Introduction to Semidefinite Programming II: Variations on the theta number MFO seminar on Semidefinite Programming

Monique Laurent - CWI - Amsterdam & Tilburg University

May 30, 2010

Stable sets and graph coloring

$$G = (V, E)$$
 graph $\rightsquigarrow \overline{G} = (V, \overline{E})$: complementary graph.

- $\alpha(G)$ = maximum size of a stable set \rightsquigarrow stability number
- $\omega(G)$ = maximum size of a clique in $G \longrightarrow$ clique number
- $\chi(G) = (vertex)$ coloring number of G.
- $\chi_f(G)$ = fractional coloring number of G.
- Lovász' theta number:

 $\vartheta(G) = \max J \cdot X \text{ s.t. } Tr(X) = 1, X_{ij} = 0 \ (ij \in E), X \succeq 0$

Sandwich theorem: $\alpha(G) \leq \vartheta(G) \leq \chi_f(\overline{G}) \leq \chi(\overline{G})$.

Approximating the Shannon capacity

- ► The strong product $G \cdot G'$ has vertex set $V \times V'$ and $(uu', vv') \in E(G \cdot G')$ $(u = v \text{ or } uv \in E(G)) \text{ and } (u' = v' \text{ or } u'v' \in E(G')).$
- ► Shannon capacity: $\Theta(G) := \sup_k \sqrt[k]{\alpha(G^k)}$ [Shannon 1956]
- ▶ Product property: $\vartheta(G \cdot G') = \vartheta(G) \ \vartheta(G')$. Hence: $\Theta(G) \le \vartheta(G)$. [Lovász 1979]
- This permits to show: $\Theta(C_5) = \sqrt{5}$. **Proof:** $\alpha(C_5^2) = 5$ and $\vartheta(C_5) = \sqrt{5}$.
- ▶ Open: Θ(C₇) =?

Recall: $\omega(G) \leq \chi(G)$.

Berge [1962] calls G **perfect** if $\omega(G') = \chi(G')$ for all induced subgraphs G' of G.

Note: If G is perfect then no induced subgraph of G is an odd circuit of length ≥ 5 or its complement.

Perfect graph theorem [Lovász 1972] *G* perfect $\iff \overline{G}$ perfect.

Strong perfect graph theorem

[Chudnovsky-Robertson-Seymour-Thomas 2002]

G perfect \iff no induced subgraph of G is an odd circuit of length \geq 5 or its complement.

Polyhedral characterization of perfect graphs

- ► Stable set polytope: STAB(G) = convex hull of incidence vectors of all stable sets in G.
- Clique constrained polytope:

QSTAB $(G) = \{x \in \mathbb{R}^V_+ \mid x(C) \leq 1 \ (C \text{ clique})\}$

Obviously, $STAB(G) \subseteq QSTAB(G)$.

► Theorem [Fulkerson-Chvatal 1972/75]

 $STAB(G) = QSTAB(G) \iff G$ is perfect.

But this does not help (yet) for optimization!

$$\alpha(G) = \max_{x \in \text{STAB}(G)} e^T x \leq \chi_f(\overline{G}) = \max_{x \in Q \text{STAB}(G)} e^T x.$$

Finding a maximum stable set in a perfect graph is in P

- For G perfect, computing α(G) and χ(G) is in P.
 Proof: α(G) = ϑ(G) and χ(G) = ϑ(G).
- ► For *G* perfect, one can also find a maximum stable set in polynomial time. [Grötschel-Lovász-Schrijver 1981]
 - Order the vertices v_1, \ldots, v_n .
 - Construct graphs $G_0 := G \supseteq G_1 \supseteq \ldots \supseteq G_n$.
 - If $\alpha(\mathsf{G}_0 \setminus \mathsf{v}_1) = \alpha(\mathsf{G}_0)$, set $\mathsf{G}_1 = \mathsf{G}_0 \setminus \mathsf{v}_1$
 - otherwise, set $G_1 = G_0$.
 - Iterate. Then G_n is a maximum stable set.
- Use SDP!
 - **Open:** Find a combinatorial algorithm?

Finding a minimum vertex coloring in G perfect is in P

- It suffices to find a stable set S meeting all max. size cliques. Indeed, then color G \ S with ω(G \ S) = ω(G) − 1 colors, and S with one more color → ω(G) coloring of G
- ► Strategy: Grow a list of (affinely independent) maximum size cliques Q₁,..., Q_t, and a stable set S meeting each Q_i.

To find such *S*, *compute* a maximum weight stable set *S* for the weight function $w := \sum_{i=1}^{t} \chi^{Q_i}$.

As G is perfect, w(S) = t, thus S meets each Q_i .

- If $\omega(G \setminus S) = \omega(G)$, find a maximum size clique Q_{t+1} in $G \setminus S$ and iterate.
- ► Else, *S* meets all maximum size cliques ~→ we are done.

Geometric reformulation of the theta number

▶ The theta body TH(G) is defined as

$$\left\{x \in \mathbb{R}^{V} \mid \exists X \ \begin{pmatrix} 1 & x^{T} \\ x & X \end{pmatrix} \succeq 0, \ \operatorname{diag}(X) = x, \ X_{ij} = 0 \ (ij \in E)\right\}$$

• **Obviously:** $STAB(G) \subseteq TH(G) \subseteq QSTAB(G)$

▶ **Theorem:** *G* perfect
$$\iff$$
 TH(*G*) = STAB(*G*)
 \iff TH(*G*) = *Q*STAB(*G*)
 \iff TH(*G*) is a polytope.

Geometric reformulation of the theta number:

$$\vartheta(G) = \max_{x \in \mathrm{TH}(G)} e^T x$$

$$= \max_{Y \in \mathcal{S}_{n+1}^+} \sum_{i \in V} Y_{ii} \text{ s.t. } Y_{00} = 1, Y_{0i} = Y_{ii} (i \in V),$$
$$Y_{ij} = 0 (ij \in E).$$

Introduction to Semidefinite Programming II: Variations on th

Dual formulations of the theta number

$$artheta(G)$$
 = max J·X s.t. $I \cdot X = 1, \ X_{ij} = 0 \ (ij \in E), \ X \succeq 0$

= min t s.t. $tI + A - J \succeq 0$, $A_{ij} = 0$ $(i = j \text{ or } ij \in \overline{E})$

$$= \min \lambda_{\max}(Y) \text{ s.t. } Y_{ij} = 1 \ (i = j \text{ or } ij \in \overline{E})$$

= min t s.t. $u_i \cdot u_j = -\frac{1}{t-1}$ $(ij \in \overline{E})$, u_j unit vectors. \rightsquigarrow strict vector coloring

Deriving the geometric formulation of $\vartheta(G)$ via $\operatorname{TH}(G)$

$$\vartheta(G) = \min t \text{ s.t. } \underbrace{tI + A - J}_{B} \succeq 0, A_{ij} = 0 \ (i = j \text{ or } ij \in \overline{E}).$$

Schur complement: $B \succeq 0 \iff C := \begin{pmatrix} t & e^T \\ e & I + \frac{1}{t}A \end{pmatrix} \succeq 0$

$$\begin{split} \vartheta(G) &= \min_{\substack{C \succeq 0 \\ D \succeq 0}} C_{00} \quad \text{s.t.} \quad C_{0i} = C_{ii} = 1 \ (i \in V), \ C_{ij} = 0 \ (ij \in \bar{E}) \\ &= \max_{\substack{D \succeq 0 \\ D \succeq 0}} -\sum_{i \in V} (2D_{0i} + D_{ii}) \quad \text{s.t.} \ D_{00} = 1, \ D_{ij} = 0 \ (ij \in E) \end{split}$$

Lemma: If *D* is optimum then $D_{0i} + D_{ii} = 0 \quad \forall i \in V$.

Else multiply the *i*th row/column of D by $-\frac{D_{0i}}{D_{ii}} \rightarrow$ better objective.

Changing signs at positions 0*i*:

$$\vartheta(G) = \max_{Y \succeq 0} \sum_{i \in V} Y_{ii}$$
 s.t. $Y_{00} = 1$, $Y_{0i} = Y_{ii}$ $(i \in V)$, $Y_{ij} = 0$ $(ij \in E)$
 $= \max e^T x$ s.t. $x \in TH(G)$.

Reformulation of $\vartheta(G)$ via orthonormal representations

Definition: An orthonormal representation (O.R.) of G is a set of unit vectors u_i ($i \in V$) satisfying $u_i^T u_j = 0$ for nonedges ij.

Theorem:

1. Linear inequality description: TH(G) is equal to

$$\{x \in \mathbb{R}^{V} \mid \sum_{i \in V} (c^{T} u_{i})^{2} x_{i} \leq 1 \quad \forall c, u_{i} \text{ unit vectors} \\ \text{with } u_{i} \text{ O.R. of } G\}$$

2. Extreme point description: $TH(\bar{G})$ is equal to

conv{
$$((c^T u_1)^2, \dots, (c^T u_n)^2) | c, u_i \text{ unit vectors} with $u_i \text{ O.R. of } G$ }$$

Thus:
$$\operatorname{TH}(G) = \{ x \in \mathbb{R}^V \mid y^T x \leq 1 \quad \forall y \in \operatorname{TH}(\overline{G}) \}.$$

Reciprocity property

Theorem: $\alpha(G)\chi_f(G) \ge n$, with equality if G is vertex transitive.

Theorem: $\vartheta(G)\vartheta(\overline{G}) \ge n$, with equality if G is vertex transitive. **Corollary:** $\vartheta(C_5) = \sqrt{5}$.

▶ Let
$$a = \vartheta(G)$$
, $al + A - J \succeq 0$, $A_{ij} = 0$ if $i = j$ or $ij \in \overline{E}$.
Let $b = \vartheta(\overline{G})$, $bl + B - J \succeq 0$, $B_{ij} = 0$ if $i = j$ or $ij \in E$.
Then, $(al + A - J) \circ (bl + B - J) \succeq 0$,
 $(al + A - J) \circ J \succeq 0$, $J \circ (bl + B - J) \succeq 0$.
Summing up: $abl - J \succeq 0 \Longrightarrow ab \ge n$.

Let x ∈ TH(G) maximizing ϑ(G), and let y ∈ TH(G).
 As G is vertex transitive, we may assume that x = ke.
 Thus, ϑ(G) = kn.
 Then, x^Ty ≤ 1 ⇒ k e^Ty ≤ 1 ⇒ ^{ϑ(G)}/_n ϑ(G) ≤ 1.

$$\alpha(G) \leq \vartheta(G) \leq \bar{\chi}_f(G) \leq \bar{\chi}(G)$$

$$artheta(G) = \max \ J \cdot X \ ext{ s.t. } X \succeq 0, \ extsf{Tr}(X) = 1, \ X_{ij} = 0 \ (ij \in E)$$

- 1. Improve toward $\alpha(G)$ [McEliece et al. 78] [Schrijver 79] Add nonnegativity conditions: $X \ge 0 \qquad \rightsquigarrow \vartheta'(G)$
- 2. Improve toward $\bar{\chi}(G)$ [Szegedy 94] Relax the edge conditions: $X_{ij} \leq 0$ $(ij \in E) \longrightarrow \vartheta^+(G)$

$$\alpha(\mathsf{G}) \leq \vartheta'(\mathsf{G}) \leq \vartheta(\mathsf{G}) \leq \vartheta^+(\mathsf{G}) \leq \bar{\chi}(\mathsf{G}).$$

There are SDP hierarchies converging to $\alpha(G)$, $\chi_f(G)$, and $\chi(G)$.

$$\begin{array}{l} \vartheta(G) = \max \sum_{i \in V} X_{ii} \quad \text{s.t.} \quad X \text{ is indexed by } V \cup \{0\}, \\ X \succeq 0, \quad X_{00} = 1, \quad X_{0i} = X_{ii} \ (i \in V), \quad X_{ij} = 0 \ (ij \in E). \end{array}$$

Generalization: For $t \in \mathbb{N}$, index X by $\mathcal{P}_t := \{I \subseteq V \mid |I| \le t\}$. Denote the empty set by 0.

$$\begin{aligned} & \operatorname{las}^{(t)}(\mathbf{G}) := \max \ \sum_{i \in V} X_{ii} \quad \text{s.t. } X \text{ is indexed by } \mathcal{P}_t, \\ & X \succeq 0, \ X_{00} = 1, \ X_{I,J} = X_{I',J'} \quad \text{if } I \cup J = I' \cup J', \\ & X_{I,J} = 0 \quad \text{if } I \cup J \text{ contains an edge.} \\ & \alpha(G) \leq \operatorname{las}^{(t)}(G), \text{ with equality if } t \geq \alpha(G). \end{aligned}$$

Proof: S stable $\rightsquigarrow X_{I,J} = 1$ if $I \cup J \subseteq S$, and $X_{I,J} = 0$ otherwise.

Then:

Exploiting symmetry to compute the theta number

$$artheta'(G)={\sf max}~J{\cdot}X~{\sf s.t.}~X\succeq 0,~{\it Tr}(X)=1,~X_{ij}=0~(ij\in E),~X\geq 0$$

- $\mathcal{G} := \operatorname{Aut}(\mathcal{G})$: permutations of V preserving the edges of \mathcal{G} .
- The SDP defining $\vartheta(G)$ is invariant under action of \mathcal{G} :

$$\begin{array}{ll} X \text{ feasible} & \Longrightarrow \forall g \in \mathcal{G} \ g(X) := (X_{g(i),g(j)}) \text{ feasible} \\ & \Longrightarrow \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g(X) \text{ feasible} \\ & \text{ with the same objective value.} \end{array}$$

 \rightsquigarrow We may assume that X is invariant under action of \mathcal{G} :

$$X_{i,j}=X_{i',j'} \hspace{0.2cm} ext{if} \hspace{0.2cm} i'=g(i), \hspace{0.2cm} j'=g(j) \hspace{0.2cm} ext{for some} \hspace{0.2cm} g\in \mathcal{G}.$$

• $X = \sum_{t=1}^{N} x_t A_t$, where A_t are the 0/1 matrices corresponding to the orbits of $V \times V$ under action of \mathcal{G} .

 $\rightsquigarrow X \in \mathcal{A}_{\mathcal{G}}: \text{ algebra of invariant matrices}$

 \rightsquigarrow SDP with N (# orbits) variables

A first explicit symmetry reduction

 \rightarrow One can write an explicit equivalent SDP with *N* variables and *N* × *N* matrices. [de Klerk-Pasechnik-Schrijver 07]

• Rescale the matrix
$$A_t$$
: $B_t := \frac{A_t}{\sqrt{A_t \cdot A_t}}$

 \rightsquigarrow orthormal basis of the algebra $\mathcal{A}_\mathcal{G}$ of invariant matrices

- Multiplication parameters: $B_r B_s = \sum_{t=1}^N \gamma_{r,s}^t B_t$
- ▶ New $N \times N$ matrices: $L_t = (\gamma_{t,s}^r)_{r,s=1}^N$ (t = 1, ..., N)

Theorem: For $x_1, \ldots, x_N \in \mathbb{R}$,

$$\sum_{t=1}^N x_t A_t \succeq 0 \Longleftrightarrow \sum_{t=1}^N x_t L_t \succeq 0.$$

Further symmetry reduction: block-diagonalization

\rightsquigarrow One can find an equivalent block-diagonal SDP with N variables and several smaller blocks.

 $\mathcal{A}_{\mathcal{G}}$: algebra of $V \times V$ matrices invariant under action of \mathcal{G} .

Wedderburn theorem: There exists a unitary matrix $U \in \mathbb{C}^{V \times V}$ such that

 $U\mathcal{A}_{\mathcal{G}}U^{*} = \bigoplus_{r=1}^{s} \underbrace{\mathbb{C}^{p_{r} \times p_{r}} \otimes I_{q_{r}}}_{*} \text{ for some } p_{1}, q_{1}, \dots, p_{s}, q_{s} \in \mathbb{N}.$ $* = \left\{ \begin{pmatrix} B & 0 & \dots & 0 \\ 0 & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & B \end{pmatrix} \mid B \in \mathbb{C}^{p_{r} \times p_{r}} \text{ repeated } q_{r} \text{ times} \right\}$ $\sum_{r=1}^{s} p_{r}^{2} = N: \text{ $\#$ of orbits of $V \times V$ under action of \mathcal{G}.}$

Application to the coding problem

- Question: What is the maximum cardinality A(n, d) of a code C ⊆ {0,1}ⁿ with minimum Hamming distance d ?
 That is, d_H(i,j) = |i ⊕ j| ≥ d for distinct i, j ∈ C.
- ► Hamming graph H(n, d): vertex set V = {0,1}ⁿ, with edges the pairs (i, j) with d_H(i, j) ∈ [1, d − 1].
 → Compute A(n, d) = α(H(n, d)).
- The Hamming graph has a rich automorphism group:
 - Permute the *n* coordinates.
 - Flip any set of coordinates: $i \in V \mapsto i_0 \oplus i$.
- → Algebra of invariant matrices: $A_{\mathcal{G}} = \{\sum_{t=0}^{n} x_t A_t \mid x_t \in \mathbb{R}\},\$ where $(A_t)_{i,j} = 1$ if $d_H(i,j) = t$ and $(A_t)_{i,j} = 0$ otherwise.

Link of the theta number to the Delsarte bound

Recall: $V = \{0, 1\}^n$, and A_t is the $V \times V 0/1$ matrix with entry 1 at positions with Hamming distance t.

$$A_0=I, \sum_{t=0}^n A_t=J.$$

Fact: $A_{\mathcal{G}}$ is a **commutative algebra** of dimension n + 1 (known as the *Bose-Mesner algebra*).

Hence: All matrices in $\mathcal{A}_{\mathcal{G}}$ have a common basis of eigenvectors.

Thus: One can reduce the computation of $\vartheta(H(n, d))$ from an *SDP with* $2^n \times 2^n$ *matrices* to an *LP with* $\leq n + 1$ *variables and constraints.*

Theorem: [Mc Eliece et al. 1978] [Schrijver 1979] $\vartheta'(H(n, d))$ equals the LP bound introduced by Delsarte [1973].

Strengthening the Delsarte bound via the Lasserre bounds

Hamming graph: G = H(n, d) with vertex set $V = \{0, 1\}^n$ and with edges the pairs (i, j) with $d_H(i, j) \in [1, d-1]$.

- ► The SDP defining las^(t)(H(n, d)) involves matrices of order O(2^{nt}).
- ► The number of orbits of P_t under action of Aut(G) is O(n^{2^{2t-1}-1}).
- → One can compute $las^{(t)}(H(n, d))$ (to any precision) in time polynomial in *n* for any *fixed t*.

Practically:

• t = 1: This is the theta number (= LP Delsarte bound).

• t = 2: Gijswijt-Schrijver-Mittelmann [2010] give the *explicit* block-diagonalization of the algebra of invariant matrices, and compute (a strengthening of) the SDP bound $las^{(2)}(H(n, d))$ for n up to 28 (for some values of d).

... An earlier SDP bound via the Terwilliger algebra

Historically, for the coding problem:

• X is indexed by \emptyset , and all singletons.

 \rightsquigarrow 2-point bound (LP)

• X is indexed by \emptyset , all singletons, and all pairs.

 \rightsquigarrow 4-point bound (SDP)

► In-between: X is indexed by Ø, all singletons, and all pairs containing a given element i₀. → 3-point bound (SDP)

For the Hamming graph, the algebra of invariant matrices is the Terwilliger algebra, of dimension $O(n^3)$, whose explicit block-diagonalization was given by Schrijver [2005].

 The block-diagonalization technique has since been applied to other problems (crossing number, quadratic assignment, etc.)
 [Bachoc, de Klerk, Pasechnik, Rendl, Sotirov, Vallentin, etc.]

n	d	Delsarte	Schrijver	Gij-Mit-Sch	lower bound
		(2-point)	(3-point)	(4-point)	
19	6	1289	1280	1237	1024
23	6	13775	13766	13 674	8192
19	8	145	142	135	128
20	8	290	274	256	256
25	8	6474	5477	5421	4096
26	8		9672	9275	4096
22	10	95	87	84	64
25	10	551	503	466	192
26	10	1040	886	836	384