Introduction to Semidefinite Programming II: Variations on the theta number MFO seminar on Semidefinite Programming

Monique Laurent - CWI - Amsterdam \& Tilburg University

May 30, 2010

Stable sets and graph coloring

$G=(V, E)$ graph $\rightsquigarrow \bar{G}=(V, \bar{E})$: complementary graph.

- $\alpha(G)=$ maximum size of a stable set \rightsquigarrow stability number
- $\omega(G)=$ maximum size of a clique in $G \quad \rightsquigarrow$ clique number
- $\chi(G)=$ (vertex) coloring number of G.
- $\chi_{f}(G)=$ fractional coloring number of G.
- Lovász' theta number:

$$
\vartheta(G)=\max J \cdot X \quad \text { s.t. } \quad \operatorname{Tr}(X)=1, \quad X_{i j}=0(i j \in E), X \succeq 0
$$

Sandwich theorem: $\alpha(G) \leq \vartheta(G) \leq \chi_{f}(\bar{G}) \leq \chi(\bar{G})$.

Approximating the Shannon capacity

- The strong product $G \cdot G^{\prime}$ has vertex set $V \times V^{\prime}$ and

$$
\begin{gathered}
\left(u u^{\prime}, v v^{\prime}\right) \in E\left(G \cdot G^{\prime}\right) \\
(u=v \text { or } u v \in E(G)) \text { and }\left(u^{\prime}=v^{\prime} \text { or } u^{\prime} v^{\prime} \in E\left(G^{\prime}\right)\right) .
\end{gathered}
$$

- Shannon capacity: $\Theta(G):=\sup _{k} \sqrt[k]{\alpha\left(G^{k}\right)} \quad$ [Shannon 1956]
- Product property: $\vartheta\left(G \cdot G^{\prime}\right)=\vartheta(G) \vartheta\left(G^{\prime}\right)$.

Hence: $\Theta(G) \leq \vartheta(G)$.
[Lovász 1979]

- This permits to show: $\Theta\left(C_{5}\right)=\sqrt{5}$.

Proof: $\alpha\left(C_{5}^{2}\right)=5$ and $\vartheta\left(C_{5}\right)=\sqrt{5}$.

- Open: $\Theta\left(C_{7}\right)=$?

Perfect graphs

Recall: $\omega(G) \leq \chi(G)$.

Berge [1962] calls G perfect if $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$ for all induced subgraphs G^{\prime} of G.

Note: If G is perfect then no induced subgraph of G is an odd circuit of length ≥ 5 or its complement.

Perfect graph theorem [Lovász 1972]
G perfect $\Longleftrightarrow \bar{G}$ perfect.

Strong perfect graph theorem

[Chudnovsky-Robertson-Seymour-Thomas 2002]
G perfect \Longleftrightarrow no induced subgraph of G is an odd circuit of length ≥ 5 or its complement.

Polyhedral characterization of perfect graphs

- Stable set polytope: $\operatorname{STAB}(G)=$ convex hull of incidence vectors of all stable sets in G.
- Clique constrained polytope:

$$
Q \operatorname{STAB}(G)=\left\{x \in \mathbb{R}_{+}^{V} \mid x(C) \leq 1 \quad(C \text { clique })\right\}
$$

Obviously, $\operatorname{STAB}(G) \subseteq Q S T A B(G)$.

- Theorem [Fulkerson-Chvatal 1972/75]

$$
\operatorname{STAB}(G)=Q \operatorname{STAB}(G) \Longleftrightarrow G \text { is perfect. }
$$

But this does not help (yet) for optimization!

$$
\alpha(G)=\max _{x \in \operatorname{STAB}(G)} e^{T} x \leq \chi_{f}(\bar{G})=\max _{x \in \operatorname{QSTAB}(G)} e^{T} x
$$

Finding a maximum stable set in a perfect graph is in P

- For G perfect, computing $\alpha(G)$ and $\chi(G)$ is in P.

$$
\text { Proof: } \alpha(G)=\vartheta(G) \text { and } \chi(G)=\vartheta(\bar{G})
$$

- For G perfect, one can also find a maximum stable set in polynomial time. [Grötschel-Lovász-Schrijver 1981]
- Order the vertices v_{1}, \ldots, v_{n}.
- Construct graphs $G_{0}:=G \supseteq G_{1} \supseteq \ldots \supseteq G_{n}$.
- If $\alpha\left(G_{0} \backslash v_{1}\right)=\alpha\left(G_{0}\right)$, set $G_{1}=G_{0} \backslash v_{1}$
- otherwise, set $G_{1}=G_{0}$.
- Iterate. Then G_{n} is a maximum stable set.
- Use SDP!

Open: Find a combinatorial algorithm?

Finding a minimum vertex coloring in G perfect is in P

- It suffices to find a stable set S meeting all max. size cliques. Indeed, then color $G \backslash S$ with $\omega(G \backslash S)=\omega(G)-1$ colors, and S with one more color $\rightsquigarrow \omega(G)$ coloring of G
- Strategy: Grow a list of (affinely independent) maximum size cliques Q_{1}, \ldots, Q_{t}, and a stable set S meeting each Q_{i}.

To find such S, compute a maximum weight stable set S for the weight function $w:=\sum_{i=1}^{t} \chi^{Q_{i}}$.

As G is perfect, $w(S)=t$, thus S meets each Q_{i}.

- If $\omega(G \backslash S)=\omega(G)$, find a maximum size clique Q_{t+1} in $G \backslash S$ and iterate.
- Else, S meets all maximum size cliques \rightsquigarrow we are done.

Geometric reformulation of the theta number

- The theta body $\operatorname{TH}(G)$ is defined as

$$
\left\{x \in \mathbb{R}^{V} \left\lvert\, \exists X\left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq 0\right., \operatorname{diag}(X)=x, X_{i j}=0(i j \in E)\right\}
$$

- Obviously: $\operatorname{STAB}(G) \subseteq \operatorname{TH}(G) \subseteq Q S T A B(G)$
- Theorem: G perfect $\Longleftrightarrow \mathrm{TH}(G)=\operatorname{STAB}(G)$

$$
\begin{aligned}
& \Longleftrightarrow \mathrm{TH}(G)=Q \operatorname{STAB}(G) \\
& \Longleftrightarrow \mathrm{TH}(G) \text { is a polytope. }
\end{aligned}
$$

- Geometric reformulation of the theta number:

$$
\begin{aligned}
& \vartheta(G)= \max _{x \in \operatorname{TH}(G)} e^{T} x \\
&=\max _{Y \in \mathcal{S}_{n+1}^{+}} \sum_{i \in V} Y_{i i} \text { s.t. } \quad Y_{00}=1, \quad Y_{0 i}=Y_{i i}(i \in V), \\
& Y_{i j}=0(i j \in E) .
\end{aligned}
$$

Dual formulations of the theta number

$$
\begin{aligned}
& \vartheta(G)=\max J \cdot X \text { s.t. } I \cdot X=1, X_{i j}=0(i j \in E), X \succeq 0 \\
&=\min t \text { s.t. } \quad t I+\overbrace{Z \rightsquigarrow \underbrace{\sum_{i j \in E}^{E_{i j}}}_{i \neq Y}-J}^{\underbrace{A}_{-Y}} \succeq 0 \\
&=\min t \text { s.t. } \quad t l+A-J \succeq 0, A_{i j}=0(i=j \text { or } i j \in \bar{E}) \\
&=\min \lambda_{\max }(Y) \text { s.t. } \quad Y_{i j}=1(i=j \text { or } i j \in \bar{E}) \\
&=\min t \text { s.t. } \quad u_{i} \cdot u_{j}=-\frac{1}{t-1}(i j \in \bar{E}), u_{j} \text { unit vectors. } \\
& \rightsquigarrow \text { strict vector coloring }
\end{aligned}
$$

Deriving the geometric formulation of $\vartheta(G)$ via $\mathrm{TH}(G)$

$$
\vartheta(G)=\min t \text { s.t. } \underbrace{t \mid+A-J}_{B} \succeq 0, A_{i j}=0(i=j \text { or } i j \in \bar{E}) .
$$

Schur complement: $B \succeq 0 \Longleftrightarrow C:=\left(\begin{array}{cc}t & e^{T} \\ e & I+\frac{1}{t} A\end{array}\right) \succeq 0$

$$
\begin{aligned}
\vartheta(G) & =\min _{C \succeq 0} C_{00} \text { s.t. } \quad C_{0 i}=C_{i i}=1(i \in V), C_{i j}=0(i j \in \bar{E}) \\
& =\max _{D \succeq 0}-\sum_{i \in V}\left(2 D_{0 i}+D_{i i}\right) \text { s.t. } D_{00}=1, \quad D_{i j}=0(i j \in E)
\end{aligned}
$$

Lemma: If D is optimum then $D_{0 i}+D_{i i}=0 \quad \forall i \in V$.
Else multiply the i th row/column of D by $-\frac{D_{0 i}}{D_{i i}} \rightsquigarrow$ better objective.
Changing signs at positions $0 i$:

$$
\begin{aligned}
\vartheta(G) & =\max _{Y \succeq 0} \sum_{i \in V} Y_{i i} \text { s.t. } Y_{00}=1, \quad Y_{0 i}=Y_{i i}(i \in V), \quad Y_{i j}=0(i j \in E) \\
& =\quad \max e^{T} x \text { s.t. } x \in \mathrm{TH}(G) .
\end{aligned}
$$

Reformulation of $\vartheta(G)$ via orthonormal representations

Definition: An orthonormal representation (O.R.) of G is a set of unit vectors $u_{i}(i \in V)$ satisfying $u_{i}^{T} u_{j}=0$ for nonedges $i j$.

Theorem:

1. Linear inequality description: $\mathrm{TH}(G)$ is equal to

$$
\left\{x \in \mathbb{R}^{V} \mid \sum_{i \in V}\left(c^{T} u_{i}\right)^{2} x_{i} \leq 1 \quad \forall c, u_{i} \text { unit vectors } \quad \text { with } u_{i} \text { O.R. of } G\right\}
$$

2. Extreme point description: $\operatorname{TH}(\bar{G})$ is equal to

$$
\begin{array}{ll}
\operatorname{conv}\left\{\left(\left(c^{\top} u_{1}\right)^{2}, \ldots,\left(c^{T} u_{n}\right)^{2}\right) \mid\right. & c, u_{i} \text { unit vectors } \\
& \text { with } \left.u_{i} \text { O.R. of } G\right\} .
\end{array}
$$

Thus: $\operatorname{TH}(G)=\left\{x \in \mathbb{R}^{V} \mid y^{\top} x \leq 1 \quad \forall y \in \operatorname{TH}(\bar{G})\right\}$.

Reciprocity property

Theorem: $\alpha(G) \chi_{f}(G) \geq n$, with equality if G is vertex transitive.
Theorem: $\vartheta(G) \vartheta(\bar{G}) \geq n$, with equality if G is vertex transitive.
Corollary: $\vartheta\left(C_{5}\right)=\sqrt{5}$.

- Let $a=\vartheta(G), a l+A-J \succeq 0, A_{i j}=0$ if $i=j$ or $i j \in \bar{E}$.

Let $b=\vartheta(\bar{G}), b I+B-J \succeq 0, B_{i j}=0$ if $i=j$ or $i j \in E$.
Then, $(a l+A-J) \circ(b l+B-J) \succeq 0$,

$$
(a l+A-J) \circ J \succeq 0, J \circ(b I+B-J) \succeq 0 .
$$

Summing up: $a b l-J \succeq 0 \Longrightarrow a b \geq n$.

- Let $x \in \operatorname{TH}(G)$ maximizing $\vartheta(G)$, and let $y \in \operatorname{TH}(\bar{G})$. As G is vertex transitive, we may assume that $x=k e$. Thus, $\vartheta(G)=k n$.
Then, $x^{T} y \leq 1 \Longrightarrow k e^{T} y \leq 1 \Longrightarrow \frac{\vartheta(G)}{n} \vartheta(\bar{G}) \leq 1$.

Strengthening the theta number

$$
\begin{aligned}
& \qquad \alpha(G) \leq \vartheta(G) \leq \bar{\chi}_{f}(G) \leq \bar{\chi}(G) \\
& \vartheta(G)=\max J \cdot X \text { s.t. } X \succeq 0, \operatorname{Tr}(X)=1, X_{i j}=0(i j \in E) \\
& \text { 1. Improve toward } \alpha(G) \text { [McEliece et al. 78] [Schrijver 79] } \\
& \text { Add nonnegativity conditions: } X \geq 0 \\
& \text { 2. Improve toward } \bar{\chi}(G) \text { [Szegedy } 94] \\
& \text { Relax the edge conditions: } X_{i j} \leq 0 \quad(i j \in E) \\
& \qquad \alpha(G) \leq \vartheta^{\prime}(G) \leq \vartheta(G) \leq \vartheta^{+}(G) \leq \bar{\chi}(G) .
\end{aligned}
$$

There are SDP hierarchies converging to $\alpha(G), \chi_{f}(G)$, and $\chi(G)$.

How to get stronger bounds?

$$
\begin{aligned}
& \vartheta(G)=\max \sum_{i \in V} X_{i i} \text { s.t. } X \text { is indexed by } V \cup\{0\}, \\
& X \succeq 0, \quad X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0(i j \in E) .
\end{aligned}
$$

Generalization: For $t \in \mathbb{N}$, index X by $\mathcal{P}_{t}:=\{I \subseteq V| | I \mid \leq t\}$. Denote the empty set by 0 .

$$
\begin{gathered}
\operatorname{las}^{(\mathbf{t})}(\mathbf{G}):=\max \sum_{i \in V} X_{i i} \text { s.t. } X \text { is indexed by } \mathcal{P}_{t}, \\
X \succeq 0, X_{00}=1, X_{I, J}=X_{I^{\prime}, J^{\prime}} \quad \text { if } I \cup J=I^{\prime} \cup J^{\prime} \\
X_{I, J}=0 \text { if } I \cup J \text { contains an edge. }
\end{gathered}
$$

Then: $\alpha(G) \leq \operatorname{las}^{(t)}(G)$, with equality if $t \geq \alpha(G)$.
Proof: S stable $\rightsquigarrow X_{I, J}=1$ if $I \cup J \subseteq S$, and $X_{I, J}=0$ otherwise.

Exploiting symmetry to compute the theta number

$\vartheta^{\prime}(G)=\max J \cdot X$ s.t. $X \succeq 0, \operatorname{Tr}(X)=1, X_{i j}=0(i j \in E), X \geq 0$

- $\mathcal{G}:=\operatorname{Aut}(G):$ permutations of V preserving the edges of G.
- The SDP defining $\vartheta(G)$ is invariant under action of \mathcal{G} :

$$
\begin{aligned}
X \text { feasible } & \Longrightarrow \forall g \in \mathcal{G} \quad g(X):=\left(X_{g(i), g(j)}\right) \text { feasible } \\
\Longrightarrow & \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g(X) \text { feasible } \\
& \text { with the same objective value. }
\end{aligned}
$$

\rightsquigarrow We may assume that X is invariant under action of \mathcal{G} :

$$
X_{i, j}=X_{i^{\prime}, j^{\prime}} \text { if } i^{\prime}=g(i), j^{\prime}=g(j) \text { for some } g \in \mathcal{G}
$$

- $X=\sum_{t=1}^{N} x_{t} A_{t}$, where A_{t} are the $0 / 1$ matrices corresponding to the orbits of $V \times V$ under action of \mathcal{G}.
$\rightsquigarrow X \in \mathcal{A}_{\mathcal{G}}$: algebra of invariant matrices
\rightsquigarrow SDP with N (\# orbits) variables

A first explicit symmetry reduction

\rightsquigarrow One can write an explicit equivalent SDP with N variables and $N \times N$ matrices. [de Klerk-Pasechnik-Schrijver 07]

- Rescale the matrix $A_{t}: \quad B_{t}:=\frac{A_{t}}{\sqrt{A_{t} \cdot A_{t}}}$
\rightsquigarrow orthormal basis of the algebra $\mathcal{A}_{\mathcal{G}}$ of invariant matrices
- Multiplication parameters: $B_{r} B_{s}=\sum_{t=1}^{N} \gamma_{r, s}^{t} B_{t}$
- New $N \times N$ matrices: $L_{t}=\left(\gamma_{t, s}^{r}\right)_{r, s=1}^{N} \quad(t=1, \ldots, N)$

Theorem: For $x_{1}, \ldots, x_{N} \in \mathbb{R}$,

$$
\sum_{t=1}^{N} x_{t} A_{t} \succeq 0 \Longleftrightarrow \sum_{t=1}^{N} x_{t} L_{t} \succeq 0
$$

Further symmetry reduction: block-diagonalization

\rightsquigarrow One can find an equivalent block-diagonal SDP with N variables and several smaller blocks.
$\mathcal{A}_{\mathcal{G}}$: algebra of $V \times V$ matrices invariant under action of \mathcal{G}.
Wedderburn theorem: There exists a unitary matrix $U \in \mathbb{C}^{V \times V}$ such that

$$
\begin{aligned}
& U \mathcal{A}_{\mathcal{G}} U^{*}=\bigoplus_{r=1}^{s} \underbrace{\mathbb{C}^{p_{r} \times p_{r}} \otimes I_{q_{r}}}_{*} \text { for some } p_{1}, q_{1}, \ldots, p_{s}, q_{s} \in \mathbb{N} . \\
& *=\left\{\left.\left(\begin{array}{cccc}
B & 0 & \ldots & 0 \\
0 & B & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & B
\end{array}\right) \right\rvert\, B \in \mathbb{C}^{p_{r} \times p_{r}} \text { repeated } q_{r} \text { times }\right\}
\end{aligned}
$$

$\sum_{r=1}^{s} p_{r}^{2}=N: \#$ of orbits of $V \times V$ under action of \mathcal{G}.

Application to the coding problem

- Question: What is the maximum cardinality $A(n, d)$ of a code $C \subseteq\{0,1\}^{n}$ with minimum Hamming distance d ?

That is, $d_{H}(i, j)=|i \oplus j| \geq d$ for distinct $i, j \in C$.

- Hamming graph $H(n, d)$: vertex set $V=\{0,1\}^{n}$, with edges the pairs (i, j) with $d_{H}(i, j) \in[1, d-1]$. \rightsquigarrow Compute $A(n, d)=\alpha(H(n, d))$.
- The Hamming graph has a rich automorphism group:
- Permute the n coordinates.
- Flip any set of coordinates: $i \in V \mapsto i_{0} \oplus i$.
\rightsquigarrow Algebra of invariant matrices: $\mathcal{A}_{\mathcal{G}}=\left\{\sum_{t=0}^{n} x_{t} A_{t} \mid x_{t} \in \mathbb{R}\right\}$, where $\left(A_{t}\right)_{i, j}=1$ if $d_{H}(i, j)=t$ and $\left(A_{t}\right)_{i, j}=0$ otherwise.

Link of the theta number to the Delsarte bound

Recall: $V=\{0,1\}^{n}$, and A_{t} is the $V \times V 0 / 1$ matrix with entry 1 at positions with Hamming distance t.
$A_{0}=I, \sum_{t=0}^{n} A_{t}=J$.
Fact: $\mathcal{A}_{\mathcal{G}}$ is a commutative algebra of dimension $n+1$ (known as the Bose-Mesner algebra).

Hence: All matrices in $\mathcal{A}_{\mathcal{G}}$ have a common basis of eigenvectors.
Thus: One can reduce the computation of $\vartheta(H(n, d))$ from an SDP with $2^{n} \times 2^{n}$ matrices to an $L P$ with $\leq n+1$ variables and constraints.

Theorem: [Mc Eliece et al. 1978] [Schrijver 1979] $\vartheta^{\prime}(H(n, d))$ equals the LP bound introduced by Delsarte [1973].

Strengthening the Delsarte bound via the Lasserre bounds

Hamming graph: $G=H(n, d)$ with vertex set $V=\{0,1\}^{n}$ and with edges the pairs (i, j) with $d_{H}(i, j) \in[1, d-1]$.

- The SDP defining las ${ }^{(t)}(H(n, d))$ involves matrices of order $O\left(2^{n t}\right)$.
- The number of orbits of \mathcal{P}_{t} under action of $\operatorname{Aut}(G)$ is $O\left(n^{2 t-1}-1\right)$.
\rightsquigarrow One can compute las ${ }^{(t)}(H(n, d))$ (to any precision) in time polynomial in n for any fixed t.

Practically:

- $t=1$: This is the theta number (= LP Delsarte bound).
- $t=2$: Gijswijt-Schrijver-Mittelmann [2010] give the explicit block-diagonalization of the algebra of invariant matrices, and compute (a strengthening of) the SDP bound $\operatorname{las}^{(2)}(H(n, d))$ for n up to 28 (for some values of d).

... An earlier SDP bound via the Terwilliger algebra

Historically, for the coding problem:

- X is indexed by \emptyset, and all singletons.
$\rightsquigarrow 2$-point bound (LP)
- X is indexed by \emptyset, all singletons, and all pairs.
$\rightsquigarrow 4$-point bound (SDP)
- In-between: X is indexed by \emptyset, all singletons, and all pairs containing a given element i_{0}. $\quad \rightsquigarrow 3$-point bound (SDP)

For the Hamming graph, the algebra of invariant matrices is the Terwilliger algebra, of dimension $O\left(n^{3}\right)$, whose explicit block-diagonalization was given by Schrijver [2005].

- The block-diagonalization technique has since been applied to other problems (crossing number, quadratic assignment, etc.) [Bachoc, de Klerk, Pasechnik, Rendl, Sotirov, Vallentin, etc.]

Some numerical values for the coding problem

n	d	Delsarte (2-point)	Schrijver (3-point)	Gij-Mit-Sch (4-point)	lower bound
19	6	1289	1280	1237	1024
23	6	13775	13766	13674	8192
19	8	145	142	135	128
20	8	290	274	$\mathbf{2 5 6}$	$\mathbf{2 5 6}$
25	8	6474	5477	5421	4096
26	8		9672	9275	4096
22	10	95	87	84	64
25	10	551	503	466	192
26	10	1040	886	836	384

