Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut
MFO seminar on Semidefinite Programming

Monique Laurent - CWI, Amsterdam, and Tilburg University

$$
\text { May 30, } 2010
$$

Positive semidefinite matrices

Definition: For a symmetric $n \times n$ matrix X, the following conditions are equivalent:

1. X is positive semidefinite (written $X \succeq 0$) if all eigenvalues of X are nonnegative.
2. $u^{T} X u \geq 0$ for all $u \in \mathbb{R}^{n}$.
3. $X=U U^{T}$ for some matrix $U \in \mathbb{R}^{n \times p}$.
4. For some vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{p}, X_{i j}=v_{i}^{T} v_{j}(i, j \in[n])$.

Say that X is the Gram matrix of the v_{i} 's.
5. All principal minors of X are nonnegative.

Definition: X is positive definite (written $X \succ 0$) if all eigenvalues of X are positive.

Notation

- \mathcal{S}_{n} : the space of $n \times n$ symmetric matrices.
- \mathcal{S}_{n}^{+}: the cone of positive semidefinite matrices.
- \mathcal{S}_{n}^{++}: the cone of positive definite matrices.
$\rightsquigarrow \mathcal{S}_{n}^{++}$is the interior of the cone \mathcal{S}_{n}^{+}.
Trace inner product on \mathcal{S}_{n} :

$$
A \cdot B=\operatorname{Tr}\left(A^{T} B\right)=\sum_{i, j=1}^{n} A_{i j} B_{i j}
$$

The PSD cone is self-dual: For $X \in \mathcal{S}_{n}$,

$$
A \in \mathcal{S}_{n}^{+} \Longleftrightarrow A \cdot B \geq 0 \quad \forall B \in \mathcal{S}_{n}^{+}
$$

Primal/dual semidefinite programs

Given matrices $C, A_{1}, \ldots, A_{m} \in \mathcal{S}_{n}$ and a vector $b \in \mathbb{R}^{m}$ Primal SDP:

$$
p^{*}:=\max _{x} C \cdot X \text { such that } A_{j} \cdot X=b_{j}(j=1, \ldots, m), X \succeq 0
$$

Dual SDP:

$$
d^{*}:=\min _{y} b \cdot y \text { such that } \sum_{j=1}^{m} y_{j} A_{j}-C \succeq 0
$$

Weak duality: $p^{*} \leq d^{*}$
Pf: If X is primal feasible and y is dual feasible, then

$$
0 \leq\left(\sum_{j=1}^{m} y_{j} A_{j}-C\right) \cdot X=\sum_{j} y_{j}\left(A_{j} \cdot X\right)-C \cdot X=b \cdot y-C \cdot X
$$

Analogy between LP and SDP

Given vectors $c, a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$

Primal/dual LP:

$\max _{x} c \cdot x$ such that $a_{j} \cdot x=b_{j}(\forall j \leq m), x \in \mathbb{R}_{+}^{n}$

$$
\min _{y} b \cdot y \text { such that } \sum_{j=1}^{m} y_{j} a_{j}-c \geq 0
$$

Primal SDP:

$$
\max _{X} C \cdot X \text { such that } A_{j} \cdot X=b_{j}(j=1, \ldots, m), X \in \mathcal{S}_{n}^{+}
$$

- SDP is the analogue of LP, replacing \mathbb{R}_{+}^{n} by \mathcal{S}_{n}^{+}.
- Get LP when C, A_{j} are diagonal matrices.

Strong duality: $p^{*}=d^{*}$?

Strong duality holds for LP, but we need some regularity condition (e.g., Slater condition) to have strong duality for SDP !

Primal (P) / Dual (D) SDP's: $p^{*} \leq d^{*}$
(P) $p^{*}=\sup C \cdot X$ s.t. $A_{j} \cdot X=b_{j}(j=1, \ldots, m), X \succeq 0$
(D) $d^{*}=\inf b \cdot y$ s.t. $\quad \sum_{j=1}^{m} y_{j} A_{j}-C \succeq 0$

Strong duality Theorem:

1. If (P) is strictly feasible $(\exists X \succ 0$ feasible for (P)) and bounded $\left(p^{*}<\infty\right)$, then $p^{*}=d^{*}$ and (D) attains its infimum.
2. If (D) is strictly feasible ($\exists y$ with $\sum_{j} y_{j} A_{j}-C \succ 0$) and bounded $\left(d^{*}>-\infty\right)$, then $p^{*}=d^{*}$ and (P) attains its supremum.

Proof of 2. Assume $d^{*} \in \mathbb{R}$ and $\sum_{j} \tilde{y}_{j} A_{j}-C \succ 0 \exists \tilde{y}$

$$
\begin{array}{lll}
p^{*}=\max _{X \succeq 0} & C \cdot X & ? \\
& A_{j} \cdot X=b_{j} & d^{*}=\inf _{y} \\
& \sum_{j} y_{j} A_{j}-C \succeq 0
\end{array}
$$

Goal: There exists X feasible for (P) with $C \cdot X \geq d^{*}$.
WMA $b \neq 0$ (else, $b=0$ implies $d^{*}=0$ and choose $X=0$). Set

$$
\mathcal{M}:=\left\{\sum_{j} y_{j} A_{j}-C \mid y \in \mathbb{R}^{m}, b \cdot y \leq d^{*}\right\}
$$

Fact: $\mathcal{M} \cap \mathcal{S}_{n}^{++}=\emptyset$.
Pf: Otherwise, let y for which $b \cdot y \leq d^{*}$ and $\sum_{j} y_{j} A_{j}-C \succ 0$. Then one can find y^{\prime} with $b \cdot y^{\prime}<b \cdot y \leq d^{*}$ and $\sum_{j} y_{j}^{\prime} A_{j}-C \succ 0$. \rightsquigarrow This contradicts the minimality of d^{*}.

Sketch of proof for 2. (continued)

As $\mathcal{M} \cap \mathcal{S}_{n}^{++}=\emptyset$, there is a hyperplane separating \mathcal{M} and \mathcal{S}_{n}^{++}.
That is, there exists $Z \succeq 0$ non-zero with $Z \cdot Y \leq 0 \forall Y \in \mathcal{M}$, i.e.,

$$
b \cdot y \leq d^{*} \Longrightarrow Z \cdot\left(\sum_{j} y_{j} A_{j}-C\right) \leq 0
$$

By Farkas' lemma, there exists $\mu \in \mathbb{R}_{+}$for which

$$
\left(Z \cdot A_{j}\right)_{j}=\mu b \text { and } \mu d^{*} \leq Z \cdot C
$$

If $\mu=0$, then $0 \geq \underbrace{Z}_{\succeq 0} \cdot(\underbrace{\sum_{j} \tilde{y}_{j} A_{j}-C}_{\succ 0})>0$, a contradiction.
Hence $\mu>0$ and Z / μ is feasible for (P) with $C \cdot(Z / \mu) \geq d^{*}$. QED.

An example with duality gap

$$
\begin{array}{rlr}
p^{*} & =\min x_{12} \text { s.t. }\left(\begin{array}{ccc}
0 & x_{12} & 0 \\
x_{12} & x_{22} & 0 \\
0 & 0 & 1+x_{12}
\end{array}\right) \succeq 0 \\
& =\min \frac{1}{2} E_{12} \cdot X \begin{array}{ll}
\text { s.t. } & E_{11} \cdot X=0 \\
E_{13} \cdot X=0 & \\
E_{23} \cdot X=0 & \rightsquigarrow a \\
\left(E_{33}-\frac{1}{2} E_{12}\right) \cdot X=1 & \rightsquigarrow c \\
X \succeq 0
\end{array} \\
d^{*} & =\max y \text { s.t. } \frac{1}{2} E_{12}-a E_{11}-b E_{13}-c E_{23}-y\left(E_{33}-\frac{1}{2} E_{12}\right) \succeq 0 \\
& =\max y \text { st. }\left(\begin{array}{ccc}
-a & \frac{y+1}{2} & -b \\
\frac{y+1}{2} & 0 & -c \\
-b & -c & -y
\end{array}\right) \succeq 0
\end{array}
$$

Thus, $p^{*}=0, d^{*}=-1 \rightsquigarrow$ non-zero duality gap

Complexity

Recall: An LP with rational data has a rational optimum solution whose bit size is polynomially bounded in terms of the bit length of the input data.

Not true for SDP:

- $\sqrt{2}=\max x$ s.t. $\left(\begin{array}{ll}1 & x \\ x & 2\end{array}\right) \succeq 0$
- Any solution to

$$
\left(\begin{array}{cc}
x_{1}-2 & 0 \\
0 & 1
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
x_{2} & x_{1} \\
x_{1} & 1
\end{array}\right) \succeq 0, \ldots,\left(\begin{array}{cc}
x_{n} & x_{n-1} \\
x_{n-1} & 1
\end{array}\right) \succeq 0
$$

satisfies $x_{1} \geq 2^{2^{n-1}}$.

Complexity (continued)

Theorem: SDP can be solved in polynomial time to an arbitrary prescribed precision. [Assuming certain technical conditions hold.]

- Theoretically: Use the ellipsoid method [since checking whether $X \succeq 0$ is in P, e.g. with Gaussian elimination]
- Practically: Use e.g. interior-point algorithms.

More precisely: Let K denote the feasible region of the SDP. Assume we know $R \in \mathbb{N}$ s.t. $\exists X \in K$ with $\|X\| \leq R$ if $K \neq \emptyset$.

Given $\epsilon>0$, the ellipsoid based algorithm, either finds X^{*} at distance at most ϵ from K such that $C \cdot X^{*} \geq C \cdot X-\epsilon \forall X \in K$ at distance at least ϵ from the border, or claims: there is no such X.

The rumnning time is polynomial in n, m, the bit size of A_{j}, C, b, $\log R$, and $\log (1 / \epsilon)$.

Feasibility of SDP

Feasibility SDP problem (F): Given integer $A_{0}, A_{j} \in \mathcal{S}_{n}$, decide whether there exists $x \in \mathbb{R}^{m}$ s.t. $A_{0}+\sum_{j=1}^{m} x_{j} A_{j} \succeq 0$?

- $(F) \in N P \Longleftrightarrow(F) \in \operatorname{co}-N P$.
[Ramana 97]
- $(F) \in P$ for fixed n or m.
[Porkolab-Khachiyan 97]
- Testing existence of a rational solution is in P for fixed dimension m.
[Porkolab-Khachiyan 97]
\rightsquigarrow More on complexity and algorithms for SDP in other lectures.

Use SDP to express convex quadratic constraints

Consider the convex quadratic constraint:

$$
x^{\top} A x \leq b^{T} x+c
$$

where $A \succeq 0$.

- Write $A=B^{T} B$ for some $B \in \mathbb{R}^{p \times n}$.
- Then: $x^{T} A x \leq b^{T} x+c \Longleftrightarrow\left(\begin{array}{cc}I_{p} & B x \\ x^{T} B^{T} & b^{T} x+c\end{array}\right) \succeq 0$
\rightsquigarrow Use Schur complement: Given $C \succ 0$,

$$
\left(\begin{array}{cc}
C & B \\
B^{T} & A
\end{array}\right) \succeq 0 \Longleftrightarrow A-B^{T} C^{-1} B \succeq 0
$$

The S-lemma [Yakubovich 1971]

Consider the quadratic polynomials:

$$
\begin{aligned}
& f(x)=x^{T} A x+2 a^{T} x+\alpha=\left(1 x^{T}\right)\left(\begin{array}{cc}
\alpha & a^{T} \\
a & A
\end{array}\right)\binom{1}{x} \\
& g(x)=x^{T} B x+2 b^{T} x+\beta=\left(1 x^{T}\right)\left(\begin{array}{cc}
\beta & b^{T} \\
b & B
\end{array}\right)\binom{1}{x}
\end{aligned}
$$

Question: Characterize when

$$
\left(^{*}\right) f(x) \geq 0 \Longrightarrow g(x) \geq 0
$$

Answer: Assume $f(x)>0$ for some x. Then, $\left({ }^{*}\right)$ holds IFF

$$
\left(\begin{array}{cc}
\beta & b^{T} \\
b & B
\end{array}\right)-\lambda\left(\begin{array}{cc}
\alpha & a^{T} \\
a & A
\end{array}\right) \succeq 0 \text { for some } \lambda \geq 0
$$

Testing sums of squares of polynomials

Question: How to check whether a polynomial $p(x)=\sum_{\alpha \in \mathbb{N}^{n} \| \alpha \mid \leq 2 d} p_{\alpha} x^{\alpha} \quad$ can be written as a sum of squares: $p(x) \stackrel{?}{=} \sum_{j=1}^{m}\left(u_{j}(x)\right)^{2} \quad$ for some polynomials u_{j} ?

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

Answer: Use semidefinite programming:

- Write $u_{j}(x)=\left(a_{j}\right)^{T}[x]_{d}$

$$
[x]_{d}=\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

- $\sum_{j}\left(u_{j}(x)\right)^{2}=\left([x]_{d}\right)^{T}(\underbrace{\sum_{j} a_{j} a_{j}^{T}}_{\rightsquigarrow A \succeq 0})[x]_{d}$
\rightsquigarrow Test feasibility of SDP:

$$
\sum_{\substack{\beta, \gamma:|\beta|,|\gamma| \leq d \\ \beta+\gamma=\alpha}} A_{\beta, \gamma}=p_{\alpha}(|\alpha| \leq 2 d), A \succeq 0
$$

Two milestone applications of SDP to combinatorial optimization

- Approximate maximum stable sets and minimum vertex coloring with the theta number.

Work of Lovász [1979], Grötschel-Lovász-Schrijver [1981]

- (First non-trivial) 0.878-approximation algorithm for max-cut of Goemans-Williamson [1995]

The theta number

$G=(V, E)$ graph.
$S \subseteq V$ stable set if S contains no edge.

- $\alpha(G):=$ maximum size of a stable set $\quad \rightsquigarrow$ stability number
- $\chi(G):=$ minimum number of colors needed to color the vertices so that adjacent vertices receive distinct colors.
\rightsquigarrow Computing $\alpha(G), \chi(G)$ is an NP-hard problem.
- The theta number of Lovász [1979]:

$$
\vartheta(G):=\max J \cdot X \quad \text { s.t. } \quad \operatorname{Tr}(X)=1, X_{i j}=0(i j \in E), X \succeq 0
$$

- Lovász 'sandwich' theorem: $\alpha(G) \leq \vartheta(G) \leq \chi(\bar{G})$.
\rightsquigarrow Can compute $\alpha(G), \chi(\bar{G})$ via SDP for graphs with $\alpha(G)=\chi(\bar{G})$.

Maximum cuts in graphs

$G=(V, E), n=|V|, w=\left(w_{e}\right)_{e \in E}$ edge weights.
$S \subseteq V \rightsquigarrow$ cut $\delta(S):=$ all edges cut by the partition $(S, V \backslash S)$.
Max-Cut problem: Find a cut of maximum weight. $\rightsquigarrow \operatorname{mc}(G)$

- Max-Cut is NP-hard.

No (16/17 $+\epsilon$)-approximation algorithm unless $\mathrm{P}=\mathrm{NP}$.

- Max-Cut is in P for graphs with no K_{5} minor, since it can be computed with the LP: [Barahona-Mahjoub 86] $\max w^{T} x$ s.t. $x_{i j}-x_{i k}-x_{j k} \leq 0, x_{i j}+x_{i k}+x_{j k} \leq 2 \forall i, j, k \in V$

An easy $1 / 2$-approximation algorithm for $w \geq 0$: Consider the random partition ($S, V \backslash S$), where $i \in S$ with prob. 1/2:

$$
E(w(S))=w(E) / 2 \geq \mathrm{mc}(G) / 2
$$

Goemans-Williamson approximation algorithm for Max-Cut

- Encode a partition $(S, V \backslash S)$ by a vector $x \in\{ \pm 1\}^{n}$.
\rightsquigarrow Encode the cut $\delta(S)$ by the matrix $X=x x^{T}$.
\rightsquigarrow Reformulate Max-Cut:

$$
\max \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-x_{i} x_{j}\right) \text { s.t. } x \in\{ \pm 1\}^{n}
$$

- Solve the SDP relaxation:

$$
\max \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-X_{i j}\right) \text { s.t. } X \succeq 0, \operatorname{diag}(X)=e
$$

$\rightsquigarrow v_{1}, \ldots, v_{n}$ unit vectors s.t. $X=\left(v_{i}^{T} v_{j}\right)$ is opt. for SDP.

- Randomized rounding: Pick a random hyperplane H with normal r.
\rightsquigarrow partition $(S, V \backslash S)$ depending on the sign of $v_{i}^{T} r$.

Performance analysis

Theorem: For $w \geq 0$,

$$
\operatorname{mc}(G) \geq \underbrace{E(w(\delta(S))) \geq 0.878 \operatorname{sdp}(G)} \geq 0.878 \mathrm{mc}(G)
$$

Basic lemma: $\operatorname{Prob}(i j \in \delta(S))=\frac{\arccos \left(v_{i}^{\top} v_{j}\right)}{\pi}$.

$$
\begin{aligned}
& E(w(\delta(S)))=\sum_{i j \in E} w_{i j} \operatorname{Prob}(i j \in \delta(S)) \\
&=\sum_{i j \in E} w_{i j} \frac{\arccos \left(v_{i}^{T} v_{j}\right)}{\pi} \\
&=\sum_{i j \in E} w_{i j} \frac{\left(1-v_{i}^{\top} v_{j}\right)}{2} \\
& \underbrace{\frac{2}{\pi}}_{\geq \alpha_{\mathrm{GW}} \sim 0.878} \frac{\arccos \left(v_{i}^{\top} v_{j}\right)}{1-v_{i}^{\top} v_{j}} \\
& \geq \operatorname{sdp}(G) \alpha_{\mathrm{GW}}
\end{aligned}
$$

Extension to ± 1 quadratic programming

Given $A \in \mathcal{S}_{n}$
Integer problem: $\operatorname{ip}(A):=\max x^{T} A x$ s.t. $x \in\{ \pm 1\}^{n}$
SDP relaxation: $\operatorname{sdp}(A):=\max A \cdot X$ s.t. $X \succeq 0, \operatorname{diag}(X)=e$.

- $A=\frac{1}{4} L_{w}, L_{w}$: Laplacian matrix of (G, w)
\rightsquigarrow Max-Cut where $L_{w}(i, i)=w(\delta(i)), L_{w}(i, j)=-w_{i j}$.
\rightsquigarrow When $A \succeq 0, A e=e, A_{i j} \leq 0(i \neq j) \rightsquigarrow 0.878$-approx. alg.
- When $A \succeq 0 \rightsquigarrow \frac{2}{\pi}(\sim 0.636)$-approx. alg. [Nesterov 97]
- When $\operatorname{diag}(A)=0 \rightsquigarrow$ Grothendieck constant

Nesterov $\frac{2}{\pi}$-approximation algorithm

- Solve SDP: Let v_{1}, \ldots, v_{n} unit vectors s.t. $X=\left(v_{i}^{\top} v_{j}\right)$ maximizes $A \cdot X$.
- Random hyperplane rounding: Pick a random unit vector r.
\rightsquigarrow random ± 1 vector: $\quad x=\left(\operatorname{sgn}\left(r^{T} v_{i}\right)\right)_{i=1}^{n}$

Lemma 1 [identity of Grothendieck] $E\left(x x^{T}\right)=\frac{2}{\pi} \arcsin X$.

Proof:

$$
\begin{aligned}
E\left(\operatorname{sgn}\left(r^{\top} v_{i}\right) \operatorname{sgn}\left(r^{\top} v_{j}\right)\right) & =1-2 \operatorname{Prob}\left(\operatorname{sgn}\left(r^{\top} v_{i}\right) \neq \operatorname{sgn}\left(r^{\top} v_{j}\right)\right) \\
& =1-2 \frac{\arccos \left(v_{i}^{\top} v_{j}\right)}{\pi}=\frac{2}{\pi}\left(\frac{\pi}{2}-\arccos \left(v_{i}^{\top} v_{j}\right)\right) \\
& =\frac{2}{\pi} \arcsin \left(v_{i}^{\top} v_{j}\right)
\end{aligned}
$$

Global performance analysis

Lemma 2: $\arcsin X-X \succeq 0$
Proof: $\arcsin x-x=\sum_{k} a_{k} x^{2 k+1}$ where $a_{k} \geq 0$.
Global analysis:

$$
\left.\begin{array}{rl}
E\left(x^{\top} A x\right)=A \cdot E\left(x x^{T}\right) & =A \cdot\left(E\left(x x^{\top}\right)-\frac{2}{\pi} X\right)+\frac{2}{\pi} A \cdot X \\
& =\underbrace{A}_{\succeq 0} \cdot(\underbrace{\frac{2}{\pi} \arcsin X-\frac{2}{\pi} X}_{\geq 0})
\end{array}+\frac{2}{\pi} A \cdot X\right)
$$

Therefore: For $A \succeq 0, \quad \operatorname{ip}(A) \geq \frac{2}{\pi} \operatorname{sdp}(A)$.

Grothendieck inequality

Assume $\operatorname{diag}(A)=0$.
The support graph G_{A} has as edges the pairs ij with $A_{i j} \neq 0$.
Definition: The Grothendieck constant $K(G)$ of a graph G is the smallest constant K for which

$$
\operatorname{sdp}(A) \leq K \quad i p(A) \quad \text { for all } A \in \mathcal{S}_{n} \text { with } G_{A} \subseteq G
$$

Theorem: ([Gr. 53] [Krivine 77] [Alon-Makarychev(x2)-Naor 05])

- For G complete bipartite, $\frac{\pi}{2} \leq K(G) \leq \frac{\pi}{2} \frac{1}{\ln (1+\sqrt{2})} \sim 1.782$
- $\Omega(\log (\omega(G))) \leq K(G) \leq O(\log (\vartheta(\bar{G})))$.

Sketch of proof for Krivine's upper bound: $\frac{\pi}{2} \frac{1}{\ln (1+\sqrt{2})}$

Show: $K\left(K_{n, m}\right) \leq \frac{\pi}{2} \frac{1}{\ln (1+\sqrt{2})}=: \frac{\pi}{2 c} ? \quad c:=\ln (1+\sqrt{2})$

1. Let $A \in \mathbb{R}^{n \times m}$. Let $u_{i}(i \leq n)$ and $v_{j}(j \leq m)$ be unit vectors in H maximizing $\operatorname{sdp}(A)=\sum_{i \leq n, j \leq m} a_{i j} u_{i} \cdot v_{j}$.
2. Construct new unit vectors $S\left(u_{i}\right), T\left(v_{j}\right) \in \hat{H}$ satisfying

$$
\arcsin \left(S\left(u_{i}\right) \cdot T\left(v_{j}\right)\right)=c u_{i} \cdot v_{j}
$$

3. Pick a random unit vector $r \in \hat{H}$. Define the ± 1 vectors x, y

$$
x_{i}=\operatorname{sgn}\left(r^{T} S\left(u_{i}\right)\right), \quad y_{j}=\operatorname{sgn}\left(r^{T} T\left(v_{j}\right)\right)
$$

4. Analysis:

$$
\begin{aligned}
& E\left(x^{T} A y\right)=\sum_{i, j} a_{i j} E\left(x_{i} y_{j}\right)=\sum_{i, j} a_{i j} \frac{2}{\pi} \arcsin \left(S\left(u_{i}\right) \cdot T\left(v_{j}\right)\right) \\
& =\sum_{i, j} a_{i j} \frac{2}{\pi} \subset u_{i} \cdot v_{j}=\frac{2}{\pi} c \operatorname{sdp}(A) .
\end{aligned}
$$

Proof (continued)

Step 2. Given unit vectors $u, v \in H$, construct $S(u), T(v) \in \hat{H}$ satisfying $\quad \arcsin (S(u) \cdot T(v))=c u \cdot v$.

- $\sin x=\sum_{k \geq 0}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}, \quad \sinh x=\sum_{k \geq 0} \frac{x^{2 k+1}}{(2 k+1)!}$
- Set $c:=\sinh ^{-1}(1)=\ln (1+\sqrt{2})$.
- Set $S(u)=\left(\sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} u^{\otimes(2 k+1)}\right)_{k} \in \hat{H}:=\oplus_{k \geq 0} H^{\otimes(2 k+1)}$,

$$
T(v)=\left((-1)^{k} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} v^{\otimes(2 k+1)}\right)_{k} \in \hat{H} .
$$

- Then, $S(u) \cdot T(v)=\sum_{k}(-1)^{k} \frac{c^{2 k+1}}{(2 k+1)!}(u \cdot v)^{2 k+1}=\sin (c u \cdot v)$.

Thus: $\arcsin (S(u) \cdot T(v))=c u \cdot v$.

A reformulation of the theta number

Theorem [Alon-Makarychev($\times 2$)-Naor 05]
The smallest constant C for which

$$
\operatorname{sdp}(-A) \leq C \operatorname{sdp}(A) \quad \text { for all } A \in \mathcal{S}_{n} \text { with } G_{A} \subseteq G
$$

is $C=\vartheta(\bar{G})-1$.

Geometrically:

- $\mathcal{E}_{n}:=\left\{X \in \mathcal{S}_{n} \mid X \succeq 0, \operatorname{diag}(X)=e\right\} \quad \rightsquigarrow$ the elliptope
- $\mathcal{E}(G) \subseteq \mathbb{R}^{E}$: the projection of \mathcal{E}_{n} onto the edge set of G.
- Theorem [AMMN]: $-\mathcal{E}(G) \subseteq(\vartheta(\bar{G})-1) \mathcal{E}(G)$.

Link with matrix completion

Matrix completion: Given a partial $n \times n$ matrix, whose entries are specified on the diagonal (say equal to $\mathbf{1}$) and on a subset E of the positions (given by $x \in \mathbb{R}^{E}$), decide whether it can be completed to a PSD matrix.
Equivalently, decide whether $x \in \mathcal{E}(G)$?

- A necessary condition: Each fully specified principal submatrix is PSD.
[Clique condition]
- The clique condition is sufficient IFF G is a chordal graph (i.e. no induced circuit of length ≥ 4).

$$
\left(\begin{array}{cccc}
1 & 1 & a ? & -1 \\
1 & 1 & 1 & b ? \\
a ? & 1 & 1 & 1 \\
-1 & b ? & 1 & 1
\end{array}\right) \quad \text { is not completable to PSD }
$$

Another necessary condition

Fact: $\left(\begin{array}{ccc}1 & \cos a & \cos b \\ \cos a & 1 & \cos c \\ \cos b & \cos c & 1\end{array}\right) \succeq 0 \Longleftrightarrow \begin{cases}a+b+c & \leq 2 \pi \\ a-b-c & \leq 0 \\ -a+b-c & \leq 0 \\ -a-b+c & \leq 0\end{cases}$

- Write $x=\cos$ a for some $a \in[0, \pi]^{E}$. If $x \in \mathcal{E}(G)$ then
[Metric condition]

$$
a(F)-a(C \backslash F) \leq \pi(|F|-1) \forall C \text { circuit, } F \subseteq C \text { odd. }
$$

- The metric condition is sufficient IFF G has no K_{4} minor.

$$
\left(\begin{array}{cccc}
1 & -1 / 2 & -1 / 2 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & -1 / 2 \\
-1 / 2 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & -1 / 2 & -1 / 2 & 1
\end{array}\right) \nsucceq 0
$$

while $\frac{2 \pi}{3}(1,1,1,1)$ satisfies the triangle inequalities.

Geometrically

- $\operatorname{CUT}^{ \pm 1}(G) \subseteq \mathcal{E}(G)$, with equality IFF G has no K_{3} minor.
- $\mathcal{E}(G) \subseteq \cos \left(\pi \operatorname{MET}^{01}(G)\right)$, with equality IFF G has no K_{4} minor.
- $\mathcal{E}(G) \subseteq \cos \left(\pi \operatorname{CUT}^{01}(G)\right)$, with equality IFF G has no K_{4} minor.
- The Goemans-Williamson randomized rounding argument shows: If v_{1}, \ldots, v_{n} are unit vectors and $a_{i j}:=\arccos \left(v_{i}^{\top} v_{j}\right)$ are their pairwise angles, then

$$
\sum_{1 \leq i<j \leq n} c_{i j} a_{i j} \leq \pi c_{0}
$$

if $c \cdot z \leq c_{0}$ is any inequality valid for the cuts of K_{n}.

Extension to max k-cut [Frieze Jerrum 95]

Max k-cut: Given $G=(V, E), w \in \mathbb{R}_{+}^{E}, k \geq 2$, find a partition $\mathcal{P}=\left(S_{1}, \ldots, S_{k}\right)$ maximizing $w(\mathcal{P})=\sum_{e \in E \mid e}$ is cut by $\mathcal{P} w_{e}$.

- Pick unit vectors $a_{1}, \ldots, a_{k} \in \mathbb{R}^{k}$ with $a_{i}^{T} a_{j}=-\frac{1}{k-1}$ for $i \neq j$.
\rightsquigarrow Model max k-cut:

$$
\begin{aligned}
\operatorname{mc}_{k}(G)= & \max \frac{k-1}{k} \sum_{i j \in E} w_{i j}\left(1-x_{i}^{T} x_{j}\right) \\
& \text { s.t. } \quad x_{1}, \ldots, x_{n} \in\left\{a_{1}, \ldots, a_{k}\right\} .
\end{aligned}
$$

- SDP relax.: $\operatorname{sdp}_{k}(G)=\max \frac{k-1}{k} \sum_{i j \in E} w_{i j}\left(1-v_{i}^{T} v_{j}\right)$ s.t. v_{i} unit vectors, $v_{i}^{\top} v_{j} \geq-\frac{1}{k-1}$.
- Randomized rounding: Pick k independent random unit vectors $r_{1}, \ldots, r_{k} \rightsquigarrow$ partition $\mathcal{P}=\left(S_{1}, \ldots, S_{k}\right)$ where $S_{h}=\left\{i \mid v_{i}^{\top} r_{h} \geq v_{i}^{\top} r_{h^{\prime}} \forall h^{\prime}\right\}$.

Analysis

- The probability that edge $i j$ is not cut, i.e., v_{i}, v_{j} are both closer to the same r_{h}, is equal to k times a function $f\left(v_{i}^{\top} v_{j}\right)$.

$$
\begin{aligned}
E(w(\mathcal{P})) & =\sum_{i j \in E} w_{i j}\left(1-k f\left(v_{i}^{T} v_{j}\right)\right) \\
& =\sum_{i j \in E} w_{i j} \underbrace{\frac{1-k f\left(v_{i}^{T} v_{j}\right)}{1-v_{i}^{T} v_{j}} \frac{k}{k-1}} \quad \frac{k-1}{k}\left(1-v_{i}^{T} v_{j}\right) \\
& \geq \alpha_{k} \operatorname{sdp}_{k}(G) .
\end{aligned}
$$

- $\alpha_{2}=\alpha_{G W} \sim 0.878$: GW approximation ratio for max-cut.
$\alpha_{3}=\frac{7}{12}+\frac{3}{4 \pi^{2}} \arccos ^{2}(-1 / 4)>0.836$ [de Klerk et al.]
$\alpha_{100}>0.99$.

