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1 Introduction

Linear optimization is a relatively young area of applied mathematics. Even though the world is
nonlinear, as physicists never stop to point out, it seems that in many practical situations a linearized
model describes key features of a problem quite accurately.

The success of linear optimization in many real-world applications has led to the study of integer
linear programming, which permits to model optimal decision making under finitely many alternatives.
A natural way to approach these types of problems consists in using again linear theory, in this case
polyhedral combinatorics, to solve them. Mathematically, one tries to find (at least) a (partial) linear
description of the convex hull of all integral solutions. While this approach was successful for many
combinatorial optimization problems, it turned out that some graph optimization problems, such as
Max-Cut or Max-Clique, can not be approximated tightly by purely linear methods.

Stronger relaxation methods have therefore attracted the focus of recent research. The extension
of linear optimization to semidefinite optimization has turned out to be particularly interesting for
the following reasons. First, algorithmic ideas can be extended quite naturally from linear to semidef-
inite optimization. Secondly, there is theoretical evidence that semidefinite models are sometimes
significantly stronger than purely linear ones, justifying the computational overhead to solve them.

It is the purpose of this chapter to explain in detail how semidefinite programming is used to solve
integer programming problems. Specifically, we start out in the next section with explaining the rel-
evant mathematical background underlying semidefinite programming by summarizing the necessary
duality theory, explaining algorithmic ideas and recalling computational complexity results related to
semidefinite programming. In Section 3 we show how semidefinite relaxations arise from integer 0/1
programming by lifting the problem formulated in Rn to a problem in the space of symmetric matrices.

A detailed study of two prominent special graph optimization problems follows in Section 4, dealing
with the stable set problem, and Section 5, devoted to Max-Cut. For both these problems the extension
of polyhedral to semidefinite relaxations has led to a significant improvement in the approximation
of the original problem. Section 5 also introduces the hyperplane rounding idea of Goemans and
Williamson, which opened the way to many other approximation approaches, many of which are
discussed in Section 6.

Section 7 discusses possible alternatives to the use of semidefinite models to get stronger relaxations
of integer programs.

Finally, we summarize in Section 8 some recent semidefinite and other nonlinear relaxations applied
to the Quadratic Assignment Problem, which have led to a computational breack-through in Branch
and Bound computations for this problem.

2 Semidefinite Programming: Duality, Algorithms, Complexity, and

Geometry

2.1 Duality

To develop a duality theory for semidefinite programming problems, we take a more general point of
view, and look at Linear Programs over Cones.

Suppose K is a closed convex cone in Rn, c ∈ Rn, b ∈ Rm and A is an m×n matrix. The problem

p∗ := sup{cT x : Ax = b, x ∈ K} (1)
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is called Cone-LP, because we optimize a linear function subject to linear equations, and we have
the condition that the decision variable x lies in the cone K.

The dual cone K∗ is defined as follows:

K∗ := {y ∈ Rn : yT x ≥ 0 ∀x ∈ K}.

It is a well known fact, not hard to verify, that K∗ is also a closed convex cone.

We will derive the dual of (1) by introducing Lagrange multipliers for the equality constraints and
using the Minimax Inequality. Let y ∈ Rm denote the Lagrange multipliers for Ax = b. Using the
Lagrangian L(x, y) := cT x + yT (b − Ax) we get

inf
y

L(x, y) =

{

cT x if Ax = b

−∞ otherwise.

Therefore,

p∗ = sup
x∈K

inf
y

L(x, y) ≤ inf
y

sup
x∈K

L(x, y).

The inequality is usually called ‘Minimax inequality’, and holds for any real-valued function L(x, y)
where x and y are from some ground sets X and Y , respectively.

We can rewrite L as L = bT y − xT (AT y − c). The definition of K∗ implies the following. If
AT y − c /∈ K∗ then there exists x ∈ K such that xT (AT y − c) < 0. Therefore we conclude

sup
x∈K

L(x, y) =

{

bT y if AT y − c ∈ K∗

∞ otherwise.

This translates into

p∗ ≤ inf{bT y : y ∈ Rm, AT y − c ∈ K∗} =: d∗. (2)

The problem on the right side of the inequality sign is again a Cone-LP, but this time over the cone
K∗. We call this problem the dual to (1). By construction, a pair of dual cone-LP satisfies weak
duality.

Lemma 1. (Weak Duality) Let x ∈ K, y ∈ Rm be given with Ax = b, AT y−c ∈ K∗. Then, cT x ≤ bT y.

One crucial issue in duality theory consists in identifying sufficient conditions that insure equality
in (2), also called Strong Duality. The following condition insures strong duality. We say that the
cone-LP (1) satisfies the Slater constraint qualification if there exists x ∈ int(K) such that Ax = b.
(A similar definition holds for the dual problem.) Duffin [70] shows the following result.

Theorem 2. If (1) satisfies the Slater constraint qualification and p∗ is finite, then p∗ = d∗, and the
dual infimum is attained.

Returning to semidefinite programs, we consider the vector space Sn of symmetric n×n matrices as
the ground set for the primal problem. It is equipped with the usual inner product 〈X, Y 〉 = Tr(XY )

for X, Y ∈ Sn. The Frobenius norm of a matrix X ∈ Sn is defined by ‖X‖F :=
√

Tr(XT X).
A linear operator A, mapping symmetric matrices into Rm, is most conveniently represented by
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A(X)i := Tr(AiX) for given symmetric matrices Ai, i = 1, . . . , m. The adjoint in this case has
the representation AT (y) =

∑

yiAi. From Fejer’s Theorem, which states that

A � 0 if and only if Tr(AB) ≥ 0 ∀B � 0,

we see that the cone of positive semidefinite matrices is selfdual. Hence we arrive at the following
primal-dual pair of semidefinite programs:

max{Tr(CX) : A(X) = b, X � 0}, (3)

min{bT y : AT (y) − C � 0}. (4)

In our combinatorial applications, we usually have the property that both the primal and the dual
problem satisfy the Slater constraint qualification, hence we have strong duality and both optima are
attained.

Stronger duals for semidefinite programs have been introduced having the property that there is
no duality gap, in particular, by Borwein and Wolkowicz [45], Ramana [201] (see [203] for a compari-
son). In Section 2.3, we will come back briefly to the implications for the complexity of semidefinite
programming.

The semidefiniteness of a matrix X can equivalently be expressed as X having only nonnegative
eigenvalues. Thus there is some close connection between semidefinite programs and spectral theory
of matrices. The following simple examples of semidefinite programs throw some more light onto this
connection. Throughout, I denotes the identity matrix and Ik the identity matrix of order k.

Example 3. Let C be a symmetric matrix. Consider

maxTr(CX) such that Tr(X) = 1, X � 0.

The dual is
min y such that yI − C � 0.

Both problems clearly satisfy the Slater constraint qualification. In fact, dual feasibility implies that
y ≥ λmax(C), hence at the optimum y = λmax(C). It is, in fact, well known that the primal semidefinite
program is equivalent to

maxxT Cx such that xT x = 1,

by taking X = xxT .

Example 4. More generally, the sum λ1 + . . . + λk of the k largest eigenvalues of C ∈ Sn can be
expressed as the optimum value of the following semidefinite program:

max Tr(CX) such that I � X � 0, Tr(X) = k (5)

which is equivalent to

max Tr(CY Y T ) such that Y is an n × k matrix with Y T Y = Ik. (6)

The fact that λ1 + . . . + λk is equal to the optimum value of (6) is known as Fan’s theorem; see [185]
for discussion.
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Let us sketch the proof. The fact that the optimum values of the two programs (5) and (6) are
equal follows from a nice geometric property of the feasible set of (5) (namely, that its extreme points
correspond to the feasible solutions of (6); cf. Lemma 7 below). Let y1, . . . , yk be a set of orthonormal
eigenvectors of C for its k largest eigenvalues and let Y be the matrix with columns y1, . . . , yk. Then
Y is feasible for (6) and Tr(CY Y T ) =

∑k
i=1 Tr(yT

i Cyi) =
∑k

i=1 λi, which shows that
∑k

i=1 λi is less
than or equal to the maximum of (6). Conversely, let Y be an n × k matrix such that Y T Y = Ik;
we show that Tr(CY Y T ) ≤ ∑k

i=1 λi. For this, let C = QT DQ where Q ∈ Sn with QT Q = In and
D := diag(λ1, . . . , λn). Set Z := QY and X := ZZT . As Z is an n × k matrix with ZT Z = Ik, it
follows that the only nonzero eigenvalue of X is 1 with multiplicity k and thus X is feasible for (5).
Hence, Tr(CY Y T ) = Tr(DX) =

∑n
i=1 λixii ≤

∑k
i=1 λi since 0 ≤ xii ≤ 1 for all i.

By taking the dual of the semidefinite program (5), we obtain the following alternative formulation
for the sum of the k largest eigenvalues of C:

λ1 + . . . + λk = min kz + Tr(Z) such that zI + Z � C, Z � 0. (7)

This latter formulation permits to derive the following semidefinite programming characterization for
minimizing the sum of the k largest eigenvalues of a symmetric matrix satisfying linear constraints
(cf. [8]):

min λ1(X) + . . . + λk(X) such that X ∈ Sn, Tr(AjX) = bj (j = 1, . . . , m)

= min kz + Tr(Z) such that zI + Z − X � 0, Z � 0, Tr(AjX) = bj (j = 1, . . . , m).

More recently, Anstreicher and Wolkowicz showed a strong connection between a theorem of Hoffman
and Wielandt and semidefinite programming.

Theorem 5. (Hoffman and Wielandt [118]) Let A and B be symmetric matrices of order n with
spectral decomposition A = PDP T , B = QEQT . We assume that the diagonal matrix D contains the
eigenvalues of A in nondecreasing order, and E contains the eigenvalues of B in nonincreasing order.
Furthermore, PP T = QQT = I. Then

min{Tr(AXBXT ) : XT X = I} = Tr(DE). (8)

Moreover, the minimum is attained for X = PQT .

A proof of this theorem can be found for instance in [118], the result can be traced back to the work
of John von Neumann [183]. Anstreicher and Wolkowicz [18] have recently shown that the nonconvex
quadratic minimization problem (8) over the set of orthogonal matrices can equivalently be expressed
through semidefinite programming. This connection will be a useful tool to bound the Quadratic
Assignment Problem, so we recall how this connection can be established. We have:

TrDE = min{TrAY BY T : Y Y T = I} = min{TrDXEXT : XXT = I}.

The second equation follows because the mapping X = P T Y Q is a bijection on the set of orthogonal
matrices. We next introduce Lagrange multipliers S and T for the equations XXT = I, XT X = I,
and get

TrDE = min
X

max
S,T

Tr(DXEXT + S(I − XXT ) + T (I − XT X))
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≥ max
S,T

min
x=vec(X)

TrS + TrT + xT (E ⊗ D − I ⊗ S − T ⊗ I)x.

If X = (x1, . . . , xn) is a matrix with columns xi, we define x = vec(X) =







x1
...

xn






to be the vector

obtained from stacking the columns of X. The vec-operator leads to the following identity, see [119]:

vec(AXB) = (BT ⊗ A)vec(X). (9)

A ⊗ B denotes the Kronecker product of A and B. Formally,

A ⊗ B = (aijB).

The inner minimization is bounded only if E⊗D−I⊗S−T ⊗I � 0. Since D and E are diagonal,
we may restrict also S and T to be diagonal, S = diag(s), T = diag(t). (If s is a vector, diag(s)
denotes the diagonal matrix with s on the main diagonal.) This leads to

TrDE ≥ max{
∑

si +
∑

ti : diej − si − tj ≥ 0 ∀i, j}.

The last problem is the dual of the assignment problem. Therefore we get

TrDE ≥ min{
∑

ij

diejzij : Z = (zij) doubly stochastic } = TrDE.

The first term equals the last, so there must be equality throughout. We summarize this as follows.

Theorem 6. [18] Let A and B be symmetric matrices. Then,

min{TrAXBXT : XXT = I} = max{TrS + TrT : B ⊗ A − I ⊗ S − T ⊗ I � 0}.

2.2 Algorithms

Semidefinite programs are convex minimization problems, hence they can be solved in polynomial
time to any fixed prescribed precision using for instance the ellipsoid method [100]. More recently,
interior point methods have turned out to be the method of choice to solve SDP, since they give faster
algorithms than the ellipsoid method whose running time is prohibitively high in practice; see for
instance the monograph [233].

We will now review the main ideas underlying the interior point approach for SDP. The basic
assumption is that both the primal (3) and the dual (4) problem satisfy the Slater constraint qualifi-
cation, which means we assume that there exists a triple (X, y, Z) such that

X ≻ 0, Z ≻ 0, A(X) = b, Z = AT (y) − C.

To avoid trivialities, it is usually also assumed that the linear equations A(X) = b are linearly inde-
pendent. In view of Theorem 2, we get the following necessary and sufficient optimality conditions.
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A triple (X, y, Z) solves (3) and (4) if and only if

A(X) = b, X � 0 (primal feasibility) (10)

AT (y) − Z = C, Z � 0 (dual feasibility) (11)

ZX = 0 (complementarity) (12)

To see how (12) follows from Theorem 2, we note that both the primal and the dual optimum are
attained, and the duality gap is 0. If (X, y, Z) is optimal, we get

0 = bT y − TrCX = yT (A(X)) − TrCX = Tr(AT (y) − C)X = TrZX.

Since X � 0, Z � 0, we also have X = UUT , Z = V V T , for U and V of appropriate size. Thus

0 = TrZX = TrV V T UUT = ‖V T U‖2
F ,

hence V T U = 0, so that ZX = V V T UUT = 0.
In the interior point approach, the condition ZX = 0 is replaced by ZX = µI, leading to a

parameterized system of equations:

Fµ(X, y, Z) :=







A(X) − b
Z − AT (y) + C

ZX − µI






= 0. (13)

Under our assumptions, there exists a unique solution (X, y, Z) for every µ > 0, see for instance [233]
(Chapter 10). (To get this result, one interprets (13) as the KKT system of a convex problem with
strictly convex cost function.) Denoting this solution by (Xµ, yµ, Zµ), it is not too hard to show that
the set

{(Xµ, yµ, Zµ) : µ > 0}
defines a smooth curve parameterized by µ, which is usually called the ‘central path’.

The interior point approach, more precisely the ‘primal-dual interior-point path-following method’,
consists in applying Newton’s method to follow this curve until µ → 0. This sounds straightforward,
and it is, except for the following aspect. The equation (13) has 2

(n+1
2

)

+m variables, but
(n+1

2

)

+n2+m
equations. The difference arises from ZX − µI, which need not be symmetric, even if X and Z are.
Therefore, some sort of symmetrization of the last equation in (13) is necessary to overcome this
problem.

The first papers exploiting this approach [115, 138] use some ad-hoc ideas to symmetrize the
last equation. Later, Monteiro [176] and Zhang [238] introduced a rather general scheme to deal
with the equation ZX = µI. Let P be invertible. Zhang considers the mapping HP (M) :=
1
2

[

PMP−1 + (PMP−1)T
]

and shows that, for X ≻ 0, Z ≻ 0,

HP (ZX) = µI if and only if ZX = µI.

Of course, different choices for P produce different search directions after replacing ZX = µI by
HP (ZX)) = µI. Various choices for P have been proposed and investigated with respect to theoretical
properties and behaviour in practice.

Todd [225] reviews about 20 different variants for the choice of P and investigates some basic
theoretical properties of the resulting search directions. The main message seems to be at present
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that there is no clear champion among these choices in the sense that it would dominate both with
respect to theoretical convergence properties and practical efficiency.

The following variant was introduced by [115], and independently by [138]. It is simple, and yet
computationally quite efficient. To simplify the presentation, we assume that there is some starting
triple (X, y, Z) which satisfies A(X) = b, AT (y) − Z = C and X ≻ 0, Z ≻ 0. If this triple would lie
on the central path, its ‘path parameter’ µ would be µ = 1

nTrZX. We do not assume that it lies on
the central path, but would like to move from this triple towards the central path, and follow it until
µ ≈ 0. Therefore we head for a point on the central path, given by the path parameter

µ =
1

2n
TrZX.

Applying a Newton step to Fµ(Xy, Z) = 0 at (X, y, Z), with µ as above, leads to

A(∆X) = 0 (14)

∆Z = AT (∆y) (15)

Z(∆X) + (∆Z)X = µI − ZX. (16)

The second equation can be used to eliminate ∆Z, the last to eliminate ∆X:

∆X = µZ−1 − X − Z−1AT (∆y)X.

Substituting this into the first equation gives the following linear system for ∆y:

A(Z−1AT (∆y)X) = µA(Z−1) − b.

This system is positive definite, see [115], and can therefore be solved quite efficiently by standard
methods, yielding ∆y. Backsubstitution gives ∆Z, which is symmetric, and ∆X, which needs not be.
Taking the symmetric part of ∆X gives the following new point (X+, y+, Z+):

X+ = X + t
1

2
(∆X + ∆XT )

y+ = y + t∆y

Z+ = Z + t∆Z.

The stepsize t > 0 is chosen so that X+ ≻ 0, Z+ ≻ 0. In practice one starts with t = 1 (full Newton
step), and backtracks by multiplying the current t with a factor smaller than 1, such as 0.8, until
positive definiteness of X+ and Z+ holds.

A theoretical convergence analysis shows the following. Let a small scalar ǫ > 0 be given. If
the path parameter µ to start a new iteration is chosen properly, then the full step (t = 1 above)
is feasible in each iteration, and a primal feasible solution X and a dual feasible solution y, whose
duality gap bT y−Tr(CX) is less than ǫ, can be found after O(

√
n| log ǫ|) iterations; see the handbook

[233], chapter 10.

2.3 Complexity

We consider here complexity issues for semidefinite programming. We saw above that for semidefinite
programs satisfying the Slater constraint qualification, the primal problem (3) and its dual (4) can be
solved in polynomial time to any fixed prescribed precision using interior point methods.
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However, even if all input data A1, . . . , Am, C, b are rational valued, no polynomial bound has
been established for the bitlengths of the intermediate numbers occurring in interior point algorithms.
Therefore, interior point algorithms for semidefinite programming are shown to be polynomial in the
real number model only, not in the bit number model of computation.

As a matter of fact, there are semidefinite programs with no rational optimum solution. For

instance, the matrix

(

1 x
x 2

)

⊕
(

2x 2
2 x

)

is positive semidefinite if and only if x =
√

2. (Given

two matrices A, B, A ⊕ B denotes the matrix

(

A 0
0 B

)

.) This contrasts with the situation of linear

programming, where every rational linear program has a rational optimal solution whose bitlength is
polynomially bounded in terms of the bit lengths of the input data (see [208]).

Another ‘pathological’ situation which may occur in semidefinite programming is that all feasible
solutions are doubly exponential. Consider, for instance, the matrix (taken from [201]): Q(x) :=

Q1(x) ⊕ . . . ⊕ Qn(x), where Q1(x) := (x1 − 2) and Qi(x) :=

(

1 xi−1

xi−1 xi

)

for i = 2, . . . , n. Then,

Q(x) � 0 if and only if Qi(x) � 0 for all i = 1, . . . , n which implies that xi ≥ 22i−1 for i = 1, . . . , n.
Therefore, every rational feasible solution has exponential bitlength.

Semidefinite programs can be solved in polynomial time to an arbitrary prescribed precision in
the bit model using the ellipsoid method (see [100]). More precisely, let K denote the set of feasible
solutions to (3) and, given ǫ > 0, set S(K, ǫ) := {Y | ∃X ∈ K with ‖X − Y ‖ < ǫ} (‘the points that
are in the ǫ-neighborhood of K’) and S(K,−ǫ) := {X ∈ K | ‖X − Y ‖ > ǫ for all Y 6∈ K} (‘the points
in K that are at distance at least ǫ from the border of K’). Let L denote the maximum bit size of the
entries of the matrices A1, . . . , Am and the vector b and assume that there is a constant R > 0 such
that ∃X ∈ K with ‖X‖ ≤ R if K 6= ∅. Then, the ellipsoid based algorithm, given ǫ > 0, either finds
X ∈ S(K, ǫ) for which Tr(CY ) ≤ Tr(CX) + ǫ for all Y ∈ S(K,−ǫ), or asserts that S(K,−ǫ) = ∅. Its
running time is polynomial in n, m, L, and log ǫ.

One of the fundamental open problems in semidefinite programming is the complexity of the
following semidefinite programming feasibility problem1 (F):

Given integral n × n symmetric matrices Q0, Q1, . . . , Qm, decide whether there exist real numbers
x1, . . . , xm such that Q0 + x1Q1 + . . . + xmQm � 0.

This problem belongs obviously to NP in the real number model (since one can test whether a
matrix is positive semidefinite in polynomial time using Gaussian elimination), but it is not known
whether it belongs to NP in the bit model of computation. Ramana [201] shows that problem (F)
belongs to co-NP in the real number model, and that (F) belongs to NP if and only if it belongs to co-
NP in the bit model. These two results are based on an extended exact duality theory for semidefinite
programming. Namely, given a semidefinite program (P), Ramana [201] defines another semidefinite
program (D) whose number of variables and coefficients bitlengths are polynomial in terms of the size
of data in (P) and with the property that (P) is feasible if and only if (D) is infeasible.

Porkolab and Khachiyan [196] show that problem (F) can be solved in polynomial time (in the
bit model) for fixed n or m. (More precisely, problem (F) can be solved in O(mn4) + nO(min(m,n2))
arithmetic operations over LnO(min(m,n2)-bit numbers, where L is the maximum bitlength of the entries

1The following is an equivalent form for the feasibility region of a semidefinite program (3). Indeed, a matrix X is of
the form Q0 +

∑m

i=1
xiQi if and only if it satisfies the system: Tr(AjX) = bj (j = 1, . . . , p), where A1, . . . , Ap span the

orthogonal complement of the subspace of Sn generated by Q1, . . . , Qm and bj = Tr(AjQ0) for j = 1, . . . , p.
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of matrices Q0, . . . , Qm.) Moreover, for any fixed m, one can decide in polynomial time (in the bit
model) whether there exist rational numbers x1, . . . , xm such that Q0+x1Q1+ . . .+xmQm � 0 ([129]);
this extends Lenstra’s result ([156]) about polynomial time solvability of integer linear programming
in fixed dimension to semidefinite programming. More generally, given a convex semi-algebraic set
K ⊆ Rn, one can find in polynomial time an integral point in K (if some exists) for any fixed dimension
n [130]. When all the polynomials defining K are quadratic, this result still holds without the convexity
assumption [31]. Further results have been recently given in [98].

A special instance of the semidefinite programming feasibility problem is the semidefinite matrix
completion problem (MC), which consists of deciding whether a partially specified matrix can be
completed to a positive semidefinite matrix. The complexity of problem (MC) is not known in general,
even not for the class of partial matrices whose entries are specified on the main diagonal and on the
positions corresponding to the edge set of a circuit. However, for circuits (and, more generally, for
graphs with no K4-minor), problem (MC) is known to be polynomial-time solvable in the real number
model [147]. In the bit model, problem (MC) is known to be polynomial time solvable when the graph
corresponding to the positions of the specified entries is chordal or can be made chordal by adding a
fixed number of edges [147]. A crucial tool is a result of [99] asserting that a partial matrix A whose
entries are specified on the edge set of a chordal graph can be completed to a positive semidefinite
matrix if and only if every fully specified principal submatrix of A is positive semidefinite.

As mentioned above, one of the difficulties in the complexity analysis of semidefinite programming
is the possible nonexistence of rational solutions. However, in the special case of the matrix completion
problem, no example is known of a rational partial matrix having only irrational positive semidefinite
completions. (Obviously, a rational completion exists if a positive definite completion exists.)

Further conditions are known for existence of positive semidefinite matrix completions, involving
cut and metric polyhedra (see [144]); see the surveys [121], [146] for more information. In practice,
positive semidefinite matrix completions can be computed using, e.g., the interior point algorithm of
Johnson et al. [122]. This algorithm solves the problem:

min f(X) subject to X � 0,

where f(X) :=
∑n

i,j=1(hij)
2(xij − aij)

2. Here H is a given nonnegative symmetric matrix with a posi-
tive diagonal and A is a given symmetric matrix corresponding to the partial matrix to be completed;
the condition hij = 0 means that entry xij is free while hij > 0 puts a weight on forcing entry xij to be
as close as possible to aij . The optimum value of the above program is equal to 0 precisely when there
is a positive semidefinite matrix completion of A, where the entries of A corresponding to hij = 0 are
unspecified.

2.4 Geometry

We discuss here some geometric properties of semidefinite programming. We refer to Chapter 3 in
[233] for a detailed treatment. Let

K := {X ∈ PSDn | Tr(AiX) = bi for i = 1, . . . , m}

denote the feasible region of a semidefinite program, where A1, . . . , Am ∈ Sn and b ∈ Rm. The set K
is a convex set (called a spectrahedron in [202]) which inherits several of the geometric properties of
the positive semidefinite cone PSDn, in particular, concerning the structure of its faces. Recall that
a set F ⊆ K is a face of K if X, Y ∈ F and Z := αX + (1 − α)Y ∈ K for some 0 < α < 1 implies
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that Z ∈ F . Given A ∈ K, FK(A) denotes the smallest face of K containing A. A point A ∈ K is
an extreme point if FK(A) = {A}. It is well known (see [117]) that, given a matrix A ∈ PSDn, the
smallest face FPSD(A) of PSDn that contains A is given by

FPSD(A) = {X ∈ PSDn | kerA ⊆ kerX}.

(For a matrix X, ker X := {x ∈ Rn | Xx = 0}.) Hence, if A has rank r, then FPSD(A) is isomorphic to
the cone PSDr and thus has dimension

(r+1
2

)

. As K is the intersection of PSDn with the affine space

A := {X ∈ Sn | Tr(AiX) = bi for i = 1, . . . , m},

the face FK(A) for A ∈ K is given by

FK(A) = FPSD(A) ∩A = {X ∈ K | kerA ⊆ kerX}.

One can compute the dimension of faces of K in the following manner (see Chapter 31.5 in [68]).

Let r denote the rank of A and let A = QQT , where Q is a n × r matrix of rank r. A matrix
B ∈ Sn is called a perturbation of A if A ± tB ∈ K for some small t > 0. One can verify that B is a
perturbation of A if and only if B = QRQT for some matrix R ∈ Sr satisfying Tr(RQT AiQ) = 0 for
all i = 1, . . . , m. Then the dimension of FK(A) is equal to the rank of the set of perturbations of A
and, therefore,

dim FK(A) =

(

r + 1

2

)

− rank{QT AiQ | i = 1, . . . , m}.

This implies:

A is an extreme point of K ⇐⇒
(

r + 1

2

)

= rank{QT AiQ | i = 1, . . . , m}. (17)

We will use semidefinite programs as relaxations for 0/1 polytopes associated to combinatorial
optimization problems; often the rank one matrices in the feasible region K correspond to the integer
solutions of the combinatorial problem at hand. With this in mind, it is desirable to find a matrix
A ∈ K optimizing a given linear objective function over K having smallest possible rank. The smallest
possible ranks are obviously achieved at extremal matrices of K. Some results have been obtained
along these lines which we now mention.

As an application of (17), we have that if K 6= ∅ and rank{Ai | i = 1, . . . , m} <
(r+2

2

)

, then there
exists a matrix X ∈ K with rank X ≤ r ([32], [190]). In fact, every extremal matrix X of K has this
property; we will see below how to construct extremal matrices.

Barvinok [33] shows the following refinement. Suppose that K is a nonempty bounded set and
that rank{Ai | i = 1, . . . , m} =

(r+2
2

)

for some 1 ≤ r ≤ n − 2, then there exists a matrix X ∈ K with
rank X ≤ r. Barvinok’s proof is nonconstructive and it is an open question how to find efficiently
such X.

Barvinok [32] suggests the following approach for finding an extremal matrix in K. Let C ∈ Sn

be a positive definite matrix and let A ∈ K minimize Tr(CX) over K. Barvinok shows that if C is
sufficiently generic then A is an extremal point of K.

The following algorithm for constructing an extreme point of K has been suggested by several
authors (see [6], [190]). Suppose we want to minimize the objective function Tr(CX) over K and
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assume that the minimum is finite. Given A ∈ K, the algorithm will construct an extremal matrix
A′ ∈ K with objective value Tr(CA′) ≤ Tr(CA). Using (17), one can verify whether A is an extreme
point of K. If yes, then stop and return A′ = A. Otherwise, one can find a nonzero matrix R belonging
to the orthogonal complement in Sr of the space spanned by QT AiQ (i = 1, . . . , m); then B := QRQT

is a perturbation of A. If Tr(CB) > 0 then replace B by −B. Let t be the largest possible scalar
for which A + tB � 0. Then, A + tB belongs to the boundary of the face FK(A) and thus the face
FK(A + tB) is strictly contained in FK(A). We iterate with A + tB in place of A. In at most n
iterations the algorithm returns an extreme point of K.

We conclude with some examples.

The Max-Cut spectrahedron. The following spectrahedron

En := {X ∈ PSDn | Xii = 1 ∀i = 1, . . . , n}

underlies the semidefinite relaxation for Max-Cut and will be treated in detail in Section 5. Its
geometric properties have been investigated in [153, 154]. In particular, it is shown there that the
only vertices (that is, the extreme points having a full dimensional normal cone) of En are its rank one
matrices (corresponding to the cuts, i.e., the combinatorial objects in which we are interested). The
spectrum of possible dimensions for the faces of En is shown to be equal to

[

0,

(

kn

2

)]

∪
n
⋃

r=kn+1

[(

r + 1

2

)

− n,

(

r

2

)]

,

where kn := ⌊n
2 ⌋+ 1. Moreover it is shown that the possible dimensions for the polyhedral faces of En

are all integers k satisfying
(k+1

2

) ≤ n. Geometric properties of other tighter spectrahedra for max-cut
are studied in [15], [151].

Sum of largest eigenvalues. We introduced in Example 4 two programs (5) and (6) permitting
to express the sum of the k largest eigenvalues of a symmetric matrix. Let K and Y denote their
respective feasible regions; that is,

K := {X ∈ Sn | I � X � 0, Tr(X) = k},

Y := {Y Y T | Y ∈ Rn×k with Y T Y = Ik}.
Lemma 7. The extreme points of the set K are the matrices of Y. Therefore, K is equal to the
convex hull of the set Y.

Proof. Let X be an extreme point of K. Then all its eigenvalues belong to the segment [0, 1]. As
Tr(X) = k, it follows that X has at least k nonzero eigenvalues and thus rank(X) ≥ k. In fact,
rank(X) = k since X is an extreme point of K. Now this implies that the only nonzero eigenvalue of
X is 1 with multiplicity k and thus X ∈ Y . Conversely, every matrix of Y is obviously an extreme
point of K.

Note the resemblance of the above result to the Birkhoff-König theorem asserting that the set of
stochastic matrices is equal to the convex hull of the set of permutation matrices.
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Euclidean distance matrix completions. Let G = (V, E; d) be a weighted graph with V =
{1, . . . , n} and nonnegative edge weights d ∈ QE

+. Given an integer r, we say that G is r-realizable
if there exist points v1, . . . , vn ∈ Rr such that dij = ‖vi − vj‖ for all edges ij ∈ E; G is said to
be realizable if it r-realizable for some r. The problem of testing existence of a realization is known
as the Euclidean distance matrix completion problem (EDM) (cf. [146] and Chapter 18 in [233] for
surveys). It has important applications, e.g., to molecular conformation problems in chemistry and
distance geometry (see [60]). As is well known, problem (EDM) can be formulated as a semidefinite
programming problem. Namely, G is realizable if and only if the system:

X � 0, Xii + Xjj − 2Xij = (dij)
2 for ij ∈ E (18)

is feasible; moreover G is r-realizable if and only if the system (18) has a solution X with rank X ≤ r.
It follows from the above mentioned results about ranks of extremal points that if G is realizable, then
G is r-realizable for some r satisfying

(r+1
2

) ≤ |E|. Such a realization can be found using the above
mentioned algorithm for finding extremal points (see [6], [32]).

It is also well known that the Euclidean distance matrix completion problem can be recast in terms
of the positive semidefinite matrix completion problem (MC) treated earlier in Section 2.3 (see [145]
for details). As a consequence, the complexity results mentioned earlier for problem (MC) also hold
for problem (EDM). Namely, problem (EDM) can be solved in polynomial time in the bit number
model when G can be made chordal by adding a fixed number of edges, and (EDM) can be solved in
polynomial time in the real number model when G has no K4-minor [147].

An interior point algorithm is proposed in [7] for computing graph realizations. Alfakih [4, 5]
studies rigidity properties of graph realizations in terms of geometric properties of certain associated
spectrahedra.

When the graph G is not realizable, one can look for the smallest distortion needed to be applied
to the edge weights in order to ensure existence of a realization. Namely, define this smallest distortion
as the smallest scalar C for which there exist points v1, . . . , vn ∈ Rn satisfying

1

C
dij ≤ ‖vi − vj‖ ≤ dij

for all ij ∈ E. The smallest distortion can be computed using semidefinite programming. Bourgain
[46] has shown that C = O(log n) if G = Kn and d satisfies the triangle inequalities: dij ≤ dik + djk

for all i, j, k ∈ V (see also Chapter 10 in [68]). Since then research has been done for evaluating the
minimum distortion for several classes of metric spaces including graph metrics (that is, when d is the
path metric of the graph G); see in particular [158], [159], [160].
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3 Semidefinite Programming and Integer 0/1 Programming

3.1 A general paradigm

Suppose we want to solve a 0/1 linear programming problem:

max cT x subject to Ax ≤ b, x ∈ {0, 1}n. (19)

The classic polyhedral approach to this problem consists of formulating (19) as a linear programming
problem:

max cT x subject to x ∈ P

over the polytope
P := conv({x ∈ {0, 1}n | Ax ≤ b})

and of applying linear programming techniques to it. For this one has to find the linear description
of P or, at least, good linear relaxations of P . An initial linear relaxation of P is

K := {x ∈ Rn
+ | Ax ≤ b}

and, if K 6= P , one has to find ‘cutting planes’ permitting to strengthen the relaxation K by cutting
off its fractional vertices. Extensive research has been done for finding (partial) linear descriptions
for many polyhedra arising from specific combinatorial optimization problems by exploiting the com-
binatorial structure of the problem at hand. Next to that, research has also focused on developing
general purpose methods applying to arbitrary 0/1 problems (or, more generally, integer programming
problems).

An early such method, developed in the sixties by Gomory and based on integer rounding, permits
to generate the so-called Chvátal-Gomory cuts. This class of cutting planes was later extended,
in particular, by Balas [23] who introduced the disjunctive cuts. In the nineties several authors
investigated lift-and-project methods for constructing cutting planes, the basic idea being of trying to
represent a 0/1 polytope as the projection of a polytope lying in higher dimension. These methods
aim at constructing good linear relaxations of a given 0/1 polytope, all with the exception of the
lift-and-project method of Lovász and Schrijver which permits, moreover, to construct semidefinite
relaxations. Further constructions for semidefinite relaxations have been recently investigated, based
on algebraic results about representations of nonegative polynomials as sums of squares of polynomials.

This idea of constructing semidefinite relaxations for a combinatorial problem goes back to the
seminal work of Lovász [164] who introduced the semidefinite bound ϑ(G) for the stability number
of a graph G, obtained by optimizing over a semidefinite relaxation TH(G) (see (44)) of the stable
set polytope. An important application is the polynomial time solvability of the maximum stable set
problem in perfect graphs. This idea was later again used successfully by Goemans and Williamson
[95] who, using a semidefinite relaxation of the cut polytope, could prove an approximation algorithm
with a good performance guarantee for the max-cut problem. Since then semidefinite programming
has been widely used for approximating a variety of combinatorial optimization problems. This will
be discussed in detail in further sections of this chapter.

For now we want to go back to the basic question of how to embed the 0/1 linear problem (19)
in a semidefinite framework. A natural way of involving positive semidefiniteness is to introduce the
matrix variable

Y =
(

1
x

)

(1 xT ).
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Then Y can be constrained to satisfy

(i) Y � 0, (ii) Yii = Y0i ∀i = 1, . . . , n.

Condition (ii) expresses the fact that x2
i = xi as xi ∈ {0, 1}. One can write (i), (ii) equivalently as

Y =

(

1 xT

x X

)

� 0 where x := diag(X). (20)

The objective function cT x can be modeled as 〈diag(c), X〉. There are several possibilities for modeling
a linear constraint aT x ≤ β from the system Ax ≤ b. The simplest way is to use the diagonal
representation:

〈diag(a), X〉 ≤ β. (21)

One can also replace aT x ≤ β by its square (β − aT x)2 ≥ 0, giving the inequality (β − aT )Y
(

β
−a

)

≥ 0

which is however redundant under the assumption Y � 0. Instead, when a, β ≥ 0, one can use the
squared representation: (aT x)2 ≤ β2; that is,

〈aaT , X〉 ≤ β2 (22)

or the extended square representation: (aT x)2 ≤ β (aT x); that is,

〈aaT − β diag(a), X〉 ≤ 0. (23)

Another possibility is to exploit the fact that the variable xi satisfies 0 ≤ xi ≤ 1 and to multiply
aT x ≤ β by xi and 1 − xi, which yields the system:

n
∑

j=1

ajXij ≤ βXii (i = 1, . . . , n),
n
∑

j=1

aj(Xjj − Xij) ≤ β(1 − Xii) (i = 1, . . . , n). (24)

One can easily compare the strengths of these various representations of the inequality aT x ≤ β and
verify that, if (20) holds, then

(24) =⇒ (23) =⇒ (22) =⇒ (21) .

Therefore, the constraints (24) define the strongest relaxation; they are, in fact, at the core of the lift-
and-project methods by Lovász and Schrijver and by Sherali and Adams as we will see in Section 3.4.
From an algorithmic point of view they are however the most expensive ones, as they involve 2n
inequalities as opposed to one for the other relaxations. Helmberg et al. [116] made an experimental
comparison of the various relaxations which seems to indicate that the best trade off between running
time and quality is obtained when working with the squared representation.

Instead of treating each inequality of the system Ax ≤ b separately, one can also consider pairwise

products of inequalities: (βi − aT
i x) · (βj − aT

j x) ≥ 0, yielding the inequalities: (βi − aT
i )Y

(

βj

−aj

)

≥ 0.

This operation is also central to the lift-and-project methods as we will see later in this section.
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3.2 Introduction on cutting planes and lift-and-project methods

Given a set F ⊆ {0, 1}n, we are interested in finding the linear description of the polytope P :=
conv(F ). A first (easy) step is to find a linear programming formulation for P ; that is, to find a linear
system Ax ≤ b for which the polytope K := {x ∈ Rn | Ax ≤ b} satisfies K∩{0, 1}n = F . If all vertices
of K are integral, then P = K and we are done. Otherwise we have to find cutting planes permitting
to tighten the relaxation K and possibly find P after a finite number of iterations.

One of the first methods, which applies to general integral polyhedra, is the method of Gomory for
constructing cutting planes. Given a linear inequality

∑

i aixi ≤ α valid for K where all the coefficients
ai are integers, the inequality

∑

i aixi ≤ ⌊α⌋ (known as a Gomory-Chvátal cut) is still valid for P but
may eliminate some part of K. The Chvátal closure K ′ of K is defined as the solution set of all
Chvátal-Gomory cuts; that is,

K ′ := {x ∈ Rn | uT Ax ≤ ⌊uT b⌋ for all u ≥ 0 such that uT A integral}.

Then,

P ⊆ K ′ ⊆ K. (25)

Set K(1) := K ′ and define recursively K(t+1) := (K(t))′ for t ≥ 1. Chvátal [52] proved that K ′ is a
polytope and that K(t) = conv(K) for some t; the smallest t for which this is true is the Chvátal rank
of the polytope K. The Chvátal rank may be very large as it depends not only on the dimension n
but also on the coefficients of the inequalities involved. However, when K is assumed to be contained
in the cube [0, 1]n, its Chvátal rank is bounded by O(n2 log n); if, moreover, K ∩ {0, 1}n = ∅, then
the Chvátal rank is at most n [42, 74]. Even if we can optimize a linear objective function over
K in polynomial time, optimizing a linear objective function over the first Chvátal closure K ′ is a
co-NP-hard problem in general [73].

Further classes of cutting planes have been investigated; in particular, the class of split cuts [56]
(they are a special case of the disjunctive cuts studied in [23]). An inequality aT x ≤ α is a split cut

for K if it is valid for the polytope conv
(

(K ∩ {x | cT x ≤ c0})
⋃

(K ∩ {x | cT x ≥ c0 + 1})
)

for some

integral c ∈ Zn, c0 ∈ Z. Split cuts are known to be equivalent to Gomory’s mixed integer cuts (see,
e.g., [57]). The split closure K ′ of K, defined as the solution set to all split cuts, is a polytope which
satisfies again (25) [56]. One can iterate this operation of taking the split closure and it follows from
results in [23] that P is found after n steps. However, optimizing over the first split closure is again
a hard problem [47]. (An alternative proof for NP-hardness of the membership problem in the split
closure and in the Chvátal closure, based on a reduction from the closest lattice vector problem, is
given in [59].) If we consider only the split cuts obtained from the disjunctions xj ≤ 0 and xj ≥ 1, then
we obtain a tractable relaxation of K which coincides with the relaxation obtained in one iteration of
the Balas-Ceria-Cornuéjols lift-and-project method (which will be described later in Section 3.4).

Another popular approach is to try to represent P as the projection of another polytope Q lying in
a higher (but preferably still polynomial) dimensional space, the idea behind being that the projection
of a polytope Q may have more facets than Q itself. Hence it could be that even if P has an exponential
number of facets, such Q exists having only a polynomial number of facets and lying in a space whose
dimension is polynomial in the original dimension of P (such Q is then called a compact representation
of P ). If this is the case then we have a proof that any linear optimization problem over P can be
solved in polynomial time. At this point let us stress that it is not difficult to find a lift Q of P with a
simple structure and lying in a space of exponential dimension; indeed, as pointed out in Section 3.3,
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any n-dimensional 0/1 polytope can be realized as projection of a canonical simplex lying in the
(2n − 1)-space.

This idea of finding compact representations has been investigated for several polyhedra arising
from combinatorial optimization problems; for instance, Barahona [26], Barahona and Mahjoub [29,
30], Ball, Liu and Pulleyblank [25], Maculan [169], Liu [162] have provided such representations for
certain polyhedra related to Steiner trees, stable sets, metrics, etc. On the negative side, Yannakakis
[234] proved that the matching polytope cannot have a compact representation satisfying a certain
symmetry assumption.

Several general purpose methods have been developed for constructing projection representations
for general 0/1 polyhedra; in particular, by Balas, Ceria and Cornuéjols [24] (the BCC method),
by Sherali and Adams [212] (the SA method), by Lovász and Schrijver [167] (the LS method) and,
recently, by Lasserre [142]. [These methods are also known under the following names: lift-and-project
for BCC, Reformulation-Linearization Technique (RLT) for SA, and matrix-cuts for LS.] A common
feature of these methods is the construction of a hierarchy

K ⊇ K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ P

of linear or semidefinite relaxations of P which finds the exact convex hull in n steps; that is, Kn = P .
The methods also share the following important algorithmic property: If one can optimize a linear
objective function over the initial relaxation K in polynomial time, then the same holds for the next
relaxations Kt for any fixed t, when applying the BCC, SA or LS constructions; for the Lasserre
construction, this is true under the more restrictive assumption that the matrix A has a polynomial
number of rows.

The first three methods (BCC, SA and LS) provide three hierarchies of linear relaxations of P
satisfying the following inclusions: the Sherali-Adams relaxation is contained in the Lovász-Schrijver
relaxation which in turn is contained in the Balas-Ceria-Cornuéjols relaxation. All three can be
described following a common recipe: Multiply each inequality of the system Ax ≤ b by certain
products of the bound inequalities xi ≥ 0 and 1 − xi ≥ 0, replace each square x2

i by xi, and linearize
the products xixj (i 6= j) by introducing a new variable yij = xixj . In this way, we obtain polyhedra
in a higher dimensional space whose projection on the subspace Rn of the original x variable contains
P and is contained in K. The three methods differ in the way of chosing the variables employed
as multipliers and of iterating the basic step. The Lovász-Schrijver method can be strengthened by
requiring positive semidefiniteness of the matrix (yij), which leads then to a hierarchy of positive
semidefinite relaxations of P .

The construction of Lasserre produces a hierarchy of semidefinite relaxations of P which refines
each of the above three hierarchies (BCC, SA and LS, even its positive semidefinite version). It was
originally motivated by results about moment sequences and the dual theory of representation of
nonnegative polynomials as sums of squares. It is however closely related to the SA method as both
can be described in terms of requiring positive semidefiniteness of certain principal submatrices of the
moment matrices of the problem.

We present in Section 3.3 some preliminary results which permit to show the convergence of the
Lasserre and SA methods and to prove that every 0/1 polytope can be represented as the projection
of a simplex in the (2n − 1)-space. Then we describe in Section 3.4 the four lift-and-project methods
and Sections 3.5, 3.6 and 3.7 contain applications of these methods to the stable set polytope, the
cut polytope and some related polytopes. Section 3.8 presents extensions to (in general non convex)
polynomial programming problems.
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It will sometimes be convenient to view a polytope in Rn as being embedded in the hyperplane
x0 = 1 of Rn+1. The following notation will be used throughout these sections. For a polytope P in
Rn, its homogenization

P̃ := {λ
(

1
x

)

| x ∈ P, λ ≥ 0}

is a cone in Rn+1 such that P = {x ∈ Rn |
(

1
x

)

∈ P̃}. For a cone C in Rn,

C∗ := {y ∈ Rn | xT y ≥ 0 ∀x ∈ C}

denotes its dual cone.

3.3 A canonical lifting construction

Let P(V ) := 2V denote the collection of all subsets of V = {1, . . . , n} and let Z be the square 0/1
matrix indexed by P(V ) with entries

Z(I, J) = 1 if and only if I ⊆ J. (26)

As Z is upper triangular with ones on its main diagonal, it is nonsingular and its inverse Z−1 has
entries

Z−1(I, J) = (−1)|J\I| if I ⊆ J, Z−1(I, J) = 0 otherwise.

For J ⊆ V , let ZJ denote the J-th column of Z. [The matrix Z is known as the Zeta matrix of the
lattice P(V ) and the matrix Z−1 as its Möbius matrix.]

Given a subset J ⊆ P(V ), let CJ denote the cone in RP(V ) generated by the columns ZJ (J ∈ J )
of Z and let PJ be the 0/1 polytope in Rn defined as the convex hull of the incidence vectors of the
sets in J . Then CJ is a simplicial cone,

CJ = {y ∈ RP(V ) | Z−1y ≥ 0, (Z−1y)J = 0 for J ∈ P(V ) \ J },

and PJ is the projection on Rn of the simplex CJ ∩ {y | y∅ = 1}. This shows therefore that any 0/1
polytope in Rn is the projection of a simplex lying in R2n−1.

Given y ∈ RP(V ), let MV (y) be the square matrix indexed by P(V ) with entries

MV (y)(I, J) := y(I ∪ J) (27)

for I, J ⊆ V ; MV (y) is known as the moment matrix of the sequence y. (See Section 7.1 for motivation
and further information.) As noted in [167], we have:

MV (y) = Zdiag(Z−1y)ZT .

Therefore, the cone CP(V ) can be alternatively characterized by any of the following linear and positive
semidefinite conditions:

y ∈ CP(V ) ⇐⇒ Z−1y ≥ 0 ⇐⇒ MV (y) � 0. (28)

Suppose that J corresponds to the set of 0/1 solutions of a semi-algebraic system

gℓ(x) ≥ 0 for ℓ = 1, . . . , m
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where the gℓ’s are polynomials in x. One can assume without loss of generality that each gℓ has degree
at most one in every variable xi and then one can identify gℓ with its sequence of coefficients indexed
by P(V ). Given g, y ∈ RP(V ), define g ∗ y ∈ RP(V ) by

g ∗ y := M(y)g; that is, g ∗ y(J) :=
∑

I

gIyI∪J for J ⊆ V. (29)

It is noted in [150] that the cone CJ can be alternatively characterized by the following positive
semidefinite conditions:

y ∈ CJ ⇐⇒ MV (y) � 0 and MV (gℓ ∗ y) � 0 for ℓ = 1, . . . , m. (30)

This holds, in particular, when J corresponds to the set of 0/1 solutions of a linear system Ax ≤ b,
i.e., in the case when each polynomial gℓ has degree 1.

3.4 The Balas-Ceria-Cornuéjols, Lovász-Schrijver, Sherali-Adams, and Lasserre

methods

Consider the polytope K = {x ∈ [0, 1]n | Ax ≤ b} and let P = conv(K ∩ {0, 1}n) be the 0/1
polytope whose linear description is to be found. It is convenient to assume that the bound constraints
0 ≤ xi ≤ 1 (i ∈ {1, . . . , n}) are explicitely present in the linear description of K; let us rewrite the two
systems Ax ≤ b and 0 ≤ xi ≤ 1 (i ∈ {1, . . . , n}) as Ãx ≤ b̃ and let m denote the number of rows of A.

The Balas-Ceria-Cornuéjols construction. Fix an index j ∈ {1, . . . , n}. Multiply the system
Ãx ≤ b̃ by xj and 1−xj to obtain the nonlinear system: xj(Ãx− b̃) ≤ 0, (1−xj)(Ãx− b̃) ≤ 0. Replace
x2

j by xj and linearize by introducing new variables yi = xixj (i = 1, . . . , n); thus yj = xj . This defines

a polytope in the (x, y)-space defined by 2(m+2n) inequalities: Ãy− b̃xj ≤ 0, Ã(x−y)− b̃(1−xj) ≤ 0.
Its projection Pj(K) on the subspace Rn indexed by the original x-variable satisfies

P ⊆ Pj(K) ⊆ K.

Iterate by defining Pj1...jt(K) := Pjt(Pjt−1
. . . (Pj1(K)) . . .). It is shown in [24] that

Pj1...jt(K) = conv (K ∩ {x | xj1 , . . . , xjt ∈ {0, 1}}) . (31)

Therefore,
P = Pj1...jn(K) ⊆ Pj1...jn−1

(K) ⊆ . . . ⊆ Pj1(K) ⊆ K.

The Sherali-Adams construction. The first step is analogue to the first step of the BCC method
except that we now multiply the system Ãx ≤ b̃ by xj and 1 − xj for all indices j ∈ {1, . . . , n}. More
generally, for t = 1, . . . , n, the t-th step goes as follows. Multiply the system Ãx ≤ b̃ by each product
ft(J1, J2) :=

∏

j∈J1
xj ·

∏

j∈J2
(1 − xj) where J1 and J2 are disjoint subsets of V with |J1 ∪ J2| = t.

Replace each square x2
i by xi and linearize each product

∏

i∈I xi by a new variable yI . This defines
a polytope Rt(K) in the space of dimension n +

(n
2

)

+ . . . +
(n
T

)

where T := min(t + 1, n) (defined
by 2t

(n
t

)

(m + 2n) inequalities) whose projection St(K) on the subspace Rn of the original x-variable
satisfies

P ⊆ Sn(K) ⊆ . . . ⊆ St+1(K) ⊆ St(K) ⊆ . . . ⊆ S1(K) ⊆ K

and P = Sn(K). The latter equality follows from facts in Section 3.3 as we now see.
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Write the linear system Ãx ≤ b̃ as gT
ℓ

(

1
x

)

≥ 0 (ℓ = 1, . . . , m + 2n) where gℓ ∈ Rn+1. Extend gℓ to

a vector in RP(V ) by adding zero coordinates. The linearization of the inequality gT
ℓ

(

1
x

)

· ft(I, J) ≥ 0

reads:
∑

I⊆H⊆I∪J

(−1)|H\I|gℓ ∗ y(H) ≥ 0.

Using relation (28), one can verify that the set Rt(K) can be alternatively described by the positive
semidefinite conditions:

MU (gℓ ∗ y) � 0 for ℓ = 1, . . . , m and U ⊆ V with |U | = t,
MU (y) � 0 for U ⊆ V with |U | = t + 1

(32)

(where g1, . . . , gm correspond to the system Ax ≤ b). It then follows from (30) that the projection
Sn(K) of Rn(K) is equal to P .

The Lovász-Schrijver construction. Let U be another linear relaxation of P which is also con-

tained in the cube Q := [0, 1]n; write U as {x ∈ Rn | uT
r

(

1
x

)

≥ 0 ∀r = 1, . . . , s}. Multiply each

inequality gT
ℓ

(

1
x

)

≥ 0 by each inequality uT
r

(

1
x

)

≥ 0 to obtain the nonlinear system: uT
r

(

1
x

)

·gT
ℓ

(

1
x

)

≥ 0

for all ℓ = 1, . . . , m + 2n, r = 1, . . . , s. Replace each x2
i by xi and linearize by introducing a new

matrix variable Y =
(

1
x

)

(1 xT ). This defines the set M(K, U) consisting of the symmetric matrices

Y = (yij)
n
i,j=0 satisfying

yjj = y0j for j = 1, . . . , n, (33)

uT
r Y gℓ ≥ 0 for all r = 1, . . . , s, ℓ = 1, . . . , m + 2n [equivalently, Y Ũ∗ ⊆ K̃]. (34)

The first LS relaxation of P is defined as

N(K, U) := {x ∈ Rn |
(

1
x

)

= Y e0 for some Y ∈ M(K, U)}.

Then, P ⊆ N(K, U) ⊆ N(K, Q) ⊆ K and N(K, K) ⊆ N(K, U) if K ⊆ U . One can obtain stronger
relaxations by adding positive semidefiniteness. Let M+(K, U) denote the set of positive semidefinite

matrices in M(K, U) and N+(K, U) := {x ∈ Rn |
(

1
x

)

= Y e0 for some Y ∈ M+(K, U)}. Then,

P ⊆ N+(K, U) ⊆ N(K, U) ⊆ K.

The most extensively studied choice for U is U := Q, leading to the N operator. Set N(K) :=
N(K, Q) and, for t ≥ 2, N t(K) := N(N t−1(K)) = N(N t−1(K), Q). It follows from condition (34)
that N(K) ⊆ conv(K ∩ {x | xj = 0, 1}) = Pj(K), the first BCC relaxation, and thus

N(K) ⊆ N0(K) :=
n
⋂

j=1

Pj(K). (35)

[One can verify that N0(K) consists of the vectors x ∈ Rn for which
(

1
x

)

= Y e0 for some matrix Y (not

necessarily symmetric) satisfying (33) and (34) (with U = Q).] More generally, N t(K) ⊆ Pj1...jt(K)
and, therefore, P = Nn(K).

The choice U := K leads to the stronger operator N ′, where we define N ′(K) := N(K, K) and,
for t ≥ 2,

(N ′)t(K) := N((N ′)t−1(K), K). (36)
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This operator is considered in [149] when applied to the cut polytope.

When using the relaxation U = Q, the first steps in the SA and LS constructions are identical; that
is, S1(K) = N(K). The next steps are however distinct. A main difference between the two methods
is that the LS procedure constructs the successive relaxations by a succession of t lift-and-project
steps, each lifting taking place in a space of dimension O(n2), whereas the SA procedure carries out
only one lifting step, occurring now in a space of dimension O(nt+1); moreover, the projection step is
not mandatory in the SA construction.

The Lasserre construction. We saw in relation (32) that the SA method can be interpreted as
requiring positive semidefiniteness of certain principal submatrices of the moment matrices MV (y)
and MV (gℓ ∗ y). The Lasserre method consists of requiring positive semidefiniteness of certain other
principal matrices of those moment matrices. Namely, given an integer t = 0, . . . , n, let Pt(K) be
defined by the conditions

Mt+1(y) � 0, Mt(gℓ ∗ y) � 0 for ℓ = 1, . . . , m (37)

and let Qt(K) denote the projection of Pt(K) on Rn. (For a vector z ∈ RP(V ), Mt(z) denotes the
principal submatrix of MV (z) indexed by all sets I ⊆ V with |I| ≤ t.) Then,

P ⊆ Qn(K) ⊆ Qn−1(K) ⊆ . . . ⊆ Q1(K) ⊆ Q0(K) ⊆ K

and it follows from (30) that P = Qn(K).

The construction of Lasserre [140, 142] was originally presented in terms of moment matrices
indexed by integer sequences (rather than subsets of V ) and his proof of convergence used results
about moment theory and the representation of nonnegative polynomials as sums of squares. The
presentation and the proof of convergence given here are taken from [150].

How do the four hierarchies of relaxations relate? The following inclusions hold among the
relaxations Pj1...jt(K) (BCC), St(K) (SA), N t(K) and N t

+(K) (LS), and Qt(K) (Lasserre):

(i) Q1(K) ⊆ N+(K) ⊆ Q0(K)

(ii) [167] For t ≥ 1, St(K) ⊆ N t(K) ⊆ Pj1...jt(K)

(iii) [150] For t ≥ 1, St(K) ⊆ N(St−1(K)), Qt(K) ⊆ N+(Qt−1(K)),
and thus Qt(K) ⊆ St(K) ∩ N t

+(K).

Summarizing, the Lasserre relaxation is the strongest among all four types of relaxations.

Algorithmic aspects. Efficient approximations to linear optimization problems over the 0/1 poly-
tope P can be obtained by optimizing over its initial relaxation K or any of the stronger relaxations
constructed using the BCC, LS, SA and Lasserre methods. Indeed, if one can optimize in polynomial
time any linear objective function over K [equivalently (by the results in [100]), one can solve the
separation problem for K in polynomial time], then, for any fixed t, the same holds for each of the
relaxations Pj1...jt(K), St(K), N t(K), N t

+(K) in the BCC, SA, and LS hierarchies. This holds for
the Lasserre relaxation Qt(K) under the more restrictive assumption that the linear system defining
K has polynomial number of rows. Better approximations are obtained for higher values of t, at an
increasing cost however. Computational experiments have been carried out using the various methods;
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see, in particular, [24], [49], [50] for results using the BCC method, [214] (and further references there)
for results using the SA method, and to [62] for a computational study of the N+ operator.

Worst case examples where n iterations are needed for finding P . Let us define the rank
of K with respect to a certain lift-and-project method as the smallest number of iterations needed
for finding P . Specifically, the N -rank of K is the smallest integer t for which P = N t(K); define
similarly the N+, N0, BCC, SA and Lasserre ranks. We saw above that n is a common upper bound
for any such rank. We give below two examples of polytopes K whose rank is equal to n with respect
to all procedures (except maybe with respect to the procedure of Lasserre, since the exact value of
the Lasserre rank of these polytopes is not known).

As we will see in Section 3.5, the relaxation of the stable set polytope obtained with the Lovász-
Schrijver N operator is much weaker than that obtained with the N+-operator. For example, the
fractionnal stable set polytope of Kn (defined by nonnegativity and the edge constraints) has N -rank
n − 2 while its N+-rank is equal to 1! However, in the case of max-cut, no graph is known for which
a similar result holds. Thus it is not clear in which situations the N+-operator is significantly better,
especially when applied iteratively. Some geometric results about the comparative strengths of the N ,
N+ and N0 operators are given in [93]. As a matter of fact, there exist polytopes K having N+-rank
equal to n (thus, for them, adding positive semidefiniteness does not help!).

As a first example, let

K :=

{

x ∈ [0, 1]n |
n
∑

i=1

xi ≥
1

2

}

; (38)

then P = {x ∈ [0, 1]n |∑n
i=1 xi ≥ 1} and the Chvátal rank of K is therefore equal to 1. The N+-rank

of K is equal to n [55, 62] and its SA-rank as well [150]. As a second example, let

K :=







x ∈ [0, 1]n |
∑

i∈I

xi +
∑

i6∈I

(1 − xi) ≥
1

2
∀I ⊆ {1, . . . , n}







; (39)

then K ∩ {0, 1}n = ∅ and thus P = ∅. Then the N+-rank of K is equal to n [55, 93] as well as its
SA-rank [150]. In fact, the Chvátal rank of K is also equal to n [54]. The rank of K remains equal to
n for the iterated operator N∗ defined by N∗(K) := N+(K)∩K ′, combining the Chvátal closure and
the N+-operator [55, 62]. The rank is also equal to n if in the definition of N∗ we replace the Chvátal
closure by the split closure [58].

General setting in which the four methods apply. We have described above how the various
lift-and-project methods apply to 0/1 linear programs, i.e., to the case when K is a polytope and
P = conv(K ∩{0, 1}n). In fact, they apply in a more general context, still retaining the property that
P is found after n steps. Namely, the Lovász-Schrijver method applies to the case when K and U are
arbitrary convex sets, the condition (34) reading then Y Ũ∗ ⊆ K̃. The BCC and SA methods apply
to mixed 0/1 linear programs [24, 213]. Finally, the Lasserre and Sherali-Adams methods apply to
the case when K is a semi-algebraic set, i.e., when K is the solution set of a system of polynomial
inequalities (since relation (30) holds in this context).

Moreover, various strengthenings of the basic SA method have been proposed involving, in par-
ticular, products of other inequalities than the bounds 0 ≤ xi ≤ 1 (cf., e.g., [49], [214], [215], [216]).
A comparison between the Lasserre and SA methods for polynomial programming from the algebraic
point of view of representations of positive polynomials is made in [143].
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3.5 Application to the stable set problem

Given a graph G = (V, E), a set I ⊆ V is stable if no two nodes of I form an edge and the stable
set polytope STAB(G) is the convex hull of the incidence vectors χS of all stable sets S of G, where
χS

i = 1 if i ∈ S and χS
i = 0 if i ∈ V \S. As linear programming formulation for STAB(G), we consider

the fractional stable set polytope FRAC(G) which is defined by the nonnegativity constraints: x ≥ 0
and the edge inequalities:

xi + xj ≤ 1 for ij ∈ E. (40)

Let us indicate how the various lift-and-project methods apply to the pair P := STAB(G), K :=
FRAC(G).

The LS relaxations N(FRAC(G)) and N+(FRAC(G)) are studied in detail in [167] where the
following results are shown. The polytope N(FRAC(G)) is completely described by nonnegativity,
the edge constraints (40) and the odd hole inequalities:

∑

i∈V (C)

xi ≤
|C| − 1

2
for C odd circuit in G. (41)

Moreover, N(FRAC(G)) = N0(FRAC(G)). Therefore, this gives a compact representation for the
stable set polytope of t-perfect graphs (they are the graphs whose stable set polytope is completely
determined by nonnegativity together with edge and odd hole constraints).

Other valid inequalities for STAB(G) include the clique inequalities:
∑

i∈Q

xi ≤ 1 for Q clique in G. (42)

The smallest integer t for which (42) is valid for N t(FRAC(G)) is t = |Q| − 2 while (42) is valid
for N+(FRAC(G)). Hence the N+ operator yields a stronger relaxation of STAB(G) and equality
N+(FRAC(G)) = STAB(G) holds for perfect graphs (they are the graphs for which STAB(G) is
completely determined by nonnegativity and the clique inequalities; cf. Theorem 9). Odd antihole
and odd wheel inequalities are also valid for N+(FRAC(G)).

Given a graph G on n nodes with stability number α(G) (i.e., the maximum size of a stable set in
G), the following bounds hold for the N -rank t of FRAC(G) and its N+-rank t+:

n

α(G)
− 2 ≤ t ≤ n − α(G) − 1, t+ ≤ α(G).

See Lipták and Tunçel [161] for a detailed study of further properties of the N and N+ operators
applied to FRAC(G); in particular, they show the bound t+ ≤ n

3 for the N+-rank of FRAC(G).

The Sherali-Adams method does not seem to give a significant improvement, since the quantity
n

α(G) − 2 remains a lower bound for the SA-rank [150].

The Lasserre hierarchy refines the sequence N t
+(FRAC(G)). Indeed, it is shown in [150] that, for

t ≥ 1, the set Qt(FRAC(G)) can be alternatively described as the projection of the set

Mt+1(y) � 0, yij = 0 for all edges ij ∈ E, y∅ = 1. (43)

This implies that Qα(G)−1(FRAC(G)) = STAB(G); that is, the Lasserre rank of FRAC(G) is at most

α(G) − 1. The inclusion Qα(G)−1(FRAC(G)) ⊆ N
α(G)−1
+ (FRAC(G)) is strict, for instance, when G is

the line graph of Kn (n odd) since the N+-rank of FRAC(G) is then equal to α(G) ([223]).
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Let us mention a comparison with the basic semidefinite relaxation of STAB(G) by the theta body
TH(G), which is defined by

TH(G) := {x ∈ Rn |
(

1
x

)

= Y e0 for some Y � 0 s.t. Yii = Y0i (i ∈ V ), Yij = 0 (ij ∈ E)}. (44)

When maximizing
∑

i xi over TH(G), we obtain the theta number ϑ(G). Comparing with (43), we
see that Qt(FRAC(G)) (t ≥ 1) is a natural generalization of the SDP relaxation TH(G) satisfying the
following chain of inclusions:

Qt(FRAC(G)) ⊆ Q1(FRAC(G)) ⊆ N+(FRAC(G)) ⊆ TH(G) ⊆ Q0(FRAC(G)).

Section 4.2 below contains a detailed treatment of the relaxation TH(G).

Feige and Krauthgamer [80] study the behaviour of the N+ operator applied to the fractional
stable set polytope of Gn,1/2, a random graph on n nodes in which two nodes are joined by an edge
with probability 1/2. It is known that the independence number of Gn,1/2 is equal, almost surely,
to roughly 2 log2 n and that its theta number is, almost surely, Θ(

√
n). Feige and Krauthgamer [80]

show that the maximum value of
∑

i xi over N r
+(FRAC(Gn,1/2)) is, almost surely, roughly

√

n
2r when

r = o(log n). This value can be computed efficiently if r = O(1). Therefore, in that case, the typical
value of these relaxations is smaller than that of the theta number by no more than a constant factor.
Moreover, it is shown in [80] that the N+-rank of a random graph Gn,1/2 is almost surely Θ(log n).

3.6 Application to the max-cut problem

We consider here how the various lift-and-project methods can be used for constructing relaxations
of the cut polytope. Section 5 will focus on the most basic SDP relaxation of the cut polytope and,
in particular, on how it can be used for designing good approximation algorithms for the max-cut
problem. As is well known (cf. (75)), the max-cut problem can be formulated as an unconstrained
quadratic ±1 problem:

max xT Ax subject to x ∈ {±1}n (45)

for some (suitably defined) symmetric matrix A.
As we are now working with ±1 variables instead of 0/1 variables, one should appropriately modify

some of the definitions given earlier in this section. For instance, the condition (33) in the definition
of the LS matrix operator M now reads yii = y00 for all i ∈ {1, . . . , n} (in place of yii = y0i) and the
(I, J)-th entry of the moment matrix MV (y) is now y(I∆J) (instead of y(I ∪ J) as in (27)).

There are two possible strategies for constructing relaxations of the max-cut problem (45). The
first possible strategy is to linearize the quadratic objective function, to formulate (45) as a linear
problem

max 〈A, X〉 subject to X ∈ CUTn

over the cut polytope
CUTn := conv(xxT | x ∈ {±1}n),

and to apply the various lift-and-project methods to some linear relaxation of CUTn. As linear
programming formulation for CUTn, one can take the metric polytope METn which is defined as the
set of symmetric matrices X with diagonal entries 1 satisfying the triangle inequalities:

Xij + Xik + Xjk ≥ −1, Xij − Xik − Xjk ≥ −1

25



for all distinct i, j, k ∈ {1, . . . , n}.
Given a graph G = (V, E) (V = {1, . . . , n}), CUT(G) and MET(G) denote, respectively, the

projections of CUTn and METn on the subspace RE indexed by the edge set of G. Barahona and
Mahjoub [29] show that CUT(G) ⊆ MET(G) with equality if and only if G has no K5-minor. Laurent
[149] studies how the Lovász-Schrijver construction applies to the pair P := CUT(G) and K :=
MET(G). The following results are shown there: Equality N t

0(MET(G)) = CUT(G) holds if G has a
set of t edges whose contraction produces a graph with no K5-minor (recall the definition of N0 from
(35)). In particular, Nn−α(G)−3(MET(G)) = CUT(G) if G has a maximum stable set whose deletion
leaves at most three connected components and Nn−α(G)−3(G) = CUT(G). Here, N t(G) denotes the
projection on the subspace indexed by the edge set of G of the set N t(MET(Kn)). The inclusion
N t(G) ⊆ N t(MET(G)) holds obviously. Therefore, the N -rank of MET(Kn) is at most n − 4, with
equality for n ≤ 7 (equality is conjectured for any n). A stronger relaxation is obtained when using
the N ′ operator (recall the definition of N ′ from (36)). Indeed, N ′(MET(K6)) = CUT(K6) is strictly
contained in N(MET(K6)) and the N ′-rank of MET(Kn) is at most n − 5 for n ≥ 6.

Another possible strategy is to apply the lift-and-project constructions to the set K := [−1, 1]n and
to project on the subspace indexed by the set En of all pairs ij of points of V (instead of projecting
on the space Rn indexed by the singletons of V ). The SA and Lasserre methods converge now in n−1
steps (as there is no additional linear constraint beside the constraints expressing membership in the
cube).

The t-th relaxation in the SA hierarchy is determined by all the inequalities valid for CUT(Kn)
that are induced by at most t+1 points. Thus, the relaxation of order t = 1 is the cube [−1, 1]E while
the relaxation of order t = 2 is the metric polytope MET(Kn).

The t-th relaxation in the Lasserre hierarchy, denoted as Qt(G), is the projection on the subspace
RE indexed by the edge set of G of the set of vectors y satisfying

Mt+1(y) = (yI∆J) I,J⊆V
|I|,|J|≤t+1

� 0, y∅ = 1. (46)

Equivalently, one can replace in (46) the matrix Mt+1(y) by its principal submatrix indexed by the
subsets whose cardinality has the same parity as t + 1. Therefore, for t = 0, Q0(Kn) corresponds to
the basic semidefinite relaxation

{X = (Xij)
n
i,j=1 | X � 0, Xii = 1 ∀i ∈ {1, . . . , n}}

of the cut polytope. For t = 1, Q1(Kn) consists of the vectors x ∈ REn for which
(

1
x

)

= Y e0 for some

matrix Y � 0 indexed by {∅} ∪ En satisfying

Yij,ik = Y∅,jk, (47)

Yij,hk = Yih,jk = Yik,jh (48)

for all distinct i, j, h, k ∈ {1, . . . , n}.
Applying Lagrangian duality to some extended formulation of the max-cut problem, Anjos and

Wolkowicz [14] obtained a relaxation Fn of CUT(Kn), which can be defined as the set of all x ∈ REn

for which
(

1
x

)

= Y e0 for some Y � 0 indexed by {∅} ∪ En satisfying (47). Thus

Q1(Kn) ⊆ Fn
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(with strict inclusion if n ≥ 5). It is interesting to note that the relaxation Fn is stronger than the
basic linear relaxation by the metric polytope [14]; that is,

Fn ⊆ MET(Kn).

Indeed, let x ∈ Fn with
(

1
x

)

= Y e0 for some Y � 0 satisfying (47). The principal submatrix X of Y

indexed by {∅, 12, 13, 23} has the form





∅ 12 13 23

∅ 1 x12 x13 x23

12 x12 1 x23 x13

13 x13 x23 1 x12

23 x23 x13 x12 1



. Now eT Xe = 4(1+x12+x13+x23) ≥ 0

implies one of the triangle inequalities for the triple (1,2,3); the other triangle inequalities follow by
suitably flipping signs in X.

Laurent [151] shows that

Qt(G) ⊆ N t−1
+ (G)

for any t ≥ 1. Therefore, the second strategy seems to be the most attractive one. Indeed, the
relaxation Qt(G) is at least as tight as N t−1

+ (G) and, moreover, it has a simpler explicit description
(given by (46)) while the set N t−1

+ (G) has only a recursive definition. We refer to [151] for a detailed
study of geometric properties of the set of (moment) matrices of the form (46). Laurent [152] shows
that the smallest integer t for which Qt(Kn) = CUT(Kn) satisfies t ≥ ⌈n

2 ⌉−1; equality holds for n ≤ 7
and is conjectured to hold for any n.

Anjos [13] considers higher order semidefinite relaxations for the satisfiability problem involving
similar types of constraints as the above relaxations for the cut polytope.

3.7 Further results

Lift-and-project relaxations for the matching and related polytopes. Let G = (V, E) be a
graph. A matching in G is a set of edges whose incidence vector x satisfies the inequalities

x(δ(v)) =
∑

e∈δ(v)

xe ≤ 1 for all v ∈ V. (49)

(As usual, δ(v) denotes the set of edges adjacent to v.) Hence, the polytope K consisting of the
vectors x ∈ [0, 1]E satisfying the inequalities (49) is a linear relaxation of the matching polytope2 of
G, defined as the convex hull of the incidence vectors of all matchings in G. If, in relation (49), we
replace the inequality sign ‘≤’ by the equality sign ‘=’ (resp., by the reverse inequality sign ‘≥’), then
we obtain the notion of perfect matching (resp., of edge cover) and the corresponding polytope K is a
linear relaxation of the perfect matching polytope (resp., of the edge cover polytope). Thus, depending
on the inequality sign in (49), we obtain three different classes of polytopes.

We now let G be the complete graph on 2n + 1 nodes. Stephen and Tunçel [223] show that n
steps are needed for finding the matching polytope when using the N+ operator applied to the linear
relaxation K. Aguilera, Bianchi and Nasini [3] study the rank of the Balas-Ceria-Cornuéjols procedure
and of the N and N+ operators applied to the linear relaxation K for the three (matching, perfect
matching, and edge cover) problems. They show the following results, summarized in Figure 8.

2Of course, the matching polytope of G coincides with the stable set polytope of the line graph LG of G; the linear
relaxation K considered here is stronger than the linear relaxation FRAC(LG) considered in Section 3.5. This implies,
e.g., that N(K) ⊆ N(FRAC(LG)) and analogously for the other lift-and-project methods.
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(i) The BCC rank is equal to n2 for the three problems.

(ii) For the perfect matching problem, the rank is equal to n for both the N and N+ operators.

(iii) The rank is greater than n for the N operator applied to the matching problem, and for the N
and N+ operators applied to the edge cover problem.

BCC N N+

matching polytope n2 > n n

perfect matching polytope n2 n n

edge cover polytope n2 > n > n

Figure 8

About the rank of the BCC procedure. Given a graph G = (V, E), the polytope QSTAB(G),
consisting of the vectors x ∈ RV

+ satisfying the clique inequalities (42), is a linear relaxation of the
stable set polytope STAB(G), stronger than the fractional stable set polytope FRAC(G) considered
earlier in Section 3.5. Aguilera, Escalante and Nasini [2] show that the rank of the polytope QSTAB(G)
with respect to the Balas-Ceria-Cornuéjols procedure is equal to the rank of QSTAB(G), where G is
the complementary graph of G.

Aguilera, Escalante and Nasini [1] define an extension of the Balas-Ceria-Cornuéjols procedure for
up-monotone polyhedra K. Namely, given a subset F ⊆ {1, . . . , n}, they define the operator PF (K)
by

PF (K) = PF (K ∩ [0, 1]n) + Rn
+,

where PF (·) is the usual BCC operator defined as in (31). Then, the BCC rank of K is defined as the
smallest |F | for which PF (K) is equal to the convex hull of the integer points in K. It is shown in
[1] that, for a clutter C and its blocker bl(C), the two polyhedra PC = {x ∈ Rn

+ | x(C) ≥ 1 ∀C ∈ C}
and Pbl(C) = {x ∈ Rn

+ | x(D) ≥ 1 ∀D ∈ bl(C)} have the same rank with respect to the extended BCC
procedure.

An extension of lift operators to subset algebras. As we have seen earlier, the lift-and-project
methods are based on the idea of lifting a vector x ∈ {0, 1}n to a higher dimensional vector y ∈ {0, 1}N

(where N > n) such that yi = xi for all i = 1, . . . , n. More precisely, let L denote the lattice of all
subsets of V = {1, . . . , n} with the set inclusion as order relation, and let ZL be its Zeta matrix,
defined by (26). Then, the lift of x ∈ {0, 1}n is the vector y ∈ {0, 1}L with components yI =

∏

i∈I xi

for I ∈ L; in other words, y is the column of ZL indexed by x (after identifying a set with its incidence
vector).

Bienstock and Zuckerberg [38] push this idea further and introduce a lifting to a lattice Σ, larger
than L. Namely, let Σ denote the lattice of all subsets of {0, 1}n, with the reverse set inclusion as
order relation; that is, α ≤ β in Σ if β ⊆ α. Let ZΣ denote the Zeta matrix of Σ, with (α, β)-entry 1
if α ≤ β and 0 otherwise. Then, any vector x ∈ {0, 1}n can be lifted to the vector z ∈ {0, 1}Σ with
components zα = 1 if and only if x ∈ α (for α ∈ Σ); that is, z is the column of ZΣ indexed by {x}.

Note that the lattice L is isomorphic to a sublattice of Σ. Indeed, if we set HI = {x ∈ {0, 1}n |
xi = 1 ∀i ∈ I} for I ⊆ V , then I ⊆ J ⇐⇒ HI ⊇ HJ ⇐⇒ HI ≤ HJ (in Σ) and, thus, the mapping
I 7→ HI maps L to a sublattice of Σ. Therefore, given x ∈ {0, 1}n and, as above, y (resp., z) the
column of ZL (resp., of ZΣ) indexed by x, then zHI

= yI for all I ∈ L and zHi
= xi for all i ∈ V .
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Let F ⊆ {0, 1}n be the set of 0 − 1 points whose convex hull P := conv(F ) has to be found, and
let FL (resp., FΣ) be the corresponding set of columns of ZL (resp., of ZΣ). Then, a vector x ∈ Rn

belongs to conv(F ) if and only if there exists y ∈ conv(FL) such that yi = xi (i ∈ V ) or, equivalently,
if there exists z ∈ conv(FΣ) such that zHi

= xi (i ∈ V ). The SA, LS and Lasserre methods consist
of requiring certain conditions on the lifted vector y (or projections of it); Bienstock and Zuckerberg
[38] present analogous conditions for the vector z.

Bienstock and Zuckerberg work, in fact, with a lifted vector z̃ indexed by a small subset ν of
Σ; this set ν is constructed on the fly, depending on the structure of F . Consider, for instance, the
set covering problem, where F is the set of 0/1 solutions of a system: x(A1) ≥ 1, . . . , x(Am) ≥ 1
(with A1, . . . , Am ⊆ {1, . . . , n}). Then, the most basic lifting procedure presented in [38] produces a
polyhedron R(2) (whose projection is a linear relaxation of P ) in the variable z̃ ∈ Rν , where ν ⊆ Σ
consists of F , Yi := {x ∈ F | xi = 1}, Ni := F \ Yi (i = 1, . . . , n), and ∩i∈CNi, Yi0 ∩ ∩i∈C\i0Ni

(i0 ∈ C), and ∪
S⊆C,|S|≥2

∩i∈S Yi ∩ ∩i∈C\SNi, for each of the distinct intersections C = Ah ∩ Aℓ

(h 6= ℓ = 1, . . . , m) with size ≥ 2. The linear relaxation R(2) has O(m4n2) variables and constraints;
hence, one can optimize over R(2) in polynomial time. Moreover, any inequality aT x ≥ a0, valid for
P with coefficients in {0, 1, 2}, is valid for (the projection of) R(2). Note that there exist set covering
polytopes having exponentially many facets with coefficients in {0, 1, 2}. The new lifting procedure is
more powerful in some cases. For instance, R(2) = P holds for the polytope K from (38), while the
N+-rank of K is equal to n. As another example, consider the circulant set covering polytope:

P = conv({x ∈ {0, 1}n |
∑

i6=j

xi ≥ 1 ∀j = 1, . . . , n});

then the inequality
∑n

i=1 xi ≥ 2 is valid for P , it is not valid neither for Sn−3(K) nor for N+
n−3(K),

while it is valid for the relaxation R(2) [38].
A more sophisticated lifting procedure is proposed in [38] yielding stronger relaxations R(k) of P ,

with the following properties. For fixed k ≥ 2, one can optimize in polynomial time over R(k); any
inequality aT x ≥ a0, valid for P with3 coefficients in {0, 1, . . . , k}, is valid for R(k). For instance,
R(3) = ∅ holds for the polytope K from (39), while n steps of the classic lift-and-project procedures
are needed for proving that P = ∅.

Complexity of cutting plane proofs. Results about the complexity of cutting plane proofs using
cuts produced by the various lift-and-project methods can be found, e.g., in [62], [63], [97].

3.8 Extensions to polynomial programming

Quadratic programming. Suppose we want to solve the program

p∗ := min g0(x) subject to gℓ(x) ≥ 0 (ℓ = 1, . . . , m) (50)

where g0, g1, . . . , gm are quadratic functions of the form: gℓ(x) = xT Qℓx + 2qT
ℓ x + γℓ (Qℓ symmetric

n × n matrix, qℓ ∈ Rn, γℓ ∈ R). For any ℓ, define the matrix Pℓ :=

(

γℓ qT
ℓ

qℓ Qℓ

)

. Then, gℓ(x) =

〈Pℓ,

(

1 xT

x xxT

)

〉. This suggests the following natural positive semidefinite relaxation of (50):

min 〈P0, Y 〉 subject to Y � 0, Y00 = 1, 〈Pℓ, Y 〉 ≥ 0 (ℓ = 1, . . . , m). (51)
3Validity holds, more generally, for any inequality aT x ≥ a0 with pitch ≤ k. If we order the indices in such a way

that 0 < a1 ≤ a2 ≤ . . . ≤ aJ , aJ+1 = . . . = an = 0, then the pitch is the smallest t for which
∑t

j=1
aj ≥ a0.
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Let F := {x ∈ Rn | gℓ(x) ≥ 0 (ℓ = 1, . . . , m)} denote the feasible set of (50) and

F̂ := {x ∈ Rn |
(

1
x

)

= Y e0 for some Y � 0 satisfying 〈Pℓ, Y 〉 ≥ 0 for all ℓ = 1, . . . , m} (52)

its natural semidefinite relaxation. It is shown in [88, 139] that F̂ can be alternatively described by
the following quadratic system:

F̂ = {x ∈ Rn | ∑m
ℓ=1 tℓgℓ(x) ≥ 0 for all tℓ ≥ 0 for which

∑m
ℓ=1 tℓQℓ � 0}. (53)

If, in (52), one omits the condition Y � 0 and, in (53), the condition
∑

ℓ tℓQℓ � 0 is replaced by
∑

ℓ tℓQℓ = 0, then one obtains a linear relaxation F̂L of F such that conv(F ) ⊆ F̂ ⊆ F̂L.
Using this construction of linear/semidefinite relaxations, Kojima and Tunçel [139] construct a

hierarchy of successive relaxations of F that converges asymptotically to conv(F ). Lasserre [141] also
constructs such a hierarchy which applies, more generally, to polynomial programs; we expose it below.

Polynomial programming. Consider now the program (50) where all the gℓ’s are polynomials in
x = (x1, . . . , xn). Let wℓ be the degree of gℓ, vℓ :=

⌈wℓ

2

⌉

and v := maxℓ=1,...,m vℓ. We need some
definitions.

Given a sequence y = (yα)α∈Z
n
+

indexed by Zn
+, its moment matrix is

MZ(y) := (yα+β)α,β∈Z
n
+

(54)

and, given an integer t ≥ 0, MZ
t (y) is the principal submatrix of MZ(y) indexed by the sequences

α ∈ Zn
+ with |α| :=

∑

i αi ≤ t. [Note that the moment matrix MV (y) defined earlier in (27) corresponds
to the principal submatrix of MZ(y) indexed by the sequences α ∈ {0, 1}n, after replacing yα by yα′

where α′
i := min(αi, 1) for all i.] The operation from (29) extends to sequences indexed by Zn

+ in the
following way:

g, y ∈ RZ
n
+ ; g ∗ y := (

∑

β

gβyα+β)α∈Z
n
+
. (55)

Given x ∈ Rn, define the sequence y ∈ RZ
n
+ with α-th entry yα :=

∏n
i=1 xαi

i for α ∈ Zn
+. Then,

MZ
t (y) = yyT � 0 (where we use the same symbol y for denoting the truncated vector (yα)|α|≤t)

and MZ
t (gℓ ∗ y) = gℓ(x) · MZ

t (y) � 0 if gℓ(x) ≥ 0. This observation leads naturally to the following
relaxations of the set F , introduced by Lasserre [141].

For t ≥ v − 1, let Qt(F ) be the convex set defined as the projection of the solution set to the
system

MZ

t+1(y) � 0, MZ

t−vℓ+1(gℓ ∗ y) � 0 for ℓ = 1, . . . , m, y0 = 1 (56)

on the subspace Rn indexed by the variables yα for α = (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) (identified with
x1, . . . , xn). Then,

conv(F ) ⊆ Qt+1(F ) ⊆ Qt(F ).

Lasserre [141] shows that
⋂

t≥v−1

Qt(F ) = conv(F );

that is, the hierarchy (Qt(F ))t converges asymptotically to conv(F ). This equality holds under some
technical assumption on F which holds, for instance, when F is the set of 0/1 solutions of a polynomial
system and the constraints xi(1−xi) = 0 (i ∈ {1, . . . , n}) are present in the description of F , or when
the set {x | gℓ(x) ≥ 0} is compact for at least one of the constraints defining F . Lasserre’s result relies
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on a result about representations of positive polynomials as sums of squares, to which we will come
back in Section 7.1.

In the quadratic case, when all gℓ are quadratic polynomials, one can verify that the first Lasserre
relaxation Q0(F ) coincides with the basic SDP relaxation F̂ defined in (52); that is,

Q0(F ) = F̂ .

Consider now the 0/1 case when F is the set of 0/1 solutions of a polynomial system; write F as

F = {x ∈ Rn | gℓ(x) ≥ 0 (ℓ = 1, . . . , m), hi(x) := xi − x2
i = 0 (i = 1, . . . , n)}.

One can assume without loss of generality that each gℓ has degree at most 1 in every variable. The
set

K := {x ∈ [0, 1]n | gℓ(x) ≥ 0 (ℓ = 1, . . . , m)}
is a natural relaxation of F . We have constructed in Section 3.4 the successive relaxations Qt(K) of
conv(F ) satisfying conv(F ) = Qn+v−1(K); their construction used moment matrices indexed by the
subsets of V while the definition of Qt(F ) involves moment matrices indexed by integer sequences.
However, the condition MZ

t (hi ∗ y) = 0 (present in the definition of Qt(F )) permits to show that the
two definitions are equivalent; that is,

Qt(K) = Qt(F ) for t ≥ v − 1.

See [150] for details.

In the quadratic 0/1 case, we find therefore that

F̂ = Q0(F ) = Q0(K).

As an example, given a graph G = (V = {1, . . . , n}, E), consider the set

F := {x ∈ {0, 1}n | xixj = 0 for all ij ∈ E};

then conv(F ) is equal to the stable set polytope of G. It follows from the definitions that F̂ coincides
with the basic SDP relaxation TH(G) (defined in (44)). Therefore, Q0(F ) = TH(G) while the inclusion
TH(G) ⊆ Q0(FRAC(G)) is strict in general. Hence one obtains stronger relaxations for the stable set
polytope STAB(G) when starting from the above quadratic representation F for stable sets rather
than from the linear relaxation FRAC(G). Applying the equivalent definition (53) for F̂ , one finds
that

TH(G) =

{

x ∈ Rn | xT Mx −
n
∑

i=1

Miixi ≤ 0 for M � 0 with Mij = 0 (i 6= j ∈ V, ij 6∈ E)

}

. (57)

(This formulation of TH(G) also follows using the duality between the cone of completable partial
positive semidefinite matrices and the cone of positive semidefinite matrices having zeros at the posi-
tions of unspecified entries; cf. [148].) See Section 4.2 for further information about the semidefinite
relaxation TH(G).
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4 Semidefinite Relaxation for the Maximum Stable Set Problem

Given a graph G = (V, E), its stability number α(G) is the maximum cardinality of a stable set in G,
and its clique number ω(G) is the maximum cardinality of a clique in G. Given an integer k ≥ 1, a
k-colouring of G is an assignment of numbers from {1, . . . , k} (colours) to the nodes of G in such a
way that adjacent nodes receive distinct colours; in other words, a k-colouring is a partition of V into
k stable sets. The colouring number (or chromatic number) χ(G) is the smallest integer k for which
G has a k-colouring. With G = (V, E) denoting the complementary graph of G, the following holds
trivially:

α(G) = ω(G) ≤ χ(G).

The inequality ω(G) ≤ χ(G) is strict, for instance, for odd circuits of length ≥ 5 and their complements.
Berge [36] defined a graph G to be perfect if ω(G′) = χ(G′) for every induced subgraph G′ of G and
he conjectured that a graph is perfect if and only if it does not contain a circuit of length ≥ 5 or
its complement as an induced subgraph; this is the well known strong perfect graph conjecture. M.
Chudnovsky and P.D. Seymour announced in May 2002 that they could prove the strong perfect
graph conjecture. Lovász [163] proved that the complement of a perfect graph is again perfect, solving
another conjecture of Berge. As we will see later in this section, perfect graphs can also be characterized
in terms of integrality of certain associated polyhedra.

Computing the stability number or the chromatic number of a graph are hard problems; more
precisely, given an integer k, it is an NP-complete problem to decide whether α(G) ≥ k or χ(G) ≤ k
[128]. Deciding whether a graph is 2-colourable can be done in polynomial time (as this happens if
and only if the graph is bipartite). On the other hand, while every planar graph is 4-colourable (by the
celebrated four colour theorem), it is NP-complete to decide whether a planar graph is 3-colourable
[90]. When restricted to the class of perfect graphs, the maximum stable set problem and the colouring
problem can be solved in polynomial time. This result relies on the use of the Lovász theta function
ϑ(G) which can be computed (with an arbitrary precision) in polynomial time (as the optimum of a
semidefinite program) and satisfies the ‘sandwich’ inequalities:

α(G) ≤ ϑ(G) ≤ χ(G).

The polynomial time solvability of the maximum stable set problem for perfect graphs is one of the first
beautiful applications of semidefinite programming to combinatorial optimization and, up to today,
no other purely combinatorial method is known for proving this.

4.1 The basic linear relaxation

As before, the stable set polytope STAB(G) is the polytope in RV defined as the convex hull of the
incidence vectors of the stable sets of G, FRAC(G) is its linear relaxation defined by nonnegativity
and the edge inequalities (40), and QSTAB(G) denotes the linear relaxation of STAB(G) defined by
nonnegativity and the clique inequalities (42). Therefore,

STAB(G) ⊆ QSTAB(G) ⊆ FRAC(G)

and
α(G) = max(eT x | x ∈ STAB(G))

setting e := (1, . . . , 1)T . One can easily see that equality STAB(G) = FRAC(G) holds if and only
if G is a bipartite graph with no isolated nodes; thus the maximum stable set problem for bipartite
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graphs can be solved in polynomial time as a linear programming problem over FRAC(G). Fulkerson
[89] and Chvátal [53] show:

Theorem 9. A graph G is perfect if and only if STAB(G) = QSTAB(G).

This result does not (yet) help for computing efficiently α(G) for perfect graphs. Indeed, optimizing
over the linear relaxation QSTAB(G) is, unfortunately, a hard problem in general (as hard as the
original problem, since the membership problem for QSTAB(G) is nothing but a maximum weight
clique problem in G.) Proving polynomiality requires the use of the semidefinite relaxation TH(G) as
we see later in this section.

4.2 The theta function ϑ(G) and the basic semidefinite relaxation TH(G)

Lovász [164] introduced the following parameter ϑ(G), known as the theta number:

ϑ(G) := max eT Xe
s.t. Tr(X) = 1

Xij = 0 (i 6= j, ij ∈ E)
X � 0.

(58)

The theta number has two important properties: it can be computed with an arbitrary precision in
polynomial time (as the optimum value of a semidefinite program) and it provides bounds for the
stability and chromatic numbers. Namely,

α(G) ≤ ϑ(G) ≤ χ(G). (59)

To see that α(G) ≤ ϑ(G), consider a maximum stable set S; then the matrix X := 1
|S|χ

S(χS)T is

feasible for the program (58) and α(G) = eT Xe. To see that ϑ(G) ≤ χ(G), consider a matrix X
feasible for (58) and a partition V = Q1 ∪ . . . ∪ Qk into k := χ(G) cliques. Then,

0 ≤
k
∑

h=1

(kχQh − e)T X(kχQh − e) = k2Tr(X) − keT Xe = k2 − keT Xe,

which implies eT Xe ≤ k and thus ϑ(G) ≤ χ(G).
Several equivalent definitions are known for ϑ(G) that we recall below. (See [100] or [137] for a

detailed treatment, and [102] for an algorithmic comparison.) The dual semidefinite program of (58)
reads:

min(t | tI +
∑

ij∈E

λijEij − J � 0), (60)

where J := eeT is the all ones matrix and Eij is the elementary matrix with all zero entries except
1 at positions (i, j) and (j, i). As the program (58) has a strictly feasible solution (e.g., X = 1

nI),
there is no duality gap and the optimum value of (60) is equal to the theta number ϑ(G). Setting
Y := J −

∑

ij∈E

λijEij , Z := tI − Y and U := 1
t−1Z in (60), we obtain the following reformulations for

ϑ(G):
ϑ(G) = min λmax(Y )

s.t. Yij = 1 (i = j or ij ∈ E)
Y symmetric matrix,

(61)
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ϑ(G) = min t = min t
s.t. Zii = t − 1 (i ∈ V ) s.t. Uii = 1 (i ∈ V )

Zij = −1 (ij ∈ E) Uij = − 1
t−1 (ij ∈ E)

Z � 0 U � 0, t ≥ 2.

(62)

The formulation (62) will be used later in Section 6 for the colouring and max k-cut problems. One
can also express ϑ(G) as the optimum value of the linear objective function eT x maximized over a
convex set forming a relaxation of STAB(G). Namely, let MG denote the set of positive semidefinite
matrices Y indexed by the set V ∪{0} satisfying yii = y0i for i ∈ V and yij = 0 for i 6= j ∈ V adjacent
in G, and set

TH(G) := {x ∈ RV |
(

1
x

)

= Y e0 for some Y ∈ MG}, (63)

where e0 := (1, 0, . . . , 0)T ∈ Rn+1. (Same definition as (44).)

Lemma 10. For any graph G, STAB(G) ⊆ TH(G) ⊆ QSTAB(G).

Proof. If S is a stable set in G and x := χS , then Y :=
(

1
x

)

(1 xT ) ∈ MG and
(

1
x

)

= Y e0; from

this follows that STAB(G) ⊆ TH(G). Let x ∈ TH(G), Y ∈ MG such that
(

1
x

)

= Y e0, and let Q be a

clique in G. The principal submatrix YQ of Y whose rows and columns are indexed by the set {0}∪Q

has the form

(

1 xT

x diag(x)

)

. As Y � 0, we have YQ � 0, i.e., diag(x) − xxT � 0 (taking a Schur

complement), which implies that eT (diag(x)−xxT )e = eT x(1−eT x) ≥ 0 and thus eT x =
∑

i∈Q xi ≤ 1.
This shows the inclusion TH(G) ⊆ QSTAB(G).

Theorem 11. ϑ(G) = max(eT x | x ∈ TH(G)).

Proof. We use the formulation of ϑ(G) from (58). Let µG denote the maximum of eT x over TH(G).
We first show that ϑ(G) ≤ µG. For this, let X be an optimum solution to the program (58). Let
v1, . . . , vn ∈ Rn such that xij = vT

i vj for all i, j ∈ V ; thus ϑ(G) = ||∑n
i=1 vi||2,

∑n
i=1(vi)

2 = Tr(X) = 1,
and vT

i vj = 0 if i, j are adjacent in G. Set P := {i ∈ V | vi 6= 0}, u0 := 1√
ϑ(G)

∑n
i=1 vi, ui := vi

||vi||
for i ∈ P , and let ui (i ∈ V \ P ) be an orthonormal basis of the orthogonal complement of the space
spanned by {vi | i ∈ P}. Let D denote the diagonal matrix indexed by {0} ∪ V with diagonal entries
uT

0 ui (i = 0, 1, . . . , n), let Z denote the Gram matrix of u0, u1, . . . , un and set Y := DZD, with entries
yij = (uT

i uj)(u
T
0 ui)(u

T
0 uj) (i, j = 0, 1, . . . , n). Then, Y ∈ MG with y00 = 1. It remains to verify that

ϑ(G) ≤∑n
i=1 y0i. By the definition of u0, we find

ϑ(G) = (
n
∑

i=1

uT
0 vi)

2 = (
∑

i∈P

uT
0 vi)

2 = (
∑

i∈P

uT
0 ui‖vi‖)2 ≤ (

∑

i∈P

‖vi‖2)(
∑

i∈P

(uT
0 ui)

2) =
n
∑

i=1

y0i,

where the inequality follows using the Cauchy-Schwartz inequality. We now show the converse in-
equality µG ≤ ϑ(G). For this, let x ∈ TH(G) be optimum for the program defining µG, let Y ∈ MG

such that
(

1
x

)

= Y e0, and v0, v1, . . . , vn ∈ Rn+1 such that yij = vT
i vj for all i, j = 0, 1, . . . , n. It suffices

to construct X feasible for (58) satisfying
∑n

i,j=1 xij ≥ µG. Define the n × n matrix X with entries

xij := 1
µG

vT
i vj (i, j = 1, . . . , n); then X is feasible for (58). Moreover, µG =

∑n
i=1 y0i =

∑n
i=1 vT

0 vi =

vT
0 (
∑n

i=1 vi) is less than or equal to ‖∑n
i=1 vi‖ (by the Cauchy-Schwartz inequality, since ‖v0‖ = 1).
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As
∑n

i,j=1 xij = 1
µG

(
∑n

i=1 vi)
2, we find that µG ≤∑n

i,j=1 xij .

An orthonormal representation of G is a set of unit vectors u1, . . . , un ∈ RN (N ≥ 1) satisfying
uT

i uj = 0 for all ij ∈ E.

Theorem 12. ϑ(G) = maxd,vi

∑

i∈V (dT vi)
2, where the maximum is taken over all unit vectors d ∈ RN

and all orthonormal representations v1, . . . , vn ∈ RN of G.

Proof. Let ϑ(G) = eT Xe, where X is an optimum solution to the program (58) and let b1, . . . , bn be

vectors such that Xij = bT
i bj for i, j ∈ V . Set d :=

∑

i∈V
bi

‖
∑

i∈V
bi‖ , P := {i ∈ V | bi 6= 0} and vi := bi

‖bi‖ for

i ∈ P . Let vi (i ∈ V \P ) be an orthonormal basis of the orthogonal complement of the space spanned
by vi (i ∈ P ). Then, v1, . . . , vn is an orthonormal representation of G. We have:

√

ϑ(G) = ‖
∑

i∈P

bi‖ = dT

(

∑

i∈P

bi

)

=
∑

i∈P

‖bi‖vT
i d ≤

√

∑

i∈P

‖bi‖2 ·
√

∑

i∈P

(vT
i d)2 ≤

√

∑

i∈V

(vT
i d)2

(using the Cauchy-Schwartz inequality and Tr(X) = 1). This implies that ϑ(G) ≤∑

i∈V (dT vi)
2.

Conversely, let d be a unit vector and let v1, . . . , vn be an orthonormal representation of G. Let
Y denote the Gram matrix of the vectors d, (dT v1)v1, . . . , (d

T vn)vn. Then, Y ∈ MG. Therefore,
((dT v1)

2, . . . , (dT vn)2)T ∈ TH(G) which implies that
∑

i∈V (dT vi)
2 ≤ ϑ(G).

Let AG denote the convex hull of all vectors ((dT v1)
2, . . . , (dT vn)2)T where d is a unit vector and

v1, . . . , vn is an orthonormal representation of G, let BG denote the set of x ∈ RV
+ satisfying the

orthonormal representation constraints:
∑

i∈V

(cT ui)
2xi ≤ 1 (64)

for all unit vectors c and all orthonormal representations u1, . . . , un of G, and let CG denote the set
of x ∈ RV

+ satisfying
∑

i∈V

xi ≤ min
c,ui

max
i∈V

1

(cT ui)2

where the minimum is taken over all unit vectors c and all orthonormal representations u1, . . . , un of
G.

Lemma 13. AG ⊆ TH(G) ⊆ BG ⊆ CG.

Proof. The inclusion AG ⊆ TH(G) follows from the second part of the proof of Theorem 12 and
the inclusion BG ⊆ CG is easy to verify. Let x ∈ TH(G) and let z := ((cT u1)

2, . . . , (cT un)2)T where
c is a unit vector and u1, . . . , un is an orthonormal representation of G; we show that xT z ≤ 1. By

the above, z ∈ AG ⊆ TH(G). Let Y ∈ MG and Z ∈ MG such that
(

1
x

)

= Y e0 and
(

1
z

)

= Ze0.

Denote by Y ′ the matrix obtained from Y by changing the signs on its first row and column. Then,
〈Y ′, Z〉 = 1 − 2

∑

i∈V y0iz0i +
∑

i∈V yiizii = 1 −∑

i∈V xizi ≥ 0 (since Y ′, Z � 0) and thus xT z ≤ 1.
This shows the inclusion TH(G) ⊆ BG.
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Theorem 14. ϑ(G) = minc,ui
maxi∈V

1
(cT ui)2

, where the minimum is taken over all unit vectors c and

all orthonormal representations u1, . . . , un of G.

Proof. The inequality ϑ(G) ≤ min . . . follows from the inclusion TH(G) ⊆ CG and Theorem 11. For
the reverse inequality, we use the definition of ϑ(G) from (61). Let Y be a symmetric matrix with
Yii = 1 (i ∈ V ) and Yij = 1 (ij ∈ E) and ϑ(G) = λmax(Y ). As ϑ(G)I − Y � 0, there exist vectors
b1, . . . , bn such that b2

i = ϑ(G)− 1 (i ∈ V ) and bT
i bj = −1 (ij ∈ E). Let c be a unit vector orthogonal

to all bi (which exists since ϑ(G)I − Y is singular) and set ui := c+bi√
ϑ(G)

(i ∈ V ). Then, u1, . . . , un is

an orthonormal representation of G and ϑ(G) = 1
(cT ui)2

for all i.

Theorems 12 and 14 and Lemma 13 show that one obtains the same optimum value when optimizing
the linear objective function eT x over TH(G) or over any of the sets AG, BG or CG. In fact, the same
remains true for an arbitrary linear objective function wT x where w ∈ RV

+, as the above extends easily
to the weighted case. Therefore,

TH(G) = AG = BG = CG.

Moreover, TH(G) is the antiblocker of TH(G); that is, TH(G) = {z ∈ RV
+ | xT z ≤ 1 ∀x ∈ TH(G)}.

One can show that the only orthonormal representation inequalities (64) defining facets of TH(G) are
the clique inequalities. From this follows:

TH(G) is a polytope ⇐⇒ G is perfect ⇐⇒ TH(G) = QSTAB(G) ⇐⇒ TH(G) = STAB(G).

We refer to ([204], chapter 12) for a detailed exposition on the theta body TH(G).

4.3 Colouring and finding maximum stable sets in perfect graphs

The stability number α(G) and the chromatic number χ(G) of a perfect graph G can be computed in
polynomial time. (Indeed, it suffices to compute an approximated value of ϑ(G) with precision < 1/2
in order to determine α(G) = χ(G) = ϑ(G).) We now mention how to find in polynomial time a stable
set of size α(G) and a χ(G)-colouring in a perfect graph. The weighted versions of these problems can
also be solved in polynomial time (cf. [100] for details).

Finding a maximum cardinality stable set in a perfect graph. Let G = (V, E) be a perfect
graph and let v1, . . . , vn be an ordering of its nodes. We construct a sequence of graphs G0 := G ⊇
G1 ⊃ . . . ⊇ Gi ⊇ Gi+1 ⊇ . . . ⊇ Gn in the following manner: For each i ≥ 1, compute α(Gi−1\vi); if
α(Gi−1\vi) = α(G), then set Gi := Gi−1\vi, otherwise set Gi := Gi−1. Then, α(Gi) = α(G) for all i
and Gn is a stable set, thus providing a maximum stable set in G. Therefore, a maximum stable set
in a perfect graph G can be found by applying n times an algorithm for computing the theta function.

Finding a minimum colouring in a perfect graph. We follow the presentation of Schrijver
[210]. Let G = (V, E) be a perfect graph. A crucial observation is that it suffices to find a stable
set S which intersects all the maximum cardinality cliques of G. Indeed, if such S is found, then one
can recursively colour G\S with ω(G\S) = ω(S) − 1 colours and thus G with ω(G) = χ(G) colours.
For t ≥ 1, we grow iteratively a list Q1, . . . , Qt of maximum cardinality cliques. Suppose Q1, . . . , Qt

have been found. We begin with finding a stable set S meeting each of Q1, . . . , Qt. For this, setting
w :=

∑t
i=1 χQi , it suffices to find a maximum weight stable set S. (This can be done by applying the

above maximum cardinality stable set algorithm to the graph G′ obtained from G by replacing every
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node i by a set Wi of wi nonadjacent nodes, making two nodes u ∈ Wi, v ∈ Wj adjacent in G′ if the
nodes i, j are adjacent in G.) Then S has weight t which means that S meets each of Q1, . . . , Qt.
Now, if ω(G\S) < ω(G), then S meets all the maximum cardinality cliques in G and we are done.
Otherwise, we find a clique Qt+1 in G\S of size ω(G) and add it to our list.

The algorithm has a polynomial running time since the number of iterations is bounded by |V |.
To see it, consider the affine space Lt := {x ∈ RV | x(Qi) = 1 ∀i = 1, . . . , t}. Then, L1 ⊇ L2 ⊇ . . . ⊇
Lt ⊇ Lt+1 ⊇ . . . . The dimension of the spaces Lt decreases at each step since χS ∈ Lt \ Lt+1, where
S is the stable set constructed at the t-th iteration as above.

4.4 Sharpening the theta function

The number ϑ′(G). McEliece, Rodemich, Rumsey [173] and Schrijver [207] introduce the parameter
ϑ′(G) as

ϑ′(G) := max eT Xe
s.t. Tr(X) = 1

Xij = 0 (i 6= j, ij ∈ E)
X � 0, X ≥ 0.

(65)

Comparing with (58), it follows that

α(G) ≤ ϑ′(G) ≤ ϑ(G).

As was done for ϑ(G) one can prove the following equivalent formulations for ϑ′(G):

ϑ′(G) = min λmax(Y )
s.t. Yij ≥ 1 (i = j or ij ∈ E)

Y symmetric matrix;
(66)

ϑ′(G) = min t = min t
s.t. Zii = t − 1 (i ∈ V ) s.t. Uii = 1 (i ∈ V )

Zij ≤ −1 (ij ∈ E) Uij ≤ − 1
t−1 (ij ∈ E)

Z � 0 U � 0, t ≥ 2;

(67)

and ϑ′(G) = max(eT x |
(

1
x

)

= Y e0 for some nonnegative matrix Y ∈ MG). The inequality ϑ′(G) ≤
ϑ(G) is strict, for instance, for the graph with node set {0, 1}6 where two nodes are adjacent if their
Hamming distance (i.e., the number of positions where their coordinates are distinct) is at most 3
(then, ϑ(G) = 16

3 and ϑ′(G) = α(G) = 4).

The number ϑ+(G). In a similar vein, Szegedy [224] introduced the following parameter ϑ+(G)
which provides a sharper lower bound for the chromatic number of G:

ϑ+(G) := max eT Xe
s.t. Tr(X) = 1

Xij ≤ 0 (i 6= j, ij ∈ E)
X � 0.

(68)

We have ϑ(G) ≤ ϑ+(G) ≤ χ(G). The first inequality is obvious and the second one can be proved
in the same way as the inequality ϑ(G) ≤ χ(G) in Section 4.2. Therefore, the following chain of
inequalities holds:

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G). (69)
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The parameters ϑ′(G), ϑ(G), and ϑ+(G) are known, respectively, as the vector chromatic number, the
strict vector chromatic number, and the strong vector chromatic number of G; see Section 6.4. As was
done for ϑ(G), one can prove the following equivalent formulations for ϑ+(G):

ϑ+(G) = min λmax(Y )
s.t. Yij = 1 (i = j or ij ∈ E)

Yij ≤ 1 (ij ∈ E)
Y symmetric matrix;

(70)

ϑ+(G) = min t = min t
s.t. Zii = t − 1 (i ∈ V ) s.t. Uii = 1 (i ∈ V )

Zij = −1 (ij ∈ E) Uij = − 1
t−1 (ij ∈ E)

Zij ≥ −1 (ij ∈ E) Uij ≥ − 1
t−1 (ij ∈ E)

Z � 0 U � 0, t ≥ 2.

(71)

The parameter ϑ+(G) (in the formulation (71)) was introduced independently by Meurdesoif [174] who
gives a graph G for which inequality ϑ(G) ≤ ϑ+(G) is strict. See [224] for more about this parameter.

Bounding the Shannon capacity. The theta number ϑ(G) was introduced by Lovász [164] in
connection with a problem of Shannon in coding theory. The strong product G · H of two graphs G
and H has node set V (G) × V (H) with two distinct nodes (u, v) and (u′, v′) being adjacent if u, u′

are equal or adjacent in G and v, v′ are equal or adjacent in H. Then Gk is the strong product of k
copies of G. The Shannon capacity of G is defined by

Θ(G) := sup
k≥1

k

√

α(Gk).

As α(Gk) ≥ (α(G))k and ϑ(Gk) ≤ (ϑ(G))k, one finds

α(G) ≤ Θ(G) ≤ ϑ(G).

Using these inequalities, Lovász [164] could show that the Shannon capacity of C5 is
√

5 (as α(C2
5 ) = 5

and θ(C5) =
√

5). For n ≥ 7 odd, ϑ(Cn) =
n cos( π

n
)

1+cos( π
n

) , but the value of Θ(Cn) is not known.

The theta number versus Delsarte’s bound. Let G be a graph whose adjacency matrix can be
written as

∑

i∈M Ai, where M ⊆ {1, . . . , N} and A0, A1, . . . , AN are 0/1 symmetric matrices forming
an association scheme; that is, A0 = I,

∑N
i=0 Ai = J , there exist scalars pk

ij (i, j, k = 1, . . . , N) such

that AiAj = AjAi =
∑N

k=0 pk
ijAk. As the matrices A0, . . . , AN commute, they have a common basis of

eigenvectors and therefore positive semidefiniteness of a matrix X :=
∑N

i=0 xiAi can be expressed by
a linear system of inequalities in x1, . . . , xN . Therefore, one finds that the theta numbers ϑ(G), ϑ′(G)
can be computed by solving a linear programming problem. Based on this, Schrijver [207] shows that
ϑ′(G) coincides with a linear programming bound introduced earlier by Delsarte [67].

These ideas have been extended to general semidefinite programs by Goemans and Rendl [92].
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5 Semidefinite Relaxation for the Max-Cut Problem

We present here results dealing with the basic semidefinite relaxation of the cut polytope and its
application to desigining good approximation algorithms for the max-cut problem.

Given a graph G = (V, E), the cut δ(S) induced by a vertex set S ⊆ V is the set of edges with
exactly one endpoint in S. Given edge weights w ∈ QE , the max-cut problem consists of finding
a cut δ(S) whose weight w(δ(S)) :=

∑

ij∈δ(S) wij is maximum. Let mc(G, w) denote the maximum
weight of a cut in G. A comprehensive survey about the max-cut problem can be found in [195]. The
max-cut problem is one of the basic NP-hard problems studied by Karp [128]. Moreover, it cannot be
approximated with an arbitrary precision; namely, H̊astad [114] shows that for ρ > 16

17 = 0.94117 there
is no ρ-approximation algorithm for max-cut if P 6= NP. [A ρ-approximation algorithm is an algorithm
that returns in polynomial time a cut whose weight is at least ρ times the maximum weight of a cut;
ρ being called the performance ratio or guarantee.] On the other hand, Goemans and Williamson [95]
prove a 0.878-approximation algorithm for max-cut that will be presented in Section 5.3 below.

5.1 The basic linear relaxation

As before, the cut polytope CUT(G) is the polytope in RE defined as the convex hull of the vectors
zS ∈ {±1}E for S ⊆ V , where zS

ij = −1 if and only if |S ∩ {i, j}| = 1. The weight of the cut δ(S) can

be expressed as 1
2

∑

ij∈E wij(1 − zS
ij). Hence the max-cut problem is the problem of optimizing the

linear objective function
1

2

∑

ij∈E

wij(1 − zij) (72)

over CUT(G). The circuit inequalities:

∑

ij∈F

xij −
∑

ij∈E(C)\F
xij ≥ 2 − |C|, (73)

where C is a circuit in G and F is a subset of E(C) with an odd cardinality, are valid for CUT(G)
as they express the fact that a cut and a circuit must have an even intersection. Together with the
bounds −1 ≤ xij ≤ 1 (ij ∈ E) they define the metric polytope MET(G). Thus CUT(G) ⊆ MET(G);
moreover, the only ±1 vectors in MET(G) are the cut vectors zS (S ⊆ V ). An inequality (73) defines
a facet of CUT(G) if and only if C is a chordless circuit in G while an inequality ±xij ≤ 1 is facet
defining if and only if ij does not belong to a triangle [29]. Hence the metric polytope MET(Kn) is
defined by the 4

(n
3

)

triangle inequalities:

xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1 (74)

for all triples i, j, k ∈ {1, . . . , n}. Therefore, one can optimize any linear objective function over
MET(Kn) in polynomial time. The same holds for MET(G), since MET(G) is equal to the projection
of MET(Kn) on the subspace RE indexed by the edge set of G [26]. The inclusion CUT(G) ⊆ MET(G)
holds at equality if and only if G has no K5-minor [29]. Therefore, the max-cut problem can be solved
in polynomial time for the graphs with no K5-minor (including the planar graphs).

The polytope

Q(G) := {x ∈ [−1, 1]E |
∑

ij∈E(C)

xij ≥ 2 − |C| for all odd circuits C in G}
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contains the metric polytope MET(G) and its ±1-vectors correspond to the bipartite subgraphs of
G. Therefore, the max-cut problem for nonnegative weights can be reformulated as the problem of
maximizing (72) over the ±1-vectors in Q(G). A graph G is said to be weakly bipartite when all the
vertices of Q(G) are ±1-valued. It is shown in [101] that one can optimize in polynomial time a linear
objective function over Q(G). Therefore, the max-cut problem can be solved in polynomial time
for weakly bipartite graphs with nonnegative edge weights. Guenin [103] characterized the weakly
bipartite graphs as those graphs containing no odd K5-minor (they include the graphs with no K5-
minor, the graphs having two nodes covering all odd circuits, etc.), settling a conjecture posed by
Seymour [211]. (See Schrijver [209] for a shorter proof.) Poljak [192] shows that, for nonnegative
edge weights, one obtains in fact the same optimum value when optimizing (72) over MET(G) or over
Q(G).

Let met(G, w) denote the optimum value of (72) maximized over x ∈ MET(G). When all edge
weights are equal to 1, we also use the notation met(G) in place of met(G, w) (and analogously mc(G)
in place of mc(G, w)). How well does the polyhedral bound met(G, w) approximate the max-cut value
mc(G, w)? In order to compare the two bounds, we assume that all edge weights are nonnegative.
Then,

met(G, w) ≤ w(E) =
∑

ij∈E

wij and mc(G, w) ≥ 1

2
w(E).

(To see the latter inequality, consider an optimum cut δ(S) and the associated partition (S, V \ S).
Then, for every node i ∈ V , the sum of the weights of the edges connecting i to the opposite class of
the partition is greater than or equal to the sum of the weights of the edges connecting i to nodes in
the same class, since otherwise moving i to the other class would produce a heavier cut.) Therefore,

mc(G, w)

met(G, w)
≥ 1

2
.

In fact, the ratio mc(G,w)
met(G,w) tends to 1

2 for certain classes of graphs (cf. [192], [194]) which shows that in
the worst case the metric polytope does not provide a better approximation than the trivial relaxation
of CUT(G) by the cube [−1, 1]E.

5.2 The basic semidefinite relaxation

The max-cut problem can be reformulated as the following integer quadratic program:

mc(G, w) = max 1
2

∑

ij∈E

wij(1 − xixj)

s.t. x1, . . . , xn ∈ {±1}.
(75)

For x ∈ {±1}n, the matrix X := xxT is positive semidefinite with all diagonal elements equal to
one. Thus relaxing the rank one condition on X, we obtain the following semidefinite relaxation for
max-cut:

sdp(G, w) := max 1
2

∑

ij∈E

wij(1 − xij)

s.t. xii = 1 ∀i ∈ {1, . . . , n}
X = (xij) � 0.

(76)

The set
En := {X = (xij)

n
i,j=1 | X � 0 and xii = 1 ∀i ∈ {1, . . . , n}} (77)
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is the basic semidefinite relaxation of the cut polytope CUT(Kn). More precisely,

x ∈ CUT(Kn) =⇒ mat(x) ∈ En (78)

where mat(x) is the n × n symmetric matrix with ones on its main diagonal and xij as off-diagonal
entries.

The quantity sdp(G, w) can be computed in polynomial time (with an arbitrary precision). The
objective function in (76) is equal to 1

4〈Lw, X〉, where Lw = (lij) is the Laplacian matrix defined by
lii := w(δ(i)) and lij := −wij for i 6= j (assigning weight 0 to non edges). Hence, the dual of the
semidefinite program (76) is

1

4
min{

n
∑

i=1

yi | diag(y) − Lw � 0} (79)

and there is no duality gap (since I is a stricty feasible solution to (76)). Set s = 1
nyT e and u = se−y;

then uT e = 0 and diag(y) − Lw = sI − diag(u) − Lw � 0 if and only if λmax(Lw + diag(u)) ≤ s.
Therefore, (79) can be rewritten as the following eigenvalue optimization problem:

n

4
min{λmax(Lw + diag(u)) |

n
∑

i=1

ui = 0}; (80)

this eigenvalue upper bound for max-cut had been introduced and studied earlier by Delorme and
Poljak [64, 65]. One can also verify directly that (80) is an upper bound for max-cut. Indeed, for
x ∈ {±1}n and u ∈ Rn with

∑

i ui = 0, one has:

w(δ(S)) =
1

4
xT Lwx =

1

4
xT (Lw + diag(u))x =

n

4

xT (Lw + diag(u))x

xT x

which is less than or equal to n
4 λmax(Lw + diag(u)) by the Rayleigh principle. The program (80) can

be shown to have a unique minimizer u (when w 6= 0); this minimizer u is equal to the null vector,
for instance, when G is vertex transitive, in which case the computation of the semidefinite bound
amounts to an eigenvalue computation [64]. Based on this, one can compute the semidefinite bound
for unweighted circuits. Namely, mc(C2k) = sdp(C2k) = 2k and mc(C2k+1) = 2k while sdp(C2k+1) =
2k+1

4 (2 + 2 cos( π
2k+1)). Hence, mc(C5)

sdp(C5)
= 32

25+5
√

5
∼ 0.88445; the same ratio is obtained for some other

circulant graphs [175].

Much research has been done for evaluating the integrality ratio mc(G,w)
sdp(G,w) and comparing the poly-

hedral and semidefinite bounds. Poljak [192] proved the following inequality relating the two bounds:

met(G, w)

sdp(G, w)
≥ 32

25 + 5
√

5
for any graph G and w ≥ 0. (81)

Therefore, the inequality
mc(G, w)

sdp(G, w)
≥ 32

25 + 5
√

5
(82)

holds for any weakly bipartite graph (G, w) with w ≥ 0. The bound (82) remains valid for unweighted
line graphs and the better bound 8

9 was proved for the complete graph Kn with edge weights wij := bibj

(given b1, . . . , bn ∈ R+) or for Paley graphs [64]. Moreover, the integrality ratio is asymptotically equal
to 1 for the random graphs Gn,p (p denoting the edge probability) [64].
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Goemans and Williamson [95] proved the following bound for the integrality ratio:

mc(G, w)

sdp(G, w)
≥ α0 for any graph G and w ≥ 0, (83)

where 0.87856 < α0 < 0.87857 and α0 is defined by

α0 := min
0<θ≤π

2

π

θ

1 − cos θ
. (84)

Moreover, they present a randomized algorithm producing a cut whose expected weight is at least
α0 · sdp(G, w); their result will be described in the next subsection.

Until recently, no example was known of a graph having a worst integrality ratio than C5 and
it had been conjectured by Delorme and Poljak [64] that 32

25+5
√

5
is the worst possible value for the

integrality ratio. Feige and Schechtman [82, 83] disproved this conjecture and proved that the worst

case value for the integrality ratio mc(G,w)
sdp(G,w) is equal to the Goemans-Williamson quantity α0; we will

come back to this result later in this section.

5.3 The Goemans-Williamson randomized approximation algorithm for max-cut

The randomized approximation algorithm of Goemans and Williamson [95] for max-cut goes as follows;
its analysis will need the assumption that the edge weights are nonnegative.

1. The semidefinite optimization phase: Solve the semidefinite program (76). Let X = (xij) be
an optimum solution and let v1, . . . , vn ∈ Rd (for some d ≤ n) such that xij = vT

i vj for all
i, j ∈ {1, . . . , n}.

2. The random hyperplane rounding phase: Generate a random unit vector r and set S := {i |
vT
i r ≥ 0}. Then, δ(S) is the randomized cut returned by the algorithm.

The hyperplane Hr with normal r cuts the space into two half-spaces and an edge ij belongs to the cut
δ(S) if and only if the vectors vi and vj do not belong to the same half-space. Hence the probability

that an edge ij belongs to δ(S) is equal to
arccos(vT

i vj)
π and the expected weight E(w(S)) of the cut

δ(S) is equal to

E(w(S)) =
∑

ij∈E

wij
arccos(vT

i vj)

π
=
∑

ij∈E

wij
1 − vT

i vj

2
· 2

π

arccos(vT
i vj)

1 − vT
i vj

≥ α0 · sdp(G, w).

The last inequality holds if we assume that w ≥ 0. As E(w(S)) ≤ mc(G, w), we find

mc(G, w)

sdp(G, w)
≥ E(w(S))

sdp(G, w)
≥ α0 > 0.87856. (85)

As a biproduct of the analysis, we obtain the following trigonometric reformulation for max-cut with
w ≥ 0:

mc(G, w) = max
∑

ij∈E wij
arccos(vT

i vj)
π

s.t. v1, . . . , vn unit vectors in Rn.
(86)
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Mahajan and Ramesh [170] have shown that the above randomized algorithm can be derandomized,
therefore giving a deterministic α0-approximation algorithm for max-cut. Let us stress that until then
the best known approximation algorithm was the simple random partition algorithm (which assigns a
node to either side of the partition independently with probability 1

2) with a performance ratio of 1
2 .

As mentioned above, the integrality ratio mc(G,w)
sdp(G,w) is equal to α0 in the worst case. More precisely,

Feige and Schechtman [82, 83] show that for every ǫ > 0 there exists a graph G (unweighted) for
which the ratio is at most α0 + ǫ. The basic idea of their construction is as follows. Let θ0 denote
the angle where the minimum in the definition of α0 = min0<θ≤π

2
π

θ
1−cos θ is attained; θ0 ∼ 2.331122

is the nonzero root of cos θ + θ sin θ = 1. Let [θ1, θ2] be the largest interval containing θ0 satisfying
θ ∈ [θ1, θ2] =⇒ 2

π
θ

1−cos θ ≤ α0 + ǫ. Distribute n points v1, . . . , vn uniformly on the unit sphere Sd−1 in

Rd and let G be the graph on n nodes where there is an edge ij if and only if the angle between vi

and vj belongs to [θ1, θ2]. Applying the random hyperplane rounding phase to the vectors v1, . . . , vn,
the above analysis shows that the expected weight of the returned cut satisfies

E(w(S))

sdp(G)
≤ α0 + ǫ.

The crucial part of the proof consists then of showing that for some suitable choice of the dimension
d and of the distribution of the n points on the sphere Sd−1 the expected weight E(w(S)) is not far
from the max-cut value mc(G).

Nesterov [180] shows the weaker bound:

E(w(S))

sdp(G, w)
≥ 2

π
∼ 0.63661 (87)

for the larger class of weight functions w satisfying Lw � 0. (Note indeed that Lw � 0 if w ≥ 0.)
Hence, the GW rounding technique applies to a larger class of instances at the cost of obtaining a
weaker performance ratio. Cf. Section 6.1 for more details.

The above analysis of the GW algorithm shows that its performance guarantee is at least α0.
Karloff [126] shows that it is, in fact, equal to α0. For this, he constructs a class of graphs G (edge

weights are equal to 1) for which the ratio E(w(S))
sdp(G,w) can be made arbitrarily close to α0. (The graphs

constructed by Feige and Schechtman [82] display the same behaviour; the construction of Karloff has
however a simpler proof.) These graphs are the Johnson graphs J(m, m

2 , b) for m even, b ≤ m
12 having

the collection of subsets of {1, . . . , m} of cardinality m
2 as node set and two nodes being adjacent if their

intersection has cardinality b. An additional feature of these graphs is that mc(G, w) = sdp(G, w).
Hence, one of the problems that the Karloff’s example emphasizes is that although the semidefinite
program already solves the max-cut problem at optimality, the GW approximation algorithm is not
able to recognize this fact and to take advantage of it for producing a better cut. As a matter of fact,
recognizing whether sdp(G, w) = mc(G, w) for given weights w is an NP-complete problem [65, 153].

Goemans and Williamson [95] show that their algorithm behaves, in fact, better for graphs having
sdp(G,w)

w(E) ≥ 85
100 (and thus for graphs having very large cuts). To express their result, set h(t) :=

1
π arccos(1 − 2t), t0 := 1−cos θ0

2 ∼ 0.84458, where θ0 ∼ 2.331122 is the angle at which the minimum

in the definition of α0 = min0<θ≤π
2
π

θ
1−cos θ is attained. Then, h(t0)

t0
= α0 and it follows from the

definition of α0 that h(t) ≥ α0t for t ∈ [0, 1]. Further, set

αGW(t) :=
h(t)

t
if t ∈ [t0, 1] and αGW(t) := α0 if t ∈ [0, t0].
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One can verify that the function h̃(t) := αGW(t)t is convex on [0, 1] and h̃ ≤ h. From this follows that

E(w(S))

sdp(G, w)
≥ αGW(A), where A :=

sdp(G, w)

w(E)
. (88)

Indeed, setting yij :=
1−vT

i vj

2 , we have:

E(w(S))

w(E)
=
∑

ij∈E

wij

w(E)
h(yij) ≥

∑

ij∈E

wij

w(E)
h̃(yij) ≥ h̃





∑

ij∈E

wij

w(E)
yij



 = h̃(A) = αGW(A) · A

which implies (88). Therefore, the performance guarantee of the GW algorithm is at least αGW(A)
which is greater than α0 when A > t0 and tends to 1 as A tends to 1. Extending Karloff’s result, Alon
and Sudakov [10] construct (unweighted) graphs G for which mc(G, w) = sdp(G, w) and E(w(S))

sdp(G,w) =

αGW(A) for any A = sdp(G,w)
w(E) ≥ t0, which shows that the performance guarantee of the GW algorithm

is equal to αGW(A). For the remaining values of A, 1
2 ≤ A < t0, Alon, Sudakov and Zwick [11]

construct graphs satisfying mc(G, w) = sdp(G, w) and E(w(S))
sdp(G,w) = α0 which shows that the analsyis of

Goemans and Williamson is also tight in this case.

5.4 How to improve the Goemans-Williamson algorithm?

There are several ways in which one can try to modify the basic algorithm of Goemans and Williamson
in order to obtain an approximation algorithm with a better performance ratio.

Adding valid inequalities. Perhaps the most natural idea is to strengthen the basic semidefinite
relaxation by adding inequalities valid for the cut polytope. For instance, one can add all triangle
inequalities; denote by sdp′(G, w) the optimum value of the semidefinite program obtained by adding

the triangle inequalities to (76). The new integrality ratio mc(G,w)
sdp′(G,w)

is equal to 1 for graphs with no

K5-minor (thus for C5). For K5 (with edge weights 1) it is equal to 24
25 = 0.96. However this is not

the worst case; Feige and Schechtman [82] construct graphs for which the new integrality ratio is no
better than roughly 0.891.

On the other hand, the example of Karloff shows that the GW randomized approximation algorithm
applied to the tighter semidefinite relaxation does not have a better performance guarantee. The same
remains true if we would add to the semidefinite relaxation all inequalities valid for the cut polytope
(because the Karloff’s graphs satisfy E(w(S))

sdp(G,w) ∼ α0 while mc(G, w) = sdp(G, w)!). Therefore, in
order to improve the performance guarantee, beside adding some valid inequalities, a new rounding
technique will be needed. We now present two ideas along these lines: the first from [78] uses triangle
inequalities and adds a ‘local search’ phase to the GW algorithm, the second from [241] can be seen
as a mixing of the hyperplane rounding technique and the basic random algorithm.

Adding valid inequalities and a local search phase. Feige, Karpinski and Langberg [78] have
presented an approximation algorithm for max-cut with a better performance guarantee for graphs
with a bounded maximum degree ∆ (edge weights are assumed to be equal to one). Their algorithm has
two new features: triangle inequalities are added to the basic semidefinite relaxation (also some triangle
equalities in the case ∆ = 3) and an additional ‘greedy’ phase is added after the GW hyperplane
rounding phase.

Given a partition (S, V \ S), a vertex v belonging, say, to S, is called misplaced if it has more
neighbours in S than in V \S; then the cut δ(S\{v}) has more edges than the cut δ(S). One of the basic
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ideas underlying the FKL algorithm is that, if (S, V \ S) is the partition produced by the hyperplane
rounding phase and if all angles arccos(vT

i vj) are equal to θ0 (which implies E(w(S)) = α0 ·sdp(G, w)),
then there is a positive probability (depending on ∆ alone) of finding a misplaced vertex in the partition
and, therefore, one can improve the cut.

In the case ∆ = 3 the FKL algorithm goes as follows. In the first step one solves the semidefinite
program (76) to which have been added all triangle inequalities as well as the triangle equalities
xij + xik + xjk = −1 for all triples (i, j, k) for which ij, ik ∈ E (such equality is indeed valid for a
maximum cut for, if not, the vertex i would be misplaced). Then the hyperplane rounding phase is
applied to the optimum matrix X, producing a partition (S, V \ S). After that comes an additional
greedy phase: If the partition (S, V \ S) has a misplaced vertex v, move it to the other side of the
partition and repeat until no misplaced vertex can be found. If at some step there are several misplaced
vertices, we move the misplaced vertex v for which the ratio between the number of edges gained in
the cut by moving v and the number of triples (i, j, k) with ij, ik ∈ E and i misplaced destroyed by
this action, is maximal.

It is shown in [78] that the expected weight of the final partition returned by the FKL algorithm
satisfies

E(w(S)) ≥ 0.919 · sdp(G, w). (89)

For regular graphs of degree 3, one can show an approximation ratio of 0.924 and, for graphs with
maximum degree ∆, a ratio of α0 + 1

233∆4 . Note that, when ∆ ≥ 4, one cannot incorporate the triangle
equality xij + xik + xjk = −1 (with ij, ik ∈ E) as it is no longer valid for maximum cuts.

Recently, Halperin, Livnat and Zwick [109] gave an improved approximation algorithm for max-
cut in graphs of maximum degree 3 with performance guarantee 0.9326. Their algorithm has an
additional preprocessing phase (which converts the input graph into a cubic graph satisfying some
additional property) and performs the greedy phase in a more global manner; moreover, it applies to
a more general problem than max-cut.

Mixing the random hyperplane and the basic random rounding techniques. We saw above
that the performance guarantee of the GW algorithm is greater than α0 for graphs with large cuts
(with weight at least 85% of the total weight of edges). Zwick [241] presents a modification of the GW
algorithm which, on the other hand, has a better performance guarantee for graphs having no large
cuts.

Note that the simple randomized algorithm, which constructs a partition (S, V \ S) by assigning

a vertex with probability 1
2 to either side of the partition, produces a cut with expected weight w(E)

2
and thus its performance ratio is

αrand(A) :=
1

2A
where A =

sdp(G, w)

w(E)
.

Note, moreover, that this algorithm is equivalent to applying the hyperplane rounding technique to
the standard unit vectors e1, . . . , en, with the identity matrix as Gram matrix. As αrand(A) ≥ αGW(A)
when 1

2 ≤ A ≤ 1
2α0

∼ 0.569113, Zwick’s idea is to make a ‘mix’ of the hyperplane rounding and basic
random algorithms. For this, if X is the optimum matrix obtained when solving the basic semidefinite
program (76), set

X ′ := (cos2 γA)X + (sin2 γA)I

where γA ∈ [0, π] is suitably chosen. Namely, if A ≥ t0 then γA := 0 and if 1
2A ≤ t0, then solve the
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following equations for c and t:

arccos(c(1 − 2t)) − arccos c

t
=

2c
√

1 − c2(1 − 2t)2
,

1 − t
A√

1 − c2
=

1 − 2t
√

1 − c2(1 − 2t)2

(there is a unique solution cA, tA such that 0 ≤ cA ≤ 1 and 3
4 ≤ tA ≤ t0) and set γA := arccos(

√
cA).

Note that γA tends to π
2 as A tends to 1

2 . Then a randomized cut δ(S) is produced by applying the
hyperplane rounding phase to the modified matrix X ′. Zwick shows that

E(w(S))

sdp(G, w)
≥ αrot(A) for any graph G and w ≥ 0 (90)

where αrot(A) := αGW(A) for A ≥ t0 and, setting hc(t) := arccos(c(1−2t))
π ,

αrot(A) := (
1

A
− 1

tA
)hcA

(0) +
1

tA
hcA

(tA)

for 1
2 ≤ A ≤ t0. The new performance guarantee is at least αrot(A), which is greater than αrand(A)

and αGW(A) when A < t0. For instance, αrot(A) ≥ 0.88 if A ≤ 0.75, αrot(A) ≥ 0.91 if A ≤ 0.6.
Alon, Sudakov and Zwick [11] show that the analysis is tight; for this they construct graphs having

mc(G, w) = sdp(G, w) and E(w(S))
sdp(G,w) = αrot(A) for any 1

2 ≤ A ≤ t0.

Inapproximability results. Summarizing, the best performance guarantee of an approximation
algorithm for max-cut (with nonnegative weights) known so far is α0 ∼ 0.87856. In fact, 16

17 ∼ 0.94117
is the best performance guarantee that one can hope for. Indeed, H̊astad [114] shows that, for any
ǫ > 0, there is no (16

17 + ǫ)-approximation algorithm for max-cut if P 6= NP . Berman and Karpinski
[37] show that it is NP-hard to approximate max-cut in cubic graphs beyond the ratio of 0.997 (while
there is an 0.932-approximation algorithm as we saw above).

On the positive side, Arora, Karger and Karpinski [20] show that the max-cut problem has a
polynomial time approximation scheme (that is, an (1−ǫ)-approximation algorithm for any ǫ > 0) when
restricted to dense graphs, that is, graphs with O(n2) edges. De la Vega [230] described independently
a randomized approximation scheme for max-cut in graphs with minimum degree cn for some constant
c > 0.

We have seen in Section 3.6 several techniques permitting to construct semidefinite relaxations of
the cut polytope refining the basic one. Thus a natural and very interesting question is whether some
of them can be used for proving a better integrality ratio (better than the Goemans-Williamson bound
α0) and for designing an approximation algorithm for max-cut with an improved performance ratio.
The most natural candidate to consider might be the Lasserre relaxation Q1(Kn) (defined using (47)
and (48)) or its subset, the Anjos-Wolkowicz relaxation Fn (defined using (47)).
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6 Applications of Semidefinite Programming and the Rounding Hy-

perplane Technique to Other Combinatorial Optimization Prob-

lems

The method developped by Goemans and Williamson for approximating the max-cut problem has been
applied and generalized to a large number of combinatorial optimization problems. Summarizing, their
method consists of the following two phases:

1. The semidefinite optimization phase, which finds a set of vectors v1, . . . , vn providing a Cholesky
factorization of an optimum solution to the SDP program relaxing the original combinatorial
problem.

2. The random hyperplane rounding phase, which constructs a solution to the original combinatorial
problem by looking at the positions of the vectors vi with respect to some random hyperplane.

The basic method of Goemans and Williamson may have to be modified in order to be applied
to some other combinatorial problems. In the first phase, one has to choose an appropriate SDP
relaxation of the problem at hand and, in the second phase, one may have to adapt the rounding
procedure. For instance, if one wants to approximate graph colouring and max k-cut problems, one
should consider more general partitions of the space using more than one random hyperplane. One
may also have to add an additionnal phase permitting to modify the returned solution; for instance,
to turn the returned cut into a bisection if one wants to approximate the bisection problem. It turns
out that the analysis of the extended approximation algorithms is often more complicated than that
of the basic GW algorithm; it sometimes needs the evaluation of certain integral formulas that are
hard to evaluate numerically.

In this section we present approximation algorithms based on these ideas for the following problems:
general quadratic programming problems, maximum bisection and k-cut problems, colouring, stable
sets, MAX SAT and maximum directed cut problems.

Of course, the above is not an exhaustive list of the problems for which semidefinite programming
combined with randomized rounding permits to obtain good approximations. There are other inter-
esting problems, that we could not cover here, to which these techniques apply; this is the case, e.g.,
for scheduling (see [220]).

6.1 Approximating quadratic programming

We consider here the boolean quadratic programming problem:

m∗(A) := max xT Ax
s.t. x ∈ {±1}n (91)

where A is a symmetric matrix of order n, and its natural SDP relaxation:

s∗(A) := max 〈A, X〉
s.t. Xii = 1 (i = 1, . . . , n)

X � 0.
(92)

Obviously, m∗(A) ≤ s∗(A). How well does the semidefinite bound s∗(A) approximate m∗(A)? Obvi-
ously m∗(A) = s∗(A) when all off-diagonal entries of A are nonnegative. We saw in Section 5.3 that
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m∗(A)
s∗(A) ≥ α0 (the GW ratio from (84)) in the special case when A is the Laplacian matrix of a graph;

that is, when Ae = 0 and Aij ≤ 0 for all i 6= j. (Note that these conditions imply that A � 0.)
Nesterov [180] studies the quality of the SDP relaxation for general A. When A � 0 he shows the

lower bound 2
π for the ratio m∗(A)

s∗(A) and, based on this, he gives upper bounds for the relative accuracy

s∗(A)−m∗(A) for indefinite A. The basic step consists in giving a trigonometric reformulation of the
problem (91), analogous to the trigonometric reformulation (86) for max-cut.

Proposition 15. Given a symmetric matrix A,

m∗(A) = max 2
π 〈A, arcsin(X)〉

s.t. Xii = 1 (i = 1, . . . , n)
X � 0

(93)

setting arcsin(X) := (arcsin(xij))
n
i,j=1. Moreover, m∗(A) ≥ 2

πs∗(A) if A � 0.

Proof. Denote by µ the maximum of the program (93). Let x be an optimum solution to the
program (91) and set X := xxT . Then X is feasible for (93) with objective value 2

π 〈A, arcsin(X)〉 =
〈A, xxT 〉 = m∗(A), which shows that m∗(A) ≤ µ. Conversely, let X be an optimum solution to (93)
and let v1, . . . , vn be vectors such that Xij = vT

i vj for all i, j. Let r be a random unit vector. Then
the expected value of sign(rT vi)sign(rT vj) is equal to

1 − 2 prob(sign(rT vi) 6= sign(rT vj)) = 1 − 2
arccos(vT

i vj)

π
=

2

π
arcsin(vT

i vj).

Therefore, the expected value EA of
∑

i,j aijsign(rT vi)sign(rT vj) is equal to 2
π

∑

i,j aij arcsin(vT
i vj) =

2
π 〈A, arcsin(X)〉 = µ. On the other hand,

∑

i,j aijsign(rT vi)sign(rT vj) ≤ m∗(A), since the vector

(sign(rT vi))
n
i=1 is feasible for (91) for any unit vector r. This implies that EA ≤ m∗(A) and thus

µ ≤ m∗(A). Assume A � 0. Then, 〈A, arcsin(X)〉 = 〈A, arcsin(X) − X〉 + 〈A, X〉 ≥ 〈A, X〉, using the
fact that arcsin(X) − X � 0 if X � 0. Hence, m∗(A) ≥ 2

πs∗(A) if A � 0.

Let m∗(A) (resp. s∗(A)) denote the optimum value of the program (91) (resp. (92)) where we
replace maximization by minimization. Applying the duality theorem for semidefinite programming,
we obtain:

s∗(A) = min(eT y | diag(y) − A � 0), (94)

s∗(A) = max(eT z | A − diag(z) � 0). (95)

For 0 ≤ α ≤ 1, set sα := αs∗(A) + (1 − α)s∗(A).

Lemma 16. For α := 2
π , s∗(A) ≤ m∗(A) ≤ s1−α ≤ sα ≤ m∗(A) ≤ s∗(A).

Proof. We show the inequality m∗(A) ≤ s1−α(A), that is, s∗(A) − m∗(A) ≥ 2
π (s∗(A) − s∗(A)). Let

y (resp. z) be an optimum solution to (94) (resp. (95)). Then,

s∗(A) − m∗(A) = eT y + m∗(−A) = m∗(diag(y) − A) ≥ 2
πs∗(diag(y) − A)

by Proposition 15, since diag(y) − A � 0. To conclude, note that s∗(diag(y) − A) = eT y + s∗(−A) =
eT y − s∗(A) = s∗(A) − s∗(A). The inequality sα(A) ≤ m∗(A) can be shown similarily.
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The above lemma can be used for proving the following bounds on the relative accuracy m∗(A)−sα.

Theorem 17. Set α := 2
π and β := α2+2α−1

3α−1 . Then,

m∗(A) − sα

m∗(A) − m∗(A)
≤ π

2
− 1 <

4

7
and

|m∗(A) − sβ(A)|
m∗(A) − m∗(A)

≤ π − 2

6 − π
<

2

5
.

The above results can be extended to quadratic problems of the form:

max xT Ax subject to [x]2 ∈ F

where F is a closed convex set in Rn and [x]2 := (x2
1, . . . , x

2
n). See [228], chapter 13 in [233], [236],

[239] for further results. Inapproximability results are given in [35].

6.2 Approximating the maximum bisection problem

The maximum weight bisection problem is a variant of the max-cut problem where one wants to find a
cut δ(S) such that |S| = n

2 (a bisection or equicut) (n being assumed even) having maximum weight.
This is an NP-hard problem, for which no approximation algorithm with a performance ratio > 16

17
exists unless P = NP [114]. Polynomial time approximation schemes are known to exist for this
problem over dense graphs [20] and over planar graphs [120].

Extending the Goemans-Williamson approach to max-cut, Frieze and Jerrum [87] gave a random-
ized 0.651-approximation algorithm for the maximum weight bisection problem. Ye [237] improved
the performance ratio to 0.6993 by combining the Frieze-Jerrum approach with some rotation argu-
ment applied to the optimum solution of the semidefinite relaxation. Halperin and Zwick [111] further
improved the approximation ratio to 0.7016 by strengthening the SDP relaxation with the triangle
inequalities. Details are given below.

Given a graph G = (V, E) (V = {1, . . . , n}) and edge weights w ∈ RE
+, the maximum weight

bisection problem reads:
max 1

2

∑

ij∈E wij(1 − xixj)

s.t.
∑n

i=1 xi = 0
x1, . . . , xn ∈ {±1}.

(96)

A natural semidefinite relaxation is:

W ∗ := max 1
2

∑

ij∈E wij(1 − Xij)

s.t. Xii = 1 (i ∈ V )
〈J, X〉 = 0
X � 0

(97)

The Frieze-Jerrum approximation algorithm:

1. The SDP optimization phase: Solve the SDP (97), let X be an optimum solution and let
v1, . . . , vn be vectors such that Xij = vT

i vj for all i, j.

2. The random hyperplane rounding phase: Choose a random unit vector r and define the associated
cut δ(S) where S := {i ∈ V | rT vi ≥ 0}.
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3. Constructing a bisection: Without loss of generality, assume that |S| ≥ n
2 . For i ∈ S, set W (i) :=

∑

j 6∈S wij . Order the elements of S as i1, . . . , i|S| in such a way that W (i1) ≥ . . . ≥ W (i|S|) and

define S̃ := {i1, . . . , in
2
}.

Then δ(S̃) is a bisection whose weight satisfies

w(δ(S̃)) ≥ n

2|S|w(δ(S)). (98)

Consider the random variables W := w(δ(S)) and C := |S|(n − |S|); W is the weight of the cut
δ(S) in G while C is the number of pairs (i, j) ∈ V 2 that are cut by the partition (S, V \ S) (that
is, the cardinality of the cut δ(S) viewed as cut in the complete graph Kn). The analysis of the GW
algorithm from Section 5.3 shows the following lower bounds for the expected values E(W ) and E(C):

E(W ) ≥ α0W
∗, (99)

E(C) ≥ α0C
∗ (100)

where C∗ := n2

4 . Define the random variable

Z :=
W

W ∗ +
C

C∗ . (101)

Then, Z ≤ 2 and E(Z) ≥ 2α0.

Lemma 18. If Z ≥ 2α0 then w(δ(S̃)) ≥ 2
(√

2α0 − 1
)

W ∗.

Proof. Set w(δ(S)) = λW ∗ and |S| = σn. Then, Z = λ + 4σ(1 − σ) ≥ 2α0, implying λ ≥
2α0 − 4σ(1 − σ). Using (98), we obtain that

w(δ(S̃)) ≥ n

2|S|w(δ(S)) =
λW ∗

2σ
≥ W ∗ 2α0 − 4σ(1 − σ)

2σ
≥ 2(

√
2α0 − 1)W ∗.

(The last inequality being a simple verification.)

As E(Z) ≥ 2α0, the strategy employed by Frieze and Jerrum in order to find a bisection satisfying
the conclusion of Lemma 18 is to repeat the above steps 2 and 3 of the algorithm N times, where N
depends on some small ǫ > 0 (N = ⌈1

ǫ ln 1
ǫ ⌉) and to choose as output bisection the heaviest among

the N bisections produced throughout the N runs. Then, with high probability, the largest among
the variables Z produced throughout the N runs will be greater than or equal to 2α0. Therefore, it
follows from Lemma 18 that the weight of the output bisection is at least (2(

√
2α0 − 1) − ǫ)W ∗. For

ǫ small enough, this shows a performance ratio of 0.651.

Ye [237] shows an improved approximation ratio of 0.6993. For this, he modifies the Jerrum-Frieze
algorithm in the following way. Instead of applying the random hyperplane rounding phase to the
optimum solution X of (97), he applies it to the modified matrix ρX +(1−ρ)I, where ρ is a parameter
to be determined. This operation is analogue to the ‘outward rotation’ used by Zwick [241] for the
max-cut problem and mentioned in Section 5.4.
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The starting point is to replace relations (99) and (100) by

E(W ) ≥ αW ∗ and E(C) ≥ γC∗ (102)

where α = α(ρ) and γ = γ(ρ) are lower bounds to be determined on the ratios E(W )
W ∗ and E(C)

C∗ ,
respectively. In fact, the following choices can be made for α, γ:

α(ρ) := min
−1≤x<1

2

π

arccos(ρx)

1 − x
, (103)

γ(ρ) := min
−1≤x<1

2

π

arccos(ρx) − x arccos ρ

1 − x
. (104)

Indeed, E(W ) = 1
2

∑

ij∈E wij
2
π arccos(ρXij) ≥ α(ρ)W ∗. By the definition of γ(ρ), 2

π arccos(ρx) ≥
(1 − x)γ(ρ) + 2

πx arccos ρ for x ∈ [−1, 1]. Therefore,

E(C) =
1

4

∑

i6=j∈{1,...,n}

2

π
arccos(ρXij) ≥

1

4
γ(ρ)

∑

i6=j

(1−Xij) +
1

2π
arccos ρ

∑

i6=j

Xij =
n2

4
γ(ρ)− arccos ρ

2π
n.

For n large enough, the linear term can be ignored and the result follows.

Modify the definition of Z from (101) as

Z :=
W

W ∗ + τ
C

C∗

where τ := α
2β

(

1√
1−β

− 1

)

. The proof of Lemma 18 can be adapted to show that, if Z ≥ α + τγ,

then E(w(S̃)) ≥ α

1+
√

1−β
W ∗. For ρ = 0.89, one can compute that α(ρ) ≥ 0.8355, γ(ρ) ≥ 0.9621, and

α

1+
√

1−β
> 0.6993. Therefore, this shows that Ye’s algorithm is a 0.6993-approximation algorithm.

Halperin and Zwick [111] can improve the performance ratio to 0.7016. They achieve this by
adding one more ingredient to Ye’s algorithm; namely, they strengthen the SDP relaxation (97) by
adding the triangle inequalities:

Xij + Xik + Xjk ≥ −1, Xij − Xik − Xjk ≥ −1 for distinct i, j, k ∈ {1, . . . , n}.

Although triangle inequalities had already been used earlier by some authors to obtain better approx-
imations (e.g., in [78] for the max-cut problem in bounded degree graphs as mentioned in Section 5.4),
they were always analyzed from a local point of view (e.g., in the above mentioned example, in a local
search phase, searching for misplaced vertices). In contrast, Halperin and Zwick are able to make a
global analysis of the contribution of triangle inequalities. Namely, they show that the function γ(ρ)
from (104) can be replaced by

γ′(ρ) := min
−1≤x≤− 1

3

1

π

(

arccos(ρx) +
3(x + 1)

4
arccos

(

−ρ

3

)

+
1 − 3x

4
arccos ρ

)

,

which enables them to demonstrate a better performance ratio (using appropriate values for the
parameters ρ and τ). (Note that γ′(ρ) > γ(ρ) for 0 < ρ < 1.)
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Let us give a flavor of how the function γ′(ρ) comes up. The goal is to find a lower bound for

the ratio E(C)
C∗ = 4

πn2

∑

1≤i<j≤n arccos(ρXij). Let A (resp. B, C) denote the set of pairs ij for which

Xij < −1
3 (resp. −1

3 ≤ Xij ≤ 0, 0 ≤ Xij ≤ 1). By the triangle inequalities, the graph on {1, . . . , n}
with edge set A is triangle free, which implies that |A| ≤ n2

4 . Thus the optimum value of the following

nonlinear program is a lower bound for E(C)
C∗ :

min 4
πn2

∑

i<j arccos(ρzij)

s.t.
∑

i<j zij = −n
2

−1 ≤ zij ≤ 1 (i < j)

|{ij | zij < −1
3}| ≤ n2

4 .

Halperin and Zwick show then that the above minimum can be expressed in closed form as γ′(ρ).

Feige, Karpinski and Langberg [79] design a 0.795-approximation algorithm for the maximum
bisection problem restricted to regular graphs. One of their key results is the following: Given a cut
δ(S) in a regular graph G, one can efficiently construct a bisection δ(S′) whose weight is at least
0.9027 w(δ(S)). Hence, if we start with the cut δ(S) given as output of the Goemans-Williamson
algorithm, then this gives an approximation algorithm with performance ratio 0.9027 · 0.878 ∼ 0.793;
a further improvement is demonstrated in [79].

Extensions to variations of the bisection problem. The following variations of the bisection
problem have been studied in the literature: (i) the maximum n

2 -vertex cover problem, (ii) the max-
imum n

2 -dense subgraph problem, (iii) the maximum n
2 -uncut problem, which ask for a subset S ⊆ V

of size n
2 maximizing the total weight of the edges incident to S, contained in S, contained in S or

its complement, respectively. Halperin and Zwick [111] treat these three problems (together with the
maximum bisection problem as well as some directed analogues) in a unified framework and they can
show the best approximation ratios known up to today, namely, 0.8452 for problem (i), 0.6221 for
problem (ii), and 0.6436 for problem (iii).

6.3 Approximating the max k-cut problem

Given a graph G = (V, E), edge weights w ∈ RE
+ and an integer k ≥ 2, the max k-cut problem asks for

a partition P = (S1, . . . , Sk) of V whose weight w(P) :=
∑

1≤h<h′≤k

∑

ij∈E|i∈Sh,j∈Sh′
wij is maximum.

The set of edges whose end nodes belong to distinct classes of the partition is a k-cut, denoted as
δ(S1, . . . , Sk). For k = 2, we find the max-cut problem. For any k ≥ 2, the max k-cut problem is
NP-hard; moreover, there can be no polynomial time approximation algorithm for it with performance
ratio 1 − 1

239k , unless P=NP [124].
A simple heuristic for max k-cut is to partition V randomly into k sets. As the probability

that two nodes fall in the same class is 1
k , the expected weight of the k-cut produced in this way is

∑

ij∈E wij(1− 1
k ) ≥ w(E)(1− 1

k ) and, therefore, the simple random partition heuristic has a performance

guarantee of 1 − 1
k .

Frieze and Jerrum [87] present an approximation algorithm for max k-cut with performance guar-
antee αk satisfying

(i) αk > 1 − 1
k and limk→∞

αk−(1− 1

k
)

2k−2 ln k = 1,

(ii) α2 = α0 ≥ 0.878567 (recall (84)), α3 ≥ 0.832718, α4 ≥ 0.850304, α5 ≥ 0.874243, α10 ≥ 0.926642,
α100 ≥ 0.990625.
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In particular, the Frieze-Jerrum algorithm has a better performance guarantee than the simple random
heuristic.

One can model the max k-cut problem on a graph G = (V, E) (V = {1, . . . , n}) by having n
variables x1, . . . , xn taking one of k possible values. For k = 2 the 2 possible values are ±1 and for
k ≥ 2 one can choose as possible values a set of k unit vectors a1, . . . , ak ∈ Rk−1 satisfying

aT
i aj = − 1

k − 1
for 1 ≤ i 6= j ≤ k.

(Such vectors exist since the matrix k
k−1Ik − 1

k−1Jk is positive semidefinite.) Hence the max k-cut
problem can be formulated as

mck(G, w) := max k−1
k

∑

ij∈E wij(1 − xT
i xj)

s.t. x1, . . . , xn ∈ {a1, . . . , ak}
(105)

and the following is a semidefinite relaxation of (105):

sdpk(G, w) := max k−1
k

∑

ij∈E wij(1 − Xij)

s.t. Xii = 1 (i ∈ V )
Xij ≥ − 1

k−1 (i 6= j ∈ V )

X � 0.

(106)

The Frieze-Jerrum approximation algorithm for max k-cut:

1. Solve (106) to obtain unit vectors v1, . . . , vn satisfying vT
i vj ≥ − 1

k−1 (i, j ∈ V ) and sdpk(G, w) =
k−1

k

∑

ij∈E wij(1 − vT
i vj).

2. Choose k independent random vectors r1, . . . , rk ∈ Rn. (This can be done by chosing their kn
components as independant random variables from the standard normal distribution with mean
0 and variance 1.)

3. Partition V into S1, . . . , Sk where Sh consists of the nodes i ∈ V for which vT
i rh = maxh′=1,...,k vT

i rh′ .
(Break ties arbitrarily as they occur with probability 0.)

When k = 2 the algorithm reduces to the Goemans-Williamson algorithm for max-cut. Given two
unit vectors u, v ∈ Rn, the probability that max1≤h≤k uT rh and max1≤h≤k vT rh are both attained by
the same vector within r1, . . . , rk depends only on the angle between u and v, i.e., on ρ := uT v, and
it is equal to k · prob(uT r1 = max1≤h≤k uT rh and vT r1 = max1≤h≤k vT rh); denote this probability as
kI(ρ) . Then the expected weight of the k-cut δ(S1, . . . , Sk) produced by the Frieze-Jerrum algorithm
is equal to

∑

ij∈E wijprob(ij ∈ δ(S1, . . . , Sk)) =
∑

ij∈E wij(1 − kI(vT
i vj))

=
∑

ij∈E wij

(

k
k−1

1−kI(vT
i vj)

1−vT
i vj

)

(

k−1
k (1 − vT

i vj)
)

≥ αk sdpk(G, w),

setting

αk := min
− 1

k−1
≤ρ<1

k

k − 1

1 − kI(ρ)

1 − ρ
. (107)

For k = 2, α2 = α0 can be computed exactly. For k ≥ 3, the evaluation of αk is more complicated and
relies on the computation of the function I(ρ) which can be expressed as a multiple integral. Using a
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Taylor series expansion for I(ρ), Frieze and Jerrum could show the lower bounds for αk mentioned at
the beginning of this subsection.

For k = 3, de Klerk, Pasechnik and Warners [134] give a closed form expression for I(ρ) which
enables them to show that

α3 =
7

12
+

3

4π2
arccos2(−1/4).

Thus α3 > 0.836008 (instead of the lower bound 0.832718 of Frieze and Jerrum). Goemans and
Williamson [96] find the same expression for α3 using another formulation for max 3-cut based on
complex semidefinite programming.

De Klerk, Pasechnik and Warners [134] prove a better lower bound for αk for small k ≥ 3. For
instance, they show that α4 ≥ 0.857487 (instead of 0.850304). For this they present another approx-
imation algorithm for max k-cut (equivalent to the Frieze-Jerrum algorithm for the graphs G with
ϑ(G) ≤ k) which enables them to reformulate the function I(ρ) in terms of the volume of a spherical
simplex and do more precise computations.

The minimum k-cut problem is also studied in the literature, in particular, because of its application
to frequency assignment (see [71, 72]). Whereas good approximation algorithms exist for the maximum
k-cut problem, the minimum k-cut problem cannot be approximated within a ratio of O(|E|) unless
P=NP. Semidefinite relaxations are nevertheless used in practice for deriving good lower bounds for
the problem (see [71, 72]).

6.4 Approximating graph colouring

Determining the chromatic number of a graph is a hard problem. Lund and Yannakakis [168] show
that there is a constant ǫ > 0 for which there exists no polynomial algorithm which can colour any
graph G using at most nǫχ(G) colours unless P=NP. Khanna, Linial and Safra [131] show that it is
not possible to colour a 3-colourable graph with 4 colours in polynomial time unless P=NP.

On the positive side, Wigderson [232] shows that it is possible to colour in polynomial time a

3-colourable graph with 3⌈√n⌉ colours and, more generally, a k-colourable graph with 2kn1− 1

k−1

colours; we will come back to this result later in this section. Later Blum [39] gives a polynomial time

algorithm colouring a 3-colourable graph with O(n
3

8 log
8

5 n). Using semidefinite programming and ran-
domized rounding, Karger, Motwani and Sudan [125] present a randomized polynomial time algorithm

which colours a 3-colourable graph with maximum degree ∆ with O(∆
1

3

√
log ∆ log n) or O(n

1

4

√
log n)

colours and, more generally, a k-colourable graph with O(∆1− 2

k

√
log ∆ log n) or O(n1− 3

k+1

√
log n)

colours. This result was later refined by Halperin, Nathaniel and Zwick [110], who proved that a
k-colourable graph with maximum degree ∆ can be couloured in randomized polynomial time with
O(∆1− 2

k (log ∆)
1

k log n). Further colouring results can be found in [40], [105], [110].

In what follows we present some of these results. We first prove a weaker version of the Karger-
Motwani-Sudan result, namely, how to find a O(n0.387) colouring for a 3-colourable graph. This enables
us to introduce the basic tools used in [125]: vector k-colouring, k-semicolouring, hyperplane rounding,
and a result of Wigderson [232]. Then we describe the Halperin-Nathaniel-Zwick algorithm for finding

a O(∆
1

3 (log ∆)
1

3 log n)-colouring of a 3-colourable graph with maximum degree ∆. (For simplicity in
the exposition we only treat the case k = 3.) This result is based on a new randomized rounding
technique introduced in [125], using the standard n-dimensional normal distribution (instead of the

distribution on the unit sphere) and vector projections. We finally describe the O(n1− 3

k+1

√
log n)-

colouring algorithm for k-colourable graphs of Karger, Motwani and Sudan.
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Vector colouring. The first step in the Karger-Motwani-Sudan algorithm consists in solving a
semidefinite relaxation for the colouring problem. We saw in Sections 4.2 and 4.4 that the theta
number ϑ(G) and its variations ϑ′(G) and ϑ+(G) constitute lower bounds for the chromatic number
of G. Karger, Motwani and Sudan consider the SDP program (67) defining ϑ′(G) as a SDP relaxation
for the colouring problem and they introduce the notion of vector colouring. A vector k-colouring of G
is an assignment of vectors v1, . . . , vn to the nodes of G such that vT

i vj ≤ − 1
k−1 for every edge ij ∈ E.

Then the vector chromatic number χv(G) is defined as the smallest k ≥ 2 for which there exists a
vector k-colouring. By the discussion above, χv(G) = ϑ′(G). If in the definition of vector colouring
one requires that the inequalities vT

i vj ≤ − 1
k−1 hold at equality for all edges, then we obtain the strict

vector chromatic number which coincides with ϑ(G). More strongly, one can consider the strong vector
chromatic number ϑ+(G) which is defined by requiring vT

i vj = − 1
k−1 for all edges and vT

i vj ≥ − 1
k−1

for all non edges. Therefore, the vector chromatic number is less than or equal to the strict vector
chromatic number, which in turn is less than or equal to the strong vector chromatic number, which
is a lower bound for the chromatic number (recall (69)).

Let us point out that the gap between the chromatic number and all these vector chromatic
numbers can be arbitrarily large. Karger, Motwani and Sudan [125] construct a class of graphs having
χv(G) = 3 while χ(G) ≥ n0.0113. Feige [75] shows that for all ǫ > 0 there exist families of graphs
with χ(G) ≥ ϑ(G)n1−ǫ and Charikar [51] proves an analogous result for the strong vector chromatic
number.

Semicolouring. The hard part in the Karger-Motwani-Sudan algorithm consists of constructing a
good proper colouring from a vector k-colouring. There are two steps: first construct a semicolouring
and then from it a proper colouring. A k-semicolouring of a graph on n nodes is an assignment of k
colours to at least half of the nodes in such a way that no two adjacent nodes receive the same colour.
This is a useful notion, as an algorithm for semicolouring yields an algorithm for proper colouring.

Lemma 19. Let f : Z+ −→ Z+ be a monotone increasing function. If there is a randomized poly-
nomial time algorithm which f(i)-semicolours every i-vertex subgraph of graph G, then this algorithm
can colour G with O(f(n) log n) colours. Moreover, if there exists some ǫ > 0 such that f(i) = O(iǫ)
for all i, then the algorithm can colour G with f(n) colours.

Proof. We show how to colour any p-vertex subgraph H of G. By assumption one can semicolour
H with f(p) colours. Let S denote the set of nodes of H that have not been coloured; then |S| ≤ p

2 .
One can recursively colour the subgraph of H induced by S using a new set of colours.

Let c(p) denote the maximum number of colours that the above algorithm needs for colouring an
arbitrary p-vertex subgraph of G. Then,

c(p) ≤ c

(

p

2

)

+ f(p).

This recurrence relation implies that c(p) = O(f(p) log p). Moreover, if f(p) = pǫ, one can easily verify
that c(p) = O(f(p)).

In view of Lemma 19, we are now left with the task of transforming a vector k-colouring into a
good semicolouring.

Colouring a 3-colourable graph with O(n0.387)-colours.
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Theorem 20. Every vector 3-colourable graph G with maximum degree ∆ has a O(∆log3 2)-semicolouring
which can be constructed in polynomial time with high probability.

Proof. Let v1, . . . , vn ∈ Rn be unit vectors forming a vector 3-colouring of G, i.e., vT
i vj ≤ −1

2 for
all edges ij ∈ E; this means that the angle between vi and vj is at least 2π

3 for all edges ij ∈ E.
Choose independently N random hyperplanes. This induces a partition of the space Rn into 2N

regions and one colours the nodes of G with 2N colours depending in which region their associated
vectors vi are located. Then the probability that an edge is monochromatic is at most 3−N and thus
the expected number of monochromatic edges is at most |E|3−N ≤ 1

2n∆3−N . By Markov’s inequality,
the probability that the number of monochromatic edges is more than twice the expected number is
at most 1

2 . After repeating the process t times, we find with probability ≥ 1− 1
2t a colouring of G for

which the number of monochromatic edges is at most n∆3−N . Setting N := 2 + ⌈log3 ∆⌉, we have
n∆3−N ≤ n

4 . As the number of nodes that are incident to a monochromatic edge is ≤ n
2 , we have

found a semicolouring using 2N ≤ 8∆log3 2 colours.

As log3 2 < 0.631, Theorem 20 and Lemma 19 imply a colouring with O(n0.631) colours. This is
yet weaker than Wigderson’s O(

√
n)-colouring algorithm. In fact, the result can be improved using

the following idea of Wigderson.

Theorem 21. There is a polynomial time algorithm which, given a 3-colourable graph G and a con-
stant δ ≤ n, finds an induced subgraph H of G with maximum degree ∆H < δ and a 2n

δ -colouring of
G\H.

Proof. If G has a node v of degree ≥ δ, colour the subgraph induced by N(v) with two colours and
delete {v}∪N(v) from G. We repeat this process using two new colours at each deleted neighborhood
and stop when we arrive at a graph H whose maximum degree is less than δ.

Applying Theorem 21 with δ =
√

n and the fact that a graph with maximum degree ∆ has a
(∆+1)-colouring, one finds Wigderson’s polynomial algorithm for colouring a 3-colourable graph with
3⌈√n⌉ colours. More strongly, one can prove:

Theorem 22. A 3-colourable graph can be coloured with O(n0.387) colours by a polynomial time ran-
domized algorithm.

Proof. Let G be a 3-colourable graph. Applying Theorem 21 with δ := n0.613, we find an induced
subgraph H of maximum degree ∆H < δ and a colouring of G\H using 2n

δ = O(n0.387) colours. By
Theorem 20 and Lemma 19, H can be coloured with O(δlog3 2) = O(n0.387) colours. This shows the
result.

Improved colouring algorithm using ‘rounding via vector projections’. In order to achieve
the better O(∆

1

3 (log ∆)
1

3 log n)-colouring algorithm for a 3-colourable graph, one has to improve Theo-

rem 20 and to show how to construct in randomized polynomial time a O(∆
1

3 (log ∆)
1

3 )-semicolouring.
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(Indeed, the desired colouring follows then as a direct application of Lemma 19.) For this, Karger,
Motwani and Sudan introduced another randomized technique for constructing a semicolouring from
a vector colouring whose analysis has been refined by Halperin, Nathaniel and Zwick [110] and is
presented below. The main step consists of proving the following result.

Theorem 23. Let G be a vector 3-colourable graph on n nodes with maximum degree ∆. Then an

independent set of size Ω

(

n

∆
1
3 (log ∆)

1
3

)

can be found in randomized polynomial time.

Indeed if Theorem 23 holds, then one can easily construct a O(∆
1

3 (log ∆)
1

3 )-semicolouring. For
this, assign one colour to the nodes of the independent set found in Theorem 23 and recurse on the
remaining nodes. One can verify that after O(∆

1

3 (log ∆)
1

3 ) recursive steps, one has properly coloured

at least half of the nodes; that is, one has constructed a O(∆
1

3 (log ∆)
1

3 )-semicolouring.

We now turn to the proof of Theorem 23. Let v1, . . . , vn be unit vectors forming a vector 3-

colouring of G (i.e., vT
i vj ≤ −1

2 for all edges ij) and set c :=

√

2

3
ln∆ − 1

3
ln ln∆. Choose a random

vector r according to the standard n-dimensional normal distribution; this means that the components
r1, . . . , rn of r are independent random variables, each being distributed according to the standard
normal distribution.

Set I := {i ∈ {1, . . . , n} | rT vi ≥ c}, n′ := |I|, and let m (resp., m′) denote the number of edges of
G (resp. the number of edges of G contained in I). Then an independent set J ⊆ I can be obtained
by removing one vertex from each edge contained in I; thus |J | ≥ n′−m′. Intuitively there cannot be
too many edges within I. Indeed the vectors assigned to the endpoints of an edge are rather far apart
since their angle is at least 2π

3 , while the vectors assigned to the vertices in I should all be close to r
since they have a large inner product with r. The proof consists of showing that the expected value

of n′ − m′ is Ω

(

n

∆
1
3 (log ∆)

1
3

)

.

The expected size of I is

E(n′) =
n
∑

i=1

prob(vT
i r ≥ c) = n · prob(vT

1 r ≥ c)

and the expected number of edges contained in I is

E(m′) =
∑

ij∈E

prob(vT
i r ≥ c and vT

j r ≥ c) = m · prob(vT
1 r ≥ c and vT

2 r ≥ c)

where v1 and v2 denote two unit vectors satisfying vT
1 v2 ≤ −1

2 . The following properties of the
standard n-dimensional normal distribution will be used (see [125]).

Lemma 24. Let u1 and u2 be unit vectors and let r be a random vector chosen according to the
standard n-dimensional normal distribution. Let N(x) =

∫∞
x φ(y)dy denote the tail of the standard

normal distribution, where φ(x) = 1√
2π

exp(−x2

2 ) is its density function.

(i) The inner product rT u1 is distributed according to the standard normal distribution. Therefore,
prob(uT

1 r ≥ c) = N(c).

(ii) If u1 and u2 are orthogonal, then uT
1 r and uT

2 r are independent random variables.
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(iii) ( 1
x − 1

x3 )φ(x) ≤ N(x) ≤ 1
xφ(x) for x > 0.

It follows from Lemma 24 (i) that E(n′) = n ·N(c). We now evaluate E(m′). As before, v1 and v2

are two unit vectors such that vT
1 v2 ≤ −1

2 . Since the probability P12 := prob(vT
1 r ≥ c and vT

2 r ≥ c)
is a monotone increasing function of vT

1 v2, it attains its maximum value when vT
1 v2 = −1

2 . We can
therefore assume that vT

1 v2 = −1
2 . Karger et al. [125] show the upper bound N(2c) for the probability

P12 and, using a refinement of their method, Halperin et al. [110] prove the sharper bound N(
√

2c)2.
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Figure 25

Lemma 26. If v1 and v2 are unit vectors such that vT
1 v2 = −1

2 , then prob(vT
1 r ≥ c and vT

2 r ≥ c) ≤
N(

√
2c)2.

Proof. Let r′ denote the orthogonal projection of r on the plane spanned by v1 and v2. Then r′

follows the standard 2-dimensional normal distribution and vT
i r′ = vT

i r for i = 1, 2. Hence we can
work in the plane; Figure 25 will help visualize the argument. Write r′ as r′ = α · cv1 + β · c(v1 + 2v2)
for some scalars α, β. As v1 is orthogonal to v1 + 2v2, we find that vT

1 r′ ≥ c if and only if α ≥ 1; that
is, if r′ belongs to the half-plane lying above the line (D1AB1) (see Figure 25). Hence the probability
P12 is equal to the probability that r′ falls within the wedge defined by the angle 6 B1AB2 (this is the
shaded area in Figure 25). Karger et al. [125] bound this probability by the probability that r′ lies
on the right side of the vertical line through A, which is equal to prob((v1 + v2)

T r′ ≥ 2c) and thus
to N(2c) (since v1 + v2 is a unit vector). The better bound N(

√
2c)2 can be shown as follows. Let

u1, u2 be orthogonal unit vectors in the plane forming each the angle π
4 with v1 +v2. Denote by Ei the

intersection point of the line through the origin parallel to ui with the line through A perpendicular

58



to ui. One can easily verify that Ei is at distance
√

2c from the origin. Now one can bound the
probability P12 by the probability that r′ falls within the wedge defined by the angle 6 C1AC2. The
latter probability is just prob(uT

1 r′ ≥
√

2c and uT
2 r′ ≥

√
2c) which (by Lemma 24 (i) (ii)) is equal to

N(
√

2c)2.

We can now conclude the proof of Theorem 23. Lemma 26 implies that E(m′) ≤ m ·N(
√

2c)2. As
m ≤ n∆

2 , we obtain that

E(n′ − m′) ≥ n · N(c) − n∆

2
N(

√
2c)2 = n

(

N(c) − ∆

2
N(

√
2c)2

)

.

Using Lemma 24 (iii) we find that

N(c)

N(
√

2c)2
≥

(

1
c − 1

c3

)

1√
2π

e−
c2

2

1
4c2πe−2c2

= 2

(

1 − 1

c2

)√
2πce

3

2
c2 .

As c =

√

2

3
ln∆ − 1

3
ln ln∆, we have e

3

2
c2 = ∆√

ln ∆
. One can verify that

2

(

1 − 1

c2

)√
2πce

3

2
c2 >

√
2πce

3

2
c2 > ∆.

(This holds for ∆ large enough. However, one can colour G with ∆ + 1 colours in polynomial time

(using a greedy algorithm) and thus find a stable set of size at least n
∆+1 which is Ω

(

n

∆
1
3 (log ∆)

1
3

)

for

bounded ∆.) This shows that N(c) > ∆ · N(
√

2c)2. Therefore, E(n′ − m′) ≥ n
2 N(c) and, using again

Lemma 24 (iii),

E(n′ − m′) ≥ n

2

(

1

c
− 1

c3

)

1√
2π

e−
c2

2 = Ω

(

n

∆
1

3 (log ∆)
1

3

)

.

This concludes the proof of Theorem 23.

We mention below the k-analogue of Theorem 23, whose proof is similar. (The analogue of

Lemma 26 is that the probability P12 is bounded by N(
√

k−1
k−2c)2, where c =

√

(1 − 2

k
)(2 ln∆ − ln ln∆).)

Theorem 27. Let G be a vector k-colourable graph (k ≥ 2) on n nodes with maximum degree ∆.

Then an independent set of size Ω

(

n

∆
1− 2

k (log ∆)
1
k

)

can be found in randomized polynomial time.

Feige, Langberg and Schechtman [81] show that this result is in some sense best possible. They
show that, for all ǫ > 0 and k > 2, there are infinitely many graphs G that are vector k-colourable
and satisfy α(G) ≤ n

∆
1− 2

k
−ǫ

, where n is the number of nodes and ∆ is the maximum degree satisfying

∆ > nδ for some constant δ > 0.

The O(n1− 3

k+1
√

n)-colouring algorithm of Karger-Motwani-Sudan for vector k-colourable
graphs. As before, it suffices to show that one can find in randomized polynomial time an independent

set of size Ω

(

n
3

k+1√
log n

)

= Ω

(

n

n
1− 3

k+1
√

log n

)

in a vector k-colourable graph. (Indeed, using recursion,
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one can then find in randomized polynomial time a semicolouring using O(n1− 3

k+1

√
log n) colours

and thus, using Lemma 19, a colouring using the same number of colours.) The result is shown by

induction on k. Suppose the result holds for any vector (k − 1)-colourable graph. Set ∆k(n) := n
k

k+1

and let G be a vector k-colourable graph on n nodes. We distinguish two cases.

Suppose first that G has a node u of degree greater than ∆k(n) and consider a subgraph H of G
induced by a subset of ∆k(n) nodes contained in the neighbourhood of u. Then H is vector (k − 1)-
colourable (easy to verify; see [125]). By the induction assumption, we can find an independent set in

H (and thus in G) of size Ω

(

∆k(n)
3
k√

log ∆k(n)

)

= Ω

(

n
3

k+1√
log n

)

.

Suppose now that the maximum degree ∆ of G is less than or equal to ∆k(n). It follows from

Theorem 27 that we can find an independent set in G of size Ω

(

n

∆k(n)
1− 2

k
√

log ∆k(n)

)

= Ω

(

n
3

k+1√
log n

)

.

This concludes the proof.

6.5 Approximating the maximum stable set and vertex cover problems

The stable set problem. Determining the stability number of a graph is a hard problem. Arora
et al. [21] show the existence of a constant ǫ > 0 for which there is no polynomial time algorithm
permitting to find a stable set in a graph G of size at least n−ǫα(G) unless P=NP. We saw in Section
4.2 that the theta number ϑ(G) is a polynomially computable upper bound for α(G) which is tight
for perfect graphs, in which case a maximum cardinality stable set can be found in polynomial time.
For general graphs, the gap between α(G) and ϑ(G) can be arbitrarily large. Indeed, Feige [75] shows
that, for all ǫ > 0, there is a family of graphs for which ϑ(G) > n1−ǫα(G). The proof of Feige is
nonconstructive; Alon and Kahale [9] give the following constructive proof for this result.

Theorem 28. For every ǫ > 0 one can construct a family of graphs on n nodes for which ϑ(G) ≥
(1
2 − ǫ)n and α(G) = O(nδ) where 0 < δ < 1 is a constant depending on ǫ.

Proof. Given integers 0 < s < q, let Gqs denote the graph on n =
(2q

q

)

nodes corresponding to all
subsets A of Q := {1, . . . , 2q} with cardinality |A| = q, where A, B are adjacent if |A ∩ B| = s. We
begin with evaluating the theta number of Gqs. For every vertex A of Gqs, set dA := (x + 1)χA − χQ,
where x is the largest root of the quadratic polynomial sx2−2(q−s)x+s = 0. Then, dT

AdB = 0 for all
adjacent A, B. Therefore, the vectors vA := da

‖dA‖ form an orthonormal representation of Gqs. Setting

d := 1√
2q

(1, . . . , 1)T and using the definition from Theorem 12, we obtain:

ϑ(Gqs) ≥
∑

A

(dT vA)2 = n
(x − 1)2

2(x2 + 1)
=

n

2

q − 2s

q − s
.

In order to evaluate the stability number of Gqs, one can use the following result of Frankl and Rödl
[86]: For every γ > 0, there exists 0 < δ < 1 for which α(Gqs) ≤ nδ if γq < s < (1 − γ)q.

We now indicate how to choose the parameters q, s in order to achieve the conclusion of the
theorem. Let ǫ > 0 be given. Define s as the largest integer for which s < q

2 and q−2s
2(q−s) > 1

2 − ǫ (i.e.,

s < 2qǫ
1+2ǫ). Choose γ such that 0 < γ < s

q . Then γq < s < (1 − γ)q and thus α(Gqs) ≤ nδ for some
0 < δ < 1 by the Frankl-Rödl result.
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On the positive side, Alon and Kahale [9] show the following two results; we present the second
one without proof.

Theorem 29. Let G be a graph on n nodes, k ≥ 3, m ≥ 1 be integers. If ϑ(G) ≥ n
k + m, then an

independent set of cardinality Ω(m
3

k+1 log−
1

2 m) can be found in randomized polynomial time.

Proof. Using the definition of ϑ(G) from Theorem 12, there exist unit vectors d, v1, . . . , vn where
v1, . . . , vn form an orthonormal representation of G. These vectors can be found in polynomial time
since, as the proof of Theorem 12 shows, they can be computed from an optimum solution to the SDP
program (58). Order the nodes in such a way that (dT v1)

2 ≥ . . . ≥ (dT vn)2. As ϑ(G) ≥ n
k + m and

(dT vi)
2 ≤ 1 for all i, we have (dT vm)2 ≥ 1

k . Let H denote the subgraph of G induced by the nodes
1, . . . , m. Then, v1, . . . , vm is an orthonormal representation of H, the complementary graph of H.
Using the definition of the theta number from Theorem 14, we deduce that

ϑ(H) ≤ max
i=1,...,m

1

(dT vi)2
≤ k.

Therefore, H has a vector k-colouring. Applying the Karger-Motwani-Sudan results from the preceding

subsection, one can find in randomized polynomial time a O(m1− 3

k+1

√
log m) colouring of H. Then

the largest colour class in this colouring has cardinality Ω(m
3

k+1 log−
1

2 m).

Theorem 30. If G is a graph on n nodes such that ϑ(G) > Mn1− 2

k for an appropriate absolute
constant M , one can find in polynomial time a stable set in G of cardinality k.

Halperin, Nathaniel and Zwick [110] show the following extension of Theorem 29.

Theorem 31. Let G be a graph on n nodes that contains an independent set of size at least n
α , where

α ≥ 1, and set k := ⌊α⌋. Then an independent set of G of size Ω̃(nf(α)) can be found in randomized
polynomial time, where

f(α) =
1

k
· α(α − 1)

α(α − k) + k2−1
3

(the notation Ω̃ meaning that logarithmic factors are hidden). In particular, f(α) = 1 for 1 ≤ α ≤ 2,
f(α) = α

2(α−1) for 2 ≤ α ≤ 3, and f(k) = 3
k+1 for every integer k ≥ 1.

See, e.g., [106], [107], [108] for further results.

The vertex cover problem. We now turn to the vertex cover problem. A subset X ⊆ V is a vertex
cover if every edge is adjacent to a node in X; that is, if V \ X is a stable set. Denote by vc(G)
the minimum cardinality of a vertex cover in G. Thus vc(G) = n − α(G) and determining vc(G) is
therefore an NP-hard problem.

It is well known that vc(G) can be approximated within a factor of 2 in polynomial time. An
easy way to see it is to take a maximal matching M ; then the set C of vertices covered by M forms
a vertex cover such that vc(G) ≤ |C| = 2|M | ≤ 2 · vc(G). Alternatively, this can be seen using an LP
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relaxation of the problem. Indeed, consider the LP problem:

lp(G) := min
∑

i∈V xi

s.t. xi + xj ≥ 1 (ij ∈ E)
0 ≤ xi ≤ 1 (i ∈ V )

(108)

which is a linear relaxation of the vertex cover problem:

vc(G) := min
∑

i∈V xi

s.t. xi + xj ≥ 1 (ij ∈ E)
xi ∈ {0, 1} (i ∈ V ).

(109)

Obviously, lp(G) ≤ vc(G). Moreover, vc(G) ≤ 2 · lp(G); indeed, given an optimum solution x to (108),
the set X := {i ∈ V | xi ≥ 1

2} is a vertex cover whose cardinality satisfies |I| ≤ 2 · lp(G).
On the negative side, it is known that the minimum vertex cover problem cannot be approximated

in polynomial time within any factor smaller than 10
√

5− 21 ∼ 1.36067 if P 6= NP [69]. The existence
of a polynomial time approximation algorithm for the vertex cover problem with performance ratio
2− ǫ remains, however, open for any ǫ > 0. Kleinberg and Goemans [132] propose to use the following
semidefinite relaxation of the problem (109):

sd(G) := min
n
∑

i=1

1 + vT
0 vi

2

s.t. (v0 − vi)
T (v0 − vj) = 0 (ij ∈ E)

v0, v1, . . . , vn unit vectors.

(110)

They show that this semidefinite bound sd(G) is equal to the obvious lower bound n−ϑ(G) for vc(G),
where ϑ(G) is the theta number bounding α(G). To see it, consider the matrix X = (xij)

n
i,j=0 where

xij = vT
i vj and v0, . . . , vn satisfy (110); then X is constrained to be positive semidefinite with an all

ones diagonal and to satisfy 1 + xij − x0i − x0j = 0 for all edges ij of G. If we define the matrix
Y = (yij)

n
i,j=1 by

yij =
1

4
(1 + xij − x0i − x0j) for i, j = 1, . . . , n,

then the objective function in (110) reads n −∑n
i=1 yii and X is feasible for (110) if and only if Y

satisfies Y − diag(Y )diag(Y )T � 0 and yij = 0 (ij ∈ E); that is, if the vector (yii)
n
i=1 belongs to the

theta body TH(G). (We use the definition of ϑ(G) from Theorem 11. See [155] for details on the
above X 7→ Y mapping.)

A first observation is that this SDP bound is at least as good as the LP bound; namely,

sd(G) = n − ϑ(G) ≥ lp(G).

To see it, use the definition from Theorem 12. let d be a unit vector and v1, . . . , vn an orthonormal
representation of G such that ϑ(G) =

∑

i∈V (dT vi)
2. Set xi := 1− (dT vi)

2 (i ∈ V ). Then x is a feasible
solution to the program (108) which shows that lp(G) ≤∑

i xi = n − ϑ(G).

Kleinberg and Goemans [132] construct a class of graphs G for which the ratio vc(G)
n−ϑ(G) converges

to 2 as n goes to infinity, which shows that no improvement is made by using SDP instead of LP. (In
fact, the class of graphs constructed in Theorem 28 displays the same behaviour.) They also propose
to strengthen the semidefinite program (110) by adding to it the constraints

(v0 − vi)
T (v0 − vj) ≥ 0 (ij ∈ E);
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the new semidefinite bound can be verified to be equal to n − ϑ′(G), where ϑ′(G) is the sharpening

of ϑ(G) introduced in Section 4.4. Charikar [51] shows that the new integrality gap vc(G)
n−ϑ′(G) can again

be made arbitrarily close to 2.

Improved approximation algorithms exist for graphs with bounded maximum degree ∆. Improving
on earlier results, Halperin [108] shows that, for graphs with maximum degree ∆, the semidefinite
relaxation (110) together with suitable randomized rounding permits to derive an approximation
algorithm for the minimum vertex cover problem with performance ratio 2− (1−o(1))2 ln ln ∆

ln ∆ for large
∆. We sketch this result below.

Halperin’s algorithm is based on the following observation. Given a scalar x ≥ 0, the set C :=
{i ∈ {1, . . . , n} | vT

0 vi ≥ −x} is a vertex cover. Note that for x = 0, we have |C| ≤ 2 · sd(G) and
thus this gives again a 2-approximation algorithm. Moreover, if J is an independent set contained in
the set S2 := {i ∈ {1, . . . , n} | −x ≤ vT

0 vi < x}, then the set C \ J is still a vertex cover. When x is
small, nodes in S2 correspond to vectors vi that are approximatively orthogonal to v0 and thus the
endpoints of an edge contained in S2 correspond to approximatively opposite vectors. Hence the set
S2 is likely to contain few edges and thus a large independent set J ; therefore, the set C \ J is likely
to be a small vertex cover.

More precisely, Halperin defines x = Θ( ln ln ∆
ln ∆ ) and the sets S1 = {i ∈ {1, . . . , n} | vT

0 vi ≥ x}
and S2 = {i ∈ {1, . . . , n} | −x ≤ vT

0 vi < x} as above (thus C = S1 ∪ S2). Then, |S1| ≤ 2
x+1sd(G)

and |S2| ≤ 2
1−xsd(G). A large independent set J can be found in S2 using the ‘rounding via vector

projections’ technique from [125], exposed earlier in Section 6.4. Indeed, if ij is an edge contained in
S2, then vT

i vj = vT
0 vi + vT

0 vj − 1 < 2x − 1. Hence, the subgraph of G induced by S2 has a vector

k-colouring for k = 2(1−x)
1−2x . Therefore, Theorem 27 can be used for finding a large independent set in

S2. These facts yield the desired performance ratio; see [108] for details.

As mentioned above, no polynomial time approximation algorithm is known for the vertex cover
problem having a performance ratio 2 − ǫ with ǫ > 0. In fact, no tractable linear relaxation is known
for (109), having an integrality gap lower than 2. Arora, Bollobás and Lovász [19] initiate a more
systematic approach for proving non existence of tighter relaxations. They show an integrality gap of
2 − o(1) for some fairly general families of LP relaxations of (109). A first family consists of the LP
relaxations in which each constraint has at most ǫn variables. A second family involves LP relaxations
in which each constraint has defect at most ǫn; the defect of an inequality aT x ≥ b being 2b −∑i ai.
A third family consists of the LP relaxations obtained after O(1) iterations of the Lovász-Schrijver N
operator applied to the LP in (108). It is an open question whether an anlogue result holds for the
N+ operator.

6.6 Approximating MAX SAT

An instance of the MAX SAT problem in the Boolean variables x1, . . . , xn is composed of a collection
C of clauses C with nonnegative weights wC associated to them. Each clause C is of the form
z1 ∨ . . .∨ zk where each zj is either a variable xi or its negation xi (called a literal); k is its length and
C is satisfied if at least one of the literals z1, . . . , zk is assigned value 1 (if a variable xi is assigned
value 1 then its negation xi is assigned value 0 and vice versa). The MAX SAT problem consists of
finding an assignment of 0/1 values to the variables x1, . . . , xn so that the total weight of the satisfied
clauses is maximized. Given an integer k ≥ 1, the MAX kSAT problem is the special instance of MAX
SAT where each clause has length at most k and MAX EkSAT is the instance where all clauses have
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length exactly k; an instance of MAX SAT is said to be satisfiable if there is an assignment of the xi’s
satisfying all its clauses.

The MAX SAT and MAX kSAT problems are NP-hard. Moreover, H̊astad [114] proved that, for
any ǫ > 0, there is no (7

8 + ǫ)-approximation algorithm for MAX SAT, unless P=NP; his result also
holds when restricted to satisfiable instances of MAX E3SAT. H̊astad [114] also proved that, for any
ǫ > 0, there is no (21

22 + ǫ)-approximation algorithm for MAX 2SAT unless P=NP.

A 3
4-approximation algorithm for MAX SAT. The first approximation algorithm for MAX SAT

is the following 1
2 -approximation algorithm due to Johnson [123]. Given pi ∈ [0, 1] (i = 1, . . . , n), set

independently and randomly each variable xi to 1 with probability pi. Then the probability that a
clause C := ∨i∈I+

C
xi
∨∨i∈I−

C
xi is satisfied is equal to 1−∏i∈I+

C
(1− pi)

∏

i∈I−
C

pi. If we set all pi’s to 1
2 ,

then the total expected weight Ŵ1 of satisfied clauses satisfies:

Ŵ1 =
∑

C∈C
wC(1 − 1

2kC
) ≥ 1

2

∑

C∈C
wC

where kC is the length of clause C. Therefore, this gives a randomized 1
2 -approximation algorithm

for MAX SAT or a (1 − 2−k)-approximation algorithm for instances of MAX SAT where all clauses
have length ≥ k (thus with performance ratio 3

4 for MAX E2SAT and 7
8 for MAX E3SAT); it can be

derandomized using the method of conditional probabilities.

Goemans and Wiliamson [94] give an improved 3
4 -approximation algorithm using linear program-

ming. Consider the integer programming problem:

max
∑

C∈C wCzC

s.t. zC ≤∑

i∈I+

C
yi +

∑

i∈I−
C

(1 − yi) (C ∈ C)

0 ≤ zC ≤ 1 (C ∈ C)
yi ∈ {0, 1} (i = 1, . . . , n)

(111)

and let Z∗
LP denote the optimum value of its linear programming relaxation obtained by relaxing the

condition yi ∈ {0, 1} by 0 ≤ yi ≤ 1. If (y, z) is an optimum solution to (111), letting xi = 1 if and only
if yi = 1, then clause C is satisfied precisely when zC = 1; hence (111) solves the MAX SAT problem.
The GW approximation algorithm goes as follows. First, solve the LP relaxation of (111) and let
(y, z) be an optimum solution to it. Then, apply the Johnson’s algorithm using the probabilities

pi := yi; that is, set xi to 1 with probability yi. Setting βk := 1 −
(

1 − 1
k

)k
and using the fact4 that

1−∏i∈I+

C
(1− yi)

∏

i∈I−
C

yi ≥ βkC
zC , we find that the expected weight Ŵ2 of satisfied clauses satisfies:

Ŵ2 =
∑

C∈C
wC






1 −

∏

i∈I+

C

(1 − yi)
∏

i∈I−
C

yi






≥
∑

C∈C
wCzCβkC

.

As βk is a monotone decreasing function of k, this gives a randomized βk-approximation algorithm
for instances of MAX SAT where all clauses have at most k literals; thus a (1 − 1

e )-approximation
algorithm for MAX SAT, since limk−→∞(1 − 1

k )k = 1
e .

4The proof uses the arithmetic/geometric mean inequality: a1+...+an

n
≥ (a1 · · · an)

1

n for any nonnegative numbers
a1, . . . , an.
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In order to obtain the promised 3
4 performance ratio, it suffices to combine the above two algo-

rithms. For this, note that 1
2(1 − 1

2k + βk) ≥ 3
4 for all k ≥ 1. Therefore, 1

2(Ŵ1 + Ŵ2) ≥ 3
4Z∗

LP . Hence

the following is a 3
4 -approximation algorithm for MAX SAT: with probability 1

2 , use the probabilities
pi := 1

2 for determining the variables xi and, with probability 1
2 , use instead the probabilities pi := yi.

Other 3
4 -approximation algorithms for MAX SAT are given by Goemans and Williamson [94].

Instead of setting xi = 1 with probability yi, they set xi = 1 with probability f(yi) for some suitably
chosen function f(·).

Better approximation algorithms can be obtained using semidefinite relaxations instead of linear
ones combined with adequate rounding techniques, as we now see.

The Goemans-Williamson α0-approximation algorithm for MAX 2SAT and their 0.7554-
approximation algorithm for MAX SAT. Using a semidefinite relaxation for MAX SAT instead
of a linear one and the hyperplane rounding technique, one can show a better approximation algorithm.
It is convenient to introduce the new Boolean variables xn+i = xi for i = 1, . . . , n. Then a clause C can
be expressed as a disjunction C =

∨

i∈IC
xi, of the variables x1, . . . , x2n, with IC ⊆ {1, . . . , 2n}. It is

also convenient to work with ±1 variables vi (instead of yi ∈ {0, 1}) and to introduce an additional ±1
variable v0, the convention being to set xi to 1 if vi = −v0 and to 0 if vi = v0. Hence the formulation
(111) of MAX SAT can be rewritten as

max
∑

C∈C wCzC

s.t. zC ≤∑

i∈IC

1−v0·vi

2 (C ∈ C)
0 ≤ zC ≤ 1 (C ∈ C)
vi · vn+i = −1 (i = 1, . . . , n)
v0, v1, . . . , v2n ∈ {±1}.

(112)

For each clause C = xi ∨ xj of length 2, one can add the constraint:

zC ≤ 1 −
(

1 + v0 · vi

2

)(

1 + v0 · vj

2

)

=
3 − v0 · vi − v0 · vj − vi · vj

4
(113)

which, in fact, implies the constraint zC ≤ 1−v0·vi

2 +
1−v0·vj

2 .
Let (SDP) denote the semidefinite relaxation of the program (112) augmented with the constraints

(113) for all clauses of length 2, which is obtained by introducing a matrix variable X = (Xij)
2n
i,j=0 � 0

and replacing each product vi · vj by Xij. In other words, this amounts to replacing the constraint
v0, . . . , v2n ∈ {±1} by the constraint v0, . . . , v2n ∈ Sn, Sn being the unit sphere in Rn+1 (the product
vi · vj meaning then the inner product vT

i vj).
Goemans and Williamson [95] show that their basic α0-approximation algorithm for max-cut ex-

tends to MAX 2SAT. Namely, solve the relaxation (SDP) and let v0, . . . , vn be the optimum unit
vectors solving it; select a random unit vector r and let Hr be the hyperplane with normal vector
r; set xi to 1 if the hyperplane Hr separates v0 and vi and to 0 otherwise. Let θij denote the angle
(vi, vj). Then the probability prob(v0, vi) that the clause xi is satisfied is equal to the probability that
Hr separates v0 and vi and thus

prob(v0, vi) =
θ0i

π
;

the probability prob(v0, vi, vj) that the clause xi ∨ xj is satisfied is equal to the probability that a
random hyperplane separates v0 from at least one of vi and vj which can be verified to be equal to

prob(v0, vi, vj) =
1

2π
(θ0i + θ0j + θij)
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using the inclusion/exclusion principle. Therefore, for a clause C = xi ∨ xj , we have

prob(v0, vi, vj)

zC
≥ 2

π

θ0i + θ0j + θij

3 − cos θ0i − cos θ0j − cos θij
≥ α0,

where α0 ≃ 0.87856 is the Goemans-Williamson ratio from (84). The above relation also holds when
i = j, i.e., when C is a clause of length 1, in which case one lets prob(v0, vi, vj) = prob(v0, vi). Hence
the expected total weight of satisfied clauses is greater than or equal to α0 times the optimum value
of the relaxation (SDP); this gives therefore an α0-approximation algorithm for MAX 2SAT.

This improved MAX 2SAT algorithm leads to a slightly improved 0.7554-approximation algorithm
for general MAX SAT. For this, one considers the following three algorithms: (1) set xi to 1 indepen-

dently with probability pi := 1
2 ; (2) set xi to 1 independently with probability pi :=

1−vT
0

vi

2 ; (3) select
a random hyperplane Hr and set xi to 1 if Hr separates v0 and vi (the vi’s being the optimum vectors
to the relaxation (SDP)). One chooses algorithm (i) with probability qi where q1 = q2 = 0.4785 and
q3 = 1 − q1 − q2 = 0.0430. Then the expected weight of the satisfied clauses is at least

∑

C|kC≤2

wCzC

(

3

2
q1 + q3 · α0

)

+
∑

C|kC≥3

wCzC · q1

(

1 − 1

2k
+ 1 −

(

1 − 1

k

)k
)

which can be verified to be at least 0.7554 ·∑C wCzC . A refinement of this algorithm is given in [94]
with an improved performance ratio 0.7584.

The improved Feige-Goemans 0.931-approximation algorithm for MAX 2SAT. Feige and
Goemans [77] show an improved performance ratio of about 0.931 for MAX 2SAT. For this, they
strengthen the semidefinite relaxation (SDP) by adding to it the triangle inequalities:

X0i + X0j + Xij ≥ −1, X0i − X0j − Xij ≥ −1, −X0i − X0j + Xij ≥ −1 (114)

for all i, j ∈ {1, . . . , 2n}. Moreover, they replace the vectors v0, v1, . . . , vn (obtained from the optimum
solution to the strengthened semidefinite program) by a new set of vectors v′0, . . . , v

′
n obtained by

applying some rotation to the vi’s. Then the assignment for the Boolean variables xi are generated
from the v′i using as before the hyperplane rounding technique.

Let us explain how the vectors v′i are generated from the vi’s. Let f : [0, π] → [0, π] be a continuous
function such that f(0) = 0 and f(π − θ) = π − f(θ). As before, θij denotes the angle (vi, vj). The
vector vi is rotated in the plane spanned by v0 and vi until it forms an angle of f(θ0i) with v0; the
resulting vector is v′i. If vi = v0 then v′i = vi. Moreover, let v′n+i = −v′i for i = 1, . . . , n. Let θ′ij be the
angle (v′i, v

′
j). Then θ′0i = f(θ0i) and Feige and Goemans [77] show the following equation permitting

to express θ′ij in terms of θij :

cos θ′ij = cos θ′0i cos θ′0j +
cos θij − cos θ0i cos θ0j

sin θ0i sin θ0j
sin θ′0i sin θ′0j . (115)

The probability that the clause xi ∨ xj is satisfied is now equal to

prob(v0, v
′
i, v

′
j) =

θ′0i + θ′0j + θ′ij
2π

while the contribution of this clause to the objective function of the semidefinite relaxation is

zC ≤ 3 − cos θ0i − cos θ0j − cos θij

4
.
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The performance ratio of the approximation algorithm using a rotation function f is, therefore, at
least

β(f) := min
2

π
· θ′01 + θ′02 + θ′12

3 − cos θ01 − cos θ02 − cos θ12

where the minimum is taken over all θ01, θ02, θ12 ∈ [0, π] for which cos θ01, cos θ02, cos θ12 satisfy the
triangle inequalities (114). Recall that θ′0i = f(θ0i) and relation (115) permits to express θ′12 in terms
of θ01, θ02 and θ12.

Feige and Goemans [77] used a rotation function of the form

fλ(θ) = (1 − λ)θ + λ
π

2
(1 − cos θ) (116)

and, for the choice λ = 0.806765, they claim the lower bound 0.93109 for β(f). Proving a correct
evaluation of β(f) is a non trivial task, since the minimization program defining β(f) is too complicated
to be handled analytically. Zwick [242] makes a detailed and rigorous analysis enabling him to prove
a performance ratio of 0.931091 for MAX 2SAT.

The Matuura-Matsui 0.935-approximation algorithm for MAX 2SAT. Matuura and Matsui
[172] design an approximation algorithm for MAX 2SAT with performance ratio 0.935. As in the
Feige-Goemans algorithm, their starting point is to use the semidefinite relaxation (SDP’) of MAX
2SAT obtained from (112) by adding the constraints (113) for the clauses of length 2 and the triangle
inequalities (114); they fix v0 to be equal to (1, 0, . . . , 0)T . Let v1, . . . , vn be the unit vectors obtained
from an optimum solution to the program (SDP’). No rotation is applied to the vectors vi as in
the Feige-Goemans algorithm. The new ingredient in the algorithm of Matuura-Matsui consists of
selecting the random hyperplane using a distribution function f on the sphere which is skewed towards
v0 and uniform in any direction orthogonal to v0, instead of a uniform distribution.

Let Fn denote the set of functions f : Sn −→ R+ satisfying
∫

Sn f(v)dv = 1, f(v) = f(−v) for all
v ∈ Sn, and f(u) = f(v) for all u, v ∈ Sn such that uT v0 = vT v0. Let f ∈ Fn and let the random
unit vector r be now chosen according to the distribution function f . Then, prob(vi, vj | f) denotes
the probability that the clause xi ∨ xj is satisfied, i.e., as before, the probability that sign(rT v0) 6=
sign(rT vi) or sign(rT v0) 6= sign(rT vj). Let P denote the linear subspace spanned by v0, vi, vj and let

f̂ denote the distribution on S2 obtained by projecting onto P ; that is, f̂(v′) :=
∫

T (v′) f(v)dv, where

T (v′) is the set of all v ∈ Sn whose projection on P is parallel to v′. Then the new approximation
ratio of the algorithm is equal to

αf̂ := min
prob(vi, vj | f̂)

1/4(3 − vT
0 vi − vT

0 vj − vT
i vj)

where the minimum is taken over all vi, vj ∈ S2 which together with v0 = (1, 0, 0)T have their pairwise
inner products satisfying the triangle inequalities (114).

The difficulty consists of constructing a distribution function f ∈ Fn for which αf̂ is large. Matuura

and Matsui [172] show the following. The function

g(v) := cos1/1.3(θ) for all v ∈ S2 with |vT
0 v| = cos θ, (117)

is a distribution function on S2 belonging to F2; it satisfies αg ≥ 0.935 (this is proved numerically);

and there exists f ∈ Fn for which f̂ = g.
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The Lewin-Livnat-Zwick 0.940-approximation algorithm for MAX 2SAT. Lewin, Livnat and
Zwick [157] achieve this improved performance ratio by combining the skewed hyperplane rounding
technique exploited by Matuura and Matsui [172] with the pre-rounding rotation phase used by Feige
and Goemans [77].

The Karloff-Zwick 7
8-approximation algorithm for MAX 3SAT. Karloff and Zwick [127]

present an approximation algorithm for MAX 3SAT whose performance ratio they conjecture to
be equal to 7/8 = 0.875, thus the best possible since H̊astad [114] proved the non existence of an
approximation algorithm with performance ratio > 7/8 unless P=NP. Previous algorithms were using
a reduction to the case of MAX 2SAT; for instance, Trevisan et al. [227] give a 0.801-approximation
algorithm for MAX 3SAT using the Feige-Goemans 0.931 result for MAX 2SAT. Karloff and Zwick do
not make such a reduction but consider instead the following direct semidefinite relaxation for MAX
3SAT:

max
∑

i,j,k∈{1,...,2n} wijkzijk

s.t. zijk ≤ relax(v0, vi, vj , vk)
vi · vn+i = −1 (i = 1, . . . , n)
v0, . . . , v2n ∈ Sn, zijk ∈ R,

where zijk is a scalar attached to the clause xi ∨ xj ∨ xk and

relax(v0, vi, vj , vk) := min(1− (v0 + vi)
T (vj + vk)

4
, 1− (v0 + vj)

T (vi + vk)

4
, 1− (v0 + vk)

T (vi + vj)

4
, 1).

Note indeed that when the vi’s are ±1 scalars, then relax(v0, vi, vj , vk) is equal to 0 precisely when
v0 = vi = vj = vk which corresponds to setting all variables xi, xj , xk to 0 and thus to the clause
xi ∨ xj ∨ xk not being satisfied.

Denote again by prob(v0, vi, vj , vk) the probability that xi ∨ xj ∨ xk is satisfied and set

ratio(v0, vi, vj , vk) :=
prob(v0, vi, vj , vk)

relax(v0, vi, vj , vk)
.

For a clause of length 1 or 2 (obtained by letting j = k = 0 or k = 0), it follows from the analysis of
the GW algorithm that ratio(v0, vi, vj , vk) ≥ α0 > 7

8 . For clauses of length 3, the analysis is technically
much more involved and requires the computation of the volume of spherical tetrahedra as we now
see.

Clearly, prob(v0, vi, vj , vk) is equal to the probability that the random hyperplane Hr separates v0

from at least one of vi, vj , vk and thus to

1 − 2 · prob(rT vh ≥ 0 ∀h = 0, i, j, k).

We may assume without loss of generality that v0, vi, vj , vk lie in R4 and, since we are only interested in
the inner products rT vh, we can replace r by its normalized projection on R4 which is then uniformely
distributed on the sphere S3. Define

T (v0, vi, vj , vk) := {r ∈ S3 | rT vh ≥ 0 ∀h = 0, i, j, k}.

Then, prob(v0, vi, vj , vk) = 1 − 2 · vol(T (v0,vi,vj ,vk))
vol(S3) , where vol(.) denotes the 3-dimensional spherical

volume. As vol(S3) = 2π2, we find that

prob(v0, vi, vj , vk) = 1 − 2 · vol(T (v0, vi, vj , vk))

π2
.
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When the vectors v0, vi, vj , vk are linearly independent, T (v0, vi, vj , vk) is a spherical tetrahedron,
whose vertices are the vectors v′0, v

′
i, v

′
j , v

′
k ∈ S3 satisfying vT

h v′h > 0 for all h and vT
h1

v′h2
= 0 for all

distinct h1, h2. That is,

T (v0, vi, vj , vk) = {
∑

h=0,i,j,k

αhv′h | αh ≥ 0,
∑

h

αh = 1}.

Therefore, evaluating the quantity ratio(v0, vi, vj , vk) and thus the performance ratio of the algorithm
relies on proving certain inequalities about volumes of spherical tetrahedra.

Karloff and Zwick [127] show that prob(v0, vi, vj , vk) ≥ 7
8 whenever relax(v0, vi, vj , vk) = 1, which

shows a performance ratio 7
8 for satisfiable instances of MAX 3SAT. Their proof is computer assisted

as it involves one computation carried out with Mathematica. Zwick [243] can prove the performance
ratio 7

8 for general MAX 3SAT. Although his proof is again computer assisted, it can however be
considered as a rigorous proof since it is carried out using a new system called RealSearch, written
by Zwick, which involves only interval arithmetic (instead of floating point arithmetic). We refer to
Zwick’s paper for an interesting presentation and discussion.

Further extensions. Karloff and Zwick [127] describe a procedure for constructing strong semidef-
inite relaxations for general constraint satisfaction problems and thus for MAX kSAT. Halperin and
Zwick [112] study approximation algorithms for MAX 4SAT using the semidefinite relaxation provided
by the Karloff-Zwick recipe. The analysis of the classic hyperplane rounding technique necessitates
now the evaluation of the probability prob(v0, . . . , v4) that a random hyperplane separates v0 from
at least one of v1, . . . , v4. Luckily, using the inclusion/exclusion formula, this probability can be ex-
pressed in terms of the probabilities prob(vi, vj) and prob(vi, vj , vk, vℓ) that were considered above. In
this way, Halperin and Zwick can show a performance ratio of 0.845173 for MAX 4SAT, thus below
the target ratio of 7

8 . They study in detail a variety of other possible rounding strategies which enable
them to obtain some improved performance ratios, like 0.8721.

Asano and Williamson [22] present an improved approximation algorithm for MAX SAT with
performance ratio 0.7846. For this, they use a new family of approximation algorithms extending
the 3

4 -approximation algorithm of Goemans and Williamson [94] (presented earlier in this section)
combined with the semidefinite approaches for MAX 2SAT and MAX 3SAT of Karloff and Zwick
[127] and Feige and Goemans [77].

Further work related to defining stronger semidefinite relaxations for the satisfiability problem can
be found, e.g., in Anjos [13], de Klerk et al. [136], Warners [231].

6.7 Approximating the maximum directed cut problem

Given a directed graph G = (V, A) and weights w ∈ QA
+ associated to its arcs, the maximum directed

cut problem asks for a directed cut δ+(S) of maximum weight where, for S ⊆ V , the directed cut (or
dicut) δ+(S) is the set of arcs ij with i ∈ S and j 6∈ S. This problem is NP-hard, since the max-
cut problem in a undirected graph H reduces to the maximum dicut problem in the directed graph
obtained by replacing each edge of H by two opposite arcs. Moreover, no approximation algorithm
for the maximum dicut problem exists having a performance ratio > 12

13 unless P=NP [114].

The simple random partition algorithm (which assigns each node to S independently with proba-
bility 1

2) has a performance ratio 1
4 . Goemans and Williamson [95] show that their basic approximation

algorithm for max-cut can be extended to the maximum dicut problem with performance ratio 0.79607.
Feige and Goemans [77] prove an improved performance ratio of 0.859. These algorithms use the same
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ideas as the algorithms for MAX 2SAT presented in the same papers. Before presenting them, we
mention a simple 1

2 -approximation algorithm of Halperin and Zwick [113] using a linear relaxation of
the problem; this algorithm can in fact be turned into a purely combinatorial algorithm.

A 1
2-approximation algorithm by Halperin and Zwick. Consider the following linear program:

max
∑

ij∈A wijzij

s.t. zij ≤ xi (ij ∈ A)
zij ≤ 1 − xj (ij ∈ A)
0 ≤ xi ≤ 1 (i ∈ V ).

(118)

If we replace the linear constraint 0 ≤ x ≤ 1 by the integer constraint x ∈ {0, 1}V then we obtain a
formulation for the maximum dicut problem; the dicut δ+(S) with S = {i | xi = 1} being an optimum
dicut. Halperin and Zwick [113] show that the program (118) has a half-integer optimum solution. To
see it, note first that (118) is equivalent to the program:

max
∑

ij∈A wijzij

s.t. zij + zjk ≤ 1 (ij ∈ A, jk ∈ A)
0 ≤ zij ≤ 1 (ij ∈ A).

(119)

Indeed, if (z, x) is feasible for (118), then z is feasible for (119); conversely, if z is feasible for (119)
then (z, x) is feasible for (118), where xi := maxij∈A zij if δ+(i) 6= ∅ and xi := 0 otherwise. Now, the
constraints in (119) define in fact the fractional stable set polytope of the line graph of G (whose nodes
are the arcs, with two arcs being adjacent if they form a path in G). Since the vertices of the fractional
stable set polytope are half-integral, it follows that (119) and thus (118) has a half-integral optimum
solution (x, z). Then one construct a directed cut δ+(S) by putting node i ∈ V in S with probability
xi. The expected weight of δ+(S) is at least 1

2wT z. Therefore, this gives a 1
2 -approximation algorithm.

Moreover, this algorithm can be made purely combinatorial since a half-integral solution can be found
using a bipartite matching algorithm (see [113]).

The Goemans-Williamson 0.796-approximation algorithm. One can alternatively model the
maximum dicut problem in the following way. Given v0, v1, . . . , vn ∈ {±1} and S := {i ∈ {1, . . . , n} |
vi = v0}, the quantity

1

4
(1 + v0 · vi)(1 − v0 · vj) =

1

4
(1 + v0 · vi − v0 · vj − vi · vj)

is equal to 1 if ij ∈ δ+(S) and to 0 otherwise. Therefore, the following program solves the maximum
dicut problem:

max
∑

ij∈A wij
1
4(1 + v0 · vi − v0 · vj − vi · vj)

s.t. v0, v1, . . . , vn ∈ {±1} (120)

Let (SDP) denote the relaxation of (120) obtained by replacing the condition v0, v1, . . . , vn ∈ {±1}
by the condition v0, v1, . . . , vn ∈ Sn and let zsdp denote its optimum value. Goemans and Williamson
propose the following analogue of their max-cut algorithm for solving the maximum dicut problem:
Solve (SDP) and let v0, . . . , vn be an optimum solution to it; select a random unit vector r and let
S := {i ∈ {1, . . . , n} | sign(v0 · r) = sign(vi · r)}. Let θij denote the angle (vi, vj). Then the expected
weight E(S) of the dicut δ+(S) is equal to

E(S) =
∑

ij∈A

wij
1

2π
(−θ0i + θ0j + θij).
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In order to bound E(S)
zsdp

, one has to find lower bounds for the quantity

2

π

−θ0i + θ0j + θij

1 + cos θ0i − cos θ0j − cos θij
.

Goemans and Williamson show the lower bound

β := min
0≤θ<arccos(−1/3)

2

π

2π − 3θ

1 + 3 cos θ
> 0.79607

for it. Therefore, the above algorithm has performance ratio β > 0.79607.

The Feige-Goemans approximation algorithm. Feige and Goemans [77] propose an improved
approximation algorithm for the maximum dicut problem analogue to their improved approximation
algorithm for MAX 2SAT. Namely, strengthen the semidefinite program (SDP) by adding to it the
triangle inequalities (114); replace the vectors v0, . . . , vn obtained as optimum solution of the strength-
ened SDP program by a new set of vectors v′0, . . . , v

′
n obtained by applying some rotation function to the

vi’s; generate from the v′i’s the directed cut δ+(S) where S := {i ∈ {1, . . . , n} | sign(v′0 ·r) = sign(v′i·r)}.
Thus one should now find lower bounds for the quantity

2

π

−θ′0i + θ′0j + θ′ij
1 + cos θ0i − cos θ0j − cos θij

.

Using the rotation function fλ from (116) with λ = 1
2 , Feige and Goemans claim a preformance ratio

of 0.857. Zwick [242] makes a detailed analysis of their algorithm enabling him to show a performance
ratio of 0.859643 (using an adequate rotation function).

The Matuura-Matsui 0.863-approximation algorithm. Matuura and Matsui [171] propose
an approximation algorithm for the maximum directed cut problem with performance ratio 0.863.
Analagously to their algorithm for MAX 2SAT presented in the previous subsection, it relies on solv-
ing the semidefinite relaxation strengthened by the triangle inequalities (114) and applying the random
hyperplane rounding phase using a distribution on the sphere which is skewed towards v0 and uniform
in any direction orthogonal to v0. As concrete choice, they propose to use the distribution function
on S2

g(v) = cos1/1.8(θ) for all v ∈ S2 with |vT
0 v| = cos θ (121)

which can be realised as projection of a distribution on Sn and permits to show an approximation
ratio of 0.863. (Compare (121) with the function g from (117) used for MAX 2SAT.)

The Lewin-Livnat-Zwick 0.874-approximation algorithm. Analogously to their improved algo-
rithm for MAX 2SAT, Lewin, Livnat and Zwick [157] achieve this improved performance guarantee
by combining the ideas of first suitably rotating the vectors obtained as solutions of the semidefinite
program and of then using a skewed distribution function for chosing the random hyperplane.
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7 Further Topics

7.1 Approximating polynomial programming using semidefinite programming

We come back in this section to the problem of approximating polynomial programs using semidefinite
programming, which was already considered in Section 3.8. We present here the main ideas underlying
this approach. They use results about representations of positive polynomials as sums of squares and
moment sequences. Sums of squares will again be used in the next subsection for approximating the
copositive cone. We then mention briefly some extensions to the general problem of testing whether
a semi-algebraic set is empty.

Polynomial programs, sums of squares of polynomials, and moment sequences. Consider
the following polynomial programming problem:

min g(x) subject to gℓ(x) ≥ 0 (ℓ = 1, . . . , m) (122)

where g, gℓ are polynomials in x = (x1, . . . , xn). This is a very general problem which contains linear
programming (when all polynomials have degree one) and 0/1 linear programming (since the integrality
condition xi ∈ {0, 1} can be expressed as the polynomial equation: x2

i − xi = 0). We mentioned in
Section 3.8 that, under some technical assumption, the problem (122) can be approximated (getting
arbitrarily close to its optimum) by the sequence of semidefinite programs (56). This result, due
to Lasserre [141], relies on the fact that certain positive polynomials can be represented as sums
of squares of polynomials. This idea of using sums of squares of polynomials for approximating
polynomial programs has been introduced by Shor [217, 218, 219] and used by several other authors
including Nesterov [182] and Parrilo [187, 188]; it seems to yield a more powerful method than other
existing algebraic methods (see [189] for a comparison).

We would like to explain briefly here the main ideas underlying this approach. For simplicity,
consider first the unconstrained problem:

p∗ := min g(x) subject to x ∈ Rn (123)

where g(x) =
∑

α∈S2d
gαxα is a polynomial of even degree 2d; here Sk denotes the set of sequences

α ∈ Zn
+ with |α| :=

∑n
i=1 αi ≤ k for any integer k. One can assume w.l.o.g. that g(0) = g0 = 0. In what

follows the polynomial g(x) is identified with its sequence of coefficients g = (gα)α∈S2d
. Obviously,

(123) can be rewritten as

p∗ = maxλ subject to g(x) − λ ≥ 0 ∀x ∈ Rn. (124)

Testing whether a polynomial is nonnegative is a hard problem, since it contains the problem of testing
whether a matrix is copositive (see the next subsection). Lower bounds for p∗ can be obtained by
considering sufficient conditions for the polynomial g(x) − λ to be nonnegative on Rn. An obvious
such sufficient condition being that g(x) − λ be a sum of squares of polynomials. Therefore,

p∗ ≥ maxλ subject to g(x) − λ is a sum of squares. (125)

Testing whether a polynomial p(x) is a sum of squares of polynomials amounts to testing feasibility
of a semidefinite program (cf., e.g., [198]). Indeed, say p(x) has degree 2d, and let z := (xα)α∈Sd

be
the vector consisting of all monomials of degree ≤ d. Then one can easily verify that p(x) is a sum of
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squares if and only if p(x) = zT Xz (identical polynomials) for some positive semidefinite matrix X.
For γ ∈ S2d, set

Bγ :=
∑

α,β∈Sd|α+β=γ

Eα,β,

where Eα,β is the elementary matrix with all zero entries except entries 1 at positions (α, β) and (β, α).

Proposition 32. A polynomial p(x) of degree 2d is a sum of squares of polynomials if and only if
the following semidefinite program:

X � 0, 〈Bγ , X〉 = pγ (γ ∈ S2d) (126)

is feasible, where X is of order
(n+d

d

)

and with
(n+2d

2d

)

equations.

Proof. As zT Xz =
∑

α,β∈Sd
Xα,βxα+β =

∑

γ∈S2d
xγ

(

∑

α,β∈Sd
α+β=γ

Xα,β

)

=
∑

γ∈S2d
xγ〈Bγ , X〉, p(x) =

zT Xz for some X � 0 (which is equivalent to p(x) being a sum of squares) if and only if the system
(126) is feasible.

Note that the program (126) has a polynomial size for fixed n or d. Based on the result from Propo-
sition 32, one can reformulate the lower bound for p∗ from (125) as

p∗ ≥ max λ = max −〈B0, X〉
s.t. g(x) − λ is a sum of squares s.t. 〈Bγ , X〉 = gγ (γ ∈ S2d \ {0}).

(127)

One can alternatively proceed in the following way for finding lower bounds for p∗. Obviously,

p∗ = min
µ

∫

g(x)dµ(x) (128)

where the minimum is taken over all probability measures µ on Rn. Define a sequence y = (yα)α∈S2d

to be a moment sequence if yα =
∫

xαdµ(x) (α ∈ S2d) for some nonnegative measure µ on Rn. Hence,
(128) can be rewritten as

p∗ = min
∑

α

gαyα s.t. y is a moment sequence and y0 = 1. (129)

Lower bounds for p∗ can be obtained by replacing the condition that y be a moment sequence by a
necessary condition for it. An obvious such necessary condition is that the moment matrix MZ

d (y) =
(yα+β)α,β∈Sd

(recall (54)) be positive semidefinite. Thus we find the following lower bound for p∗:

p∗ ≥ min gT y subject to MZ

d (y) � 0 and y0 = 1. (130)

Note that the constraint in (130) is precisely condition (56) (when there are no constraints gℓ(x) ≥ 0).
Since MZ

d (y) = B0y0 +
∑

γ∈S2d\{0}
Bγyγ , the semidefinite programs in (130) and in (127) are in fact dual

of each other, which reflects the duality existing between the theories of nonnegative polynomials and
of moment sequences.

The lower bound from (127) is equal to p∗ if g(x) − p∗ is a sum of squares; this holds for n = 1
but not in general if n ≥ 2. In general one can estimate p∗ asymptotically by a sequence of SDP’s
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analogue to (127) if one assumes that an upper bound R is known a priori on the norm of a global
minimizer x of g(x), in which case

p∗ = min g(x) subject to g1(x) := R −
n
∑

i=1

x2
i ≥ 0.

Indeed, one can then use a result of Putinar [199] (quoted in Theorem 33 below) and conclude that, for
any ǫ > 0, the polynomial g(x)−p∗+ǫ is positive on F := {x | g1(x) ≥ 0} and thus can be decomposed
as p(x) + p1(x)g1(x) for some polynomials p(x) and p1(x) that are sums of squares. Testing for the
existence of such decomposition can be expressed as a SDP program analogue to (127). Its dual
(analogue to (130)) reads:

p∗t := min gT y subject to Mt(y) ≥ 0, Mt−1(g1 ∗ y) � 0, y0 = 1.

Putinar’s result permits to show the asymptotic convergence of p∗t to p∗ when t goes to infinity.

Theorem 33. [199] Let g1, . . . , gm be polynomials and set F := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Assume that F is compact and that there exists a polynomial u satisfying (i) the set {x ∈ Rn | u(x) ≥ 0}
is compact and (ii) u can be decomposed as u0 +

∑m
ℓ=1 uℓgℓ for some polynomials u0, . . . , um that

are sums of squares. Then every polynomial p(x) which is positive on F can be decomposed as
p = p0 +

∑m
ℓ=1 pℓgℓ for some polynomials p0, . . . , pm that are sums of squares.

The above reasoning extends to the general program (122) if the assumption of Theorem 33 holds.
This is the case, e.g., if the set {x | gℓ(x) ≥ 0} is compact for one of the polynomials defining F . Then,
Putinar’s result permits to claim that, for any ǫ > 0, the polynomial g(x)− p∗ + ǫ can be decomposed
as p(x) +

∑m
ℓ=1 pℓ(x)gℓ(x) for some polynomials p(x), pℓ(x) that are sums of squares. Based on this,

one can derive the asymptotic convergence to p∗ of the minimum of gT y taken over all y satisfying
(56) when t goes to ∞. In the 0/1 case, when the constraints x2

i − xi = 0 (i = 1, . . . , n) are part of
the system defining F , there is in fact finite convergence in n steps [142] (see Section 3).

Semidefinite programming and the Positivstellensatz. Consider the following system:

fj(x) ≥ 0 (j = 1, . . . , s)
gk(x) 6= 0 (k = 1, . . . , t)
hℓ(x) = 0 (ℓ = 1, . . . , u)

(131)

where all fj , gk, hℓ are polynomials in the real variable x = (x1, . . . , xn). The complexity of the
problem of testing feasibility of this system has been the object of intensive research. Tarski [1951]
showed that this problem is decidable and since then a number of other algorithms have been proposed,
in particular, by Renegar [206] and Basu et al. [34].

We saw in Proposition 32 that testing whether a polynomial is a sum of squares can be formulated
as a semidefinite program. Parrilo [187] showed that the general problem of testing infeasibility of
the system (131) can also be formulated as a semidefinite programming problem (of very large size).
This is based on the following result of real algebraic geometry, known as the ‘Positivstellensatz’. The
Positivstellensatz asserts that for a system of polynomial (in)equalities, either there is a solution in Rn,
or there is a polynomial identity giving a certificate that no real solution exists. This gives therefore
a common generalization of Hilbert’s ‘Nullstellensatz’ (in the complex case) and Farkas’ lemma (for
linear systems).
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Theorem 34. ([222], [41]) The system (131) is infeasible if and only if there exist polynomials f, g, h
of the form

f(x) =
∑

S⊆{1,...,s}
pS





∏

j∈S

fj



 where all pS are sums of squares

g(x) =
∏

k∈K

gk where K ⊆ {1, . . . , t}

h(x) =
u
∑

ℓ=1

qℓhℓ where all qℓ are polynomials

satisfying the equality f + g2 + h = 0.

Bounds are known a priori for the degrees of the polynomials in the Positivstellensatz which make
it possible to test infeasibility of the system (131) via semidefinite programming. However, these
bounds are very large (triply exponential in n). Practically, one can use semidefinite programming for
searching for infeasibility certificates of bounded degree.

7.2 Approximating combinatorial problems using copositive programming

We have seen throughout this chapter how semidefinite programming can be used for approximating
combinatorial optimization problems. The idea of using the copositive cone and its dual, the cone
of completely positive matrices, instead of the positive semidefinite cone has also been considered;
cf., e.g., [43], [200]. We present below some results of de Klerk and Pasechnik [135] showing how the
stability number of a graph can be computed using copositive relaxations.

Let us first recall some definitions. A symmetric matrix M of order n is copositive if xT Mx ≥ 0 for
all x ∈ Rn

+ and M is completely positive if M =
∑k

i=1 uiu
T
i for some nonegative vectors u1, . . . , uk. Let

Cn denote the set of symmetric copositive matrices of order n; its dual cone C∗
n is the set of completely

positive matrices. Hence,

C∗
n ⊆ PSDn = PSD∗

n ⊆ Cn.

Testing whether a matrix M is copositive is a co-NP-complete problem [178].

Let G = (V, E) (V = {1, . . . , n}) be a graph and consider its theta number ϑ(G), defined by

ϑ(G) = max 〈J, X〉 s.t. Xij = 0 (ij ∈ E), Tr(X) = 1, X � 0 (132)

(same as definition (58)). Then, ϑ(G) is an upper bound for the stability number of G, since for any
stable set S in G, the matrix XS := 1

|S|χ
S(χS)T is feasible for the semidefinite program (132). Note

that XS is in fact completely positive. Therefore, one can define a tighter upper bound for α(G) by
replacing in (132) the condition X � 0 by the condition X ∈ C∗

n. Letting A denote the adjacency
matrix of G, we obtain:

α(G) ≤ max 〈J, X〉 ≤ min λ
s.t. TrX = 1 s.t. λI + yA − J ∈ Cn

Xij = 0 (ij ∈ E) λ, y ∈ R

X ∈ C∗
n

(133)
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where the right most program is obtained from the left most one using cone-LP duality. Using the
following formulation for α(G) due to Motzkin and Straus [177]:

1

α(G)
= min xT (A + I)x subject to x ≥ 0 and

n
∑

i=1

xi = 1,

one finds that the matrix α(G)(I + A) − J is copositive. This implies that the optimum value of the
right most program in (133) is at most α(G). Therefore, equality holds throughout in (133). This
shows again that copositive programming is not tractable.

Parrilo [187] proposes to approximate the copositive cone using sums of squares of polynomials.
For this, note that a matrix M is copositive if and only if the polynomial

gM (x) :=
n
∑

i,j=1

Mijx
2
i x

2
j

is nonnegative on Rn. Therefore, an obvious sufficient condition for M to be copositive is that gM (x)

be a sum of squares or, more generally, that the polynomial gM (x)

(

n
∑

i=1

x2
i

)r

be a sum of squares

for some integer r ≥ 0. A theorem of Polya asserts that, conversely, if M is strictly copositive (i.e.,

xT Mx > 0 for all x ∈ Rn
+ \ {0}), then gM (x)

(

n
∑

i=1

x2
i

)r

is a sum of squares for some r. Powers and

Reznick [197] give some upper bound for this integer r (depending only on M).

Let Kr
n denote the set of symmetric matrices M of order n for which gM (x)

(

n
∑

i=1

x2
i

)r

is a sum of

squares. Thus
PSDn ⊆ K0

n ⊆ . . . ⊆ Kr
n ⊆ Cn.

We saw in the preceding subsection that testing whether a polynomial is a sum of squares can be
solved via the semidefinite program (126). Therefore one can test membership in Kr

n via semidefinite
programming. For instance, Parrilo [187] shows that

M ∈ K0
n ⇐⇒ M = P + N for some P � 0, N ≥ 0.

Moreover, M ∈ K1
n if and only if the following system:

M − X(i) � 0 (i = 1, . . . , n)

X
(i)
ii = 0 (i = 1, . . . , n)

X
(j)
ii + 2X

(i)
ij = 0 (i 6= j = 1, . . . , n)

X
(i)
jk + X

(j)
ik + X

(k)
ij ≥ 0 (1 ≤ i < j < k ≤ n)

has a solution, where X(1), . . . , X(n) are symmetric n × n matrices ([187] and [44]).
Replacing in (133) the condition λI + yA − J ∈ Cn by the condition λI + yA − J ∈ Kr

n, one can
define the parameter

ϑr(G) := minλ subject to λI + yA − J ∈ Kr
n.

Using the bound of Powers and Reznick [197], de Klerk and Pasechnik [135] show that

α(G) = ⌊ϑr(G)⌋ if r ≥ α2(G).
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The same conclusion holds if we replace Kr
n by the cone Cr

n consisting of the matrices M for which

gM (x)

(

n
∑

i=1

x2
i

)r

has only nonnegative coefficients. Bomze and de Klerk [44] give the following char-

acterization for the cone Cr
n:

Cr
n = {M symmetric n × n | xT Mx − xT diag(M) ≥ 0 for all x ∈ Zn

+ with
n
∑

i=1

xi = r + 2}. (134)

It is also shown in [135] that ϑ0(G) = ϑ′(G), the Schrijver parameter from (65); ϑ1(G) = α(G) if G
is an odd circuit, an odd wheel or their complement, or if α(G) = 2. It is conjectured in [135] that
ϑα(G)−1(G) = α(G).

Bomze and de Klerk [44] extend these ideas to standard quadratic optimization problems, of the
form:

p∗ := min xT Qx s.t. x ∈ ∆ := {x ∈ Rn
+ | eT x = 1} (135)

where Q is a symmetric matrix. Problem (135) is equivalent to any of the following dual problems:

p∗ = min 〈Q, X〉 s.t. 〈J, X〉 = 1, X ∈ C∗
n

= max λ s.t. Q − λJ ∈ Cn, λ ∈ R.
(136)

If we replace in (136) the cone Cn by its subcone Cr
n (defined above), we obtain a lower bound pr for p∗.

Setting p := maxx∈∆ xT Qx, we have that pr ≤ p∗ ≤ p. Bomze and de Klerk [44] show the following
inequality about the quality of the approximation pr:

p∗ − pr ≤ 1

r + 1
(p − p∗).

Using the characterization of Cr
n from (134), the bound pr can be expressed as

pr =
r + 2

r + 1

(

min
x∈∆(r)

xT Qx − 1

r + 2
xT diagQ

)

,

where ∆(r) is the grid approximation of ∆ consisting of the points x ∈ ∆ with (r + 2)x ∈ Zn
+. Thus,

the minimum value p∆(r) of xT Qx over ∆(r) satisfies:

pr ≤ p∗ ≤ p∆(r) ≤ p.

Bomze and de Klerk [44] prove that

p∆(r) − p∗ ≤ 1

r + 2
(p − p∗).

Therefore, the grid approximation of ∆ by ∆(r) provides a polunomial time approximation scheme
for the standard quadratic optimization problem (135).
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8 Semidefinite Programming and the Quadratic Assignment Prob-

lem

Quadratic problems in binary variables are the prime source for semidefinite models in combinatorial
optimization. The simplest form, unconstrained quadratic programming in binary variables, corre-
sponds to Max-Cut, and was described in detail in Section 5.

Assuming that the binary variables are the elements of a permutation matrix leads to the Quadratic
Assignment Problem (QAP). Formally, QAP consists in minimizing

Tr(AXB + C)XT (137)

over all permutation matrices X. One usually assumes that A and B are symmetric matrices of order
n, while the linear term C is an arbitrary matrix of order n. There are many applications of this model
problem, for instance in location theory. We refer to the recent monograph [48] for a description of
published applications of QAP in Operations Research and combinatorial optimization.

The cost function (137) is quadratic in the matrix variable X. To rewrite this we use the vec-
operator and (9). This leads to

TrAXBXT = 〈vec(X), vec(AXB)〉 = xT (B ⊗ A)x, (138)

because B is assumed to be symmetric. We can therefore express QAP equivalently as

min{xT (B ⊗ A)x + cT x : x = vec(X), X permutation matrix}.

Here, c = vec(C). To derive semidefinite relaxations of QAP we follow the generic pattern and linearize
by introducing a new matrix variable for xxT , leading to the study of

P = conv{xxT : x = vec(X), X permutation matrix}.

In section 3, we observed that any Y ∈ P must satisfy the semidefiniteness condition (20), which in
our present notation amounts to

Z =

(

1 zT

z Y

)

� 0, diag(Y ) = z.

The first question is to identify the smallest subcone of semidefinite matrices that contains P .
We use the following parametrization of matrices having row and column sums equal to e, the

vector of all ones, see [104].

Lemma 35. [104] Let V be an n × (n − 1) matrix with V T e = 0 and rank(V ) = n − 1. Then

E := {X ∈ Rn×n : Xe = XT e = e} = { 1

n
eeT + V MV T : M ∈ R(n−1)×(n−1)} =: E ′.

Proof. Let Z = 1
neeT + V MV T ∈ E ′. Then Ze = ZT e = e, because V T e = 0, hence Z ∈ E . To see

the other inclusion, let V = QR be the QR-decomposition of V , i.e. QT Q = I, QQT = I − 1
neeT and

rank(R) = n − 1. Let X ∈ E and set M := R−1QT XQ(R−1)T . Then 1
neeT + V MV T = X ∈ E ′.
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We use this parametrization and define

W :=

(

1

n
e ⊗ e, V ⊗ V

)

.

V can be any basis of e⊥, as in the previous lemma. We can now describe the smallest subcone
containing P .

Lemma 36. Let Y ∈ P . Then there exists a symmetric matrix R of order (n− 1)2 + 1, indexed from
0 to (n − 1)2, such that

R � 0, r00 = 1, Y = WRW T .

Proof. (See also [240].) We first look at the extreme points of P , so let X be a permutation matrix.
Thus we can write X as X = 1

neeT + V MV T , for some matrix M . Let m = vec(M). Then, using (9),

x = vec(X) =
1

n
e ⊗ e + (V ⊗ V )m = Wz,

with z =

(

1
m

)

. Now xxT = WzzT W T = WRW T , with r00 = 1, R � 0. The same holds for convex

conbinations formed from several permutation matrices.

To see that the set

P̂ := {Y : ∃R such that Y = WRW T , z = diag(Y ),

(

1 zT

z Y

)

� 0} (139)

is indeed the smallest subcone of positive semidefinite matrices containing P , it is sufficient to provide
a positive definite matrix R̂, such that WR̂W T ∈ P . In [240] it is shown that

R̂ =

(

1 0
0 1

n2(n−1)(nIn−1 − En−1) ⊗ (nIn−1 − En−1)

)

≻ 0

gives

WR̂W T =
1

n!

∑

X∈Π

(xxT ),

the barycenter of P . Here V =

(

In−1

−eT
n−1

)

has to be used in the definition of W .

Eliminating Y leaves the matrix variable R and n2 + 1 equality constraints, fixing the first row
equal to the main diagonal, and setting the first element equal to 1.

Thus we arrive at the following basic SDP relaxation of QAP:

(QAPR1) minTr(B ⊗ A + Diag(c))Y such that Y = WRW T ∈ P̂ , r00 = 1. (140)
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It is instructive to look at WR̂W T for small values of n. For n = 3 we get

WR̂W T =
1

6

































2 0 0 0 1 1 0 1 1
0 2 0 1 0 1 1 0 1
0 0 2 1 1 0 1 1 0

0 1 1 2 0 0 0 1 1
1 0 1 0 2 0 1 0 1
1 1 0 0 0 2 1 1 0

0 1 1 0 1 1 2 0 0
1 0 1 1 0 1 0 2 0
1 1 0 1 1 0 0 0 2

































.

The zero pattern in this matrix is not incidental. In fact, any X ∈ P will have entries equal 0 at
positions corresponding to xijxik and xjixki for j 6= k. This corresponds to the off-diagonal elements of
the main diagonal blocks, and the main-diagonal elements of the off diagonal blocks. To express these
constraints, we introduce some more notation, and index the elements of matrices in P alternatively
by P = (p(i,j),(k,l)) for i, j, k, l between 1 and n.

Hence we can strengthen the above relaxation by asking that

yrs = 0 for r = (i, j), s = (i, k), or r = (j, i), s = (k, j), j 6= k.

We collect all these equations in the constraint G(Y ) = 0. Adding it to (140) results in a stronger
relaxation. In [240] this model is called the ’Gangster model’. Aside from n2 + 1 equality constraints
from the basic model, we have O(n3) equations in this extended model. This amounts to serious
computational work, but results in a very strong lower bound for QAP.

(QAPR2) minTr(B ⊗ A + Diag(c))Y such that Y = WRW T ∈ P̂ , r00 = 1, G(Y ) = 0. (141)

Finally, one can include the constraints yrs ≥ 0 for all r, s, leading to

(QAPR3) minTr(B⊗A+Diag(c))Y such that Y = WTRW T ∈ P̂ , r00 = 1, G(Y ) = 0, Y ≥ 0. (142)

The resulting SDP has O(n4) constraints and can not be solved in a straightforward way by interior
point methods for problems of interesting size (n ≥ 15).

The Anstreicher-Brixius bound. Anstreicher et al. [16, 17] have recently achieved a break-
through in solving several instances of QAP which could not be solved by previous methods. The size
of these instances ranges from n = 20 to n = 36. The key to this breakthrough lies in the use of a
bound for QAP that is both ‘fast’ to compute, and gives ‘good’ approximations to the exact value of
QAP. This bounding procedure combines orthogonal, semidefinite and convex quadratic relaxations
in a nontrivial way, starting from the Hoffman-Wielandt inequality, Theorem 5.

A simple way to derive this bound goes as follows. We use the parametrization

X =
1

n
eeT + V Y V T (143)

from Lemma 35, and assume in addition that V T V = In−1. Substituting this into the cost of function
of QAP results in

Tr(AXB + C)XT = TrÂY B̂Y T + Tr(Ĉ +
2

n
V T AeeT BV )Y T +

1

n2
s(A)s(B) +

1

n
s(C), (144)
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where Â = V T AV, B̂ = V T BV, Ĉ = V T CV and s(M) := eT Me =
∑

ij mij. The condition V T V = I
implies that X in (143) is orthogonal if and only if Y is. Hadley et al. [104] use this to bound the
quadratic term in Y by the minimal scalar product of the eigenvalues of Â and B̂, see Theorem 5.
Anstreicher and Brixius [16] use this observation as a starting point and observe that for any symmetric
matrix Ŝ, and any orthogonal Y , one has

0 = TrŜ(I − Y Y T ) = TrŜ − TrŜY IY T = TrŜ − Tr(I ⊗ Ŝ)(yyT ).

This results in the following identity, true for any orthogonal Y and any symmetric Ŝ, T̂ :

TrÂY B̂Y T = Tr(Ŝ + T̂ ) + Tr(B̂ ⊗ Â − I ⊗ Ŝ − T̂ ⊗ I)(yyT ). (145)

We use Q̂ = B̂ ⊗ Â − I ⊗ Ŝ − T̂ ⊗ I, D̂ = Ĉ + 2
nV T AeeT BV and substitute this into (144) to get

Tr(AXB + C)XT = Tr(Ŝ + T̂ ) + yT Q̂y + d̂T y +
1

n2
s(A)s(B) +

1

n
s(C), (146)

This relation is true for any orthogonal X and Y related by (143) and symmetric Ŝ, T̂ . It is useful
to express the parts in (146) containing Y by the original matrix X. To do this we use the following
identity:

0 = TrŜ(I − V T V ) = TrŜ(I − V T XXT V ) = TrŜ − Tr(V ŜV T )XIXT = TrŜ − Tr(I ⊗ V ŜV T )(xxT ).

Hence, for any orthogonal X, and any symmetric Ŝ, T̂ we also have

Tr(AXB + C)XT = Tr(Ŝ + T̂ ) + xT Qx + cT x. (147)

Here Q = B ⊗ A − I ⊗ (V ŜV T ) − (V T̂V T ) ⊗ I. Comparing (146) and (147) we note that

yT Q̂y + d̂T y +
1

n2
s(A)s(B) +

1

n
s(C) = xT Qx + cT x.

It should be observed that Q and Q̂ above depend on the specific choice of Ŝ, T̂ . Anstreicher and
Brixius use the optimal solution Ŝ, T̂ from Theorem 6 and observe that dual feasibility yields Q̂ � 0.
Therefore the above problem is a convex quadratic programming problem. We denote its optimal
solution as the Anstreicher-Brixius bound ABB(A,B,C).

ABB(A, B, C) := Tr(Ŝ + T̂ ) + min{xT Qx + cT x : x = vec(X), X doubly stochastic}.

The interesting observation here is that Ŝ, T̂ are obtained as a by-product of the Hoffman-Wielandt
inequality, and that the resulting matrix Q is positive semidefinite over the set of doubly stochastic
matrices (as a consequence of Theorem 6). These facts imply that the Anstreicher-Brixius bound is
tractable.

To give a flavour of the quality of these bounds, we provide the following computational results on
standard test sets from Nugent et al. [184]. These data sets have the following characteristics. The
linear term C is equal to 0. The matrix B represents the rectilinear cell distance of a rectangular array
of cells, hence there is some symmetry in these data. In case of n = 12, the resulting rectangular cell
array has the following form:

1 2 3 4

5 6 7 8

9 10 11 12
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We observe that the distance matrix B would not change, if the following cell array would have been
used:

4 3 2 1

8 7 6 5

12 11 10 9

.

Mathematically speaking, there exist several permutation matrices X, such that B = XBXT . Ex-
ploiting all these symmetries, it is sufficient to consider only the subproblems where the cells 1, 2, 5, 6
are assigned to some fixed location, say 1. All other permutations can be obtained by exploiting the
automorphisms inherent in B.

We denote these subproblems by nug12.1, nug12.2, nug12.5, nug12.6 in Table 1. The instance n =
15 has a distance matrix B corresponding to a 5×3 rectangular grid, leading to subproblems nug15.1,
nug15.2, nug15.3, nug15.6, nug15.7, nug15.8. The optimal values for these instances are contained in
the column labeled ’exact’. These values can be computed routinely for n ≈ 15. The biggest instance
n = 30 was only recently solved to optimality, see [17]. The computational results for QAPR3 are from
the forthcoming dissertation [221]. It is computationally infeasible to solve this relaxation by interior
points. Sotirov [221] uses the bundle method to get approximate solutions of QAPR3. Hence the
values are only lower estimates of the true bound. The values of QAPR2 were obtained by Sotirov and
Wolkowicz 5 by making use of the NEOS distributed computing system. The bounds are obtained
using interior point methods. The computational effort to get these values is prohibitively big. A
more practical approach consists in using bundle methods to bargain computational efficiency against
a slight decrease in the quality of the bound. Finally, the values of the Anstreicher-Brixius bound
ABB are from [16].

These results indicate that the SDP models in combination with bundle methods may open the
way to improved Branch and Bound approaches to solve larger QAP instances.

9 Epilogue: Semidefinite Programming and Algebraic Connectivity

An implicit message of all the preceeding sections is that semidefinite programming relaxations have
a high potential to significantly improve on purely polyhedral relaxations. This may give the wrong
impression that semidefinite programming is a universal remedy to improve upon linear relaxations.
This is in principle true, if we assume that some sort of semidefiniteness constraint is added to the
polyhedral model.

If a model based on semidefinite programming is used instead of a linear model, it need not be
true that the semidefinite model dominates the linear one. We conclude with an illustration of this
perhaps not quite intuitive statement.

We consider the Traveling Salesman Problem (TSP), i.e. the problem of finding a shortest Hamil-
tonian cycle in an edge weighted graph. This problem is well known to be NP-hard, and has stimulated
research since the late 1950’s.

We need to recall some notation from graph theory. For an edge weighted graph, given by its
weighted adjacency matrix X, with X ≥ 0, diag(X) = 0 (setting to 0 the entries corresponding to
nonedges), we consider vertex partitions (S, V \ S) of its vertex set V and define

X(S, V \ S) :=
∑

i∈S,j /∈S

xij

5personal communication, 2001
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problem exact QAPR2 QAPR3 ABB

nug12 578 529.3 552.1 482

nug12.1 586 550.7 573.6 -
nug12.2 586 550.6 571.3 -
nug12.5 578 551.8 572.2 -
nug12.6 600 555.8 578.8 -

nug15 1150 1070.5 1106.1 996

nug15.1 1150 1103.4 1131.6 -
nug15.2 1168 1116.3 1147.8 -
nug15.3 1164 1120.9 1148.4 -
nug15.6 1166 1113.6 1144.9 -
nug15.7 1182 1130.3 1161.9 -
nug15.8 1184 1134.1 1162.2 -

nug20 2570 2385.6 2441.9 2254

nug30 6124 5695.4 5803.2 5365

Table 1: Semidefinite relaxations and optimal value for some instances from the Nugent collection of
test data. The column labeled QApR3 gives lower estimates of the bound computed by the bundle
method.

to be the weight of the cut, given by S. The edge connectivity µ(X) of X is defined as

µ(X) := min{X(S, V \ S) : S ⊆ V, 1 ≤ |S| ≤ |V | − 1}.

The polyhedral approach to TSP is based on approximating the convex hull of all Hamiltonian
cycles by considering all two-edge connected graphs. Formally, this amounts to optimizing over the
following set:

{X : 0 ≤ xij ≤ 1, diag(X) = 0, Xe = 2e, µ(X) = 2}. (148)

Even though there are O(2n) linear constraints defining this (polyhedral) set, it is possible to optimize
over it in polynomial time, by using the ellipsoid method (because the separation problem amounts to
a minimum capacity cut problem, which can thus be solved in polynomial time). It is also interesting
to note that no combinatorial algorithm of provably polynomial running time exists for optimizing a
linear function over this set.

Recently, Cvetcovic et al. [61] have proposed a model where 2-edge connectivity is replaced by the
algebraic connectivity, leading to an SDP relaxation.

Fiedler [85] introduces the algebraic connectivity of a graph, given by its weighted adjacency
matrix X ≥ 0, diag(X) = 0, as follows. Let L(X) := D − X be the Laplacian matrix corresponding
to X, where D := Diag(Xe), the diagonal matrix having the row sums of X on its main diagonal.
Since De = Xe, it is clear that 0 is an eigenvalue of L(X) corresponding to the eigenvector e.
Moreover X ≥ 0 implies by the Gersgorin disk theorem, that all eigenvalues of L(X) are nonnegative,
i.e., L(X) is positive semidefinite in this case. Fiedler observed that the second smallest eigenvalue
λ2(L(X)) = min‖u‖=1,uT e=0 uT L(X)u is equal to 0 if and only if X is the adjacency matrix of a
disconnected graph, otherwise λ2(L(X)) > 0. Note also that λ2(L(X)) is concave in X. Fiedler
therefore denotes α(X) := λ2(L(X)) as the algebraic connectivity of the graph, given by the adjacency
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matrix X. It is not difficult to calculate α(Cn), the algebraic connectivity of a cycle on n nodes,

α(Cn) = 2(1 − cos(
2π

n
)) =: hn

The concavity of α(X) therefore implies that

α(X) ≥ hn

for any convex combination X of Hamiltonian cycles. We also note that the Taylor expansion of cos(x)

gives hn ≤ 4π2

n2 . Cvetcovic et al. [61] propose to replace the polyhedral constraints µ(X) ≥ 2 by the
nonlinear condition α(X) ≥ hn, which can easily be shown to be equivalent to the semidefiniteness
constraint

L(X) + eeT − hnI � 0

on X. Replacing edge connectivity by algebraic connectivity in (148) leads to optimizing over

{X : 0 ≤ xij ≤ 1, diag(X) = 0, Xe = 2e, L(X) + eeT − hnI � 0}. (149)

This looks like a reasonable bargain, as we replace O(2n) linear constraints by a single semidefiniteness
constraint. The crucial question of course is whether we can say anything about the relative strength
of the two relaxations. Since L(X) + eeT � 0 it is clear that

λmin(L(X) + eeT − hnI) ≥ −hn ≥ −4π2

n2
.

Therefore the semidefiniteness constraint in (149) is nearly satisfied for any X ≥ 0 as the dimension
increases. We can say even more. Any matrix X feasible for (148) satisfies α(X) ≥ hn, see [84] and
the handbook [233], chapter 12 for further details. In other words, the simple semidefinite relaxation
given by (149) is dominated by the polyhedral edge connectivity model (148).
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10 Appendix: Surveys, Books and Software

Semidefinite Programming has undergone a rapid development in the last decade. We close with some
practical information on semidefinite programming in connection with recent books, surveys, software
and web-sites. The references given here are by no means complete and reflect our personal taste. We
apologize for any possible omissions.

Books and Survey papers: The proceedings volume [186] presents one of the first collection
of papers devoted to semidefinite programming in connection with combinatorial optimization. The
handbook [233] is currently a prime source for nearly all aspects of semidefinite optimization. It
contains contributions from leading experts in the field, covering in 20 chapters algorithms, theory
and applications. With nearly 900 references, it also reflects the state of the art up to about the year
1999. We also refer to [133] for a recent monograph on semidefinite programming, featuring also the
development up to 2002.

The survey paper [229] has set the stage for many algorithmic and theoretical developments, that
were to follow in the last few years. The surveys given by Lovasz [166] and Goemans [91] focus on
the interplay between semidefinite programming and NP-hard combinatorial optimization problems.
We also refer to [205] and [226] for surveys focussing on algorithmic aspects and also the position of
semidefinite programming in the context of general convex programming.

Software: The algorithmic machinery to solve semidefinite programs is rather sophisticated. It
is therefore highly appreciated that many researchers offer their software to the scientific community
for free use. The following two packages are currently considered state-of-the-art to deal with general
semidefinite problems.

SEDUMI: http://fewcal.kub.nl/software/sedumi.html

SDPT3: http://www.math.nus.edu.sg/mathtohkc/sdpt3.html

Both packages use Matlab as the working horse and implement interior-point methods. The following
package is written in C, and contains also specially taylored subroutines to compute the ϑ function.

CSDP: http://www.nmt.edu/~borchers/csdp.html

For large-scale problems, where interior-point methods are out of reach, the spectral bundle ap-
proach may be a possible alternative:

SBMethod: http://www-user.tu-chemnitz.de/~helmberg/SBMethod.html

Web-sites: Finally, we refer to the following two web-sites, which have been maintained over a
long period of time, se we expect them to survive also in the future.

The Optimization-online web-site maintains an electronic library of technical reports in the field
of optimization. A prominent part covers semidefinite programming and combinatorial optimization.

http://www.optimization-online.org

The semidefinite programming web-site maintained by C. Helmberg contains up-to-date informa-
tion on various activities related to semidefinite programming (conferences, workshops, publications,
software, people working in the field, etc).
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http://www-user.tu-chemnitz.de/~helmberg/semidef.html

The web-site

http://plato.asu.edu/topics/problems/nlores.html#semidef

maintained by H. Mittelmann summarizes further packages for semidefinite programming, and also
provides benchmarks, comparing many of the publically available packages on a substantial list of
problem instances.
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