Lift-and-Project Techniques and SDP Hierarchies MFO seminar on Semidefinite Programming

Monique Laurent - CWI - Amsterdam & Tilburg University

May 30, 2010

Monique Laurent - CWI - Amsterdam & Tilburg University Lift-and-Project Techniques and SDP Hierarchies

Typical combinatorial optimization problem:

max
$$c^T x$$
 s.t. $Ax \le b, x \in \{0, 1\}^n$

$$\begin{split} P &:= \{ x \in \mathbb{R}^n \mid Ax \leq b \} & & \sim \text{LP relaxation} \\ P_I &:= \operatorname{conv}(K \cap \{0,1\}^n) & & \sim \text{Integral polytope to be found} \end{split}$$

Goal: Construct a new relaxation P' such that $P_I \subseteq P' \subseteq P$, leading to P_I after finitely many iterations.

Gomory-Chvatal closure:

$$P' = \{x \mid u^T A x \leq \lfloor u^T b \rfloor \forall u \geq 0 \text{ with } u^T A \text{ integer} \}.$$

 P_I is found after $O(n^2 \log n)$ iterations if $P \subseteq [0, 1]^n$. [Eisenbrand-Schulz 1999]

But optimization over *P'* is hard! [Eisenbrand 1999]

Plan of the lecture

Goal: We present several techniques to construct a *hierarchy* of **LP/SDP** relaxations:

 $P \supseteq P_1 \supseteq \ldots \supseteq P_n = P_l.$

Great interest recently in such hierarchies:

- Polyhedral combinatorics: How many rounds are needed to find P_l? Which valid inequalities are satisfied after t rounds?
- Complexity theory: What is the integrality gap after t rounds? Link to hardness of the problem?
- ► Proof systems: Use hierarchies as a model to generate inequalities and show e.g. P_I = Ø.

1. Generate new constraints: Multiply the system $Ax \le b$ by products of the constraints $x_i \ge 0$ and $1 - x_i \ge 0$.

 \rightsquigarrow Polynomial system in *x*.

- Linearize (and lift) by introducing new variables y₁ for products ∏_{i∈1} x_i and setting x_i² = x_i.
 → Linear system in (x, y).
- 3. **Project** back on the *x*-variable space.

 \rightsquigarrow LP relaxation P' satisfying $P_I \subseteq P' \subseteq P$.

Some notation

Write
$$Ax \leq b$$
 as $a_{\ell}^{T}x \leq b_{\ell}$ $(\ell = 1, ..., m)$
or as $g_{\ell}^{T} \begin{pmatrix} 1 \\ x \end{pmatrix} \geq 0$ $(\ell = 1, ..., m)$
setting $g_{\ell} = \begin{pmatrix} b_{\ell} \\ -a_{\ell} \end{pmatrix}$.

Homogenization of *P*:

$$\tilde{P} = \left\{ \lambda \begin{pmatrix} 1 \\ x \end{pmatrix} \mid \lambda \ge 0, \ x \in P \right\} = \left\{ y \in \mathbb{R}^{n+1} \mid g_{\ell}^{\mathsf{T}} y \ge 0 \ (\ell = 1, \dots, m) \right\}$$

 $V = \{1, \ldots, n\}.$

The Lovász-Schrijver construction

1. Multiply $Ax \leq b$ by x_i , $1 - x_i \quad \forall i \in V$.

$$\rightsquigarrow$$
 Quadratic system: $g_{\ell}^{T} \begin{pmatrix} 1 \\ x \end{pmatrix} x_{i}, \ g_{\ell} \begin{pmatrix} 1 \\ x \end{pmatrix} (1 - x_{i}) \geq 0 \quad \forall i$

2. **Linearize:** Introduce the matrix variable $Y = \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}'$, indexed by $\{0\} \cup V$. Then, Y belongs to

$$\mathcal{M}(P) = \{ Y \in \mathcal{S}_{n+1} \mid Y_{0i} = Y_{ii}, Y_{e_i}, Y_{e_0} - e_i \} \in \tilde{P} \ \forall i \},$$
$$\mathcal{M}_+(P) = \mathcal{M}(P) \cap \mathcal{S}_{n+1}^+.$$

3. Project:

$$N(P) = \left\{ x \in \mathbb{R}^{V} \mid \exists Y \in \mathcal{M}(P) \text{ s.t. } \begin{pmatrix} 1 \\ x \end{pmatrix} = Ye_{0} \right\}$$
$$N_{+}(P) = \left\{ x \in \mathbb{R}^{V} \mid \exists Y \in \mathcal{M}_{+}(P) \text{ s.t. } \begin{pmatrix} 1 \\ x \end{pmatrix} = Ye_{0} \right\}$$

Monique Laurent - CWI - Amsterdam & Tilburg University

Lift-and-Project Techniques and SDP Hierarchies

Properties of the N- and N_+ -operators

►
$$P_I \subseteq N_+(P) \subseteq N(P) \subseteq P$$
.

▶ $N(P) \subseteq \operatorname{conv}(P \cap \{x \mid x_i = 0, 1\})$ for all $i \in V$.

$$\blacktriangleright N^n(P) = P_I.$$

Assume one can optimize in polynomial time over P. Then the same holds for N^t(P) and for N^t₊(P) for any fixed t.

Example: Consider the ℓ_1 -ball centered at e/2:

$$P = \left\{ x \in \mathbb{R}^{V} \mid \sum_{i \in I} x_{i} + \sum_{i \in V \setminus I} 1 - x_{i} \ge \frac{1}{2} \quad \forall I \subseteq V \right\}.$$

Then: $P_{I} = \emptyset$, but $\frac{1}{2}e \in N_{+}^{n-1}(P)$.

 \rightsquigarrow *n* iterations of the N_+ operator are needed to find P_I

Application to stable sets [Lovász-Schrijver 1991]

- $P = \text{FRAC}(G) = \{x \in \mathbb{R}^{V}_{+} \mid x_{i} + x_{j} \leq 1 \ (ij \in E)\}$ $P_{I} = \text{STAB}(G): \text{ stable set polytope of } G = (V, E).$
 - N(FRAC(G)) = FRAC(G) intersected by the constraints:
 ∑_{i∈V(C)} x_i ≤ |C|-1/2 for all odd circuits C.
 - $Y \in \mathcal{M}(\operatorname{FRAC}(G)) \Longrightarrow y_{ij} = 0$ for edges $ij \in E$.
 - $\rightsquigarrow \ \textit{N}_+(\operatorname{FRAC}(\textit{G})) \subseteq \operatorname{TH}(\textit{G}).$
 - → Any clique inequality $\sum_{i \in Q} x_i \leq 1$ is valid for $N_+(P)$, while its *N*-rank is |Q| - 2. → **The** N_+ **operator helps!**

•
$$\frac{n}{\alpha(G)} - 2 \leq N$$
-rank $\leq n - \alpha(G) - 1$.

▶ N_+ -rank $\leq \alpha(G)$ [equality if $G = \text{line graph of } K_{2p+1}$]

The Sherali-Adams construction

- 1. Multiply $Ax \le b$ by $\prod_{i \in I} x_i \prod_{j \in J} (1 x_j)$ for all disjoint $I, J \subseteq V$ with $|I \cup J| = t$.
- 2. Linearize & lift: Introduce new variables y_U for all $U \in \mathcal{P}_t(V)$, setting $x_i^2 = x_i$ and $y_i = x_i$.
- 3. Project back on x-variables space.
- \rightsquigarrow **Relaxation:** SA_t(P).

▶ Then:
$$SA_1(K) = N(P)$$
, $SA_t(P) \subseteq N(SA_{t-1}(P))$.
Thus: $SA_t(P) \subseteq N^t(P)$.

Application to the matching polytope

For
$$G = (V, E)$$
, let $P = \{x \in \mathbb{R}^E_+ \mid x(\delta(v)) \le 1 \ \forall v \in V\}.$

Then: P_I is the matching polytope (= stable set polytope of the line graph of *G*).

For $G = K_{2p+1}$:

- ► N₊-rank = p [Stephen-Tunçel 1999]
- ► *N*-rank $\in [2p, p^2]$ [LS 1991] [Goemans-Tuncel 2001]
- SA-rank = 2p 1 [Mathieu-Sinclair 2009]

Detailed analysis of the integrality gap:

$$g_t = \frac{\max_{x \in SA_t(P)} e^t x}{\max_{x \in P} e^T x} = \frac{\max_{x \in SA_t(P)} e^t x}{p}.$$
$$g_t = \begin{cases} 1 + \frac{1}{2p} & \text{if } t \le p - 1\\ 1 & \text{if } t \ge 2p - 1\\ \exists \text{ phase transition} & \text{at } 2p - \Theta(\sqrt{p}) \end{cases}$$

Monique Laurent - CWI - Amsterdam & Tilburg University Lift-and-Project Techniques and SDP Hierarchies

A canonical lifting lemma

►

$$\begin{aligned} x \in \{0,1\}^n &\rightsquigarrow \quad y^x = (\prod_{i \in I} x_i)_{I \subseteq V} \in \{0,1\}^{\mathcal{P}(V)} \\ &= (1, x_1, ..., x_n, x_1 x_2, ..., x_{n-1} x_n, ..., \prod_{i \in V} x_i) \end{aligned}$$

• Z: matrix with columns y^x for $x \in \{0,1\}^n$.

• Equivalently: Z is the 0/1 matrix indexed by $\mathcal{P}(V)$ with

$$Z(I, J) = 1$$
 if $I \subseteq V$, 0 else.
 $Z^{-1}(I, J) = (-1)^{|J \setminus I|}$ if $I \subseteq J$, 0 else

• If $x \in P \cap \{0,1\}^n$, then $Y = y^x (y^x)^T$ satisfies:

- $Y \succeq 0$
- $Y_{\ell} = g_{\ell}(x) Y \succeq 0$ \rightsquigarrow localizing matrix
- Y(I, J) depends only on $I \cup J$ \rightsquigarrow moment matrix

$$y \in \mathbb{R}^{\mathcal{P}(V)} \rightsquigarrow Y = M_V(y) = (y_{I \cup J}), \ Y_\ell = M_V(g_\ell y)$$

Monique Laurent - CWI - Amsterdam & Tilburg University

Lemma: P₁ is equal to the projection on the x-variable space of

$$\{y \in \mathbb{R}^{\mathcal{P}(V)} \mid y_0 = 1, \ M_V(y) \succeq 0, \ M_V(g_\ell y) \succeq 0 \ \forall \ell\}.$$

Sketch of proof:

1. Verify that $M_V(y) = Z \operatorname{diag}(Z^{-1}y)Z^T$.

2.
$$M_V(y) \succeq 0 \Longrightarrow \lambda := Z^{-1}y \ge 0 \Longrightarrow y = Z\lambda = \sum_{x \in \{0,1\}^n} \lambda_x y^x$$

where $\sum_{x} \lambda_x = y_0 = 1$.

3. Use $M_V(g_\ell y) \succeq 0$ to show that

$$\lambda_x > 0 \Longrightarrow x \in P \implies x \in P_I$$
.

 \rightsquigarrow Each 0/1 polytope is projection of a simplex.

$$M_V(y) = \begin{pmatrix} y_0 & y_1 & y_2 & y_{12} \\ y_1 & y_1 & y_{12} & y_{12} \\ y_2 & y_{12} & y_2 & y_{12} \\ y_{12} & y_{12} & y_{12} & y_{12} \end{pmatrix} \succeq 0 \Longleftrightarrow \begin{cases} y_0 - y_1 - y_2 + y_{12} \ge 0 \\ y_1 - y_{12} \ge 0 \\ y_2 - y_{12} \ge 0 \\ y_{12} \ge 0 \end{cases}$$

SDP hierarchies

Idea: Get SDP hierarchies by **truncating** $M_V(y)$ and $M_V(g_{\ell}y)$:

- Consider $M_U(y) = (y_{I \cup J})_{I,J \subseteq U}$, indexed by $\mathcal{P}(U)$ for $U \subseteq V$,
- or $M_t(y) = (y_{I \cup J})_{|I|,|J| \le t}$, indexed by $\mathcal{P}_t(V)$ for some $t \le n$.
 - 1. (local) Get the Sherali-Adams relaxation $SA_t(P)$ when considering

 $M_U(y) \succeq 0, \ M_W(g_\ell y) \succeq 0 \ \forall U \in \mathcal{P}_t(V), \ W \in \mathcal{P}_{t-1}(V).$ $\rightsquigarrow \mathsf{LP} \text{ with variables } y_I \text{ for all } I \in \mathcal{P}_t(V)$

2. (global) Get the Lasserre relaxation $L_t(P)$ when considering $M_t(y) \succeq 0, \ M_{t-1}(g_{\ell}y) \succeq 0.$

 \rightsquigarrow SDP with variables y_I for all $I \in \mathcal{P}_{2t}(V)$

Obviously: $L_t(P) \subseteq SA_t(P)$.

Monique Laurent - CWI - Amsterdam & Tilburg University

Link to the Lovász-Schrijver construction

- ► $L_1(P) \subseteq P$, $L_t(P) \subseteq N_+(L_{t-1}(P))$.
- ▶ Thus: $L_t(P) \subseteq N_+^{t-1}(P)$.

 $L_t(P)$ is tighter but more expensive to compute!

• The SDP for $L_t(P)$ involves one matrix of order $O(n^t)$, $O(n^{2t})$ variables.

• The SDP for $N_{+}^{t-1}(P)$ involves $O(n^{t-1})$ matrices of order n + 1, $O(n^{t+1})$ variables.

Note: One can define a (block-diagonal) hierarchy, in-between and cheaper than both L_t(P) and N^{t-1}₊(P); roughly,
 'unfold' the recursive definition of the LS hierarchy, and
 consider suitably defined principal submatrices of M_t(y) (which can be block-diagonalized to blocks of order n + 1). [Gvozdenovic-L-Vallentin 2009]

Application of the Lasserre construction to stable sets

► The localizing conditions in L_t(FRAC(G)) boil down to the edge conditions: y_{ij} = 0 (ij ∈ E) (for t ≥ 2).

 \rightarrow Natural generalization of the theta body TH(G). \rightarrow Get the bound las^(t)(G).

• Convergence in $\alpha(G)$ steps:

 $L_t(\operatorname{FRAC}(G)) = \operatorname{STAB}(G) \text{ for } t \ge \alpha(G).$

Open: Exist graphs G for which $\alpha(G)$ steps are needed? **Question:** What is the Lasserre rank of the matching polytope?

Application of the Lasserre construction to Max-Cut

Max-Cut: max
$$\sum_{ij\in E} w_{ij} \frac{1-x_i x_j}{2}$$
 s.t. $x \in \{\pm 1\}^V$.

Consider $P = [-1, 1]^V$, write $x_i^2 = 1$, and project onto the subspace $\mathbb{R}^{\binom{n}{2}}$ indexed by edges.

The order 1 relaxation is the basic GW relaxation:

$$\max \sum_{ij\in E} w_{ij} \frac{1-X_{ij}}{2} \text{ s.t. } X \in \mathcal{S}_n^+, \text{ diag}(X) = e.$$

The Lasserre rank of CUT(K_n) is at least n/2. [La 2003]
 (First time when ∑_{ij∈E(K_n)} x_{ij} ≥ -⌊n/2⌋ becomes valid).

Question: Does equality hold? (Yes for $n \le 7$).

The Lasserre relaxation of order 2 relaxation satisfies the triangle inequalities:

$$Y = \begin{cases} \emptyset & 12 & 13 & 23 \\ 12 & 1 & y_{12} & y_{13} & y_{23} \\ y_{12} & 1 & y_{23} & y_{13} \\ y_{13} & y_{23} & 1 & y_{12} \\ y_{23} & y_{13} & y_{12} & 1 \end{cases} \succeq 0$$
$$\implies e^{T} Y e \ge 0$$
$$\implies y_{12} + y_{13} + y_{23} \ge 1.$$

Some negative results about integrality gaps of hierarchies for max-cut

Consider the basic LP relaxation of max-cut defined by the triangle inequalities.

- \rightsquigarrow Its integrality gap is 1/2.
 - [Schoenebeck-Trevisan-Tulsiani 2006] For the Lovász-Schrijver construction:
 - The integrality gap remains $1/2 + \epsilon$ after $c_{\epsilon}n$ rounds of the N operator.
 - \bullet But the integrality gap is 0.878 after one round of the N_+ operator.
 - [Charikar-Makarychev-Makarychev 2009] For the Sherali-Adams construction:
 - The integrality gap remains $1/2+\epsilon$ after $\textit{n}^{\gamma_{\epsilon}}$ iterations.

Chlamtac-Singh [2008] give (for the first time) an approximation algorithm whose approximation guarantee improves indefinitely as one uses higher order relaxations in the SDP hierarchy:

 \rightsquigarrow For the maximum independent set problem in a 3-uniform hypergraph G.

Namely: Given $\gamma > 0$, assuming *G* contains an independent set of cardinality γn , then one can find an independent set of cardinality $n^{\Omega(\gamma^2)}$ using the relaxation of order $\Theta(1/\gamma^2)$.

Extensions to optimization over polynomials

- Minimize p(x) over $\{x \mid g_j(x) \ge 0\}$.
 - Linearize $p = \sum_{\alpha} p_{\alpha} x^{\alpha}$ by $\sum_{\alpha} p_{\alpha} y_{\alpha}$.
 - Impose SDP conditions on the moment matrix: $M_t(y) = (y_{\alpha+\beta}) \succeq 0.$

 \rightsquigarrow hierarchy of SDP relaxations with asymptotic convergence (due to some SOS representation results).

- Exploit equations: $h_j(x) = 0$.
 - We saw how to exploit $x_i^2 = x_i$.
 - The 'canonical lifting' lemma extends to the finite variety case: when the equations $h_j = 0$ have finitely many roots.
 - Finite convergence of the hierarchy when the equations $h_j = 0$ have finitely many real roots.

Another hierarchy construction via copositive programming

Reformulation: $\alpha(G) = \min \lambda$ s.t. $\lambda(I + A_G) - J \in C_n$, where

 $C_n = \{M \in S_n \mid x^T M x \ge 0 \ \forall x \in \mathbb{R}^n_+\}$ is the copositive cone.

Idea [Parrilo 2000]: Replace C_n by the subcones

$$\mathcal{L}_n^{(t)} = \{ M \in \mathcal{S}_n \mid (x^T M x) \Big(\sum_{i=1}^n x_i \Big)^r \text{ has non-negative coefficients} \},\$$

$$\mathcal{K}_n^{(t)} = \{ M \in \mathcal{S}_n \mid \Big(\sum_{i,j=1}^n M_{ij} x_i^2 x_j^2 \Big) \Big(\sum_{i=1}^n x_i^2 \Big)^t \text{ is SOS} \},$$
$$\mathcal{L}_n^{(t)} \subseteq \mathcal{K}_n^{(t)} \subseteq \mathcal{C}_n.$$

[Pólya] If *M* is strictly copositive then $M \in \bigcup_{t>0} \mathcal{L}_n^{(t)}$.

 \rightsquigarrow LP bound: $\nu^{(t)}(G) = \min \lambda \text{ s.t. } \lambda(I + A_G) - J \in \mathcal{L}_n^{(t)},$

 \rightsquigarrow **SDP bound:** $\vartheta^{(t)}(G) = \min \lambda \text{ s.t. } \lambda(I + A_G) - J \in \mathcal{K}_n^{(t)}.$

$$\blacktriangleright \nu^{(t)}(G) < \infty \iff t \ge \alpha(G) - 1.$$

•
$$\lfloor \nu^{(t)}(G) \rfloor = \alpha(G)$$
 if $t \ge \alpha(G)^2$.

$$\blacktriangleright \, \vartheta^{(0)}(G) = \vartheta'(G)$$

• Conjecture: [de Klerk-Pasechnik 2002]

$$\vartheta^{(t)}(G) = \alpha(G) \text{ for } t \ge \alpha(G) - 1.$$

Yes: For graphs with $\alpha(G) \leq 8$ [Gvozdenovic-La 2007]

The Lasserre hierarchy refines the copositive hierarchy:

$$\mathsf{las}^{(t+1)}(G) \leq \vartheta^{(t)}(G).$$

Note: The convergence in $\alpha(G)$ steps was easy for the Lasserre hierarchy!