can find y' with $b \cdot y' < b \cdot y \leq d^*$ and $\sum_j y'_j A_j - C \succ 0$. \rightsquigarrow This contradicts the minimality of d^* .

Sketch of proof for 2. (continued)

As $\mathcal{M} \cap \mathcal{S}_n^{++} = \emptyset$, there is a hyperplane separating \mathcal{M} and \mathcal{S}_n^{++} .

That is, there exists $Z \succeq 0$ non-zero with $Z \cdot Y \leq 0 \ \forall Y \in \mathcal{M}$, i.e.,

$$b \cdot y \leq d^* \Longrightarrow Z \cdot (\sum_j y_j A_j - C) \leq 0$$

By Farkas' lemma, there exists $\mu \in \mathbb{R}_+$ for which

$$(Z{\cdot}A_j)_j = \mu b$$
 and $\mu d^* \leq Z{\cdot}C$

If
$$\mu = 0$$
, then $0 \ge \underbrace{Z}_{\succeq 0} \cdot (\underbrace{\sum_{j} \tilde{y}_{j} A_{j} - C}_{\succ 0}) > 0$, a contradiction.

Hence $\mu > 0$ and Z/μ is feasible for (P) with $C \cdot (Z/\mu) \ge d^*$. QED.

Semidefinite programming duality Complexity

An example with duality gap

$$p^* = \min x_{12} \text{ s.t.} \begin{pmatrix} 0 & x_{12} & 0 \\ x_{12} & x_{22} & 0 \\ 0 & 0 & 1 + x_{12} \end{pmatrix} \succeq 0$$

= $\min \frac{1}{2}E_{12} \cdot X \text{ s.t.} \quad E_{11} \cdot X = 0 \qquad \qquad \rightsquigarrow a$
 $E_{13} \cdot X = 0 \qquad \qquad \rightsquigarrow b$
 $E_{23} \cdot X = 0 \qquad \qquad \rightsquigarrow c$
 $(E_{33} - \frac{1}{2}E_{12}) \cdot X = 1 \qquad \qquad \rightsquigarrow y$
 $X \succeq 0$

$$d^* = \max \ y \text{ s.t. } \frac{1}{2}E_{12} - aE_{11} - bE_{13} - cE_{23} - y(E_{33} - \frac{1}{2}E_{12}) \succeq 0$$

= max y s.t. $\begin{pmatrix} -a & \frac{y+1}{2} & -b \\ \frac{y+1}{2} & 0 & -c \\ -b & -c & -y \end{pmatrix} \succeq 0$

Thus, $p^* = 0$, $d^* = -1 \rightsquigarrow$ non-zero duality gap

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties a

Complexity

Recall: An LP with rational data has a *rational* optimum solution whose *bit size is polynomially bounded* in terms of the bit length of the input data.

Not true for SDP:

$$\checkmark \sqrt{2} = \max x \text{ s.t. } \begin{pmatrix} 1 & x \\ x & 2 \end{pmatrix} \succeq 0$$

Any solution to

$$\begin{pmatrix} x_1 - 2 & 0 \\ 0 & 1 \end{pmatrix} \succeq 0, \ \begin{pmatrix} x_2 & x_1 \\ x_1 & 1 \end{pmatrix} \succeq 0, \dots, \begin{pmatrix} x_n & x_{n-1} \\ x_{n-1} & 1 \end{pmatrix} \succeq 0$$

satisfies $x_1 \ge 2^{2^{n-1}}$.

Complexity (continued)

Theorem: SDP can be solved in polynomial time to an arbitrary prescribed precision. [Assuming certain technical conditions hold.]

- ► Theoretically: Use the ellipsoid method [since checking whether X ≥ 0 is in P, e.g. with Gaussian elimination]
- ▶ Practically: Use e.g. interior-point algorithms.

More precisely: Let *K* denote the feasible region of the SDP. Assume we know $R \in \mathbb{N}$ s.t. $\exists X \in K$ with $||X|| \leq R$ if $K \neq \emptyset$.

Given $\epsilon > 0$, the ellipsoid based algorithm, either finds X^* at distance at most ϵ from K such that $C \cdot X^* \ge C \cdot X - \epsilon \quad \forall X \in K$ at distance at least ϵ from the border, or claims: there is no such X.

The rumnning time is polynomial in *n*, *m*, the bit size of A_j , *C*, *b*, log *R*, and log $(1/\epsilon)$.

Feasibility of SDP

Feasibility SDP problem (F): Given integer $A_0, A_j \in S_n$, decide whether there exists $x \in \mathbb{R}^m$ s.t. $A_0 + \sum_{j=1}^m x_j A_j \succeq 0$?

- ► $(F) \in NP \iff (F) \in co-NP.$ [Ramana 97]
- ► (F) \in P for **fixed** *n* or *m*. [Porkolab-Khachiyan 97]
- Testing existence of a rational solution is in P for fixed dimension m.

[Porkolab-Khachiyan 97]

→ More on complexity and algorithms for SDP in other lectures.

Use SDP to express convex quadratic constraints

Consider the convex quadratic constraint:

$$x^T A x \leq b^T x + c$$

where $A \succeq 0$.

• Write $A = B^T B$ for some $B \in \mathbb{R}^{p \times n}$.

► Then:
$$x^T A x \le b^T x + c \iff \begin{pmatrix} I_p & Bx \\ x^T B^T & b^T x + c \end{pmatrix} \succeq 0$$

 \rightsquigarrow Use **Schur complement:** Given $C \succ 0$,

$$\begin{pmatrix} C & B \\ B^{T} & A \end{pmatrix} \succeq 0 \Longleftrightarrow A - B^{T} C^{-1} B \succeq 0$$

The S-lemma [Yakubovich 1971]

Consider the quadratic polynomials:

$$f(x) = x^{T}Ax + 2a^{T}x + \alpha = (1 \ x^{T}) \begin{pmatrix} \alpha & a^{T} \\ a & A \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}$$
$$g(x) = x^{T}Bx + 2b^{T}x + \beta = (1 \ x^{T}) \begin{pmatrix} \beta & b^{T} \\ b & B \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}$$

Question: Characterize when

$$(*) f(x) \ge 0 \Longrightarrow g(x) \ge 0$$

Answer: Assume f(x) > 0 for some x. Then, (*) holds IFF

$$\begin{pmatrix} \beta & b^T \\ b & B \end{pmatrix} - \lambda \begin{pmatrix} \alpha & a^T \\ a & A \end{pmatrix} \succeq 0 \text{ for some } \lambda \ge 0$$

Testing sums of squares of polynomials

Question: How to check whether a polynomial $p(x) = \sum_{\alpha \in \mathbb{N}^n ||\alpha| \le 2d} p_{\alpha} x^{\alpha}$ can be written as a **sum of squares:** $p(x) \stackrel{?}{=} \sum_{j=1}^{m} (u_j(x))^2$ for some polynomials u_j ? $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$

Answer: Use semidefinite programming:

• Write $u_j(x) = (a_j)^T [x]_d$ • $\sum_j (u_j(x))^2 = ([x]_d)^T (\underbrace{\sum_j a_j a_j^T}_{\neg \neg A \succeq 0}) [x]_d$ [$x]_d = (x^\alpha)_{|\alpha| \leq d}$

 \rightsquigarrow Test feasibility of SDP:

$$\sum_{\substack{\beta,\gamma:|\beta|,|\gamma|\leq d\\\beta+\gamma=\alpha}} A_{\beta,\gamma} = p_{\alpha} \ (|\alpha| \leq 2d), \ A \succeq 0$$

The theta number Basic SDP relaxation for Max-Cut Matrix completion

Two milestone applications of SDP to combinatorial optimization

 Approximate maximum stable sets and minimum vertex coloring with the theta number.

Work of Lovász [1979], Grötschel-Lovász-Schrijver [1981]

 (First non-trivial) 0.878-approximation algorithm for max-cut of Goemans-Williamson [1995]

The theta number Basic SDP relaxation for Max-Cut Matrix completion

The theta number

- G = (V, E) graph.
- $S \subseteq V$ stable set if S contains no edge.
 - ▶ $\alpha(G)$:= maximum size of a stable set \rightsquigarrow stability number
 - ► \u03c7(G):= minimum number of colors needed to color the vertices so that adjacent vertices receive distinct colors.

 \rightsquigarrow Computing $\alpha(G), \chi(G)$ is an NP-hard problem.

The theta number of Lovász [1979]:

 $\vartheta(G) := \max J \cdot X \text{ s.t. } Tr(X) = 1, \ X_{ij} = 0 \ (ij \in E), \ X \succeq 0$

▶ Lovász 'sandwich' theorem: $\alpha(G) \le \vartheta(G) \le \chi(\overline{G})$.

→ Can compute $\alpha(G)$, $\chi(\bar{G})$ via SDP for graphs with $\alpha(G) = \chi(\bar{G})$.

Maximum cuts in graphs

$$G = (V, E)$$
, $n = |V|$, $w = (w_e)_{e \in E}$ edge weights.

 $S \subseteq V \rightsquigarrow \mathbf{cut} \ \delta(S) := \mathsf{all} \ \mathsf{edges} \ \mathbf{cut} \ \mathsf{by the partition} \ (S, V \setminus S).$

Max-Cut problem: Find a cut of maximum weight. \rightsquigarrow mc(G)

 Max-Cut is in P for graphs with no K₅ minor, since it can be computed with the LP: [Barahona-Mahjoub 86]

max $w^T x$ s.t. $x_{ij} - x_{ik} - x_{jk} \le 0$, $x_{ij} + x_{ik} + x_{jk} \le 2 \quad \forall i, j, k \in V$

An easy 1/2-approximation algorithm for $w \ge 0$: Consider the random partition $(S, V \setminus S)$, where $i \in S$ with prob. 1/2 :

$$E(w(S)) = w(E)/2 \ge \operatorname{mc}(G)/2$$

Goemans-Williamson approximation algorithm for Max-Cut

• Encode a partition $(S, V \setminus S)$ by a vector $x \in \{\pm 1\}^n$.

 \rightsquigarrow Encode the cut $\delta(S)$ by the matrix $X = xx^T$.

 \rightarrow Reformulate Max-Cut:

$$\maxrac{1}{2}\sum_{ij\in {\sf E}} {\sf w}_{ij}(1-{\sf x}_i{\sf x}_j)$$
 s.t. ${\sf x}\in\{\pm1\}^n$

Solve the SDP relaxation:

$$\max \frac{1}{2} \sum_{ij \in E} w_{ij}(1 - X_{ij})$$
 s.t. $X \succeq 0$, $\operatorname{diag}(X) = e$

 $\rightsquigarrow v_1, \ldots, v_n$ unit vectors s.t. $X = (v_i^T v_j)$ is opt. for SDP.

► **Randomized rounding:** Pick a random hyperplane *H* with normal *r*.

 \rightsquigarrow partition $(S, V \setminus S)$ depending on the sign of $v_i^T r$.

Performance analysis

Theorem: For $w \ge 0$,

$$\operatorname{mc}(G) \geq \underbrace{E(w(\delta(S))) \geq 0.878 \operatorname{sdp}(G)}_{\bullet} \geq 0.878 \operatorname{mc}(G).$$

Basic lemma:
$$\operatorname{Prob}(ij \in \delta(S)) = rac{\operatorname{arccos}(v_i^T v_j)}{\pi}$$

$$E(w(\delta(S))) = \sum_{ij \in E} w_{ij} \operatorname{Prob}(ij \in \delta(S))$$

= $\sum_{ij \in E} w_{ij} \frac{\operatorname{arccos}(v_i^T v_j)}{\pi}$
= $\sum_{ij \in E} w_{ij} \frac{(1-v_i^T v_j)}{2} \underbrace{\frac{2}{\pi} \frac{\operatorname{arccos}(v_i^T v_j)}{1-v_i^T v_j}}_{\geq \alpha_{\mathrm{GW}} \sim 0.878}$

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties a

Extension to ± 1 quadratic programming

Given $A \in S_n$

Integer problem: $ip(A) := \max x^T A x$ s.t. $x \in \{\pm 1\}^n$ SDP relaxation: $sdp(A) := \max A \cdot X$ s.t. $X \succeq 0$, diag(X) = e.

►
$$A = \frac{1}{4}L_w$$
, L_w : Laplacian matrix of (G, w) \rightsquigarrow Max-Cut where $L_w(i, i) = w(\delta(i))$, $L_w(i, j) = -w_{ij}$.

 \rightsquigarrow When $A \succeq 0$, Ae = e, $A_{ij} \le 0$ $(i \ne j) \rightsquigarrow 0.878$ -approx. alg.

• When $A \succeq 0 \iff \frac{2}{\pi} (\sim 0.636)$ -approx. alg. [Nesterov 97]

• When
$$diag(A) = 0 \rightsquigarrow$$
 Grothendieck constant

Nesterov $\frac{2}{\pi}$ -approximation algorithm

- Solve SDP: Let v_1, \ldots, v_n unit vectors s.t. $X = (v_i^T v_j)$ maximizes $A \cdot X$.
- **Random hyperplane rounding:** Pick a random unit vector *r*.
- \rightsquigarrow random ± 1 vector: $x = (\operatorname{sgn}(r^T v_i))_{i=1}^n$
- **Lemma 1 [identity of Grothendieck]** $E(xx^T) = \frac{2}{\pi} \arcsin X$. **Proof:**

$$E(\operatorname{sgn}(r^{\mathsf{T}}v_i) \operatorname{sgn}(r^{\mathsf{T}}v_j)) = 1 - 2 \operatorname{Prob}(\operatorname{sgn}(r^{\mathsf{T}}v_i) \neq \operatorname{sgn}(r^{\mathsf{T}}v_j))$$
$$= 1 - 2 \frac{\operatorname{arccos}(v_i^{\mathsf{T}}v_j)}{\pi} = \frac{2}{\pi} (\frac{\pi}{2} - \operatorname{arccos}(v_i^{\mathsf{T}}v_j))$$
$$= \frac{2}{\pi} \operatorname{arcsin}(v_i^{\mathsf{T}}v_j).$$

Global performance analysis

Lemma 2: arcsin $X - X \succeq 0$

Proof: arcsin $x - x = \sum_{k} a_k x^{2k+1}$ where $a_k \ge 0$.

Global analysis: $E(x^{T}Ax) = A \cdot E(xx^{T}) = A \cdot (E(xx^{T}) - \frac{2}{\pi}X) + \frac{2}{\pi}A \cdot X$ $= \underbrace{A}_{\succeq 0} \cdot (\underbrace{\frac{2}{\pi} \arcsin X - \frac{2}{\pi}X}_{\geq 0}) + \frac{2}{\pi}A \cdot X$ $\geq \frac{2}{\pi}A \cdot X.$

Therefore: For $A \succeq 0$, $ip(A) \ge \frac{2}{\pi} \operatorname{sdp}(A)$.

Grothendieck inequality

Assume $\operatorname{diag}(A) = 0$.

The **support graph** G_A has as edges the pairs ij with $A_{ij} \neq 0$.

Definition: The **Grothendieck constant** K(G) of a graph G is the smallest constant K for which

 $\operatorname{sdp}(A) \leq K \quad ip(A) \quad \text{ for all } A \in \mathcal{S}_n \text{ with } G_A \subseteq G.$

Theorem: ([Gr. 53] [Krivine 77] [Alon-Makarychev(x2)-Naor 05])

- ▶ For *G* complete bipartite, $\frac{\pi}{2} \leq K(G) \leq \frac{\pi}{2} \frac{1}{\ln(1+\sqrt{2})} \sim 1.782$
- $\Omega(\log(\omega(G))) \leq K(G) \leq O(\log(\vartheta(\bar{G}))).$

The theta number Basic SDP relaxation for Max-Cut Matrix completion

Sketch of proof for Krivine's upper bound:

 $\frac{\pi}{2} \frac{1}{\ln(1+\sqrt{2})}$

Show:
$$K(K_{n,m}) \leq \frac{\pi}{2} \frac{1}{\ln(1+\sqrt{2})} =: \frac{\pi}{2c}$$
? $c := \ln(1+\sqrt{2})$

- 1. Let $A \in \mathbb{R}^{n \times m}$. Let u_i $(i \le n)$ and v_j $(j \le m)$ be unit vectors in H maximizing $\operatorname{sdp}(A) = \sum_{i \le n, j \le m} a_{ij} u_i \cdot v_j$.
- 2. **Construct** new unit vectors $S(u_i)$, $T(v_j) \in \hat{H}$ satisfying $\arcsin(S(u_i) \cdot T(v_i)) = c \ u_i \cdot v_i$
- 3. Pick a random unit vector $r \in \hat{H}$. Define the ± 1 vectors x, y $x_i = \operatorname{sgn}(r^T S(u_i)), \quad y_j = \operatorname{sgn}(r^T T(v_j))$

4. **Analysis:** $E(x^{T}Ay) = \sum_{i,j} a_{ij} E(x_{i}y_{j}) = \sum_{i,j} a_{ij} \frac{2}{\pi} \operatorname{arcsin}(S(u_{i}) \cdot T(v_{j}))$

$$= \sum_{i,j} a_{ij} \frac{2}{\pi} c \ u_i \cdot v_j = \frac{2}{\pi} c \ \mathrm{sdp}(A).$$

Proof (continued)

Step 2. Given unit vectors $u, v \in H$, construct $S(u), T(v) \in \hat{H}$ satisfying $\operatorname{arcsin}(S(u) \cdot T(v)) = c \ u \cdot v$.

•
$$\sin x = \sum_{k\geq 0} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$
, $\sinh x = \sum_{k\geq 0} \frac{x^{2k+1}}{(2k+1)!}$
• Set $c := \sinh^{-1}(1) = \ln(1 + \sqrt{2})$.
• Set $S(u) = \left(\sqrt{\frac{c^{2k+1}}{(2k+1)!}} u^{\otimes(2k+1)}\right)_k \in \hat{H} := \bigoplus_{k\geq 0} H^{\otimes(2k+1)}$,
 $T(v) = \left((-1)^k \sqrt{\frac{c^{2k+1}}{(2k+1)!}} v^{\otimes(2k+1)}\right)_k \in \hat{H}$.
• Then, $S(u) \cdot T(v) = \sum_k (-1)^k \frac{c^{2k+1}}{(2k+1)!} (u \cdot v)^{2k+1} = \sin(c \ u \cdot v)$.
Thus: $\arcsin(S(u) \cdot T(v)) = c \ u \cdot v$.

A reformulation of the theta number

Theorem [Alon-Makarychev(\times 2)-Naor 05] The smallest constant *C* for which

 $\operatorname{sdp}(-A) \leq \ C \ \operatorname{sdp}(A)$ for all $A \in \mathcal{S}_n$ with $\mathcal{G}_A \subseteq \mathcal{G}$

is $C = \vartheta(\bar{G}) - 1$.

Geometrically:

- ▶ $\mathcal{E}_n := \{X \in \mathcal{S}_n \mid X \succeq 0, \text{ diag}(X) = e\}$ \rightsquigarrow the elliptope
- $\mathcal{E}(G) \subseteq \mathbb{R}^{E}$: the projection of \mathcal{E}_{n} onto the edge set of G.
- ▶ Theorem [AMMN]: $-\mathcal{E}(G) \subseteq (\vartheta(\overline{G}) 1) \mathcal{E}(G)$.

Link with matrix completion

Matrix completion: Given a partial $n \times n$ matrix, whose entries are specified on the diagonal (say **equal to 1**) and on a subset E of the positions (given by $x \in \mathbb{R}^E$), decide whether it can be completed to a PSD matrix.

Equivalently, decide whether $x \in \mathcal{E}(G)$?

- A necessary condition: Each fully specified principal submatrix is PSD.
 [Clique condition]
- ► The clique condition is sufficient IFF G is a chordal graph (i.e. no induced circuit of length ≥ 4).

$$\begin{pmatrix} 1 & 1 & a? & -1 \\ 1 & 1 & 1 & b? \\ a? & 1 & 1 & 1 \\ -1 & b? & 1 & 1 \end{pmatrix}$$

is not completable to PSD

The theta number Basic SDP relaxation for Max-Cut Matrix completion

Another necessary condition

Fact:
$$\begin{pmatrix} 1 & \cos a & \cos b \\ \cos a & 1 & \cos c \\ \cos b & \cos c & 1 \end{pmatrix} \succeq 0 \iff \begin{cases} a+b+c & \leq 2\pi \\ a-b-c & \leq 0 \\ -a+b-c & \leq 0 \\ -a-b+c & \leq 0 \end{cases}$$

► Write
$$x = \cos a$$
 for some $a \in [0, \pi]^E$.
If $x \in \mathcal{E}(G)$ then [Metric condition]
 $a(F) - a(C \setminus F) \le \pi(|F| - 1) \quad \forall \ C \ circuit, \ F \subseteq C \ odd.$

• The metric condition is sufficient IFF G has no K_4 minor.

$$\begin{pmatrix} 1 & -1/2 & -1/2 & -1/2 \\ -1/2 & 1 & -1/2 & -1/2 \\ -1/2 & -1/2 & 1 & -1/2 \\ -1/2 & -1/2 & -1/2 & 1 \end{pmatrix} \not\succeq 0$$

while $\frac{2\pi}{3}(1,1,1,1)$ satisfies the triangle inequalities.

Geometrically

- $\operatorname{CUT}^{\pm 1}(G) \subseteq \mathcal{E}(G)$, with equality IFF G has no K_3 minor.

- ► The Goemans-Williamson randomized rounding argument shows: If v₁,..., v_n are unit vectors and a_{ij} := arccos(v_i^Tv_j) are their pairwise angles, then

$$\sum_{1 \le i < j \le n} c_{ij} a_{ij} \le \pi \ c_0$$

if $c \cdot z \leq c_0$ is any inequality valid for the cuts of K_n .

Extension to max k-cut [Frieze Jerrum 95]

Max k-cut: Given G = (V, E), $w \in \mathbb{R}^{E}_{+}$, $k \geq 2$, find a partition $\mathcal{P} = (S_1, \ldots, S_k)$ maximizing $w(\mathcal{P}) = \sum_{e \in E | e \text{ is cut by } \mathcal{P}} w_e$.

• Pick unit vectors $a_1, \ldots, a_k \in \mathbb{R}^k$ with $a_i^T a_j = -\frac{1}{k-1}$ for $i \neq j$.

 \rightsquigarrow Model max *k*-cut:

$$mc_k(G) = \max \frac{k-1}{k} \sum_{ij \in E} w_{ij}(1 - x_i^T x_j)$$

s.t. $x_1, \ldots, x_n \in \{a_1, \ldots, a_k\}.$

► SDP relax.:
$$sdp_k(G) = \max \frac{k-1}{k} \sum_{ij \in E} w_{ij}(1 - v_i^T v_j)$$
s.t. v_i unit vectors, $v_i^T v_j \ge -\frac{1}{k-1}$.

▶ **Randomized rounding:** Pick *k* independent random unit vectors $r_1, \ldots, r_k \rightsquigarrow$ partition $\mathcal{P} = (S_1, \ldots, S_k)$ where $S_h = \{i \mid v_i^T r_h \ge v_i^T r_{h'} \forall h'\}.$

The theta number Basic SDP relaxation for Max-Cut Matrix completion

Analysis

The probability that edge ij is not cut, i.e., v_i, v_j are both closer to the same r_h, is equal to k times a function f(v_i^Tv_j).

$$E(w(\mathcal{P})) = \sum_{ij \in E} w_{ij} (1 - kf(v_i^T v_j))$$

= $\sum_{ij \in E} w_{ij} \underbrace{\frac{1 - kf(v_i^T v_j)}{1 - v_i^T v_j}}_{\geq \alpha_k := \min_{-\frac{1}{k-1} \leq t \leq 1} \frac{1 - kf(t)}{1 - t} \frac{k}{k-1}} \underbrace{\frac{k-1}{k} (1 - v_i^T v_j)}_{\geq \alpha_k \operatorname{sdp}_k(G).}$

• $\alpha_2 = \alpha_{GW} \sim 0.878$: GW approximation ratio for max-cut. $\alpha_3 = \frac{7}{12} + \frac{3}{4\pi^2} \arccos^2(-1/4) > 0.836$ [de Klerk et al.] $\alpha_{100} > 0.99$.

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties a