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Stable sets and graph coloring

G = (V,E) graph ~» G = (V, E): complementary graph.

» «(G)= maximum size of a stable set ~~ stability number
» w(G)= maximum size of a clique in G ~~ clique number
» x(G)= (vertex) coloring number of G.

v

xf(G)= fractional coloring number of G.

Lovasz' theta number:

v

B(G)=max J-X st. Tr(X)=1, X; =0 (j€E), X=0
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Approximating the Shannon capacity

» The strong product G-G’ has vertex set V x V'’ and
(v, w') € E(G-G')
)

(u=voruveE(G)) and (v =V or Vv € E(G)).

v

Shannon capacity: ©(G) := sup, v/a(G*) [Shannon 1956]
Product property: 9(G-G') = ¥(G) ¥(G').
Hence: ©(G) < 9J(G). [Lovasz 1979]

v

v

This permits to show: O(Cs) = /5.
Proof: o(C2) =5 and 9¥(Cs) = /5.

v

Open: ©(() =7
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Perfect graphs

Recall: w(G) < x(G).

Berge [1962] calls G perfect if w(G’) = x(G’) for all induced
subgraphs G’ of G.

Note: If G is perfect then no induced subgraph of G is an odd
circuit of length > 5 or its complement.

Perfect graph theorem [Lovdsz 1972]
G perfect <= G perfect.

Strong perfect graph theorem
[Chudnovsky-Robertson-Seymour-Thomas 2002]

G perfect <= no induced subgraph of G is an odd circuit of
length > 5 or its complement.
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Polyhedral characterization of perfect graphs

» Stable set polytope: STAB(G)= convex hull of incidence
vectors of all stable sets in G.

» Clique constrained polytope:
QSTAB(G) = {x e RY | x(C) <1 (C clique)}
Obviously, STAB(G) € QSTAB(G).
» Theorem [Fulkerson-Chvatal 1972/75]
STAB(G) = QSTAB(G) <= G is perfect.

But this does not help (yet) for optimization!

a(G)= max e'x < G) = max el x.
(6) xE€STAB(G) < xr(C) xEQSTAB(G)
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Finding a maximum stable set in a perfect graph is in P

» For G perfect, computing «(G) and x(G) is in P.
Proof: a(G) = 9(G) and x(G) = ¥(G).
» For G perfect, one can also find a maximum stable set in
polynomial time. [Grotschel-Lovédsz-Schrijver 1981]
e Order the vertices vi,..., v,.
e Construct graphs Gg:= G 2 G; D ... D Gp.

- If a(GO \ V1) = a(Go), set G1 = Gy \ %1
- otherwise, set G; = Gp.

- lterate. Then G, is a maximum stable set.

» Use SDP!
Open: Find a combinatorial algorithm?
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Finding a minimum vertex coloring in G perfect is in P

» |t suffices to find a stable set S meeting all max. size cliques.

Indeed, then color G\ S with w(G \ S) = w(G) — 1 colors,
and S with one more color  ~» w(G) coloring of G

» Strategy: Grow a list of (affinely independent) maximum size
cliques Q1,..., @, and a stable set S meeting each Q;.

To find such S, compute a maximum weight stable set S for
the weight function w :=>_/_, @

As G is perfect, w(S) = t, thus S meets each Q;.

» If w(G\ S) =w(G), find a maximum size clique Q41 in
G\ S and iterate.

» Else, S meets all maximum size cliques ~~ we are done.
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Geometric reformulation of the theta number

» The theta body TH(G) is defined as
Vv 1 XT . .
xeRY | 3X Y X =0, diag(X) =x, Xj =0 (ij € E)

> Obviously: STAB(G) C TH(G) C QSTAB(G)

» Theorem: G perfect <= TH(G) = STAB(G)
<= TH(G) = QSTAB(G)
<= TH(G) is a polytope.

» Geometric reformulation of the theta number:

9(G) = max e'x
x€TH(G)

= max Y Vi st Yo=1 Yu=VYi(ieV),

T
YESi jev

Yj=0(j€E).
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Dual formulations of the theta number

9(G) =max J-X st. [ X=1, X;=0(j€E), X=0

A
——

=min t st. tI+» E;j—J=0
iicE

—_—
-Y

Z ~~ tTIIZ:(u,qu-)
=min t st. tI+A—J>0, A,-J-:0(i:jorij€E)
=min Amax(Y) st. Yj=1(i=j orij€E)

=min t st. ujuj = —tfll (ij € E), uj unit vectors.

~ strict vector coloring
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Deriving the geometric formulation of ¥(G) via TH(G)

B
t el
Schur complement: B = 0 <= C := 1 =0
e I+ ;A
19(G) = rCn>|r(1) Coo st. Goi=GCi=1 (i € V), C,'j =0 (IJ S E)

iev
Lemma: If D is optimum then Dy; + D;; =0 Viec V.

Else multiply the ith row/column of D by —% ~ better objective.

Changing signs at positions 0i:
19(G) = rpgg% Yi st. Yoo=1, Yoi =Y (I € V), Y,'J' =0 (Ij € E)
= max e’ x s.t. x € TH(G).
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Reformulation of ¥(G) via orthonormal representations

Definition: An orthonormal representation (O.R.) of G is a set of
unit vectors u; (i € V) satisfying u,-TuJ- = 0 for nonedges ij.

Theorem:

1. Linear inequality description: TH(G) is equal to

{x eRY | Y ;cy(cTuj)?>x; <1 Ve, uj unit vectors
with u; O.R. of G}

2. Extreme point description: TH(G) is equal to

2

conv{((cTu1)?,...,(c"up)? ¢, u; unit vectors

with u; O.R. of G}.

Thus: TH(G) = {x € RY |y"x <1 Vy<c TH(G)}.
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Reciprocity property

Theorem: o(G)xr(G) > n, with equality if G is vertex transitive.

Theorem: ¥(G)J(G) > n, with equality if G is vertex transitive.
Corollary: 9(Cs) = /5.

> Let a=9(G), al +A—J =0, Aj=0ifi=jorijeE.
Let b=19(G), bl + B—J =0, Bj=0ifi=jorijcE.
Then, (al + A— J)o (bl + B—J) =0,
(al +A—J)oJ =0, Jo(bl +B—J)>=0.
Summing up: abl —J =0 = ab > n.

» Let x € TH(G) maximizing ¥(G), and let y € TH(G).
As G is vertex transitive, we may assume that x = ke.
Thus, 9(G) = kn.

Then, x'y <1 = kely<1= @'ﬁ(@) <1
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Strengthening the theta number

a(G) < Y¥(G) < ¥¢(G) < X(G)

Y(G) =max J-X st. X =0, Tr(X)=1, X;=0(ij€E)

1. Improve toward a(G) [McEliece et al. 78] [Schrijver 79]
Add nonnegativity conditions: X >0 ~ 9'(G)
2. Improve toward ¥(G) [Szegedy 94]
Relax the edge conditions: Xj; <0 (ij € E) ~ 97(G)
a(G) <¥'(G) <I(G) <I1(G) < x(G).

There are SDP hierarchies converging to a(G), xf(G), and x(G).
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How to get stronger bounds?

Y(G) = max ) ;. X s.t. Xisindexed by V U {0},
XEO, X()o:]., Xo,':X," (iE V), XUZO(UEE).

Generalization: For t € N, index X by Py :={I C V| |l| < t}.
Denote the empty set by 0.

las®(G) :=max ;.\, Xii st. X is indexed by P,
X =0, Xoo=1, Xjy=Xp gy fluJ=1u/,
X;y =0 if IUJ contains an edge.

Then: o(G) < las(9)(G), with equality if t > «(G).
Proof: S stable ~ X; ;=1if IUJC S, and X ; = 0 otherwise.
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Exploiting symmetry to compute the theta number

¥(G)=max J Xst. X =0, Tr(X)=1, X;=0(j€E), X>0
» G := Aut(G): permutations of V preserving the edges of G.
» The SDP defining J(G) is invariant under action of G:

X feasible = Vg e G g(X):= (Xg(i)g()) feasible
_— ﬁ deg g(X) feasible
with the same objective value.

~» We may assume that X is invariant under action of G:
Xij= Xy ifi' =g(i), j = g(j) forsome g €G.
> X = Z?’:l xtA¢, where A; are the 0/1 matrices corresponding

to the orbits of V' x V under action of G.
~ X € Ag: algebra of invariant matrices

~» SDP with N (# orbits) variables
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A first explicit symmetry reduction

~» One can write an explicit equivalent SDP with N variables

and N x N matrices. [de Klerk-Pasechnik-Schrijver 07]
H . A
> Rescale the matrix A;: By = TAA

~- orthormal basis of the algebra Ag of invariant matrices
» Multiplication parameters: B, B; = Z?’:l 7,*7th

> New N x N matrices: Ly = (7{,); (t=1,...,N)

r,s=1

Theorem: For xq,...,xy € R,

N N
ZXtAt > 0 <= ZXtLt > 0.

t=1 t=1
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Further symmetry reduction: block-diagonalization

~» One can find an equivalent block-diagonal SDP with N
variables and several smaller blocks.

Ag: algebra of V' x V matrices invariant under action of G.

Wedderburn theorem: There exists a unitary matrix U € CV*V
such that

S

UAgU* = @ CPr*Pr @ I, for some p1,qi,...,pPs,qs € N.

r=1 M
B 0 0
0 B ... 0
* = o .| | B € CP*Pr repeated g, times
0 0 ... B

S p? = N: # of orbits of V x V under action of G.
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Application to the coding problem

» Question: What is the maximum cardinality A(n, d) of a
code C C {0,1}" with minimum Hamming distance d 7

That is, dy(i,j) = |i @ j| > d for distinct i, j € C.

» Hamming graph H(n, d): vertex set V = {0,1}",
with edges the pairs (/,/) with dy(i,j) € [1,d — 1].

~» Compute A(n,d) = a(H(n, d)).

» The Hamming graph has a rich automorphism group:
- Permute the n coordinates.
- Flip any set of coordinates: i € V — g @ i.

~+ Algebra of invariant matrices: Ag = {> ] o x:A¢ | xt € R},
where (At)i,j =1 if dH(I,j) =t and (At)i,j =0 otherwise.
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Link of the theta number to the Delsarte bound

Recall: V ={0,1}", and A; is the V x V 0/1 matrix with entry 1
at positions with Hamming distance t.

Ag=1, 30 oA = J.

Fact: Ag is a commutative algebra of dimension n+ 1 (known
as the Bose-Mesner algebra).

Hence: All matrices in Ag have a common basis of eigenvectors.

Thus: One can reduce the computation of J(H(n, d)) from an
SDP with 2" x 2™ matrices to an LP with < n+ 1 variables and
constraints.

Theorem: [Mc Eliece et al. 1978] [Schrijver 1979]
¥ (H(n, d)) equals the LP bound introduced by Delsarte [1973].
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Strengthening the Delsarte bound via the Lasserre bounds

Hamming graph: G = H(n, d) with vertex set V ={0,1}"” and
with edges the pairs (i,/) with dy(i,j) € [1,d — 1].

» The SDP defining las(Y)(H(n, d)) involves matrices of order
o(2™).

» The number of orbits of P; under action of Aut(G) is
o(n?™ 1),

~ One can compute las()(H(n, d)) (to any precision) in time
polynomial in n for any fixed t.

Practically:
e t = 1: This is the theta number (= LP Delsarte bound).

e t = 2: Gijswijt-Schrijver-Mittelmann [2010] give the explicit
block-diagonalization of the algebra of invariant matrices, and
compute (a strengthening of) the SDP bound las®®)(H(n, d)) for n
up to 28 (for some values of d).
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... An earlier SDP bound via the Terwilliger algebra

Historically, for the coding problem:

» X is indexed by ), and all singletons.
~ 2-point bound (LP)

» X is indexed by (), all singletons, and all pairs.
~> 4-point bound (SDP)

» In-between: X is indexed by (), all singletons, and all pairs
containing a given element Jp. ~~ 3-point bound (SDP)

For the Hamming graph, the algebra of invariant matrices is
the Terwilliger algebra, of dimension O(n3), whose explicit
block-diagonalization was given by Schrijver [2005].

» The block-diagonalization technique has since been applied to
other problems (crossing number, quadratic assignment, etc. )
[Bachoc, de Klerk, Pasechnik , Rendl, Sotirov, Vallentin, etc.]
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Some numerical values for the coding problem

n | d | Delsarte || Schrijver || Gij-Mit-Sch | lower bound
(2-point) || (3-point) || (4-point)

19| 6 1289 1280 1237 1024
23| 6 13775 13766 13 674 8192
19| 8 145 142 135 128
20| 8 290 274 256 256
25| 8 6474 5477 5421 4096
26| 8 9672 9275 4096
22 | 10 95 87 84 64
25| 10 551 503 466 192
26 | 10 || 1040 886 836 384
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