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Introduction Semidefinite programming duality
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Positive semidefinite matrices

Definition: For a symmetric n x n matrix X, the following
conditions are equivalent:

1. X is positive semidefinite (written X > 0) if

all eigenvalues of X are nonnegative.

2. u"Xu>0forall ueR"

3. X = UUT for some matrix U € R"™*P.

4. For some vectors vi,...,v, € RP, X; = v.'v; (i, j € [n]).
Say that X is the Gram matrix of the v;'s.

5. All principal minors of X are nonnegative.

Definition: X is positive definite (written X = 0) if all eigenvalues
of X are positive.
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Notation

» S, the space of n x n symmetric matrices.

» ST: the cone of positive semidefinite matrices.
» S;t: the cone of positive definite matrices.
~ ST is the interior of the cone S;.

Trace inner product on S,:
A-B=Tr(ATB) = Z A;iBj
ij=1
The PSD cone is self-dual: For X € S,
AcSH < AB>0 VBcS,/
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Primal /dual semidefinite programs

Given matrices C, A,...,An € S, and a vector b € R™
Primal SDP:

p* :=maxx C-X suchthat A;-X=b;(j=1,...,m), X =0
Dual SDP:
d* :=min, by suchthat >, yA; —C=0

Weak duality: p* < d*
Pf: If X is primal feasible and y is dual feasible, then

0< (04— C)-X =D yj(AX) = C-X = by = C:X
j=1 7
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Analogy between LP and SDP

Given vectors ¢, a1,...,am € R” and b € R™
Primal/dual LP:

max c¢-x such that aj-x = b; (Vj < m), x € R
X

m
min b-y such that ai—c>0
V y jz_;yj j =

Primal SDP:

n

max C-X suchthat A;- X =0b; (j=1,...,m), XeSH

» SDP is the analogue of LP, replacing R, by S,
» Get LP when C, A; are diagonal matrices.
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Strong duality: p* = d*?

Strong duality holds for LP, but we need some regularity condition
(e.g., Slater condition) to have strong duality for SDP !

Primal (P) / Dual (D) SDP's: p* < d*
(P) p* =sup C-X st. Ai-X=bj(j=1,....,m), X>=0
(D) d* =inf by st. >, yA —C=0

Strong duality Theorem:
1. If (P) is strictly feasible (3X > 0 feasible for (P)) and
bounded (p* < o0), then p* = d* and (D) attains its
infimum.

2. If (D) is strictly feasible (3y with 3_;y;A; — C = 0) and
bounded (d* > —o0), then p* = d* and (P) attains its
supremum.
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Proof of 2. Assume d* € R and >, A, — C =0 Iy

?
p* = maxx-9 C-X > d* =inf, by

Goal: There exists X feasible for (P) with C-X > d*.

WMA b # 0 (else, b =0 implies d* = 0 and choose X = 0). Set

M={3yA-Clyer™, by<d}.
j

Fact: M NSt =0.

Pf: Otherwise, let y for which by < d* and Zj yjAj — C = 0.
Then one can find y’ with by’ < by < d*and }_;yjA; — C = 0.
~ This contradicts the minimality of d*.
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Sketch of proof for 2. (continued)

As M NS+ =), there is a hyperplane separating M and S .
That is, there exists Z = 0 non-zero with Z-Y <0VY € M, i.e,

by <d* = Z() yA - C)<0
j

By Farkas' lemma, there exists u € R for which

(Z-Aj)j:,ub and ,ud*SZC

If u=0,then0> Z (Z)"/JAJ — C) >0, a contradiction.

=0 J
—_——
=0
Hence pn > 0 and Z/p is feasible for (P) with C-(Z/u) > d*.

QED.

Monique Laurent - CWI, Amsterdam, and Tilburg University Introduction to Semidefinite Programming I: Basic properties ¢



Introduction Semidefinite programming duality
Complexity

An example with duality gap

0 X12 0
p¥=min x12 s.t. | x12 x20 0 =0
0 0 1+xp
= min %Elz-X s.t. Ei1-X=0 ~> 3
E13'X =0 ~ b
E23-X =0 ~ C
(Es3— 3E12) X =1 oy
X =0
d* = max y s.t. %Elz — aFEy1 — bE13 — cEx3 — y(E33 — %Elz) =0
= max y s.t. YTH 0 —c| =0
“bo—c oy

Thus, p* =0, d* = —1 ~~ non-zero duality gap
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Complexity

Recall: An LP with rational data has a rational optimum solution
whose bit size is polynomially bounded in terms of the bit length of

the input data.

Not true for SDP:
» /2 =max x s.t. <1 X>t0
x 2

» Any solution to
xx—2 0 Xp X1 Xp  Xp—1
—
( ; 1>t0, (Xl 1)_0,...,(Xn_1 1)50

satisfies x; > 22" .
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Complexity (continued)

Theorem: SDP can be solved in polynomial time to an arbitrary
prescribed precision. [Assuming certain technical conditions hold.]

» Theoretically: Use the ellipsoid method [since checking
whether X = 0 is in P, e.g. with Gaussian elimination]

» Practically: Use e.g. interior-point algorithms.

More precisely: Let K denote the feasible region of the SDP.
Assume we know R € N's.t. 3X € K with || X]|| < R if K # 0.

Given € > 0, the ellipsoid based algorithm, either finds X* at
distance at most € from K suchthat C- X* > C-X —¢e¢ VX € K at
distance at least € from the border, or claims: there is no such X.

The rumnning time is polynomial in n, m, the bit size of A;, C, b,
log R, and log(1/e¢).
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Feasibility of SDP

Feasibility SDP problem (F): Given integer Ap, Aj € Sy, decide
whether there exists x € R™ s.t. Ag + 3 1) xjA; =07

» (F) € NP <= (F) € co-NP. [Ramana 97]
» (F) € P for fixed n or m. [Porkolab-Khachiyan 97]

» Testing existence of a rational solution is in P for fixed
dimension m.
[Porkolab-Khachiyan 97]

~ More on complexity and algorithms for SDP in other lectures.
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Use SDP to express convex quadratic constraints

Consider the convex quadratic constraint:
xT Ax < bTx+ ¢
where A > 0.

» Write A= BT B for some B € RP*".

/ Bx
e T T p
» Then: x'Ax < b x+c<:><XTBT bTx+c)tO

~> Use Schur complement: Given C >~ 0,

c B T -1
<BT A>>0<:>A—BC B>0
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The S-lemma [Yakubovich 1971]

Consider the quadratic polynomials:
T

f(x)=x"Ax+2a"x+a=(1x") (j aA) <1>
T

g(x)=x"Bx+2b"x+3=(1x") (i bB> <1>

Question: Characterize when

(*) f(x) 2 0= g(x) 2 0

Answer: Assume f(x) > 0 for some x. Then, (*) holds IFF

g bT _ a a’
<b B A 2 A =0 forsome A >0
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Testing sums of squares of polynomials

Question: How to check whether a polynomial

p(x) = ZaeNnua|<2d pPax® can be written as a sum of squares:
?

p(x)= Zj'":l(uj(x))2 for some polynomials u;?

x® =Xt xgn
Answer: Use semidefinite programming:
> Write uj(x) = (a;) "[x]q [X]lg = (x¥)al<d
> 20(u()? = (Ixla)" Zaj 3j ) Xl
%,_/
~A>0

~~ Test feasibility of SDP:
Y. Asy=ra(la] <2d), A0

BBl 1vI<d
Bty=a
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The theta number
Basic SDP relaxation for Max-Cut

Applications to Combinatorial Optimization Matrix| completion

Two milestone applications of SDP to combinatorial
optimization

» Approximate maximum stable sets and minimum vertex
coloring with the theta number.

Work of Lovész [1979], Grotschel-Lovész-Schrijver [1981]

» (First non-trivial) 0.878-approximation algorithm for max-cut
of Goemans-Williamson [1995]
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The theta number

G = (V,E) graph.
S C V stable set if S contains no edge.
» «(G):= maximum size of a stable set ~ stability number

» x(G):= minimum number of colors needed to color the
vertices so that adjacent vertices receive distinct colors.

~+ Computing a(G), x(G) is an NP-hard problem.
» The theta number of Lovasz [1979]:
P(G) :=maxJ-X st. Tr(X)=1, Xj=0(j€E), X>=0

» Lovasz 'sandwich’ theorem: o(G) < 9(G) < x(G).

~ Can compute a(G), x(G) via SDP for graphs with
a(G) = x(G).
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Maximum cuts in graphs

G=(V,E), n=|V|, w = (We)eck edge weights.
S C V ~ cut §(S) := all edges cut by the partition (S, V' \ S).

Max-Cut problem: Find a cut of maximum weight. ~ mc(G)

» Max-Cut is NP-hard.
No (16/17 + ¢)-approximation algorithm unless P=NP.

» Max-Cut is in P for graphs with no Ks minor, since it can be
computed with the LP: [Barahona-Mahjoub 86]

max w'x s.t. Xij—Xik —Xjk < 0, Xjj+xix+xjx <2 Vi, j,keV

An easy 1/2-approximation algorithm for w > 0: Consider the
random partition (S, V' \ S), where i € S with prob. 1/2:

E(w($)) = w(E)/2 > mc(G)/2
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Goemans-Williamson approximation algorithm for Max-Cut

» Encode a partition (S, V' \ S) by a vector x € {£1}".
~ Encode the cut §(S) by the matrix X = xx .
~» Reformulate Max-Cut:
max 1 > e Wi(1 — xix;) st x € {£1}"
» Solve the SDP relaxation:
max 1 >ijee wi(1—Xj) st. X = 0, diag(X) =e

> V1,..., Vp unit vectors s.t. X = (v v;) is opt. for SDP.

» Randomized rounding: Pick a random hyperplane H with
normal r.

~~ partition (S, V' \ S) depending on the sign of v."r.
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Performance analysis

Theorem: For w > 0,

mc(G) > E(w(6(S))) > 0.878 sdp(G) > 0.878 mc(G).

/

-~

arccos(v;" v;)
™

Basic lemma: Prob(ij € §(S)) =

E(w(3(5))) = 2jee wij Prob(ij € 6(5))

_ Z Wi arccos(v;” v;)
jeE "y T T
. e (12T ) 2 arccos(v;' v;)
ijcE Wi T

™ 1—v,- vj

>acw~0.878
> sdp(G) acw
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Extension to 41 quadratic programming

Given A€ S,
Integer problem: ip(A) := max x’ Ax s.t. x € {£+1}"
SDP relaxation: sdp(A) := max A-X s.t. X =0, diag(X) =e.

> A= %LW, L,: Laplacian matrix of (G, w) ~+ Max-Cut
where Ly, (i,7) = w(d(i)), Lw(i,j) = —wj.

~» When A= 0, Ae=e, Aj <0 (i #j) ~ 0.878-approx. alg.
» When A= 0 ~ % (~ 0.636)-approx. alg. [Nesterov 97|

» When diag(A) =0 ~- Grothendieck constant
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2 . . .
Nesterov =-approximation algorithm

» Solve SDP: Let vy, ..., v, unit vectors s.t. X = (v v})
maximizes A-X.
» Random hyperplane rounding: Pick a random unit vector r.
~~ random +1 vector: x = (sgn(r’v;))"_;
Lemma 1 [identity of Grothendieck] E(xx") = 2 arcsin X.

Proof:

E(sgn(r™v;) sgn(r"v;)) =12 Prob(sgn(r"v;) # sgn(rv;))

T,.
=1- 2%@"‘0) = %(g — arccos(v;" v;))

= % arcsin(v;"vj).
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Global performance analysis

Lemma 2: arcsin X — X =0

Proof: arcsinx — x = 3", agx?*+1 where a, > 0.

Global analysis:
E(xTAx) = AE(xxT) =A(E(xxT) - 2X) + 2AX

2 2
=_A -(; arcsin X — ;X) +2A-X
>0
>0
>0
> 2A.X
s

Therefore: For A= 0, ip(A) > 2 sdp(A).
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Grothendieck inequality

Assume diag(A) = 0.
The support graph G4 has as edges the pairs ij with A;; # 0.

Definition: The Grothendieck constant K(G) of a graph G is
the smallest constant K for which

sdp(A) < K ip(A) forall A€ S, with Gy C G.

Theorem: ([Gr. 53] [Krivine 77] [Alon-Makarychev(x2)-Naor 05])

» For G complete bipartite, 5 < K(G) < %ln(lj—\/f)w 1.782

> Q(log(w(G))) < K(G) < O(log((G)))-
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Sketch of proof for Krivine's upper bound:

Show: K(Kj,

K=

m) < %7|n(1-:::\/§) ? c:=In(1++2)

1. Let Ae R™™. Let u; (i < n) and v; (j < m) be unit vectors
in H maximizing  sdp(A) = ", j<m ajjui'vj-

2. Construct new unit vectors S(u;), T(vj) € H satisfying
arcsin(S(ui)-T(vj)) = ¢ uj-v;
3. Pick a random unit vector r € H. Define the +1 vectors X,y
xi = sgu(r’S(ur)), y; = sen(r’ T(v))
4. Analysis:
E(xTAy) =3 a5 E(xiyy) = 21 ai 2 aresin(S(ui)- T(v)))

=3 % c ujvj = %c sdp(A).
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Proof (continued)

Step 2. Given unit vectors u, v € H, construct S(u), T(v) € A
satisfying  arcsin(S(u)-T(v)) = c u-v.

. _ K x2k+1 x2k+1
> sinx = Zkgo(_l) (TR sinhx = Zk>0 @k+1)1

Set ¢ :=sinh7}(1) = In(1 +V/2).

Set S(u) = (%u@»(zkm)k € F iz GyagHECkHD),

~

T(v) = (D% /esmve D) e A,

Then, S(u)-T(v) = ¥ (~1)* gy (uv) %1 = sin(c w-v).

Thus: arcsin(S(u)-T(v)) = c u-v.

v

v

v
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A reformulation of the theta number

Theorem [Alon-Makarychev(x2)-Naor 05]
The smallest constant C for which

sdp(—A) < C sdp(A) forall Ae S, with G4 C G
is C=19(G) — 1.

Geometrically:
> £ i={X €S, | X =0, diag(X) = e} ~- the elliptope
» £(G) C RE: the projection of £, onto the edge set of G.

» Theorem [AMMN]: —£(G) C (J9(G) — 1) £(G).
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Link with matrix completion

Matrix completion: Given a partial n x n matrix, whose entries
are specified on the diagonal (say equal to 1) and on a subset E
of the positions (given by x € RF), decide whether it can be
completed to a PSD matrix.

Equivalently, decide whether x € £(G)?

» A necessary condition: Each fully specified principal
submatrix is PSD. [Clique condition]

» The clique condition is sufficient IFF G is a chordal graph (i.e.
no induced circuit of length > 4).

1 1 a7 -1

5
al? 1 i bl is not completable to PSD
-1 p? 1 1
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Another necessary condition

1 cosa cosb atb+c < 2m
a—b-c <0

Fact: | cosa 1 cosc | = 0<—
cosb cosc 1 —atb—c <0
—a—b+c <0

» Write x = cos a for some a € [0, 7]E.
If x € £(G) then [Metric condition]

a(F)—a(C\F) <m(]F|—1) V C circuit, F C C odd.

» The metric condition is sufficient IFF G has no K3 minor.
1 —1/2 —1/2 -1/2
-1/2 1 -1/2 -1)2
“12 12 1 —12| 20
-1/2 -1/2 -1/2 1

while 2{(1, 1,1, 1) satisfies the triangle inequalities.
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Geometrically

» CUTH(G) C £(G), with equality IFF G has no K3 minor.
» £(G) C cos(m MET®}(G)), with equality IFF G has no K;

minor.

» £(G) C cos(m CUT(G)), with equality IFF G has no K;

minor.

» The Goemans-Williamson randomized rounding argument
shows: If v1,..., v, are unit vectors and a;; := arccos(v;" v;)
are their pairwise angles, then

E Cijajj < (@)

1<i<j<n

if c-z < ¢p is any inequality valid for the cuts of K.
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Extension to max k-cut [Frieze Jerrum 95]

Max k-cut: Given G = (V,E), w € RE k>2 find a partition
P = (51, .-, 5) maximizing w(P) = X ccle is cut by P We-

» Pick unit vectors ay, ..., ax € R¥ with a,-TaJ- = —ﬁ for i £ j.
~> Model max k-cut:

mck(G) = max kleeEWu(l—X;TXj)
s.t. xl,...,x,,e{al,...,ak}.

— k=15~ (1 — vy,
» SDP relax.: sdpi(G) = max = > p wii(1 — v, vj)

uni S |
s.t. v; unit vectors, v;' v; > i

» Randomized rounding: Pick k independent random unit
vectors r, ..., rg ~» partition P = (S1,..., Sx) where
Sh = {i | v,-Trh > V,-Tl’h/ Vh/}
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Analysis

» The probability that edge ij is not cut, i.e., v, v; are both
closer to the same ry, is equal to k times a function f(v;" v;).

E(w(P)) = Xjeewi(l - k(v v)))
1—kf(vlv)) k
1-vlv, k-1

%(1 - ViTVj)

= ZijeE Wij

Zak;:min_ 1 1—kf(t) Kk _

Lo<i<1 Tiot k-1
> ay sdpy(G).

—1

> ar = agw ~ 0.878: GW approximation ratio for max-cut.
a3 =5+ 4%2 arccos?(—1/4) > 0.836 [de Klerk et al.]
o100 > 0.99.
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