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Overview

The work described in this thesis has been performed in the context of the
Esprit projects GIPE and GIPE II (Generation of Interactive Programming
Environments). The goal of these projects is to develop a system which
is able to generate interactive programming environments from formal lan-
guage definitions. One of the objectives was to design a powerful and easy-
to-use formalism for the definition of syntax. The resulting syntax definition
formalism SDF has the following properties:

e lexical, context-free and abstract syntax are defined simultaneously,

SDF supports general context-free grammars,
e it has powerful disambiguation constructs,

e it has list constructs,

e it supports modular grammar definitions,

e it can easily be coupled to semantic formalisms in order to provide
them with user-definable syntax,

e its implementation is fully incremental, and

e it provides all information needed by a syntax-directed editor for the
language described.

This thesis describes how the problems in the implementation of SDF,
related to parsing and parser generation, have been solved. Although the
prime motivation for this research was to implement SDF, we attempt to
remain as general as possible and we deal in most cases with BNF grammars
only.
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All algorithms described in this thesis are also provided in pseudo code.
This facilitates translation of the algorithms into a real programming lan-
guage. In addition to this, appendix A contains versions of the algorithms
in LISP which are available via electronic mail, as well. This allows exper-
iments to be performed with the algorithms without any implementation
effort.

The parsing algorithm

Chapter 1 — Generalized LR Parsing — deals with choosing a suitable parsing
algorithm. This parser should accept general context-free grammars, and
should be as efficient as an ordinary LR parser on LR(1) grammars. We have
selected a Generalized LR (GLR) method as the basis for our syntactic tools.
The theoretical framework for GLR parsing was introduced by Lang [Lan74],
and worked out for LR parsing by Tomita [Tom85]. Our contribution is that
we extended it to the full class of general context-free grammars and that
we improved the sharing in the parse forest.

In fact, we have been quite fortunate in that our investments in the GLR
algorithm remained of value in the sequel of the project, in which more and
more elaborate parser generation schemes were developed, which were not
foreseen at the time the GLR method was selected.

Parser generation

The GLR parser needs LR parse tables. A generator for these parse ta-
bles is straightforward, as the GLR algorithm works quite well with simple
LR(0) parse tables. However, we do not only want to generate interactive
programming environments, but we also wish to provide facilities for inter-
active grammar development. As a consequence the parser generator should
be incremental.

In chapter 2 — Incremental Parser Generation — we describe a lazy and
incremental parser generator IPG:

e The parser is generated in a lazy fashion from the grammar. There
is no separate parser generation phase, but the parser is generated by
need while parsing input. If typical input sentences need only a small
part of the grammar, a faster response is achieved than in the greedy
case: the parser generation phase does not introduce a noticeable de-
lay and parsing can start immediately. If the input sentences do not
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use the whole grammar, work is saved on the generation process as a
whole. It turns out that in comparison with conventional techniques,
the overhead introduced by this lazy technique is small.

e The parser generator is incremental. A change in the grammar pro-
duces a corresponding change in the already generated parser. Parts
of the parser that are not affected by the modification in the grammar
are re-used. Hence, the effort spent in generating them is re-used as
well.

e The efficiency of the parsing process itself remains unaffected, in the
sense that once all required parts of the parser have been generated,
the parser will be as efficient as a conventionally generated one.

A similar technique (for the more limited class of LALR(1) grammars) has
been proposed by Horspool [Hor89, Hor90].

Modular grammars

Not only the syntax, but also the semantics of programming languages need
to be defined. To this end, the algebraic specification formalism ASF has
been developed in the GIPE project. The main property of ASF, in relation
to the work described in this thesis, is that it is a modular formalism. This
means that by combining ASF and SDF (resulting in the ASF+SDF formal-
ism), SDF has to become modular as well. This introduces the question of
how to generate parsers for modular grammar definitions.

A modular grammar consists of a number of grammar modules each
containing a set of grammar rules and a set of names of other modules to be
imported. Each module defines a (possibly incomplete) grammar, which has
to be completed by the rules in the imported modules. A modular grammar
consisting of n modules thus defines n ordinary grammars. In most cases,
these grammars will have large parts in common. If the parsers defined by
these modules are all needed, n parsers will have to be generated.

It is, of course, possible to use a non-modular parser generation technique
to generate these n parsers. This would, however, induce much duplicate
generation effort for the common parts of the grammars. Furthermore, a
modification in a module at the bottom of the import hierarchy would cause
many parsers to be invalidated.

The obvious approach to parser generation for modular grammars would
be to generate an incomplete parser for the rules in each module and translate



8 OVERVIEW

the import relation between modules to an import relation between parsers.
This solution, however, rules out all optimizations available in the LR parsing
technique of chapter 1 and 2, as these optimizations are based on knowledge
of the complete grammar.

In chapter 3 — Restricting a Parser to a Subgrammar — we introduce a
technique for restricting a parser to a subgrammar of the grammar it was
generated for. The resulting parser behaves like a parser specially gener-
ated for the subgrammar, but making the restriction is much cheaper than
generating a specific parser.

By means of this technique we are able to solve the problem of generating
parsers for modular grammars. We do this by using IPG (chapter 2) to
generate one parser for the union of all grammar rules of all modules, and
restrict this parser n times according to the n grammars defined by the
modules. In this way, no duplicate generation work is done, modifications are
processed incrementally, and the generated parsers are reasonably efficient.
A drawback of this approach is that it is not possible to develop parsers
separately and combine them later on. However, this limitation is not too
severe for the grammar development system envisaged.

Other approaches to parser generation for modular grammars are re-
ported in [Voi86, Kos90]. To our knowledge the restricted parsing technique
itself has never been proposed in the literature. Klint applied the same idea
to scanner generation [Kli91a].

Substring parsing

Chapter 4 — Substring Parsing — addresses the problem whether a string can
be a substring of some sentence in a language. The proposals for substring
parsing reported in the literature [Cor89, Ric85] only work for a limited class
of grammars and with specially generated parse tables. Our substring parser
is based on general context-free grammars and uses the same parse tables as
the original parser.

Substring parsing could be used to support incremental parsing in a
syntax-directed editor, but we finally decided not to do so for reasons of
efficiency. Substring parsing can also be used for noncorrecting syntax error
recovery: if an ordinary parser detects a syntax error on some symbol, the
substring parser can be started on the next symbol to discover additional
syntax errors.
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SDF

Now that all basic problems have been solved, we proceed with SDF itself.
Chapter 5 — From BNF to SDF — contains an introduction to writing SDF
definitions and describes the development of an SDF definition for a subset
of Pascal. Our main points of interest are the modular decomposition of the
grammar, the readability of the definition and the behaviour of the editor
generated from it. SDF has been introduced in [HHKR89] and several SDF
definitions have been published, but a tutorial on how to design an SDF
definition did not yet exist.

Chapter 6 — An Implementation of SDF — describes the implementation
of SDF itself. The purpose of this chapter is to document the current im-
plementation, to guide programmers who have to deal with it, and to give
an impression of the software infrastructure still needed to ensure proper
operation of the underlying algorithms.

At the time of finishing this thesis, the GIPE group has successfully
implemented a system for interactive development of specifications in the
ASF+SDF formalism. When specifying a programming language, the sys-
tem incrementally generates a programming environment for it. The se-
mantic features of the ASF+SDF system have not been addressed in this
thesis, but many of the syntactic features in ASF+SDF are the result of
the research described here. How the implementation of SDF fits in the
ASF+SDF system is described in [K1i91b, Hen91].
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Chapter 1

Generalized LR Parsing

Which methods for parser generation and parsing are best suited for an
interactive development system of syntax definitions? In this chapter
we argue that a Generalized LR parsing algorithm is the best choice.
We present an enhanced version of Tomita’s GLR algorithm, and com-
pare its efficiency with two competitors, YACC and Earley’s algorithm.

1.1 Introduction

Which methods for parser generation and parsing are best suited for an
interactive development system of syntax definitions? We encountered this
question in the context of the Esprit project GIPE (Generation of Interactive
Programming Environments), that aims at deriving programming environ-
ments from formal language definitions.

We have selected a Generalized LR (GLR) method as the basis for our
syntactic tools. This algorithm was originally developed by Tomita [Tom85].
We extended it to general context-free grammars and improved the sharing in
the parse forest it generates. In this paper we summarize the arguments for
choosing the GLR method, we describe our extensions to Tomita’s parsing
algorithm and we compare the efficiency of the GLR algorithm with YACC
and Earley’s algorithm.

Most of the subjects discussed are of general relevance, but dependencies
on the specific setting in which these questions were raised is unavoidable. In
particular, our ultimate goal has been to implement SDF (Syntax Definition
Formalism, [HHKR89]), a specification formalism for lexical, context-free
and abstract syntax. However, the paper does not require any knowledge

11
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of SDF, and all algorithms presented are based on conventional BNF defini-
tions.

1.2 Choosing a parsing method

Which requirements does SDF impose on its implementation and how do
these affect the choice of a parser and parser generator?

1.2.1 Requirements

The parser and parser generator should accept general context-free gram-
mars (CFGs). This class may seem overly large, as LALR(1) or LR(1) is
usually a large enough class to define programming languages in, and am-
biguous grammars are in most cases undesirable. We prefer the larger class
of CFGs however for the following reasons

e Many parser generation systems do not allow certain kinds of rules like
left-recursive, right-recursive or epsilon rules. This forces the writer of
a grammar to avoid these cases, and it restricts the form of parse trees
that can be built. By allowing all of these, maximal freedom is given
to the writer of a specification.

e SDF allows modular composition of grammar modules. This means
that if one module imports another one, their grammars are combined.
The only class of context-free grammars that is closed under composi-
tion, is that class itself [HU79, page 131]. This is not the case for any
subclass of it, like LR(k), LALR(1) or LL(k).

e [t is not possible to exclude ambiguous grammars, as it is undecidable
whether a grammar is ambiguous [Har78, page 260]. In practice, one
can only ensure that a grammar is non-ambiguous by restricting it to
a smaller class of grammars, like LR(k) or LL(k). This would at best
mean that the parser is only allowed to use a fixed number of symbols
of look-ahead, while we would like it to use arbitrary look-ahead. One
can include the full class of unambiguous grammars only by allowing
general CFGs.

e SDF has a quite elaborate scheme for processing the priorities between
grammar rules, which is partly defined by computing which parse tree
is the “largest” among the possibilities [HHKR89, section 6.2]. This
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means that the parser must generate all possible parse trees in order
that they can be compared.

As the envisaged system is intended for the definition of programming
languages, large parts of the grammars will fit in the LR(1) class. In these
cases the parser should be comparable in speed to the ordinary, efficient, LR
parsing techniques.

We aim at a system for the interactive development of syntax defini-
tions. Parser generation should therefore be fast. It must be possible to
make incremental updates to the parser generated, and parser generation
for different modules of a modular specification should not involve dupli-
cate generation effort. These requirements all point to a very simple parser
generation algorithm, without expensive global operations on the grammar
rules.

1.2.2 The parser

The possible algorithms we examined for the parser and its generator are:

e LR(1) algorithms

These have an efficient parser generation (table construction) algo-
rithm that leads to time efficient parsers. However, the class of LR(1)
grammars is too restricted.

e LR(k) algorithms, with £ > 1

The larger k is, the larger the class of accepted grammars becomes.
However, parsing in accordance with all non-ambiguous grammars is
still impossible, and parser generation (table construction) time in-
creases exponentially with k.

e Earley’s universal context-free parsing algorithm [Ear70]

This algorithm can handle all context-free grammars and can work
with a negligible parser generation phase. However, an Earley parser
is very slow on LR(1) grammars.

e Tomita’s universal parsing algorithm [Tom85]

This algorithm can be placed between LR (k) algorithms and Earley’s
algorithm. The class of accepted grammars is restricted to acyclic
grammars and the time complexity of the algorithm depends on the
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complexity of the grammar and the sentence being parsed. Tomita’s
algorithm can use any LR parse table constructor as a parser generator.
Sikkel studied the differences between the algorithms of Earley’s and
Tomita’s and concluded that both are remarkably similar [Sik90].

Tomita’s algorithm is both more powerful than any LR (k) algorithm as
well as faster than Earley’s algorithm on most grammars, but it loops on
cyclic grammars. We considered this as a bug in the algorithm and have
repaired it. By doing so, we have converted the algorithm to a Generalized
LR parsing algorithm which is as strong as Earley’s algorithm.

The GLR algorithm starts as an ordinary LR parser, but when it encoun-
ters a shift-reduce or reduce-reduce conflict in its parse table during parsing,
it splits up in as many parsers as there are possibilities. These parsers then
act in parallel; some of them may die if the conflicting entry was caused by a
need for a larger look-ahead, some of them are combined again after having
recognized an ambiguous part of the input. In [Lan74], Lang described this
scheme in a general manner for all kinds of table driven parsers. Our GLR
algorithm is a special case of his general technique.

The generalized LR parsing algorithm can handle more deterministic
grammars than any LR(k) algorithm, because for each LR(k) parsing algo-
rithm a grammar can be constructed which needs a look-ahead of k£ 4+ 1 and
hence cannot be parsed by that algorithm. The generalized LR parsing al-
gorithm does not have such an upper limit, because it adjusts its look-ahead
dynamically by using different parse stacks as a look-ahead mechanism.

Another interesting approach to general context-free parsing is recursive
ascent parsing [KA88, Lee91]|, which should beat both the Earley and the
Tomita parsing algorithm in speed. We have not investigated this technique
into any depth, however.

The GLR parsing algorithm is called pseudo-parallel, but is clearly de-
signed to run on one processor only. A parallel version of the algorithm
that splits up at each conflict in the parse table does not induce much gain
due to the large communication overhead [TN89, NT90]. A more success-
ful attempt to parallelize Tomita’s algorithm has been performed by Sikkel
[Sik91]. He uses a separate processor for each word of the input sentence and
each processor parses all constituents that start with that particular word.
See [Nij91] for a general overview of parallel parsing algorithms.
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1.2.3 The parser generator

Having decided to use the Generalized LR parsing algorithm, we still have
to choose which parse table constructor to use, as the GLR parsing algo-
rithm can work with LR(0), SLR(1), LALR(1) and LR(1) tables. Unlike the
conventional situation, these tables are allowed to contain multiple entries
(shift-reduce and reduce-reduce conflicts) when used in combination with
the GLR algorithm.

An LR(0) parse table constructor generates a reduce action for each rule
that has been recognized completely, without checking if the look-ahead is
right for it. LR(1) parse table constructors, on the other hand, only generate
a reduce action if the look-ahead is right. So, the GLR parsing algorithm will
start more parsers when controlled by an LR(0) table than when controlled
by an LR(1) table for the same grammar.

A disadvantage of the LR(1) technique is that an LR(1) parse table
contains more states than an LR(0) table for the same grammar, as, in the
LR(1) technique, states are considered different if their items have different
look-ahead information. If the GLR parser is controlled by an LR(1) table
it will therefore be able to join less parsers, as parsers are joined only if they
have the same state on top of their stack. From measurements described in
[Lan91] and [BL&9], it turns out that this disadvantage often outweighs the
advantage of running fewer parsers.

SLR(1) and LALR(1) parse tables contain as many states as LR(0) parse
tables, while they do apply look-ahead information to limit the number of
reductions. SLR(1) tables generate a reduce action for a rule A ::= « only
if the next input symbol is in FOLLOW(A). LALR(1) tables even generate
less reduce actions, by using a LR(1) construction scheme in which states
are joined as if no look-ahead information was present.

If we order the different table generators in accordance with the number
of useless reduce actions generated, LR(0) is on top, next come SLR(1),
LALR(1) and LR(1). It is to be expected, and verified by measurements, that
the GLR algorithm will be most efficient with LALR(1) tables. However, in
the measurements performed in [Lan91], SLR(1) and LALR(1) have about
equal effect, and their gain in speed over LR(0) is only 10%.

We have decided to use an LR(0) table generation algorithm, as this is the
simplest generator, and will be the easiest one to extend both to incremental
parser generation [Chapter 2 of this thesis] and to parser generation for
modular grammars [Chapter 3 of this thesis].
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1.3 Generalized LR recognition

A Generalized LR parser runs several simple LR parsers in parallel. It
starts as a single LR parser, but, if it encounters a conflict in the parse
table, it splits in as many parsers as there are conflicting possibilities. These
independently running simple parsers are fully determined by their parse
stack. If two parsers have the same state on top of their stack, they are
joined in a single parser with a forked stack. A reduce action which affects
a part of the parse stack containing a fork, splits the corresponding parser
again into two separate parsers. If a parser encounters an error entry in the
parse table, it is killed by removing it from the set of active parsers.

The algorithm we describe differs slightly from the original Tomita algo-
rithm, mainly to allow it to handle the full class of context-free grammars.

1.3.1 Description

The joined stacks maintained by the algorithm have a graph-like form and
are implemented using stack nodes that contain a state and a set of links to
stack nodes one level lower on the stack.

If a state must be pushed on a stack which has stack node p~ on top,
a new stack node p is created which gets a link back to p~, and p becomes
the top of the stack. A pop-action is not performed physically, the top of
the stack pointer is just moved one level lower on the stack. A pop action
results in a set of new top nodes.

During parsing, the variable active-parsers contains all stack nodes which
have been on top of a stack during the processing of the current input token.
This set never contains two stack nodes with the same state. When a parser
with top node p~ must push a state s, while there is already a stack node
p in active-parsers which contains state s, then the links of p are extended
with a link to p~.

The GLR recognizer creates and maintains these graph-like stacks while
it processes its input sentence. Initially, the set of active parsers just consists
of a single stack node having as state the start state of the parse table.
The input sentence is extended with an end-of-sentence marker, EOF. Next,
routine PARSEWORD is called repeatedly to process each token in the input
sentence. The Boolean accept-sentence, initially “false”, indicates whether
the sentence has been recognized or not. If the parse tables prescribe an
accept action at the processing of EOF, this variable is set to “true”.

For each of the active parsers, PARSEWORD consults the parse table by
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means of routine ACTION. This routine returns a set of actions to perform
with the state on top of the stack and the current input token. A “(shift
state')”-action means that the parser has to push state’ on the stack and has
to move to the next input symbol. A “(reduce A ::= a)”-action means that
the parser has to pop |a| states off the stack, has to use routine GOTO to
obtain a new state state’, and has to push state’ on the stack again.

Shift actions are postponed until all parsers are ready to shift and they
are performed by routine SHIFTER. On a reduction of “A ::= o” in a parser
with top node p, all stack nodes at |a| links distance from p are given to
REDUCER for further processing. Both SHIFTER and REDUCER have to
push new nodes on the stack, so here it may happen that the links of other
stack nodes must be extended in order to join two parsers. In REDUCER the
matter is even more complicated. If the links of a stack node are extended,
all previously performed reductions must be re-checked as new paths may
have become possible over the link just created.

This re-checking of the reductions that have already been performed is
a modification to the original Tomita algorithm, and is due to Nozohoor-
Farshi [NF89]. In the original algorithm only those paths were reconsidered
which had the new link as first step. However, in order to take e-reductions
seriously, all paths which contain the new link must be reconsidered.

The modification of Nozohoor-Farshi affects the way in which e-symbols
between adjacent input symbols are treated. In the original algorithm as
many e-symbols as needed are put between them, while in the variant of
Nozohoor-Farshi only one € is used, which is shared as many times as needed.
This subtle difference avoids looping on cyclic grammars (cf. section 1.4.1)
and on grammars in which there exists a non-terminal A, such that A:+>ozAﬁ
where a=t>¢ but not B==ve. We refer to [NF89)] for the full explanation of
this extension, which allows the GLR recognizer to handle the full class of
context-free grammars.

1.3.2 Algorithm of the recognizer

The GLR recognizer for general context-free grammars described above is
implemented by the following functions. The Lisp version of this algorithm
can be found in [Appendix A.1 of this thesis].

PARSE(Grammar, a1 ... ap) :
an41 = EOF
global accept-sentence := false
create a stack node p with state START-STATE( Grammar)
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global active-parsers := { p }
for i:=1ton+1do
global current-token := a;

PARSEWORD

return accept-sentence

PARSEWORD :
global for-actor := active-parsers
global for-shifter := ()
while for-actor # 0 do
remove a parser p from for-actor
ACTOR(p)
SHIFTER

ACTOR(p) :
forall action € ACTION(state(p), current-token) do

if action = (shift state’ ) then
add <p, state’ > to for-shifter

else if action = (reduce A::=a) then
DO-REDUCTIONS(p, A::=«a)

else if action = accept then
accept-sentence := true

DO-REDUCTIONS(p, A::=aq) :
forall p’ for which a path of length(a) from p to p' exists do
REDUCER(p’, GOTO(state(p' ), 4))

REDUCER(p~, state) :
if Ip € active-parsers with state(p) = state then
if there is no direct link from p to p~ yet then
add a link link from p to p~
forall p' in (active-parsers — for-actor) do
forall (reduce rule) € ACTION(state(p’ ), current-token) do
DO-LIMITED-REDUCTIONS(p, rule, link)
else
create a stack node p with state state
add a link from p to p~
add p to active-parsers
add p to for-actor

DO-LIMITED-REDUCTIONS(p, A::=«, link) :
forall p’' for which a path of length(a) from p to p’ through link exists do
REDUCER(p', GOTO(state(p’ ), A))

SHIFTER :
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active-parsers := ()
forall <p~, state’ > € for-shifter do
if 3p € active-parsers with state(p) = state’ then
add a link from p to p~
else
create a stack node p with state state’
add a link from p to p~
add p to active-parsers

1.3.3 An example
We illustrate the recognizer using the following grammar with only one rule:
Su=SS (Grammar Ggg)

and let it parse the sentential form “S S S”, which is ambiguous according
to the grammar. It is possible to parse sentential forms with the recognizer,
as the algorithm makes no distinction between terminals and non-terminals.
We could, of course, also add a rule “S ::= a” to the grammar and parse
the sentence “a a a”, but that would only introduce additional, and less
interesting, reduce actions. The LR(0) parse table of Ggg is

transitions reductions
state | EOF S
0 shift 1
1 accept | shift 2
2 shift 2 reduce S ::=S S

In the trace we denote the stack nodes by little boxes, which contain a
state number and can have links to other stack nodes. For example,

0]

represents a stack node containing state 1, that has a link to another stack
node containing state 0. Now, we show the step by step execution of the
recognition algorithm.

Initially

active-parsers :== {[ 0] }
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The first token

current-token := S
PARSEWORD
ACTOR( @ )
ACTION(0, S) = { shift 1 }, so for-shifter := { <[0],0 >}
SHIFTER

active-parsers := { }
0]

The second token

current-token := S

PARSEWORD

ACTOR([T])
[0]

ACTION(1, S) = { shift 2 }, so for-shifter := { < , 2>}
SHIFTER
0]

active-parsers 1= { }

The third token (0]

current-token := S
PARSEWORD
ACTOR( )

10|
ACTION(2, S) = { shift 2, reduce S ::= S S }

the shift action is performed by settmg for shifter to { <[ 2] E 2> 1,

pop two nodes off the stack, and

REDUCER( @ GOTO(0, S) )
GOTO(0,S) =1
there is no parser yet in active-parsers with state = 1,
so we extend active-parsers to { 1,

and add to for-actor
ACTOR( ) 0]
0]

ACTION(1, S) = { shift 2 }

the reduce action by DO-REDUCTIONS( [ 2 | E
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so for-shifter is extended to { <
SHIFTER

active-parsers := { }

2>, <[1}2>}

The last token [ 0]

current-token := EOF
PARSEWORD
ACTOR( )

ACTION(2, EOF) = { reduce S :=S S }
DO-REDUCTIONS( ,Su:=8S8)

there are two ways to pop two nodes off the stack, via and

via the first path: z

REDUCER ([T], GOTO(1, S) ) (2]
0]

GOTO(1,S8) =2
there is a parser in active-parsers with state = 2
a link from this parser to already exist,
so do nothing
via the second path: 0]
REDUCER( @ , GOTO(0, S) )
GOTO(0,S) =1
there is no parser yet in active-parsers with state = 1,
so we extend active-parsers to { 1,

and add to for-actor
ACTOR( ) i

0]
ACTION(1, EOF) = { accept }

accept-sentence := true
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Finally

return true

1.3.4 Cycles in the parse stack

The graph of stack nodes, as generated by the recognizer of section 1.3.2
may in some cases become cyclic. To explain how and why this happens, we
use the following grammar

Suz=ASb (Grammar G1)
Siui=x
A =c¢

of the language xzb™,n > 0. The LR(0) parse table of this grammar is:

transitions reductions
state X b EOF A S
0 shift 1 shift 2 | shift 3 reduce A 1= ¢
1 reduce S ::=x
2 shift 1 shift 2 | shift 4 reduce A 1= ¢
3 accept
4 shift 5
5 reduce S::=ASb

On parsing a sentence xb™ in accordance with G1, the parser needs to
introduce just as many €’s before the z, as there are b’s after it. The original
Tomita algorithm loops on this grammar, as an additional € can always be
inserted. We avoid this loop in our algorithm by sharing € symbols, but by
doing so, the graph of parse stacks becomes cyclic. This is necessary, as for
every number of b’s, enough A’s should be available to reduce A ::= A Sb
repeatedly.

Just before a reduction of the rule S ::= A S b, the parse stacks looks
like in Fig. 1.1(a).! Popping off the nodes for the symbols on the right-hand
side can be done over two paths; one that goes straight down and ends in
stack node[ 0 ], and the other that goes over the cycle and ends[ 2 ]. Pushing
the states GOTO(0, S) and GOTO(2, S) on both stack nodes, leads to the

1For clarity, we have annotated the links in Fig. 1.1 with symbols, while these are
actually not present in the algorithm.
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Figure 1.1: The parse stack before and after reduction of S ::= A S b

graph of stack nodes as in Fig. 1.1(b). It depends on the next input symbol,
b or EOF, which of these two parsers will survive.

This example shows how the parser uses a cyclic parse stack to introduce
just as many e symbols as there will be needed afterwards.

1.4 Generalized LR parsing

If we generate a tree for the input sentence, we extend the GLR recognizer
of the previous section in a GLR parser. In the ordinary LR case, a parser
generates a tree by not only pushing states on its parse stack, but also
subtrees. On a shift-action it pushes a terminal node on the stack, and on
a reduce action it pops the subtrees of the right-hand side of the rule off
the stack, takes these together in a new subtree, and pushes this subtree on
the stack again. When the parser encounters the accept action, the stack
contains the parse tree for the whole sentence.

In the GLR case the input sentence may be ambiguous and several trees
must be built for it. In order to do so, we build a parse forest which splits
at ambiguous points and shares common subtrees. This parse forest may
become cyclic (and is thus, in fact, a graph) as a result of cycles in the
grammar.

Before we continue the description of the parse forest, we have to spend
a few words on the nature of these cyclic grammars and the problems they
introduce for a parser.
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1.4.1 Cyclic grammars

A cyclic grammar is a grammar containing a non-terminal which can derive
itself, e.g. S=*>aA,6=+>ozAﬁ. These grammars are problematic because the
derivation A== A can be repeated infinitely many times in any derivation
that contains an A. This may cause parsers to loop forever and gives rise
to infinitely many different parse trees. Most parsing systems do not allow
cyclic grammars, as these can always be rewritten into non-cyclic ones that
recognize the same language. This limits the expressive power of context-free
grammars, as a cyclic grammar can be the most compact and natural way
to describe a language. Therefore, we prefer to deal with cyclic grammars
in the parser itself. By doing so, the parse forest built becomes cyclic.

1.4.2 The structure of the parse forest

The parse forest which is built by our GLR parsing algorithm consists of
instances of three structures: symbol node, term node and rule node.

o Symbol nodes are labeled with a non-terminal of the grammar. Edges
that depart from a symbol node are called possibilities, and point to a
rule node whose rule has the non-terminal of the symbol node as its
left-hand side. If a symbol node has more than one possibility, there
are several applicable production rules. This multiplicity represents an
ambiguity in the parse.

e Term nodes are labeled with a terminal. Term nodes do not have
outgoing edges and are leaves of the parse graph.

e Rule nodes are labeled with a rule of the grammar. A rule node has as
many outgoing edges as it has elements in the right-hand side of the
rule, and these edges are ordered. If the associated element of an edge
is a terminal, the edge goes to a term node labeled with that terminal;
if it is a non-terminal, the edge goes to a symbol node labeled with the
non-terminal. In the case of an e-rule the rule node does not have any
outgoing edge and constitutes a leaf of the parse graph.

Note that the parse forest thus organized forms a bipartite graph [Har69,
p.17], in which the rule nodes are in one partition, and the symbol nodes
and term nodes in the other.

In the GLR parser, the links between the nodes of the parse stack are
extended with term nodes and symbol nodes. On a shift action, a term node
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is created which is used in the links of all parsers that are ready to shift.
On a reduce action, the term nodes and symbol nodes of each stack path
are agssembled in a rule node. Next, a symbol node is created with the new
rule node as its only possibility. This symbol node is then attached to the
link between the associated nodes in the parse stack. If such a link already
exists, however, it already has a symbol node. In that case, the possibilities
of that symbol node are extended with the rule node, and an ambiguous
point in the parse forest is introduced.

1.4.3 Algorithm of the parser

The algorithms of the recognizer (section 1.3.2) and the parser are quite sim-
ilar. They only differ in the fact that a parse forest is built. The differences
are marked by a bar in the right margin.

PARSE(Grammar, a1 ... ay) :
an41 = EOF
global accepting-parser := ()
create a stack node p with state START-STATE( Grammar)
global active-parsers := { p }
for i:=1ton+1do
global current-token := a;
PARSEWORD
if accepting-parser # () then
return the tree node of the only link of accepting-parser
else
return ()

PARSEWORD :
global for-actor := active-parsers
global for-shifter := ()
while for-actor # 0 do
remove a parser p from for-actor
ACTOR(p)
SHIFTER

ACTOR(p) :
forall action € ACTION(state(p), current-token) do
if action = (shift state’ ) then
add <p, state’ > to for-shifter
else if action = (reduce A::=a) then
DO-REDUCTIONS(p, A::=a)

else if action = accept then
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accepting-parser := p |

DO-REDUCTIONS(p, A::=a) :
forall p' for which a path of length(«) from p to p’ exists do
kids := the tree nodes of the links which form the path from p to p’
REDUCER(p', GOTO(state(p’ ), A), A::=q, kids)

REDUCER(p™, state, A::=a, kids) :
rulenode := GET-RULENODE(A ::=q, kids)
if 3p € active-parsers with state(p) = state then
if there already exists a direct link link from p to p~ then
ADD-RULENODE(treenode(link), rulenode)
else
n := GET-SYMBOLNODE(A4, rulenode)
add a link link from p to p~ with tree node n
forall p' in (active-parsers — for-actor) do
forall (reduce rule) € ACTION(state(p’ ), current-token) do
DO-LIMITED-REDUCTIONS(p/, rule, link)

else
create a stack node p with state state
n:= GET-SYMBOLNODE(A4, rulenode) ‘
add a link from p to p~ with tree node n
add p to active-parsers
add p to for-actor

DO-LIMITED-REDUCTIONS(p, A::=a, link) :
forall p' for which a path of length(c) from p to p’ through link exists do
kids := the tree nodes of the links which form the path from p to p’
REDUCER(p', GOTO(state(p’ ), 4), A::=a, kids)

SHIFTER :
active-parsers := ()
create a term node n with token current-token |
forall <p~, state > € for-shifter do
if Ip € active-parsers with state(p) = state’ then
add a link from p to p~ with tree node n |
else
create a stack node p with state state’
add a link from p to p~ with tree node n |
add p to active-parsers

GET-RULENODE(r, kids) :

return a rule node with rule r and elements kids

ADD-RULENODE(symbolnode, rulenode) : |
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Int Int Int
Figure 1.2: The (ambiguous) tree of “Id := Int % Int + Int”

add rulenode to the possibilities of symbolnode |

GET-SYMBOLNODE(s, rulenode) :

return a symbol node with symbol s and possibilities { rulenode }

1.4.4 Example of a tree built by the parser

We parse the sentence “Id := Int * Int + Int” according to

S :=1d := Exp (Grammar Gs)
Exp ::= Exp + Exp

Exp := Exp * Exp

Exp := Int

to give an example of the forest generated by the parser. This sentence is
ambiguous according to grammar G.

The forest generated by the parser is given if Fig. 1.2. Rule nodes are in
boxes, symbol nodes in circles and term nodes are just represented by their
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tokens. The parser uses two methods to compactify the forest generated,
subtree sharing and local ambiguity packing. Both methods are in fact a direct
consequence of the sharing of parse stacks already performed in generalized
LR parsing.

e subtree sharing

If two parsers are combined and act for a while as a single parser, they
generate tree nodes on their common part of the parse stack. At the
moment a reduction is performed that goes beyond the common part,
the parser splits again. As a result, the tree nodes which where on
the common part will be used in two different contexts. This is what
happened to the subtrees at the bottom of Fig. 1.2 and is called subtree
sharing.

e local ambiguity packing

A sentence is said to have a local ambiguity if one of its proper sub-
sentences can be reduced to the same non-terminal in two or more
ways. If a sentence has many local ambiguities, the total number of
ambiguities would grow exponentially. To avoid this, the top nodes of
the subtrees that represent local ambiguities are merged and they are
treated as a single node by the higher level nodes.

Local ambiguity packing is performed by the routines REDUCER and
ADD-RULENODE in the parsing algorithm. If there already exists
a parser p in the state to go to, and p already has a link back to
p~, the newly found rule node can just be added to the symbol node
associated to this link.2 The highest “Exp” node in Fig. 1.2 is such a
locally ambiguous point.

Our trees contain more nodes than the trees in, for example, [Tom85]. This
is due to the fact that we use distinct nodes for symbols and rules. Symbol
nodes with multiple outgoing edges represent ambiguity, while the outgoing
edges of a rule node merely represent the arity of the rule. We consider a tree
representation less clear if this kind of information must be guessed from the
proximity of edges, as in Fig. 2-12 of [Tom85]. And, with our representation,
it is possible to obtain better sharing.

2The new rule node covers the same part of the input sentence as the other rule nodes
in the symbol node, because a link between two stack nodes p and p~ describes what
happened between the moment that p~ was top of the stack, and the moment that p is.
This means that, if a new link between p and p~ is found, they cover the same part of the
input.
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Figure 1.3: Two trees for “x b b b”

1.5 Improving the sharing in the parse forest

In the GLR parsing algorithm, the sharing in the parse forest is directly
derived from that of the parse stacks. However, it might be that the parse
table contains several states in which the reduction of the same rule is pre-
scribed. In that case, these states are not shared in the parse stack, while
the nodes generated by their reductions could be shared in the parse forest.

As an example, if we take grammar G of Section 1.3.4, and use the
parsing algorithm of Section 1.4.3 on the sentence “x b b b”, the tree of
Fig. 1.3(a) is generated. One would expect a tree like that of Fig. 1.3(b),
however, with only a single node for the rule A ::=e.

The first tree is, from the viewpoint of the grammar, a weird tree. Why
is the node for e-rule re-used at one point and not at another point? This can
only be understood with the parse table of (G; in mind, which contains two
states with a reduction of the rule A ::= e. Improved sharing in the parse
tree would remove this generator dependent information and generates a
more compact tree.
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The sharing we propose is, again, an extension of the original Tomita
algorithm. In that algorithm rule nodes do not appear as separate enti-
ties, and sharing cannot be performed easily. Furthermore, from the trees
drawn in [NF89], it appears that Nozohoor-Farshi does not exploit this kind
of sharing either. The sharing in the representation we propose is nearly
as strong as that in the grammar representation of Billot and Lang [BL89),
except that we do not allow sharing of the tail of a list of sons between dif-
ferent nodes. Billot and Lang generate nodes with maximally two subnodes
in their grammar representation, and are thus able to achieve cubic space
complexity.

We use the following two methods to improve the sharing of nodes in the
parse tree:

e rule node sharing
Check at the creation of a rule node whether a rule node with the same
rule and children already exists. If so, re-use this rule node.

e symbol node sharing

Check at the creation of a symbol node if there already exist a symbol
node with the same symbol which covers the same part of the input.
If so, re-use this symbol node.

To illustrate the effect of these two measures, we take the following (cyclic)
grammar

S:=SS Grammar G3
Su=a
S =g

of which the LR(0) parse table is

transitions reductions
state a EOF S
0 shift 1 shift 2 reduce S ::= ¢
1 reduce S ::= a
2 shift 1 | accept | shift 3 reduce S ::=¢
3 shift 1 shift 3 reduce S ::= ¢
reduce S ::=S S
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We use grammar GG3 to parse an empty sentence in four different ways:
(a) with the GLR parsing algorithm as presented in Section 1.4.3, (b) with
rule node sharing alone, (c) with symbol node sharing alone, and (d) with
both methods of sharing applied. Fig. 1.4 shows the parse trees generated.

The tree of (a) clearly contains too many nodes. In (b) the rule nodes
of (a) with the same rule and the same children have been combined, which
removes 5 superfluous rule nodes. In (c) all symbol nodes of (a) were joined
into one as they all contained the same symbol S, and covered the same
e-symbol. If the two methods are both applied, the tree shown in (d) is the
result, which is the smallest and most natural representation of all possible
parse trees of € according to grammar G3.

In order to realize this sharing, the parser has to remember the rule
nodes and symbol nodes generated during the processing of the current input
symbol.

Each node stores the frontier it covers in a tuple < s,e >, with s the
position of the first token covered and e the position of the last one. This
information can easily be propagated bottom-up during the generation of
the parse tree. Term nodes created for a token at position 7 obtain <1, >
as cover. Rule nodes obtain < s,e> as cover, with s the start position of the
first child of the rule node and e the end position of its last child. Symbol
nodes inherit their cover from the rule node they are created for.3

e-Rules form a problem in this scheme, as rule nodes for them do not have
children. These rule nodes obtain an empty cover, with the consequence that
symbol nodes may also get an empty cover. This means again that comput-
ing the frontier covered by rule nodes higher in the tree becomes slightly
more complicated (see routine COVER for the actual implementation).

1.5.1 Algorithm of the parser with improved sharing

This is an extension of the algorithm of Section 1.4.3. The Lisp version of
this GLR parsing algorithm can be found in [Appendix A.2 of this thesis].
The main difference with the algorithm of Section 1.4.3 is in routines
GET-RULENODE and GET-SYMBOLNODE which try to re-use previously
generated nodes. Also, all nodes in the parse tree contain a reference to the
part of the frontier they cover. Finally, routine ADD-RULENODE has to
check whether the rule node to add is not already contained in the symbol
node. The differences with Section 1.4.3 are marked by a bar in the right

30Other rule nodes are only added to a symbol node if they cover the same frontier.
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(a): without sharing (b): rule node sharing alone

(c): symbol node sharing alone (d): both sharings

Figure 1.4: Four parse trees for € according to grammar G3
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margin.
PARSE(Grammar, a1 ... ay) :
any1 = EOF

global accepting-parser :== ()
create a stack node p with state START-STATE( Grammar)
global active-parsers := { p }
for i:=1ton+1do

global current-token := a;

global position := 1

PARSEWORD
if accepting-parser # () then

return the tree node of the only link of accepting-parser
else

return 0

PARSEWORD :
global for-actor := active-parsers
global for-shifter := ()
global rulenodes := (); global symbolnodes := ()
while for-actor # 0 do
remove a parser p from for-actor
ACTOR(p)
SHIFTER

ACTOR(p) :
forall action € ACTION(state(p), current-token) do

if action = (shift state’ ) then
add <p, state’ > to for-shifter

else if action = (reduce A::=a) then
DO-REDUCTIONS(p, A::=a)

else if action = accept then
accepting-parser := p

DO-REDUCTIONS(p, A::=a) :
forall p' for which a path of length(a) from p to p’ exists do
kids := the tree nodes of the links which form the path from p to p’
REDUCER(p', GOTO(state(p’ ), 4), A::=a, kids)

REDUCER(p~, state, A::=q, kids) :
rulenode := GET-RULENODE(A ::=q, kids)
if Ip € active-parsers with state(p) = state then
if there already exists a direct link link from p to p~ then
ADD-RULENODE(tree node(link), rulenode)

else
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n:= GET-SYMBOLNODE(A4, rulenode)
add a link link from p to p~ with tree node n
forall p' in (active-parsers — for-actor) do
forall (reduce rule) € ACTION(state(p’ ), current-token) do
DO-LIMITED-REDUCTIONS(p', rule, link)
else
create a stack node p with state state
n:= GET-SYMBOLNODE(A4, rulenode)
add a link from p to p~ with tree node n
add p to active-parsers
add p to for-actor

DO-LIMITED-REDUCTIONS(p, A::=q, link) :
forall p’' for which a path of length(a) from p to p’ through link exists do

kids := the tree nodes of the links which form the path from p to p'
REDUCER(p', GOTO(state(p' ), 4), A::=q, kids)

SHIFTER :
active-parsers := ()
create a term node n with token token and cover <position, position>
forall <p~, state’ > € for-shifter do
if 3p € active-parsers with state(p) = state’ then
add a link from p to p~ with tree node n
else
create a stack node p with state state’
add a link from p to p~ with tree node n
add p to active-parsers

GET-RULENODE(r, kids) :
if 3n € rulenodes with rule(n) = r and elements(n) = kids then
return n
else
create a rule node n with rule r, elements kids and cover COVER(kids)
add n to rulenodes
return n

COVER(kids) :
if kids = 0 or Vkid € kids: cover(kid) = empty then
return empty
else
begin := the start position of the first kid with a non-empty cover
end := the end position of the last kid with a non-empty cover
return <begin, end>

ADD-RULENODE(symbolnode, rulenode) :
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if rulenode ¢ the possibilities of symbolnode then
add rulenode to the possibilities of symbolnode

GET-SYMBOLNODE(s, rulenode) :
if In € symbolnodes with symbol(n) = s and
cover(n) = cover(rulenode) then
ADD-RULENODE(n, rulenode)
return n
else
create a symbol node n with symbol s,
possibilities { rulenode } and
cover cover(rulenode)
add n to symbolnodes
return n

1.6 Measurements

We use the syntax of Pascal to compare the efficiency of our GLR parsing
algorithm with that of YACC and Earley’s parsing algorithm.

In order to do so, we took the SDF definition of Pascal [HHKR®&9, ap-
pendix 2], and extracted the BNF definition generated by the implementa-
tion of SDF'. This BNF definition is intended to be used in a syntax-directed
editor; it is able to recognize any Pascal construct separately and allows
holes in the input. By removing these extensions from the BNF definition,
we obtained the grammar used in the measurements. This grammar con-
tains 178 rules and allows complete Pascal programs only. The grammar
is ambiguous, as priority declarations were used in the SDF definition to
express the priority ordering of the Pascal operators, instead of coding the
priority ordering in the grammar itself.

Using this grammar, we have compared the time needed to generate parse
trees for Pascal programs up to three pages in length.

Measurements like these are easily influenced by factors not related to
actual parsing; we have taken the following precautions to avoid these as
much as possible.

e All measurements were performed on the same SUN SPARCstation 1.

e As input for the parsers, we used actual Pascal programs, in the form
of streams of lexical tokens which were generated by a lexical scanner
beforehand.
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e These streams were all loaded into core before parsing started to avoid
influences of the speed of the file system on the measurements.

e The time needed to print parse trees was not measured.
We compared implementations of the following parsing algorithms:

e GLR

The implementation of the GLR parsing algorithm we used is the one
in [Appendix A.2 of this thesis]. This implementation is written in
LeLisp, and the code has been compiled with the LeLisp compiler
“Complice” [LeL87]. The parse table generator used is the incremental
parser generator IPG [Chapter 2 of this thesis], which generates LR(0)
parse tables. IPG generates the needed parts of the parse table lazily,
during parsing. To ensure that all needed parts of the parse table were
present, we have parsed each input stream twice, and did only time
the second parse.

¢ YACC [Joh86]

This is the standard parser generator available under Unix. YACC
generates a parser and its LALR(1) tables in the form of a C program,
which is subsequently compiled into machine code by a C-compiler. As
YACC only allows non-ambiguous parse tables, we had to add disam-
biguation constructs to represent the priorities of Pascal expressions.
This was not necessary for the two other parsing systems, which use
the full, ambiguous, Pascal grammar. By adding these disambigua-
tion constructs, we have solved 357 shift/reduce conflicts, leaving only
a single conflict for the well known if-then-else ambiguity in Pascal.
The actions associated with each rule build a tree representation of
the input.

e Earley

We have used an implementation of Earley’s parsing algorithm written
by Mark Freeley in Scheme[Dyb87]. As Scheme implementation we
have used T, of which William Maddox remarks that “the code quality
of the T compiler is among the best for any dialect of Lisp”[Mad91].
Compiling the Farley parser resulted in a speed-up factor of about
20 compared to interpreted Scheme. Still, we have not been able to
perform all planned measurements for Earley’s algorithm, as long input
sentences caused an apparently infinite number of garbage collections.
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Figure 1.5: How different parsers perform on Pascal programs

The results of the measurements are depicted in Fig. 1.5. They show that
the GLR parser is about three times as slow as the YACC parser, which is
mainly due to the following factors:

e The GLR algorithm is driven by LR(0) parse tables, versus the more
sophisticated LALR(1) tables used by the YACC parser.

e The YACC parse tables did not contain conflicts, thanks to the dis-
ambiguation constructs that had to be added to the grammar. The
GLR algorithm used parse tables that did contain conflicts, and had
to build larger parse trees representing the ambiguities.

e The YACC parser is implemented in C, the GLR parser in LISP.

e The GLR method allows a larger class of grammars than YACC does.
This leads to additional work during parsing.

Fig. 1.5 contains an additional line marked “SDF”. This measurement
serves to give an idea how the GLR algorithm performs within the SDF envi-
ronment. In that case, the job to perform is extended with lexical scanning,
solving priority conflicts, and the transformation of the parse tree into an
abstract syntax tree. The grammar used in the SDF case allows incomplete
programs too. This additional work about doubles the total execution time.
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Fig. 1.5 also shows that the Earley algorithm performs quite badly on the
larger input sentences, and would clearly be an undesirable choice to parse
Pascal programs. It is, however, to be expected that the Earley algorithm
will beat the GLR algorithm on highly ambiguous input sentences, as Earley
has a worst upper bound of n3, while GLR is exponential. To illustrate this,
we measured the time needed by both algorithms to parse Pascal programs
of the following form:

program A (input);
begin

a := b {+ b}
end.

With ¢ the number of +’s. As the Pascal grammar used contains a rule
“Expression ::= Expression + Expression”, these programs have a number
of ambiguous parses which grows exponentially with ¢. This number, C,, is
called the Catalan number [GKP89, p. 343-344], and is equal to:

C = n=0,1: 1 . 2n 1
L n>1: ZZ;éOkC’n_k_l - nJ/n+1

Fig. 1.6 shows, for ¢ = 1,...,20, the parse time taken by both algo-
rithms and the number of ambiguous parses, C;. This measurement confirms
our expectation that the GLR algorithm generally performs better than the
Earley algorithm, but loses on highly ambiguous sentences (in this example:
containing more than 107 ambiguities).

Combining the results of the two measurements, we conclude that the
GLR algorithm is a good choice for “near-LR” grammars. For these gram-
mars it parses nearly as efficiently as YACC does, while it is able to handle
ambiguous sentences reasonably well. If input sentences become highly am-
biguous however, the Earley algorithm would be a better choice. If the
grammars are known to be in the LALR(1) class, it would, obviously, be
more appropriate to use YACC.

1.7 Conclusions

The Generalized LR parsing algorithm covers the full range from LR gram-
mars to general context-free grammars with acceptable efficiency. At both
ends of this range it might however be advisable to use specialized algo-
rithms, like, respectively, YACC and Earley’s algorithm. Another advantage
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Figure 1.6: How different parsers perform on highly ambiguous programs

of the GLR algorithm is that it allows using the very simple LR(0) parse
table generation algorithm.

Our contributions to the GLR algorithm are the following

e we present the algorithm in clear pseudo-code, which should be easy

to translate to any programming language,

we have extended the algorithm to the full class of context-free gram-
mars,

and we have improved the sharing in the parse forest.
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Chapter 2

Incremental Parser
(Generation

An LR-based parser generator for arbitrary context-free grammars is
described that generates parsers by need and handles modifications to
its input grammar by updating the parser it has generated so far. The
need for these techniques is motivated in the context of interactive lan-
guage definition environments. We present all required algorithms, and
give measurements comparing their performance with that of conven-
tional techniques.

2.1 Introduction

The design of parser generators is usually based on the assumption that
the generated parsers are used many times. If this is indeed the case, a
sophisticated, possibly inefficient, parser generator can be used to generate
efficient parsers. There are applications, however, to which this assumption
does not apply:

e When a language is being designed, its grammar is not yet completely
fixed. After each change of the grammar, a (completely) new parser
must be generated, but there is no guarantee that it will be used suf-
ficiently often. Three observations can be made here:

— The time needed to parse the input is determined by the efficiency
of both the parser and the parser generator.

© 1990 TEEE. Reprinted, with permission, from IEEE Transactions on Software En-
gineering, 16(12):1344-1351, 1990.
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— Some parts of the grammar may not be needed by any of the
sentences actually given to the parser; the effort spent on such
parts by the parser generator is wasted.

— In general only a small part of the grammar is modified. One
would like to exploit this fact by making a correspondingly small
modification to the parser, rather than generating an entirely new
one.

e There is a trend towards programming/specification languages that
allow general user-defined syntax (LITHE [San82], OBJ [FGJMS85],
Cigale [Voi86], ASF+SDF [BHKS89]). In such languages each mod-
ule defines its own syntax, and each import of a module extends the
syntax of the importing module with the (visible) syntax of the im-
ported module. For efficient parsing and syntax-directed editing of
these languages, it is of great importance to use a parser generator
that can handle a large class of context-free grammars, and that can
incorporate modifications of the grammar in the parser incrementally.

We describe a lazy and incremental parser generator IPG, which is specially
tailored towards the highly dynamic applications sketched above:

e The parser is generated in a lazy fashion from the grammar. There
is no separate parser generation phase, but the parser is generated by
need while parsing input. If typical input sentences need only a small
part of the grammar, a faster response is achieved than in the greedy
case: the parser generation phase does not introduce a noticeable de-
lay and parsing can start immediately. If the input sentences do not
use the entire grammar, work is saved on the generation process as a
whole. It turns out that in comparison with conventional techniques,
the overhead introduced by this lazy technique is small.

e The parser generator is incremental. A change in the grammar pro-
duces a corresponding change in the already generated parser. Parts of
the parser that are not affected by the modification in the grammar are
re-used. Hence, the effort spent in generating them is re-used as well.
This has clear advantages for interactive language definition systems.

e The efficiency of the parsing process itself remains unaffected, in the
sense that once all required parts of the parser have been generated,
the parser will be as efficient as a conventionally generated one.



2.2. CHOOSING A PARSING ALGORITHM 43

e The parsing algorithm is capable of handling general context-free gram-
mars, inclusive ambiguous grammars.

For a description of the general principles underlying our method, see
[HKRO1]. In [HKRS87] a lazy/incremental lezical scanner generator ISG is
described. The combination ISG/IPG is used in an interactive development
environment for the ASF4+SDF specification language mentioned above. The
universal syntax-directed editor of this environment is parametrized with
a grammar written in SDF [HHKRS&9], and uses ISG/IPG as its parsing
component. The response time of the editor is acceptable, even though the
lexical scanner and the parser are generated and modified on the fly during
editing.

In Section 2.2 we discuss related algorithms and explain how our tech-
nique evolved from them. In Section 2.3 we present an LR parser and a
conventional LR(0) parser generation algorithm. We extend this into a lazy
parser generation algorithm in Section 2.4. In Section 2.5 we extend it once
again into an incremental parser generation algorithm. Finally, Section 2.6
gives the results of efficiency measurements, and Section 2.7 contains some
concluding remarks.

2.2 Choosing a parsing algorithm

We compare some existing parsing algorithms with our own algorithm from
the perspective of highly dynamic applications like the ones discussed in the
previous section:

e LR(k) and LALR(k) algorithms [ASU86, chapter 4.7]

These algorithms are controlled by a parse table that is constructed
beforehand by a table generator. The table is constructed top-down,
whereas the parser itself works bottom-up. The parser works in lin-
ear time. When the look-ahead k is increased, the class of recog-
nizable languages becomes larger (but will always be limited to non-
ambiguous grammars), and the table generation time increases expo-
nentially. With conventional LR or LALR table generation algorithms
it is difficult to update an already generated parse table incrementally
if the grammar is modified (see below).

e Recursive descent and LL(k) algorithms [ASU86, chapter 4.4]
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A recursive descent parser generator builds a parsing program, whereas
an LL generator builds a parse table that is interpreted by a fixed
parser. In both algorithms the parsers work top-down. The class of
accepted languages depends on the look-ahead k, but is always limited
to non-left-recursive, non-ambiguous grammars.

Earley’s general context-free parsing algorithm [Ear70]

Earley’s algorithm can handle all context-free grammars. It works
by attaching to each symbol in the input a set of “dotted rules”. A
dotted rule consists of a syntax rule with a cursor (e) in it and the
position in the input where the recognition of the rule started. The
set of dotted rules for symbol n 4+ 1 is computed at parse time from
the set for symbol n. Earley’s algorithm does not have a separate
generation phase, so it adapts easily to modifications in the grammar.
It is this same lack of a generation phase that makes the algorithm too
inefficient for interactive purposes.

Cigale [V0i86]

Cigale uses a parsing algorithm that is specially tailored to expression
parsing. It builds a trie for the grammar in which production rules
with the same prefix share a path. During parsing this trie is tra-
versed recursively. A trie can easily be extended with new syntax rules
and tries for different grammars can be combined just like modules.
The class of grammars is somewhat larger than LR(0) grammars, as
the parser does not use look-ahead in a general manner and cannot
backtrack.

OBJ [FGJMSS5]

OBJ uses a recursive descent parsing technique with backtracking.
OB\ itself does not allow ambiguous grammars, but the backtrack-
parser does detect all ambiguous parses. This makes the parsing sys-
tem suitable for finitely ambiguous grammars, but as mentioned in
[FGIJMS85, page 60] “parsing can be expensive for complex expres-
sions”, which makes the algorithm less suitable for large input sen-
tences.

Pseudo-parallel LR parsing [Lan74, Tom85]

This is an extended LR parsing algorithm that requires a conventional
(but possibly multi-valued) LR(0), LR(1) or LALR(1) parse table. The
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parser starts as an LR parser, but when it encounters a multi-valued
entry in the parse table (conventionally known as a table conflict), it
splits up in several LR parsers that work in parallel. The theoreti-
cal framework for pseudo-parallel LR and LI parsing was introduced
by Lang [Lan74]. It was optimized independently by Tomita for LR
parsing [Tom85]. Grammars are restricted to the class of finitely am-
biguous (or acyclic) context-free grammars. We discuss this algorithm
in detail and extend it to general CF grammars in [Chapter 1 of this
thesis]. As Tomita’s parsing technique uses the same table generation
phase as conventional LR algorithms, modifying the grammar is an
expensive operation with this algorithm.

e Incremental parser generator IPG

We developed this method on the basis of the Tomita parsing algo-
rithm, but provided the algorithm with an incremental LR(0) parse
table generator. Parsing starts with an empty parse table, which is
expanded by need during parsing. A change in the grammar is han-
dled incrementally by removing those parts of the parse table that
are affected by the change; these parts are recomputed for the modi-
fied grammar when the parser needs them again. The parse table is
constructed during parsing, so after a certain time, depending on the
input given to it, the system will become as fast as a conventionally
generated Tomita parser.

e Incremental LALR(1) parser generation [Hor89, Hor90]

At the time we wrote this paper, a very similar approach was proposed
independently by Horspool. His point of departure is a conventional
LR parser rather than a parallel one and he considers incremental gen-
eration of LALR(1) parse tables. This is more difficult than incremen-
tal generation of LR(0) tables: look-ahead sets have to be taken into
account whose incremental generation and modification turn out to be
problematic. As a consequence, his system has a less efficient incre-
mental table generation phase, but generates more efficient LALR(1)
parsers. We opted for a more efficient LR(0) table generation phase at
the expense of some loss in parsing efficiency for non-LR/(0) languages
(but without restricting the class of acceptable grammars in any way).

Fig. 2.1 assigns a rating to the above-mentioned algorithms for each of the
following properties: capability of handling arbitrary context-free grammars
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powerful fast flexible | modular
LR(k), LALR(k) - + + - _ __
recursive descent, LL(k) - + + I _
Earley + + - = 4+ + +
Cigale — - — + + + +
OBJ + - — + +
Tomita + + + + - — S
IPG + + + + + +
Horspool - + + + —

Figure 2.1: Comparison of various parsing algorithms

(powerful), efficiency on large input sentences (fast), possibility for process-
ing of modifications of the grammar (flexible), and possibility for modular
composition of parsers (modular).

2.3 LR parsing and parser generation

In this section we describe an LR parser, the associated parse tables, and
an LR(0) parser generator. We assume the reader to be reasonably familiar
with the subject. This section just serves to refresh the reader’s memory.

The basic reference for LR parsing and parser generation is [ASUS6].
[GJ90] and [KP90] are also interesting as these contain an up-to-date anno-
tated bibliography of related algorithms.

2.3.1 LR parsing

We use a pseudo-parallel parsing algorithm, developed by Tomita [Tom85].
It runs several ordinary LR parsers in parallel and can handle arbitrary
context-free grammars. To give an idea of how our parser works, we present
a non-parallel LR parser. It maintains a parse stack which initially contains
the start-state. The state on top of the stack is the current state of the
parser. The parser repeatedly consults its parse table for actions to be
performed in the current state and with the current input symbol. This is
done by routines ACTION and GOTO. If there are several possible actions,
it chooses one of them.

Push the start-state on the stack
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while true do
The current state of the parser is the state on top of the stack
The current input symbol is the first symbol of sentence
Choose an arbitrary action from those returned by ACTION
if there is no action then
Reject the sentence
else
if it is a shift action to a state then
Push the current symbol and the new state on the stack
Remove the current symbol from the head of sentence
elseif it is a reduce action of rule A ::= [ then
Replace B on the stack by A
Call GOTO for a new state
Push the new state on the stack
elseif it is an accept action then

Accept the sentence

Provided with a parse table generated by an LR(0) parser generator,
this algorithm yields unique parses for any LR(0) grammar, but it may fail
for other grammars if it chooses the wrong action at any point at which
ACTION returns multiple actions. The pseudo-parallel version of the algo-
rithm [Tom85], [Chapter 1 of this thesis] explores all actions returned by
ACTION by splitting in multiple parsers, one for each possibility. In this
way it yields unique parses for any unambiguous grammar, and all possible
parses for ambiguous grammars. So, this technique enables us to recognize
the full class of context-free grammars, while using a simple LR(0) parse
table generator.

We do not reject ambiguous sentences, but let the parsing algorithm
return all possible parses. This leaves room for a postprocessor, such as the
algorithm described in [HHKR®9, section 6] which selects parse trees on the
basis of priority declarations.

2.3.2 The parse table or graph of itemsets

The notion of item or dotted rule is basic to an understanding of the LR
method. An item is a grammar rule with a dot in its right-hand side indi-
cating how far the parse according to that particular rule has progressed. A
set of items is an itemset. A parse table is a graph whose nodes are itemsets
and whose (labeled) edges are transitions between itemsets. A state of the
parser is an itemset in this graph. For example, the graph generated for the
following grammar



Figure 2.2: Graph of itemsets for the Booleans

B = true (Grammar of the Booleans)
B ::= false

B:=BorB

B :=Band B

START ::= B

is given in Fig. 2.2. Fig. 2.3 shows the steps done by the parser when parsing
the sentence “true or false”.

Fach itemset in the graph has the fields kernel, transitions, reductions
and type. The kernel is a set of dotted rules that are recognized by the
parser in the corresponding state. The transitions form the labeled edges
of the graph; each itemset contains the transitions originating from it. The
reductions are the rules that are recognized completely by the parser in the
corresponding state. The type can be initial or complete. When initial the
transitions and reductions have not yet been computed.

The reductions form a separate set of rules, but for the sake of com-
pactness we represent them in the diagrams by underlining the correspond-
ing dotted rules in the kernel. Fortunately, there are no rules of the form
A = € in the example, as these would introduce reductions without cor-
responding dotted rules in the kernel. Such reduction rules would need a
different representation in the diagrams.
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Parse stack Input
0 true or false $
0 true 3 or false $
0B2 or false $
0B2oré6 false $
0 B 2 or 6 false 4 $
0B2or6B8 $
0B 2 $
0 START 1 $

Figure 2.3: Steps of the parser for input “true or false”

The parser moves through the graph of itemsets: shift actions cause the
parser to move forward along a transition labeled with the current input
symbol, while reduce actions first cause a move backward along the path
stored on the parse stack, and then a move forward along a transition labeled
with the non-terminal that was the result of the reduction.

ACTION and GOTO obtain their information from the graph in the follow-
ing manner:

ACTION(state, symbol) :
actions :=
{reduce A := B|A = [ € state.reductions } U
{ shift state' | (symbol state') € state.transitions } U
{ accept | (symbol accept) € state.transitions }

return actions

GOTO(state, symbol) :

return state’: (symbol state') € state.transitions

2.3.3 Parse table generation

The graph of itemsets is generated by the following LR(0) parse table gen-
erator:

PG(Grammar) :
Grammar := Grammar U { START' ::= START}
Generate a start-itemset with { START' ::= e START} as kernel

while there is an initial itemset do
Complete it using EXPAND
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return the start-itemset

The real generation work is done by EXPAND, which computes the tran-
sitions and reductions of an itemset. It starts by using K-CLOSURE to
generate a new set Closure of dotted rules (which is an extension of the ker-
nel) containing all rules that may become applicable in this state/itemset.
Closure is then partitioned in subsets of rules having the same symbol S
after the dot. On shifting S (or reducing to S), the parser will have ad-
vanced one step recognizing a rule in the subset associated with S. For each
S the associated subset is transformed into a new kernel by moving the dot
over S. When an itemset with that kernel does not yet exist, it is gener-
ated as an initial one. A transition to that itemset labeled with S is added
to transitions. A rule in the extended kernel that ends on a dot has been
recognized completely. This implies implies an accept or a reduce action.

EXPAND(itemset) :
Closure ::= K-CLOSURE(kernel)
for each distinct symbol S that occurs just after a dot in Closure do
Generate a new kernel K consisting of all dotted rules in Closure
which have their dot before S, and move the dot over § in each rule
if there does not yet exist an itemset with kernel K then
Generate an initial itemset with kernel K
Add to transitions a shift action labeled with S to that itemset
for each rule in Closure that ends on a dot do

if it is START' ::= START e then
Add an accept action to transitions
else

Add a reduce action of the rule to reductions

The type of the itemset is now set to “complete”

K-CLOSURE(kernel) :
Closure := kernel
while there is a rule in Closure with its dot before an S do
Extend Closure with all rules that derive §
and add a dot before their leftmost symbol

return Closure

2.4 Lazy parser generation

The parser generation algorithm described so far generates the parser com-
pletely before it is used. This is a good method when a parser is generated
only once for a stable grammar after which it is used relatively often.
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In applications where the grammar is subject to modification, this ap-
proach causes the parse time of the first sentence to be effectively increased
by the parser generation time. Clearly, it would be preferable to spread
the generation time over the parsing of many sentences to obtain a better
response time. Lazy parser generation has this property. It generates only
those parts of the parser that are really needed to parse the sentences given to
it. Both of these arguments in favor of lazy parser generation are valid only
when typical input sentences need a relatively small part of the parser. See
[HKRO91] for an in-depth discussion of the advantages and disadvantages of
lazy program generation. In our specific application, we use the lazy parser
generation algorithm mainly as a step towards incremental parser generation
(Section 2.5).

We have to adjust the LR(0) parser generator of the previous section only
a little to obtain a lazy parser generator. We move the parser generation
phase into the parsing phase by moving the expansion of initial itemsets from
routine PG to ACTION. This means that the state with which ACTION
is called can now be either complete or initial. When it is still initial, it is
expanded first by FXPAND. The lazy parser generator LPG now generates
only start-itemset as an initial itemset. The rest of the parser generation
will be taken care of by ACTION.

LPG(Grammar) :
Grammar := Grammar U { START' ::= START}
Generate a start-itemset with { START' ::= e START} as kernel

return the start-itemset

ACTION(state, symbol) :
if state.type = initial then EXPAND(state) fi
actions :=
{reduce A = B|A = B € state.reductions } U
{ shift state' | (symbol state') € state.transitions } U
{ accept | (symbol accept) € state.transitions }

return actions

Like ACTION, GOTO uses information that is only available in complete
itemsets, so one might be inclined to think that the same test for initial
itemsets has to be added to GOTO as well. Due to the the particular way
in which the parsing algorithm works, however, GOTO will only be called
with itemsets that have already been completed. The parser asks GOTO for
information about a state when it reduces a rule. The parser obtains this
state from its parse stack of previously visited states. The fact that the state
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has been visited previously, implies that ACTION has already been called
on it. During that call the state will have been expanded.

Consider, for example, the grammar of the Booleans of Fig. 2.2. The
graph of itemsets generated by the lazy parser generator initially consists
only of the start-itemset (with type initial) shown in Fig. 2.4. The fact that
this itemset has type initial is expressed by a white disk. If an itemset has
type complete, a black disk is used.

When the parser is given its first sentence, its first step will be to ask
what actions it has to perform in start-state. Hence, ACTION is called with
initial itemset start-state which will then be expanded to the graph shown
in Fig. 2.5. Fig. 2.6 shows the graph of itemsets after the sentence “true and
true” has been parsed.

The overhead in time introduced by this lazy technique is small, as only
the test on the type of the itemset takes some extra time in ACTION. The
use of memory increases, as the kernels are now needed during parsing as
well.

2.5 Incremental parser generation

The lazy parser generator can react to modifications of the grammar only by
throwing away the parser it has already generated and starting from scratch,
which is rather wasteful.

In this section we describe an incremental parser generator that retains
those parts of the old graph of itemsets that can still be used in the graph for
the modified grammar. How much has to be thrown away depends not only
on the “size” of the modification, but also on how much of the graph had
already been generated for the old grammar. When the graph of itemsets
is already highly specialized towards the old grammar, chances are that a
relatively large part of it has to be removed.

2.5.1 An algorithm for incremental parser generation

The incremental parser generator retains only that part of the (possibly in-
complete) graph that can still be used in the graph of itemsets for the new
grammar. It does this by returning those itemsets in the graph that were
(from the viewpoint of the new grammar) expanded incorrectly to their ini-
tial state. The lazy parser generator LPG will then, when needed, re-expand
these itemsets in accordance with to the new grammar. The incremental



Figure 2.6: The graph of itemsets after “true and true” has been parsed
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parser generator IPG consists of LPG plus routines ADD and DELETE
which update an existing parser.

Suppose a rule A ::= (3 is added to the grammar. We then have to find
the states (itemsets) in which recognition of the new rule should start. In the
new graph the closure of the kernel of these itemsets would contain A ::= e.
How can we find these itemsets in the existing graph without recomputing
the closure of every kernel? Initial itemsets can easily be dealt with because
they do not have to be re-expanded, but complete ones present a problem.
Fortunately, we can be sure that A ::= (3 will be added to the closure only
when the latter contains at least one dotted rule with its dot before an A.
But if there was a rule with its dot before an A in the closure, EXPAND
must already have added a transition for A to the transitions of the itemset
in question. So we can recognize all complete itemsets that should have
A ::= ef3 in the closure of their kernel by the presence of (A itemset') in
their transitions.

Similarly, if we delete a rule A ::= § from the grammar, we have to find
the states (itemsets) in the existing graph in which recognition of this rule
started. These are the itemsets that had A ::= e in the closure of their
kernel. As in the case of addition, these are the complete itemsets having a
transition (A itemset’) among their transitions.

These itemsets with a transition for A in their kernel, which are the first
ones affected by the modification of the grammar, have to be re-expanded.
This can be achieved simply by returning them to their initial state and let
the lazy parser generator re-expand them when needed.

So routines ADD and DELETE are very simple: they just update the
grammar and make all complete itemsets with a transition for A “initial”
again. When the parser needs those itemsets again, they will be re-completed
by the lazy parser generator in accordance with the modified grammar.

ADD(A == p):

Add A ::= 3 to the Grammar

for each itemset with a transition on 4 do

Return the itemset to its initial state

DELETE(4 := j) :
Delete A ::= 8 from the Grammar
for each itemset with a transition on A do

Return the itemset to its initial state

If, for example, the rule “B ::= nil” is added to the grammar of the
Booleans, and the graph of itemsets for the grammar of Fig. 2.2 is updated



Figure 2.7: Graph for the Booleans after addition of “B ::= nil”

by ADD, the itemsets 0, 5, and 6 are returned to their initial state, because
they had a transition for “B” among their transitions. the graph of itemsets
is thus transformed into the unconnected graph of Fig. 2.7.

When the lazy parser generator now expands set 0 again, its former
connections with 1, 2, 3, and 4 are re-established, and the initial itemset
9 is generated with kernel “B ::= nil ”. The resulting graph is shown in
Fig. 2.8.

2.5.2 Garbage collection

The incremental parser generator causes some itemsets to become unreach-
able from the start-state. As frequent modification of a grammar can pro-
duce many unreachable itemsets, the algorithm has to be extended with
some kind of garbage collection. For the sake of efficiency, however, it is es-
sential to retain unreachable itemsets for some time. Otherwise major part
of the graph of itemsets would have to be regenerated (this would occur in
the example of Fig. 2.7). Clearly, a compromise has to be found between
removing unreachable itemsets immediately, and retaining them forever. To
this end, we attach to each itemset a count of the number of itemsets refer-
ring to it. Routine EXPAND sets and increments the reference count of the



Figure 2.8: The graph of Fig. 2.7 after re-expansion of set 0

itemsets it creates transitions to. Furthermore, ADD and DELETEFE should
return itemsets to a “dirty” rather than “initial” state. A dirty itemset is
an initial itemset with a history (its former transitions). It is expanded in
the same way as an initial set, but after its expansion the reference counts
of those itemsets to which it no longer refers are decreased. When the refer-
ence count of a itemset becomes zero, it is removed. Using this method the
removal of an unused itemset is postponed until the chance is better that it
will not be used again.

2.6 Performance and efficiency

We have compared the efficiency of the lazy and incremental parser gen-
erator IPG with that of the non-incremental version PG of Section 2.3.3.
We also compared IPG and PG with the LALR(1) parser generator Yacc
[Joh86]. A comparison of IPG with Earley’s parsing algorithm would have
been appropriate here, because both systems recognize the same class of
context-free grammars. As we did not have access to a good implementa-
tion of the algorithm, and a quick and mediocre implementation made by
us would not be a fair match, we have not included such a comparison.
From a theoretical viewpoint, we expect Earley’s algorithm to have better
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generation performance, but a much inferior parsing performance.

Both PG and IPG generate parse tables (or graphs of itemsets) that are
interpreted by Tomita’s context-free parsing algorithm. Since these are the
only grammars accepted by Yace, the test grammar had to be LR(1). The
grammar we used is an LR(1) version of the grammar of the syntax definition
formalism SDF [HHKR®89]. The reason for choosing SDF is its reasonably
sized grammar. The fact that it also happens to be the language in which
grammars for PG and IPG have to be expressed is purely coincidental. It
only means that the grammar of SDF has to be expressed in SDF itself to
be acceptable to PG and IPG.

We measured the time in seconds CPU time used by the three parser
generators and the generated parsers to:

e construct a parse table for SDF;

e parse an input sentence (SDF definition) twice;

o modify the grammar and reconstruct the parse table;
e parse the same sentence twice.

The measurements have been repeated on input texts of different length
and complexity, namely four SDF definitions of which the smallest is 15 lines
and the largest 142 lines long. The modification of the grammar consisted
of the addition of a rule that extends the possible elements in the priority
and function declarations of SDF. We added rather than deleted a rule in
order to be able to use the same input sentences again after the modification.
Other experiments showed that addition or deletion of a rule roughly takes
the same amount of time.

To prevent the lexical scanner and the file system from influencing the
measurements, the input of all parsers was a stream of lexical tokens already
in memory, and the parsers constructed a parse tree but did not print it. All
measurements have been carried out on a SUN 3/60 with a low workload (no
swapping). Yacc generates C-code, which was compiled in 68020 machine
code by the C-compiler. PG and IPG ran in the LeLisp environment and
were compiled by the LeLisp compiler “Complice” [Lel.87]. LeLisp garbage
collections were only allowed between measurements.

The results of the measurements are given in Fig. 2.9. They show the fol-
lowing;:



Figure 2.9: Efficiency measurements for Yacc, PG and IPG
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e Yacc

Yacc generates parsers that are about twice as fast as the parsers gen-
erated by PG and IPG, but the generation time for a Yacc parser is
unacceptably high for an interactive language definition environment.
This time consists of: 1.3 sec for Yacc to generate the parser in C;
7.6 sec for the C compiler to compile the parser; 0.7 sec to link the
compiled parser into the rest of the code.

e PG

The fact that PG generates parsers in the same (Lisp) environment
in which the parsers are used has great advantages, as is shown by
the relatively small construction and modification times of PG. The
second reason that PG uses less generation time than Yacc, is that
PG generates LR(0) tables, whereas Yacc generates LALR(1) tables.
The parse times of both PG and IPG are larger than that of Yacc.
There are two reasons for this difference: Yacc uses LALR(1) tables
and generates parsers in C, whereas PG and IPG use LR(0) tables and
generate parsers in Lisp.

The difference between LR(0) and LALR(1) tables is the amount of
information pre-computed for the grammar. LR(0) tables demand a
reduction whenever a rule has been recognized, whereas LALR(1) ta-
bles only demand a reduction when the look-ahead is right. Tomita’s

parsing algorithm can use both, but leads to more failing parses with
LR(0) tables than with LALR(1) tables.

o IPG

In this case the time needed for constructing the parse table is almost
zero. The lazy parser generator produces the requisite parts of the
parse table while parsing the input, which explains why the second
parse always takes less time than the first one. This difference is not
as large as the generation time taken by PG, indicating that only a
part of the parse table had to be generated for parsing the input. The
modification time used by IPG is negligible. Only the first parse of
“Exam.sdf” after the modification of the SDF grammar shows that
some time was used for regenerating affected parts of the parse table.

In our opinion, the measurements convincingly show the benefits of lazy
and incremental parser generation. IPG uses twice as much parse time as



60 CHAPTER 2. INCREMENTAL PARSER GENERATION

Yacc, but since we expect grammars that are much larger than the grammar
of SDF and input sentences to be quite small (the parser will mainly be
used in conjunction with a syntax-directed editor), we consider IPG to be an
excellent choice for interactive language definition systems and other highly
dynamic applications.

2.7 Conclusions and future work

Although incremental generation of LR parse tables may have seemed a
difficult problem, we were able to present all algorithms for incremental
parser generation in this paper. We kept the complexity of the algorithms
low by building the incremental generator on top of the lazy one, which
in turn is an easy derivative of a conventional LR(0) parser generator. As
is shown by the measurements in Section 2.6, IPG is an efficient parser
generator suitable for use in interactive language definition systems. One
might doubt the usefulness of the incremental behaviour of IPG as the non-
incremental version of IPG is already 30 times faster than Yacc. We need
incrementality however for languages that allow general user-defined syntax.

Future work related to IPG will include:

e Simultaneous editing of language definitions and programs.

As has been explained in the introduction, we currently have an op-
erational prototype of a universal syntax-directed editor parametrized
with a syntax definition written in SDF. It is our aim to allow si-
multaneous editing of both this syntax definition as well as the pro-
gram/specification written in the language defined by it.

e Syntax-directed editing of programs/specifications defining their own
syntax [Chr90, Bur90b, Bur90a].

An extreme case of the simultaneous definition, modification, and use
of syntax occurs in languages that can define their own syntax Limited
forms of user-defined syntax appear under various disguises. such as
operator declarations, macros and user-defined function denotations.
Clearly, the modification capability of IPG can be used to implement
these syntax changes as well. What part of the already generated parse
tree remains valid after a modification of the syntax is also a subject for
future research. Pettersson [Pet90] did already use the IPG algorithms
to implement an extension of ML with user-defined syntax.
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e Modular composition of parsers.

IPG does not yet support the composition of parsers that are gener-
ated for different modules. Although it would be possible to use the
incremental modification capability of IPG in this case by adding the
grammar of one module to the parser of the other, this is an asym-
metrical operation, which, we believe, is not satisfactory. A different
approach to modular parser generation based on IPG based on re-
stricted parsing is described in [Chapter 3 of this thesis].
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Chapter 3

Restricting a Parser to a
Subgrammar

A technique is introduced for restricting a parser to a subgrammar of
the grammar it was generated for. The resulting parser behaves like a
parser generated for the subgrammar, but restricting an existing parser
is much cheaper than generating a new parser for the subgrammar.
Restricted parsing can be used to avoid repeated parser generation for
individual modules in a modular grammar definition. We present the
algorithms for restricted parsing and compare the efficiency of conven-
tional parser generation with that of restricted parsing.

3.1 Introduction

A technique is introduced for restricting a parser to a subgrammar R’ of the
grammar R it was generated for. The resulting parser behaves as if it was
generated for R, but, given a parser for R, making the restriction is much
cheaper than generating a new parser for R'.

Parsers may be needed for n different subgrammars R; of R and these
subgrammars may have large parts in common. In such a case, generating a
new parser for each R; would lead to much duplication of generation effort.
It might then be more time and space eflicient to invest in the generation
of a parser for R, and restrict this parser n times. For grammars having a
modular structure, the sets of grammar rules common to several modules
will in most cases be quite large. In Section 3.2.1 we describe how restricted
parsing can be used to implement a parser generator for modular grammars.

A parser restricted to R’ will only accept sentences that are in the lan-
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guage described by R’, but, unfortunately, it does not have the correct prefix
property possessed by other LR parsing techniques. This property says that,
if a parser is able to read v of a sentence vw, there always exists a w’ such
that vw' is a correct sentence. A parser restricted to R’ may read more of an
erroneous sentence than a parser specially generated for R’ would have done,
and will therefore be less exact in indicating the location of the erroneous
token in a faulty sentence. Because of the lack of the correct prefix property
the substring parse technique introduced in [Chapter 4 of this thesis] cannot
use restricted parse tables either.

Our restricted parsing technique is based on LR(0) parse table gener-
ation, but can easily be extended to LALR(1) or LR(1) tables. The re-
stricted parsing technique is an extension of the lazy and incremental parser
generator IPG [Chapter 2 of this thesis]. Like IPG, it generates parsers
in a lazy way, it is able to update a parser incrementally, accepts general
context-free grammars and generates efficient parsers. The parse tables gen-
erated are used by a Generalized LR parsing algorithm [Chapter 1 of this
thesis][Tom85].

The paper is organized as follows. First, in Section 3.2 we sketch two
applications for the restricted parsing technique. Next, in Section 3.3 we
discuss the technique in detail and present all algorithms. In Section 3.4 we
analyze the behaviour of a restricted parser and compare it with convention-
ally generated ones. In Section 3.5 we present results of some measurements
on the implementation of restricted parsing, and in Section 3.6 we finish
with some concluding remarks.

3.2 Applications

3.2.1 Parser generation for modular grammars

A modular grammar consists of a number of grammar modules each con-
taining a set of grammar rules and a set of names of other modules to be
imported. Each module defines a (possibly incomplete) grammar, which has
to be completed by the rules in the imported modules. A modular grammar
consisting of n modules thus defines n ordinary grammars. In most cases,
these grammars will have large parts in common. If the parsers defined by
these modules are all needed, n parsers will have to be generated.

It is, of course, possible to use a non-modular parser generation technique
to generate these n parsers. This would, however, induce much duplicate
generation effort for the common parts of the grammars. Furthermore, a
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modification in a module at the bottom of the import hierarchy would cause
many parsers to be invalidated. Regenerating them all is unacceptable if one
is interested in an interactive development and testing system for modular
grammars.

The obvious approach to parser generation for modular grammars would
be to generate an incomplete parser for the rules in each module and trans-
late the import relation between modules to an import relation between
parsers. This is done in Cigale [Voi86]. This solution, however, rules out
all optimizations available in the efficient LR and LL parsing techniques, as
these are based on knowledge of the complete grammar.

The approach followed by Koskimies [Kos90] is not satisfactory either,
as his technique only works if all rules for a non-terminal are defined in the
same module. We do not want to impose this restriction on the modular
composition mechanism of the formalism.

We propose a parser generator for modular grammars based on restricted
parsing. We do this by using IPG [Chapter 2 of this thesis] to generate one
parser for the union of all grammar rules of all modules, and restrict this
parser n times according to the n grammars defined by the modules. In this
way no duplicate generation work is done, modifications are processed incre-
mentally, the generated parsers are reasonably efficient, and no restrictions
are imposed on the contents of the modules. A drawback of this approach
is that it is not possible to develop parsers separately and combine them
later at will. This limitation is, however, not too severe for the grammar
development system envisaged.

ASF+SDF [BHK89] is a modular formalism for the definition of syntax
and semantics of programming languages. Its implementation, the ASF+SDF
system [K1i91b, Hen91], is highly incremental and applies the restricted pars-
ing technique to generate the different parsers defined by a specification.

3.2.2 Incremental LALR(1) parser generation

Restricted parsing could also be used to solve a problem present in the
incremental LALR(1) parser generator of Horspool [Hor89, Hor90].
Addition of rules works satisfactorily in Horspool’s system: the underly-
ing LR(0) states are updated in a manner similar to that of IPG, except that
the automaton is expanded immediately, and the effect on the look-ahead
sets is propagated through the automaton. However, on deleting a grammar
rule, the effect on the look-ahead sets cannot be computed incrementally!,

1t is unclear for symbols in the look-ahead set associated with the deleted rule, whether
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and all sets must be removed and recomputed from scratch. This makes
deletion of a rule an expensive operation.

Restricted parsing could in this case also yield the desired parser, by just
removing the rule from the selection parsed for. The resulting parser would
then behave as if the rule were deleted, but this computation is much cheaper.
Pending deletions should, of course, be actually carried out at a certain
moment, but using this scheme most of the time consuming recomputations
can be avoided.

3.3 Restricted Parsing

As already mentioned, the restricted parsing method is based on the lazy
and incremental parser generator IPG. We assume the reader to have some
familiarity with that work, as we will build the restricted parsing method on
top of the IPG algorithms.

Section 3.3.1 serves to give an intuitive idea of the method and shows how
a simple parser can be restricted to a subgrammar. Next, in Section 3.3.2,
the method is roughly sketched and, finally, all algorithms for restricted
parsing are given in Section 3.3.3.

3.3.1 Restricting the grammar of the Booleans

The graph of itemsets as generated by IPG for the following grammar is
shown in Fig. 3.1.

B = true (Grammar of the Booleans)
B ::= false

B:=BorB

B :=Band B

START ::= B

The steps of the parser on the sentence “true or false” are shown in Fig. 3.2.
While parsing, the parser moves through the graph of itemsets: shift actions
cause the parser to move forward along a transition labeled with the current
input symbol, while reduce actions first cause a move backward along the
path stored on the parse stack, and then a move forward along a transition
labeled with the non-terminal that was the result of the reduction.

they are only there due to that rule or also due to other ones.



Figure 3.1: The graph of itemsets of the Booleans

Now, we make a selection of the grammar of the Booleans from which
the rule “B ::= B or B” is excluded. A first approach for restricting the
parser is to inhibit the reduction of “B ::= B or B”. Figure 3.3 shows that
the parser now fails on the reduction of this rule in state . The restriction
thus causes only parses that need to reduce “B ::= B or B” to fail; the other
parses will not be affected.

However, the parser could have failed much earlier. Already on the step
from state @ to state @ it is clear that the parser is on its way to recognize
“B or B”, while this rule is not in the selection. Therefore, it can already be
stopped in @ by a restriction on the transitions, as is shown in Fig. 3.4.

The restrictions on the transitions and reductions can also be remem-
bered, instead of re-computed on each visit by the parser to a state. In
Fig. 3.5 the edges in the graph to state (6) are temporarily removed. As a
result, state @ and state , which deal specifically with the rule “B ::= B
or B”, have become unreachable for any parser.

3.3.2 The restricted parsing method

The basis of the restricted parsing method is that reduction of rules that are
not selected is simply inhibited. This has as effect that all parsers that try
such a reduction die, and only parses consisting entirely of valid rules will



Figure 3.3: Moves of the parser using restricted reductions



Figure 3.5: The restricted graph
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succeed.

In addition to this, we only allow transitions to states which have a rule
in their kernel which is in the selection. The kernel of a state is the set of
rules possibly being recognized by the parser; if a kernel does not contain any
rule belonging to the selected rules, each of its possibilities will eventually be
forbidden by the restrictions on reductions. So we can already forbid such a
parse in this stage.

The computation of restrictions affects the time needed by the parser for
each step. To avoid this overhead, we compute the restrictions only once
and save them in the form of trimmed versions of the actions for each state.

3.3.3 Algorithms

Before parsing starts, the set of selected rules is communicated to the gen-
erator with the call RESTRICT-PARSER(rules). This routine removes the
possibly existing old restrictions and stores the new set for use by routine
RESTRICT-STATE. This set is always extended with the rule “START’ ::=
START”.

RESTRICT-PARSER(rules) :
forall state do
if state.type = restricted then state.type := complete

selected-rules := rules U { START' ::= START}

Routine ACTION now checks states for having type “restricted”; if not,
routine RESTRICT-STATEF is first called. The actions returned are derived
from the fields restricted-transitions and restricted-reductions, which are set
by RESTRICT-STATE.

ACTION(state, symbol) :
if state.type # restricted then
if state.type = initial then EXPAND(state)

RESTRICT-STATE(state)
actions :=
{reduce A ::= B|A = B € state.restricted-reductions } U

{ shift state' | (symbol state') € state.restricted-transitions } U
{ accept | (symbol accept) € state.transitions }

return actions

Routine RESTRICT-STATE computes the actions which are valid for the
current set of rules. It only allows reductions according to rules in the current
set of selected rules, and it only allows transitions to states which contain
at least one rule in their kernel that belongs to the current selection.
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RESTRICT-STATE(state) :
state.restricted-reductions := state.reductions N selected-rules
restricted-transitions := ()
forall (symbol state') € state.transitions do
if3 A == «aef € state’kernel: A = a f € selected-rules then
restricted-transitions := restricted-transitions U (symbol state')
state.restricted-transitions := restricted-transitions

state.type := restricted

Routine GOTO remains unchanged, except that it uses restricted-transitions
instead of the ordinary transitions. Unlike conventional parse tables, it may
now happen that GOTO does not return a state, as the expected transition
may have been removed by the restrictions. The parsing algorithm has to
be adjusted to take care of this case.

3.4 Evaluation

Restricting a parser as sketched above is a simple and cheap extension of
IPG. It has the advantage that the parser can switch to another set of rules
with little overhead, and that all lazy and incremental properties of IPG are
retained.

A drawback of the method is that a parser for a subgrammar can be
(partly) invalidated by a modification in the grammar which does not affect
that subgrammar itself. The required recomputation of the graph has then
no effect on the behaviour of that parser, as all effects will be filtered out
again by the restrictions.

It may turn out that the complete parser for R is never needed. Since
we use a lazy parser generation technique, the parts of the parser that have
not yet been needed by any subgrammar of R, are not generated at all.

Restrictions on reductions are the basic feature of the technique, but the
parser will in most cases never reach states with such restricted reductions,
as the restrictions on transittons prevent this.

3.4.1 Restricted parsing versus conventional parsing

We would like to compare a parser restricted to a certain grammar with
a parser specially generated for that grammar. It will turn out that the
restricted parser can, for certain grammars and sentences, be later to dis-
cover an error than the conventional parser. The efficiency of the Tomita
parsing algorithm [Tom85] may also be influenced by using restricted parse
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tables. As errors are discovered later, the Tomita algorithm has to pursue
alternatives longer to determine which of them is correct. This means that
on average more parallel parsers will have to be maintained.

This is the price paid for the saving on parse table generation offered
by the restricted parsing method. Experience with restricted parsing in
the ASF+SDF system [Hen91] shows that delayed error detection seldomly
occurs in practice.

Delayed error detection

If we apply the restricted parsing method only using restrictions on reduc-
tions, it can easily happen that the parser fails too late on an erroneous
sentence. Consider the following example: R contains both an “if-then”-
rule and an “if-then-else”-rule, and R’ does not contain the latter one. A
restricted parser would only discover that the sentence “if a then print a else
print b” is faulty on the reduction of the “if-then-else”-rule, after having
read the input up to the “b”.

The restriction on the transitions has been introduced to avoid this un-
desirable behaviour, and it solves the problem of delayed error detection in
most cases. For the above example, the error is now discovered on reading
the “else”, just like the conventional parser would have done. However, the
behaviour is not perfect yet, as is shown in the following example.

START ::= b C (Rules R)
START ::=Db a

Cu=cc

START :=Db a (Selection R')
Cu=cc

The parse graph for R, restricted to R', is shown in Fig. 3.6. If it is used
to parse the sentence “b ¢ ¢”, which is erroneous according to R, the parser
would first have to recognize the rule “C ::= ¢ ¢” to discover that the “C”
may not be used. This means that it would only fail after having read the
second “c”.

This problem can be solved by removing all useless rules from R'. Ac-
cording to [HU79, page 88], a symbol X is called useful if there is a derivation
ST ART==aX f==w for some a, § and w, where w is in T*. Useless sym-
bols can be identified easily, and all rules in which they appear are useless
rules and can be removed from a selection without affecting the language



Figure 3.6: Restricted graph of itemsets

recognized. In the above example, this condition would cause R' to contain
only “START ::= b a”, and the parser would fail on the first “c”, as desired.

Removing useless rules enhances the error detection capability of the
restricted parsing method again, but there remain cases in which a restricted
parser will discover an error later than a conventionally generated parser. If
we take this grammar

START ::= Stat (Statement grammar)
START ::= Exp

Stat ::= if Exp then Stat

Stat ::=Id

Exp ::= Exp + Exp

Exp :=1d

and select all rules but “START ::= Exp”, the restricted parser will on a
sentence “a + b 4+ ¢” still read up to the “c”, before it discovers that the
reduction of “START ::= Exp” may not be applied.

This example shows that the restricted parsing method lacks the correct
prefix property. This is also the reason why the substring parsing method
[Chapter 4 of this thesis] cannot use restricted parse tables.

3.4.2 Simulating a larger parse table with a smaller one

In [Hor90] Horspool discusses a grammar, originally proposed by Alan De-
mers, which has an interesting property. This grammar G,, (Fig. 3.7) pro-
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So = a So | b So | a Sl | b S1
S1 = ass | b Sa

Sa w= asS3 | bS3

Spo1 = aS, | bS,

Sh = d

Figure 3.7: Grammar G, of language “(a|b)*(a|b)™d”

duces the language “(a|b)*(a|b)™d”. An LR(0) parse table for G,, consists of
4n+5 states. If we remove the rule “Sy ::=b S;” from G, yielding grammar
G, , it produces the language “(a|b)*a(a|b)" 'd”. However, the number of
states now explodes to 2™ 4+ 2n 4+ 4. This is of course a challenge for the
restricted parsing technique: how can it simulate a parse table of 2" +2n+4
states, while it can only address 4n + 5 states?

The grammar used by Horspool in [Hor90] contains an additional rule “Sp
= ¢ 51”7, but as this rule does not affect the problem as far as restricted
parsing is concerned, we have left it out for the sake of simplicity. The
absence of this rule explains why our number of states differs slightly from
those of Horspool. The number of states needed by our two versions of the
grammar for different values of n are given in the following table.

Gn G,
n|4dn+5|2"+2n+4
1 9 7
2 13 12
3 17 18
4 21 28

To keep the example as simple as possible, we will work it out for n = 3.
We will first show the parse tables for the two versions of this grammar as
generated by a conventional parse table generator. Next, we show the parse
table as used by the restricted parsing technique.

The conventional parse tables

Fig. 3.8 shows a graph-like description of the parse table generated for gram-
mar (G, with n = 3:

Soux=aSy|bSy|asS;|bs (Grammar G3)
S1 :Z=a.SQ|bSQ
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accept

So = a Sy

So n=a S

S; n=a Sy

Sy = a S

Figure 3.8: The parse graph of G3

SQ ::=a53|b53
S3; i=d

This parse graph can best be used to understand the following moves of
the parser on some sentence in the language.

e Parsing starts in state (0).
e On the first a or b the parser goes to state @ or .

On the second a or b to 5) or ().

On the third a or b to @) or (0.

All following a’s and b’s are processed by alternating between the states

@ and @

On the final d, the parser goes to state 4. From now on the parser
will only execute reductions.
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e The reduction of the rule “S3 ::= d” brings the parser to state @ or
, dependent of the history which is stored on the parse stack.

o Next, the reduction of “Ss ::=a S3” or “Ss ::= b S3” brings the parser

to @ or @
e The reduction of “S; == a Sy” or “S; :=b S3” to @ or .
e The reduction of “Sp := a S1” or “Sp 2= b 57”7 to @ or @

e All subsequent reductions of “Sp ::= a Sp” and “Sy ::= b Sp” keep the
parser in states (D) and @, until the bottom of the stack is reached.

e The GOTO-transition under Sy in state @ at the bottom of the stack
brings the parser to state @ where the input is accepted.

If we remove the rule “Sp ::= b S;” from G3, it becomes G5

Soux=aSy|bSy|as; (Grammar G73)
Sl ::=a5’2 | bSQ

S2 :Z=a.Sglb53

Sg a=d

A graph-like representation of the parse table as generated by a conventional
parser generator for G5 is shown in Fig. 3.9. To represent the full table as a
graph would be difficult to interpret and we only represent the part visited
by the parser during its shift transitions. The states that are visited while
performing the reductions after reading symbol “d’ are left out. For this
parse table holds the same as for that of G3: as from the moment the parser
enters state @ under the final symbol “d”, it will only perform reductions
and arrives finally in an accepting state.

The parse graph of G5 as displayed in Fig. 3.9 shows that states @, ,
@ and @ do have a transition under “d’, while states @, @, @ and
do not have such a transition. This difference expresses whether three
symbols ago an “a” was seen or not. As a consequence, on encountering a
“d”, the parser can continue in the first four states, while it will fail in the
last four.

On reading a’s and b’s, the parser moves around between these states.
This means that each state must express which were the last three symbols
seen. This explains the factor 2" in the number of states needed for grammar
G . To clarify this, we have attached to each state in Fig. 3.9 a triple

n:
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Figure 3.9: Part of the parse graph of G5

describing the last three symbols encountered by the parser in that state.
Going from left to right, the positions in the triple have indices —3 (least
recent symbol) to —1 (most recent symbol). An “F” appearing at some
position stands for “not-an-a”, while “T” stands for “an-a”. In the original
graph of itemsets of G5, this is of course not denoted by such a triple, but
by the combination of the dotted rules in the kernel of the state.

Only those states with “T” at position —3 in their triple, do have a
transition under d to the final state . On reading an “a” or a “b”, the
parser goes to a state of which the triple is shifted one position to the left
and the Boolean at position —1 becomes “T” if the symbol read was an “a”,
“F” if it was a “b”.

The restricted parse table

Fig. 3.10 shows the parse table of (73 restricted to rules in 3. The tran-
sitions to state are removed by the restrictions, as state does not
contain any selected rule in its kernel. We have denoted the restricted tran-
sitions by dashing them.

Now, if a parser works according to this restricted parse table, the transi-
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@

So = Sg ::= b Sy
®

So = a Sl So x=b Sl
@ @

S = S1 :=Db Sy
@

Sy = Sy ::== b S3

Figure 3.10: The parse graph of G5 restricted to G5
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tion under d succeeds always and the parser starts reducing rules. However,
on reducing “S; = a S5” or “S; = b Sy”, the parser needs a GOTO-
transition under the result of the rule, S;. If it needs this transition in
state (1), @) or (0), it is prohibited by the restrictions, as this would mean
that the symbol, three symbols before the d, has been an b instead of the a
needed. In that case, the parser fails after all.

This shows that the restricted parser discovers the error in the sentence
later, but it still is able to discover it with the parse table of G3 restricted
to G3. This example therefore shows that restricted parsing can be used to
simulate a larger parse table with a smaller one.

An interesting consequence of this property of restricted parsing is that
it becomes thus possible to add some rules to a grammar in order to make
the parse table smaller. However, the cases in which this might apply are so
unlikely in practice, that we will not investigate this possibility any further.

3.5 Measurements

3.5.1 Time consumption in a restricted parser

To give an idea of the relative time consumption of the parser, the parser
generator and parser restrictor, we did some measurements on a grammar
that defines two subgrammars, Stacks (12 rules) and Stats (21 rules), which
have Ezpressions (8 rules) in common. We performed the following mea-
surements in succession:

1 Assemble Assemble all rules in a grammar structure

2 Stats Restrict parser to Stats and parse a sentence
(of 110 tokens)
3 Stats Parse the same sentence once more
4  Stacks Restrict parser to Stacks and parse a sentence
(of 60 tokens)
5 Stacks Parse the same sentence again
6 Stats Restrict parser to Stats and re-parse the Stats sentence

7 Assemble Start from scratch and re-assemble all rules in a new
grammar structure

8 Stacks Restrict parser to Stacks and re-parse the Stacks
sentence

As TPG generates parsers by need, the time taken by the first parse of
a sentence is always augmented with the generation time of the part of the
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.25 —
.20 —

Parse time -19 7
(in seconds) 10 —
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Assemble Stats Stats Stacks Stacks Stats Assemble Stacks

Figure 3.11: Eight successive measurements

parser needed to parse it. The results of these measurements are given in
Fig. 3.11 and show the following:

e The difference in parse time used between measurements 2 and 3 shows
how much time was spend to generate the needed part of the parser
for Stats.

e The difference in time consumed between measurements 3 and 6 for
Stats, shows that re-specializing the already generated parser from
Stacks to Stats takes little time.

e The time needed to parse for Stacks differs between measurements 4
and 8: during the generation for Stats in 2, part of the parser for
Ezpressions has already been generated, which was of use for Stacks
also.

3.5.2 Measurements on Pascal

A restricted parser can always be simulated by just using a conventional
parser generator to generate a separate parser for each subgrammar. In this
section we will compare the efficiency of these methods with each other.

As test grammar we take the grammar of Pascal, divided into three
subgrammars: One subgrammar Fzp that describes the syntax of Pascal
expressions, one for its statements Stm and one for complete Pascal programs
Prog. Subset Stm includes Fzp, and Prog consists of all grammar rules and
includes thus both Stm and Ezp. We want to parse sentences according to
each of these subgrammars. We use IPG to generate a parser for each of
the subgrammars, and we use it to generate a parser for Prog which is then
restricted to the three subgrammars.
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1.25 — IPG restricted parsing
1.00 —

Generation time (.75 —|
(in seconds) 0.50

0.25 —

Exp Stm Prog Exp Stm Prog
Figure 3.12: Generation times for subgrammars of Pascal

We performed the following measurements: take three input sentences,
one for each subgrammar, and let them parse in succession by the three
IPG parsers and by the parser restricted to the appropriate subgrammar.
These sentences are chosen in such a way that they cover their grammars
reasonably well, and large part of the parser has to be generated to parse
them. The generation time needed by the two parser generators is shown in
Fig. 3.12.

The generation time used by IPG increases with the size of the grammar.
In the restricted parsing method however, the generation work done for Fxp
is re-used while generating for Stm, which work is used again in Prog. It
clearly uses less generation time for Stm and Prog as IPG needs to do,
however the larger generation time of Ezp is the price paid. It is larger
because the parser for Ezp is generated in an environment of other rules
(those of Stm and Prog), which are taken into account while generating for
Exp.

3.6 Conclusions and future work

Restricting a parser to a subgrammar turns out to be a fast and easy way
to obtain the parser for that subgrammar. The parser thus generated is
not guaranteed to be as efficient as a conventionally generated one, but
in most cases the speed will be comparable. Moreover, it is guaranteed
to recognize exactly the language defined by the grammar. The restricted
parsing technique is already in use as implementation for a modular grammar
formalism and works satisfactorily.

We may extend the technique from LR(0) parse tables to LALR(1) tables.
Both kind of tables can be used by the Tomita parsing algorithm to parse
for general context-free grammars, but parsers will be more efficient with
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the latter kind of tables. We would also like to use the technique to realize
an incremental LALR(1) parse table generator, along the lines sketched in
Section 3.2.2.



Chapter 4

Substring Parsing

A substring recognizer for a language L determines whether a string s is
a substring of a sentence in L, i.e., substring-recognize(s) succeeds if and
only if v, w: vsw € L. The algorithm for substring recognition pre-
sented here accepts general context-free grammars and uses the same
parse tables as the general context-free parsing algorithm from which it
is derived. Substring recognition can be useful for noncorrecting syntax
error recovery and for incremental parsing. By extending the substring
recognizer with the ability to generate trees for the possible contextual
completions of the substring, we obtain a substring parser, which can
be used in a syntax-directed editor to complete fragments of sentences.

4.1 Introduction

A recognizer for a language L determines whether a sentence s belongs to
L. A substring recognizer performs a more complicated job, as it determines
whether s can be part of a sentence of L.

A recently developed substring recognition algorithm [Cor89] uses an or-
dinary LR parsing algorithm with special parse tables. For ordinary parsing,
this parsing algorithm is limited to LR(1) grammars, but the more compli-
cated nature of substring recognition limits it to bounded-context grammars
(see Section 4.3).

We describe a substring recognition algorithm that does not suffer from
this drawback. It accepts general context-free grammars and uses the same
parse tables as our ordinary parser. Our algorithm is based on the pseudo-
parallel parsing algorithm of Tomita [Tom85|, [Chapter 1 of this thesis],
which runs a dynamically varying number of LR parsers in parallel and ac-

83
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cepts general context-free grammars. Next, we extend the substring recog-
nizer into a substring parser that generates trees for the possible completions
of the substring.

4.2 Applications

Before discussing existing proposals to substring parsing (Section 4.3) and
our approach to it (Section 4.4), we mention some possible applications of
the technique.

4.2.1 Syntax error recovery

In its simplest form, a parser stops at the first syntax error found. If it has
to find as many errors in the input as possible, it can try to correct the error
in order to continue parsing. Spurious errors are easily introduced, however,
if the parser makes false assumptions about the kind of error encountered.

Substring parsing can be used to implement noncorrecting syntax error
recovery. If an ordinary parser detects a syntax error on some symbol, the
substring parser can be started on the next symbol to determine whether
the rest of the sentence could be a legal substring. It can thus discover
additional syntax errors. Using this method, it is not necessary to let the
parser make any assumption about how to correct the error, or to let it skip
input until a trusted symbol is found. However, no guarantee is given that
the substrings sequentially found will match with each other.

Richter defines noncorrecting syntax error recovery with the aid of sub-
string parsing and interval analysis in a formal framework [Ric85]. He proves
that his technique does not generate spurious errors, but is not explicit about
its implementation. He notes, however, that there are difficulties in keeping
the substring parser deterministic due to a limitation on the class of gram-
mars accepted. Our technique could be useful here as it implements the
required substring analysis for general context-free grammars.

4.2.2 Completion tool

In Section 4.5 we will show how the substring recognizer can be extended
such that it generates parse trees for the possible completions of a sub-
string. As the total number of possible completions will often be infinite,
only generic completions are generated. A syntax-directed editor could use
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these to complete fragments of sentences in accordance with the grammar
used, or to guess the continuation of what the user is typing.

Snelting presents a technique to complete the right-hand side of unfin-
ished sentences [Sne90]. We will discuss parts of his method in Section 4.5.3.

4.2.3 Incremental parsing

Another application for substring parsing is incremental parsing. An incre-
mental parser builds the parse tree for the current version of its input text
while it re-uses the parse tree generated for the previous version as much
as possible. We will first sketch two possible solutions for the problem of
incremental parsing, and next suggest a third solution based on substring
parsing.

Re-use parser states

Incremental parsing can be performed by attaching parser states to tokens
[Cel78, AD83, Yeh83]. After a modification has been made, the parser is
restarted in a saved state, at a point in the text just before the modification.
Parsing stops when the parser reaches a token after the modification in an
old configuration (if ever).

These methods are very good as to minimizing the amount of recompu-
tation after a modification, but require a huge amount of memory for storing
the states of the parser (parse stacks with partial parse trees as elements).

Abbreviate sentence

Ghezzi and Mandrioli present an alternative technique for incremental pars-
ing [GMT79, GM80]. If the string zZzgy is modified to zZ2gy, where  and g
have length £, with k£ the look-ahead used by the parser, then the parse trees
previously generated for x and y are still valid after the modification. All
subtrees previously generated for x and y can thus be abbreviated by their
top non-terminals, which minimizes the length of the string to be reparsed.

This technique is both time and space efficient, but is not applicable
to general context-free parsing as it requires a fixed look-ahead. In our
particular case, we need incremental parsing in a syntax-directed editor that
uses the Tomita parser. By running a varying number of LR-parsers in
parallel, the Tomita parser adjusts its look-ahead dynamically to the amount
needed, and is thus not limited to an a priori known k.
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Reparse a subtree only

Incremental parsing can also be achieved in another manner: after a mod-
ification has been made in the text, find the substring s’ belonging to the
smallest subtree that contains the modification in the stored parse tree. If
the type of this subtree is 7" and s’ can be parsed as a tree of type T also,
the old subtree can be replaced by the new one. If s’ fails to parse, it may be
the case that the modification introduced a syntax error, or that the subtree
has been chosen too small. These two cases must be distinguished, as the
incremental parser proceeds in a different way in each case.

A substring parser can provide a hint as to which of the two possibilities
is actually the case. If the substring parser fails on s’, the modification will
be syntactically incorrect in any context, and an error message can be given.
If the substring parser succeeds, a larger subtree is chosen and parsing is
retried.

This can be more time consuming than remembering parser states, but
the amount of memory needed is far less. We consider using this scheme in
the syntax-directed editor GSE [Koo], but it has to be investigated further
as the technique still performs a lot of work twice.

4.3 Related work

Cormack [Cor89] describes a substring parse technique for Floyd’s class of
bounded context or BC(1,1) grammars [Flo64], and implements the substring
parser Richter mentions [Ric85]. A grammar is BC(1,1) if for every rule A ::=
a, if some sentential form contains aab where « is derived from A then « is
derived from A in all sentential forms containing aab. This class is smaller
than LR(1). The solution of Cormack consists in using an ordinary LR
automaton, but a special parse table constructor. The sets of items generated
do not only contain items of the form A ::= .8 but also “suffix items” of
the form A ::= --.-.3. These suffix items denote partial handles whose
origins occur before the beginning of the input. The generated parse tables
are deterministic, provided that the grammar is BC(1,1). This substring
parser is used for noncorrecting error recovery in a parser for Pascal. The
limitation on the class of the grammar caused problems in the definition of
Pascal, which where alleviated by permitting the parse table generator to
rewrite the grammar if necessary.

Lang describes a method for parsing sentences containing an arbitrary
number of unknown parts of unknown length [Lan88]. The parser produces
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a finite representation of all possible parses (often infinite in number) that
could account for the missing parts. The implementation of this method is
based on Earley parsing [Ear70]. The basic idea of Lang’s method is that
“in the presence of the unknown subsequence “x”, scanning transitions may
be applied any number of times to the same computation thread, without
shifting the input stream.” This process terminates, as parsers in the same
state are joined and the number of states is finite.

This method is very elegant and powerful, and can be used as a substring
parser (by providing it with the string “xs%”). We will not use it, however, as
it is more general than what we need. Whether it would be efficient enough
for interactive purposes is unclear.

4.4 Substring Recognition

4.4.1 Tomita parsing

We base the implementation of our substring parser on Generalized LR pars-
ing [Tom85], [Chapter 1 of this thesis]. This technique runs several simple
LR parsers in parallel. It starts as a single LR parser, but, if it encounters
a conflict in the parse table, it splits in as many parsers as there are con-
flicting possibilities. These independently running simple parsers are fully
determined by their parse stack. When two parsers have the same state on
top of their stack, they are joined in a single parser with a forked stack. A
reduce action which goes back over a fork in a parse stack, splits the cor-
responding parser again into two separate parsers. If a parser hits an error
entry in the parse table, it is killed by removing it from the set of active
parsers. The possibility to run several parsers in parallel makes the Tomita
algorithm very well suited for substring parsing.

For a full description of the GLR parsing algorithm we refer to Tomita
[Tom85], to Nozohoor-Farshi who corrected an error in the algorithm con-
cerning e-productions [NF89], or to Rekers who extended the algorithm to
the full class of context-free grammars by including cyclic grammars' [Chap-
ter 1 of this thesis]. For a detailed explanation of LR parsing [ASU86, chapter
4.7] is recommended.

1Grammars in which A== A4 is a possible derivation.
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4.4.2 The grammar

The grammar according to which the substring recognition algorithm works,
should not contain useless symbols. According to [HU79, page 88|, a symbol
X is called useful if there is a derivation S==aX f==w for some «, 5 and
w, where w is in T™*. Useless symbols can be identified easily, and all rules in
which they appear should be removed from the grammar. Such a clean-up
operation does not affect the language recognized.

Unreachable symbols and rules do not influence our method of substring
parsing, as these are already ignored by the parse table generator. This is
due to the fact that LR parse tables are generated top-down, starting with
the start symbol of the grammar, and that unreachable symbols and rules
are, by definition, unreachable from the start symbol.

Symbols and rules which cannot produce any terminal string should be
removed from the grammar however. These can cause the substring parser
to succeed on a string s, while no string vsw exists in L.

4.4.3 The algorithm

If we have to determine whether a string ag - - - a,, is a substring of a sentence
in a language L, we start the substring recognition process by generating,
for each state directly reachable under ag, a parser with this state on its
stack. These parsers will process a1 - - - an,.

We will show how an individual parser processes an action, but we will
not discuss the management of the different parsers, as this is done in the
same way as in ordinary Tomita parsing.

The parser obtains an action from the parse table with the state on top
of its stack and with input symbol a,. This can be a shift, error or reduce-
action, and is processed in the following manner:

e A (shift state’)-action is processed as in normal parsing: state’ is
pushed on the stack and the parser is ready to process aj1.

e An (error)-action removes the parser from the set of active parsers.
e A (reduce A ::= af3)-action is processed as follows:

— If there are at least |a8| + 1 entries on the parse stack the reduce
action is performed as in normal parsing: |o3| entries are popped
off the stack, and the parse table is consulted, with the state
remaining on top of the stack and A, to obtain a state to push
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on the stack again. The parser is now ready to continue the
processing of a.

— If there are only |3| entries on the stack, only § has been recog-
nized of A ::= af; « lies before ag and should produce (a part
of) a prefix of ag. This is possible, as all non-terminals in « can
produce some terminal string, and all terminals in « trivially do.
So the reduction A ::= af may be performed, and parsing may
continue in the states which can be reached directly by a tran-
sition under A. For each of these valid states a new parser is
started with that state on the stack. These parsers all proceed to
process ag.

— If there are exactly |a(| entries on the stack, ag---ag—; reduces
to a0, but the context in which A is to be used is unknown. This
is handled in the same way as the previous case.

If there are no parsers left alive after the processing of a,, the substring
parser fails. If there are parsers left, these are currently recognizing rules
A == af, of which (a part of) a has been recognized. As every (8 can
produce some terminal string, these rules can all be finished. This means
that the substring parser succeeds if there are parsers remaining after the
processing of a.,.

4.4.4 The parse table generator

The substring parser is controlled by the same parse table as our ordinary
parser. To generate this parse table we use an extended version of the
lazy and incremental parser generator IPG [Chapter 2 of this thesis|. The
extension concerns the need of the substring parser to know all states which
can be reached by a transition under a given symbol. This function needs
global information about the parse table, which means that the whole parse
table must be known. As a consequence, the lazy aspect of IPG cannot be
exploited here and the parse table must be fully expanded. The expanded
parse table can of course also be used by the ordinary parser.

4.5 Substring Parsing

We extend the substring recognizer into a substring parser by generating
parse trees for substrings. The possible parse trees for a substring s are
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the parse trees of all sentences vsw for which vsw € L holds. To limit the
number of completions we allow v and w to consist both of terminals and
non-terminals, and we generate a parse tree, corresponding to a sentential
form 01509, only when the frontier of each of its subtrees contains at least
one symbol of s; i.e., we do not generate subtrees whose frontier lies entirely
within o1 or g3. The trees that we generate are the most general trees, as
it is not possible to replace any of their subtrees by a non-terminal without
removing part of the substring s. Even so, the number of completions can
still be infinite. In Section 4.5.3 we will discuss how to limit this number
still further.

4.5.1 Example of a completion
For the following grammar

start ::= Stat (A small grammar)
start ::= Exp

Stat ::= if Exp then Stat

Stat ::= if Exp then Stat else Stat

Stat ::= Id := Exp

Exp = 1d

Exp ::= Int

Exp ::= Exp + Exp

Exp := Exp * Exp

Exp = ( Exp )

and the string “) + 5 then if”, a possible completion is the sentential form
if ( Ex

) + 5 then if Exp then Stat
1 s 72

J

whose parse tree is given in Figure 4.1. To distinguish the leaves of s from
those of o1 and o9, the former are printed in boldface.

4.5.2 Generating the completions of a substring

LR parsers generate parts of parse trees during a reduction step. On reducing
A = @, the parse stack contains the subtrees created for a. These are
agssembled in a new node of type A and the subtree created in this way is
pushed on the stack. In the substring parser ordinary reductions are treated
in the same way.
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START
|
Stat
ST
if Exp then Stat

STIN ST

Exp 4+ Exp if FExp then Stat

( Exp ) Int(5)

Figure 4.1: A completion of “) + 5 then if”

If the rule A ::= af is reduced with only nodes for 8 on the stack,
however, additional nodes are created for . In this way, the parse trees for
the possible prefixes of s are created.

Parse trees for postfixes of s are created in the same way: after process-
ing s, the parser has to finish all rules which are in the process of being
recognized. These are the rules in the kernel of the current state of the
parser. If only « has been seen from a rule A ::= a8, the rule is reduced
and additional nodes are created for 8. It can even be the case that only
has been recognized from a rule A ::= a8y, and that nodes must be created
for both a and 7.

4.5.3 Further reduction of the number of possible comple-
tions

By producing only parse trees that are most general, the number of possible
completions is reduced, but it is often still too large and not even always
finite. We propose the following rules to limit this number still further:

1. The parse trees generated are kept as compact as possible by disallow-
ing reductions of rules of the form A ::= aA, A ::= A3, and A ::= AQ,
where only A has actually been recognized and all elements of o and
B would produce elements in o1 or oy. Clearly, such reductions can be
repeated infinitely often. They are undesirable as they only enlarge o
or os9.

For example, the substring “) + 5 then if” also has a possible com-
pletion

if Exp + ( Exp ) + 5 then if Exp then Stat

o1 s 02
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START
|
Stat
ST
if Exp then Stat

STIN ST

Exp 4+ Exp if FExp then Stat

I

Exp + ExpInt(5)

PN

( Exp )

Figure 4.2: Another possible completion of “) + 5 then if”

whose parse tree is given in Figure 4.2. In this tree a subtree for the
rule Exp ::= Exp + Exp has been inserted in the prefix.

. The number of possible sentential forms for which parse trees are gen-

erated is now finite, but these can still have infinitely many parse trees
as the grammar may be cyclic. Rekers describes how to parse and gen-
erate parse graphs for cyclic grammars [Chapter 1 of this thesis]. The
cycles generated in this graph can be removed by his routine remove-
cycles. The same approach can be used for substring parsing, and this
results in a finite number of most general completions.

. In the generation of the postfixes of s a choice can be made for the

“simplest” completion. That is, if a substring can be completed ac-
cording to both A ::= af and A := av, and |B| < |y|, we prefer
A ::= af. In the example of Figure 4.1 this rule forbids the choice of
the “if-then-else” rule, as the “if-then” rule already applies. Snelting’s
rule “prefer reduce items over shift items” [Sne90| is similar to ours.
His rule can also be formulated as: if completion according to both
A = a and B == ay (v # €) is possible, then prefer A ::= a. We
consider our rule more appropriate, as we take the case of 3 being
non-empty but shorter than < into account as well, and we only make
the choice if the two rules reduce to the same non-terminal. Other-
wise, the rule A ::= a might be preferred over B ::= a-y, whereas the
environment in which the substring is completed needs a tree of type
B.
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Figure 4.3: Comparison of the substring recognizer with an ordinary recog-
nizer
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4.6 Measurements

Our first measurement compares the substring recognizer with the Tomita
recognizer from which it was derived to learn the additional costs of substring
parsing.!

We have taken a grammar of about twenty rules and sentences of increas-
ing length. These were parsed by the Tomita recognizer first. The resulting

1P}

parse times are indicated in Figure 4.3 with a “e”. Next, the same strings

!The measurements have been performed on a SUN SPARC station. The programs
have been written in Lisp. The time used by the lexical scanner has not been taken into
account.
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minus a randomly chosen prefix were given to the substring parser. The
required times are indicated in Figure 4.3 with a “o”.

The measurements show that the substring parser has a moderate over-
head with respect to the normal parser. This overhead can be interpreted
as the time needed for the substring parser to get on the “right track”. As
our next measurements show, the variations in this overhead are caused by
the random cutting of the string. For some strings it takes longer than for
others to determine of which language construct it can be a substring. The
larger the grammar is, the more alternatives are available and therefore the
higher the variation.

In Figure 4.4 we compared the time taken by the substring parser on 30
randomly chosen parts of Pascal sentences of 100 tokens. The dots indicate
the amount of time needed and they are attributed with the first symbol
of the substring. These measurements show that sentences starting with a
token that can appear in many differents contexts, like “Id” or “)”, take
more time to recognize than sentences starting with a disambiguating token
hke “Z=” or “else”.

4.7 Conclusions

The adaptation of the Tomita algorithm to substring parsing results in a
very elegant and powerful algorithm. The main advantage of the fact that it
accepts general context-free grammars and uses ordinary LR parse tables is
that substring parsing can now be applied in a very general manner, instead
of only to carefully written grammars and at the cost of an extra generation
phase.

Substring parsing is slower than ordinary parsing, but this will not be
a serious drawback for its application as an error recovery technique or as
a completion tool. The use of the substring parser in incremental parsing,
however, has to be investigated further.



Chapter 5

From BNF to SDF

The syntax definition formalism SDF is introduced by developing an
SDF definition for a subset of Pascal. The main points of interest are
the modular decomposition of the grammar, the readability of the def-
inition, and the behaviour of the editor generated from this definition.

5.1 Introduction

SDF is a formalism for the definition of syntax, which is comparable to BNF
in some respects, but has a wider scope, in that it also covers the definition
of lexical and abstract syntax and the behaviour of a syntax directed editor.
Its design and implementation are tailored towards the language designer
who wants to develop new languages as well as implement existing ones in
a highly interactive manner.

SDF emphasizes compactness of syntax definitions by offering (a) a stan-
dard interface between lexical and context-free syntax; (b) a standard cor-
respondence between context-free and abstract syntax; (c¢) powerful disam-
biguation constructs; (d) list constructs; and (e) an efficient incremental
implementation which accepts arbitrary context-free syntax definitions.

In this paper we discuss a number of points which should be considered
while writing an SDF definition. We do this in a tutorial manner, by trans-
lating a given BNF grammar, in a number of steps, into an SDF definition.
Aho, Sethi and Ullman in [ASU86, appendix A] define a subset of Pascal
by means of a BNF grammar and some explanations in English. We have
chosen this grammar because it is well known, not too large, the language
defined needs little explanation and it is not completely trivial.

95
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We will develop a parser and a syntax directed editor for the language
described by using the SDF formalism and implementation. First, we will
decompose the grammar into modules and next translate the BNF grammar
into an SDF definition. Finally, we will make several modifications to the
SDF definition in order to improve the readability of the grammar, make it
shorter, and enhance the quality of the syntax directed editor derived.

The syntax definition formalism SDF has been introduced in [BHKS89,
chapter 6] and is fully described in the SDF reference manual [HHKRS89).
The implementation of SDF used is the ASF+SDF system [K1i91b, Hen91],
but we will not use the semantic part, ASF, of this system [BHK89, Wal91].
The ASF+SDF system heavily depends on the generalized syntax directed
editor GSE [Koo].

Interesting SDF definitions can be found in [BHK89, chapter 9], [Hen91,
chapter 4], [Meu88] and [Deu91]. SDF is also used to define the syntax
of the language uCRL in [Gro91, chapter 7] and for that of LOTOS in
[JJWWO90b, JJWWO90a].

5.2 Deciding on a modular decomposition

The BNF grammar in [ASU86, appendix A] is a flat list of grammar rules,
while SDF allows modular grammar definitions. An SDF module contains
local definitions and may import other modules. The import relation be-
tween modules is transitive. It is of course possible to use just one SDF
module for the entire grammar, but a modular structure makes it easier to
understand and test the definition.

How do we split the BNF grammar into modules such that they represent
clear conceptual entities of the language described? A good way to start this
decomposition is to look at the grammar as a graph. Each non-terminal (or
lexical token) N is a node, and for each rule that defines N and uses non-
terminals Ny - -- N, edges are added from each N; to N. Edges that go from
N to N are left out.

We will not show this graph for the entire grammar, but only for the
part of the grammar defining non-terminal statement. These grammar rules
are shown in Fig. 5.1.

The graph for this part of the grammar is shown in Fig. 5.2. We will
gradually transform this dependency graph between non-terminals into an
import graph between modules.

The graph thus obtained contains cycles (or strongly-connected compo-
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statement — variable assignop ezpression
| procedure_statement
| compound_statement
| if ezpression then statement else statement
| while ezpression do statement

variable — id | id [ expression |

procedure_statement — id | id ( ezpression_list)

compound_statement — begin optional_statements end

optional_statements — statement_list |

statements_list — statement | statements_list 5 statement

expression_list — expression | expression_list , expression

expression — simple_expression | simple_expression relop simple_expression
stmple_expression — term | sign term | simple_expression addop term
term — factor | term mulop factor

factor — id | id ( ezpression_list) | num | ( ewpression) | not factor

sign — + | —

Figure 5.1: The grammar for non-terminal statement
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statement
compound procedure .
statement sta,te]{nent variable \
optional expression <+— relo
statements p P
statement simple sign
list expression addop
term mulop
factor not
d o expression
list

Figure 5.2: The use-def graph of the grammar for statement

Statements
procedur/ *
statement variable relop
\ )é sign
Expressions -«— addop
\\’\ + “i mulop
id num not

Figure 5.3: The graph of Fig. 5.2 after removing cycles

Statements

T~

Expressions-e— Operators

/

Tokens

Figure 5.4: The graph of Fig. 5.3 with unified nodes
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Program
Subprograms
Declarations Statements

'

Expressions <«— Operators

Tokens /

Figure 5.5: The modular structure for the entire grammar

nents). If nodes Nj--- N, are strongly-connected, we take them together
into one node. As a result, the nodes for the non-terminals statement and
ezxpression, and all nodes in the cycle emanating from them, are replaced by
the modules Statements and Expressions.! Having done this, the graph of
Fig. 5.2 collapses to the one of Fig. 5.3.

The graph as it is now introduces many small and uninteresting modules.
We prefer to take nodes together which describe objects of the same kind.
For example, relop, sign, addop, mulop and not describe expression operators
and will be taken together into one module Operators. The non-terminals
procedure-statement and variable are only needed to describe the more im-
portant non-terminal statement, and do not really represent a new concept.
So we add these to module Statements. Finally, we take id and num together
into one module Tokens as they describe closely related objects. The graph
of Fig. 5.3 then becomes as in Fig. 5.4.

One could argue that the link between Tokens and Statements could be
discarded, as module Tokens is already imported in Statements via Fxpres-
sions. We prefer to keep the link explicit, however, as it represents the
fact that objects of module Tokens are used by module Statements directly.
This additional import relation does not have any effect in the ASF+SDF
formalism.

If we perform the same process for the complete grammar of the subset
of Pascal, we end up with the modular structure as depicted in Fig. 5.5.
This subdivision results in reasonably sized modules, which all describe clear
subconcepts of the entire language.

We remove the cycles only for aesthetic reasons: The ASF+SDF system handles them
by automatically combining all modules in a cycle and displaying a warning message.
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The graph could be simplified even further by joining modules Program
and Subprograms. We prefer to keep these distinct however, as a separate
module Subprograms implies that a separate editor will be generated which
only allows function and procedure declarations to be edited.

5.3 Translating BNF rules into SDF functions

The translation from a BNF grammar into an SDF definition is quite easy.
For example, the BNF rule

statement — while expression do statement
just corresponds to an SDF context-free function
while Expression do Statement -> Statement.

Non-terminals, which are called sorts in SDF, must start with an upper-
case letter and be declared in a sorts section. Terminals must be quoted,
unless they consist entirely of letters and start with a lowercase character.

In the lexical syntax section of an SDF definition one defines the internal
structure of tokens and the characters that will serve as layout. In most
cases it is harder to translate lexical conventions into SDF, as SDF only
knows a few regular expression operators and forbids e-rules in the lexical
syntax part.

5.3.1 Module Tokens

The rules given in [ASU86, appendix A] for tokens id and num are the
following:

letter — [a-zA-Z]
digit —  [0-9]
id — letter ( letter | digit )*
digits — digit digit*
optional-fraction — . digits | €
optional-exponent — (E (+|—|¢) digits ) | €
num — digits optional-fraction optional-exponent

These rules can be expressed in SDF as follows:
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exports
sorts
Id Num Letter Digit Letter-or-Digit Digits Fraction Exponent
lexical syntax

[a-zA-Z] -> Letter

[0-9] -> Digit

Letter -> Letter-or-Digit
Digit -> Letter-or-Digit

Letter Letter-or-Digit* -> Id

Digit+ -> Digits
"." Digits -> Fraction
"E" Digits =-> Exponent
"E" [+\-] Digits -> Exponent
Digits =-> Num
Digits Fraction => Num
Digits Exponent => Num

Digits Fraction Exponent -> Num

This SDF definition of module Tokens is still quite hard to read and
contains many sorts which could be circumvented easily. We consider the
following SDF definition of module Tokens more appropriate.

exports
sorts
Id Digits Num
lexical syntax

[a-zA-Z] [a-zA-Z0-9]%* -> Id
[0-9]+ -> Digits
Digits => Num
Digits "." Digits =-> Num
Digits "." Digits "E" Digits => Num
Digits "." Digits "E" [+\-] Digits -> Num
Digits "E" Digits => Num
Digits "E" [+\-] Digits -> Num
Layout

The rules given in [ASU86, appendix A] for comments and blanks are:

1. Comments are surrounded by { and }. They may not contain a }.
Comments may appear after any token.

2. Blanks between tokens are optional, with the exception that keywords
must be surrounded by blanks, newlines, the beginning of the program
or the final dot.

We express these in SDF as follows:
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lexical syntax
[ \t\n] -> LAYOUT
||{|| ~[}]* u}u -> LAYOUT

The predefined sort LAYOUT can be used to declare which parts of the
input have no meaning as separate lexical constructs. The first rule defines
the space, the tab (\t) and the newline (\n) as layout. The second rule
defines the following sequences as layout: A {, followed by zero or more
characters which may not be }, finished by a }. This definition carefully
disallows } inside comments, as the scanner generated always tries to find
the longest match. A sequence “{jan} 7 {rekers}” would otherwise be
recognized as one long comment string, instead of two short ones with an
integer in between.

We add these two layout-rules to module Tokens, as the modular struc-
ture as designed in Section 5.2 will export these to all modules which need
to separate lexical constructs.

5.3.2 Module Operators

The main question to answer for module Operators is whether the rules
should be in the lexical or in the context-free syntax part. The difference
is that literals in the context-free syntax part are given priority over tokens
described by the lexical part. These two SDF definitions differ in the place
where “mod” is declared:

exports exports
sorts Id Mulop sorts Id Mulop
lexical syntax lexical syntax
[a-z]+ -> Id [a-z]+ -> Id
mod => Mulop context-free syntax

mod => Mulop

The first one recognizes “mod” both as Id and Mulop, the second one as
Mulop alone.

It is not entirely clear from [ASU86, appendix A] whether the expression
operators should be interpreted as keywords or not. Here we have made
the choice that they are reserved words and we place them in a context-free
syntax section.

exports
sorts
Sign Relop Addop Mulop Not
context-free syntax
II+II _> Si@ n_n _> Sign
"="  => Relop "<>" => Relop "<" => Relop
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"<=" -> Relop ">=" -> Relop ">"  -> Relop
"+ -> Addop "= -> Addop or -> Addop
"x"  -> Mulop n/" => Mulop div -> Mulop
mod => Mulop and => Mulop

not => Not

5.3.3 Module Ezpressions

The first translation of the rules for the expressions in [ASU86, appendix
A] would be the following SDF definition. This definition however can be
improved on several points.

imports
Tokens Operators

exports
sorts
Expression-list Expression Simple-expression Term Factor
context-free syntax

Expression -> Expression-list
Expression-list "," Expression -> Expression-list
Simple-expression -> Expression
Simple-expression Relop Simple-expression -> Expression

Term -> Simple-expression
Sign Term -> Simple-expression
Simple-expression Addop Term -> Simple-expression
Factor => Term

Term Mulop Factor -> Term

Id -> Factor

Id “(" Expression-list ")" -> Factor

Num -> Factor

"(" Expression ")" -> Factor

Not Factor -> Factor

Improving the behaviour of the editor created

The syntax directed behaviour of the editor created for an SDF module is
completely determined by the abstract syntax defined in that module. This
behaviour concerns the manner in which the focus can be moved through
the text and the possibilities offered by the expand menu.

A consequence of the current version of module Fxpressions is, for ex-
ample, that two expand steps are needed to insert a +-expression. First a
not yet filled in <Expression>-hole must be expanded to
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<Simple-expression> <Addop> <Term>,

and next <Addop> to +.!

To improve this expand-behaviour, we rewrite the SDF definition of mod-
ule Ezpressions such that the intermediate steps for the operators are omit-
ted. This has as consequence that module Operators disappears.

imports
Tokens

exports
sorts
Expression-list Expression Simple-expression Term Factor
context-free syntax

Expression -> Expression-list
Expression-list "," Expression -> Expression-list
Simple-expression -> Expression
Simple-expression "=" Simple-expression -> Expression
Simple-expression "<>" Simple-expression -> Expression
Simple-expression "<" Simple-expression -> Expression
Simple-expression "<=" Simple-expression -> Expression
Simple-expression ">=" Simple-expression -> Expression
Simple-expression ">" Simple-expression -> Expression

Term -> Simple-expression
"+'" Term => Simple-expression
"-" Term -> Simple-expression
Simple-expression "+" Term => Simple-expression
Simple-expression "-" Term -> Simple-expression
Simple-expression or Term -> Simple-expression
Factor => Term

Term "*" Factor -> Term

Term "/" Factor -> Term

Term div Factor => Term

Term mod Factor -> Term

Term and Factor => Term

Id -> Factor

Id "(" Expression-list ")" -> Factor

Num -> Factor

"(" Expression ")" -> Factor

not Factor -> Factor

This results in just one step to expand <Expression> to

<Simple-expression> + <Term>.

1The step from Simple-expression to Ezpression is taken automatically by the editor.
This happens for all injections of the form A — B.
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Term in module Expressions
O tree text expand help

reduce fun{a [t{ b * 66.7, 4, <Expression>, f(a)) E
*
x

=)

Figure 5.6: A click on the “+” just places the focus on the “+”

Term in module Expressions
O tree text expand help

reduce funfa # b * 66.7, 4, <Expression>, fla)) E

db

Figure 5.7: A click on the “+” now shows the complete expression

Another consequence of the modification is that the so-called “clicking
behaviour” improves. With the former definition, a click at the “+” in

a+b *x 66.7

resulted in a focus around the “+” alone (see Fig. 5.6). The user of the editor
has to zoom out one level in order to see that the “+” takes “a” on the one
side and “b * 66.7" on the other side as its arguments. With the modified
definition, this is displayed directly (as is shown in Fig. 5.7).

The syntax directed editor always tries to place the focus around the
smallest subtree containing the character clicked at. In the previous defini-
tion, the “+” introduced a separate subtree, which is no longer the case with

the modified definition.

Using the SDF priority declarations

The SDF definition we now have, codes the priority relations between the
different expression operators by using four expression levels: FEzpression,
Simple-expression, Term and Factor. This is quite cumbersome to write and
can be expressed much easier by using the priority mechanism of SDF.

There are three different disambiguation constructs which may be used
in an SDF definition.

o Context-free functions may be provided with an associativity attribute.
For example, E "+" E -> E {left} states that this rule is left asso-
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ciative, and that a sentence a + b + ¢ should be read as (a + b) +
C.

e In the priorities section one can define the relative priority between
rules. For example,

priorities
E ll*ll E _> E > E ||+l| E _> E

states that the "*" binds stronger than the "+", and that a + b * ¢
should beread asa + (b * c),anda * b + cas (a * b) + c.

e One can also define associativities between rules in the priorities sec-
tion. For example,

priorities
{left: E "+" E -> E, E "-" E -> E}

states that these rules are mutual left associative. This means that a
+ b - c should be interpreted as (a + b) - c,anda - b + cas (a
- b) + c.

The rules in the priorities section may be abbreviated to their keyword skele-
ton, provided that this skeleton is unique.

The translation from priority relations coded in a grammar to SDF pri-
ority declarations is not trivial and should be performed with great care.
General rules cannot be given for this translation, as the two mechanism
have different expressive power. We refer to [HHKRS89, section 6] for a more
in depth explanation of the disambiguation constructs of SDF.

imports
Tokens

exports
sorts
Expression Expression-list
context-free syntax

Expression -> Expression-list
Expression-list "," Expression -> Expression-list
Expression "=" Expression -> Expression {non-assoc}
Expression "<>" Expression -> Expression {non-assoc}
Expression "<" Expression -> Expression {non-assoc}
Expression "<=" Expression -> Expression {non-assoc}

Expression ">=" Expression -> Expression {non-assoc}
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Expression ">" Expression ->
"+!" Expression ->
"= Expression ->
Expression "+" Expression ->
Expression "-" Expression ->
Expression or Expression ->
Expression "*" Expression ->
Expression "/" Expression ->
Expression div Expression ->
Expression mod Expression ->
Expression and Expression ->
not Expression ->
Id ->
Id “(" Expression-list ")" ->
"(" Expression ")" ->
Num ->
priorities
{non-assoc: ||=u’ ||<>||’ ||<||’ ||<=u’ ||>=||’ ||>||} <
{ "-" Expression -> Expression,

"+" Expression -> Expression,
Expression "+" Expression -> Expression,

Expression "-

or } <

" Expression -> Expression,

{left: "x", "/", div, mod, and}

priorities

{left: Expression "+" Expression -> Expression,
Expression "-" Expression -> Expression,

or }

Expression {non-assoc}

Expression
Expression
Expression {left}
Expression {left}
Expression {left}

Expression {left}
Expression {left}
Expression {left}
Expression {left}
Expression {left}
Expression

Expression
Expression
Expression {bracket}
Expression
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Using the priorities makes the definition easier to read and results in entries
in the expand menu which are just

Expression "*" Expression -> Expression

instead of

Term "x" Factor —-> Term.

The latter contains too much low level information with which a user should

not be troubled.

A second benefit of using the priority declarations is that the editor is able
to decide for itself when it is necessary to insert brackets around expressions
in order to avoid priority conflicts. Fig. 5.8 shows an edit session in which

this happens.
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Term in module ExpressionsZ]
O tree text expand help

reduce I
a Term in module Expressionsa]

O tree text expand help

p £ 3
FECUEe) & » Term in module Expressionsd]
O tree text expand help

reduce 2 (4 + h) E

Figure 5.8: Automatic bracket insertion

Term in module Expressions
O tree text expand help

reduce |-Fup( T b * B

. 4, <Ewpression>, -F(a))| E

SOF disambiguator: Flease select an operator binding
The 5DF parser has found an ambiguous text part

In: ./Test.expressions

Please select an aoperator binding

Show text part{ <Expression> + <Expression? } * <Expression’

{Expression> + ( <Ewpression> * <{Ewpression> )

Figure 5.9: Choosing between ambiguous possibilities

Unsolved ambiguities

The internal conduct of the ASF+SDF system regarding disambiguation is
the following. First, the parser generates all parse trees that are possible
according to the definition, disregarding the priority and associativity dec-
larations. Next, these possibilities are weeded, by first removing trees that
contain a priority conflict, and next by ordering the trees in accordance to
the priorities and choosing the “largest” one. Finally, the remaining parse
tree is converted into an abstract syntax tree, which is used in the editor.

In the case that the definition is ambiguous and there is more than one
remaining parse tree, the user of the editor is asked to make a choice. Such
a question indicates that an additional priority declaration might be needed
to disambiguate these automatically in the future.

For example, if we take the most recent definition of module Ezpressions
and leave the priority section out, a sentence like “a + b * 66.7” would be
ambiguous. The user is then asked for a choice as is shown in Fig. 5.9.
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5.3.4 Module Statements

The rules for the statements in [ASU86, appendix A] can be translated
directly into the following SDF module:

imports
Tokens Expressions

exports
sorts
Compound-statement Statement
Optional-statements Statement-list
Variable Procedure-statement
context-free syntax

begin Optional-statements end => Compound-statement
Statement-list -> Optional-statements
-> Optional-statements

Statement => Statement-list
Statement-list ";" Statement -> Statement-list
Variable ":=" Expression -> Statement
Procedure-statement -> Statement
Compound-statement => Statement
if Expression then Statement

else Statement -> Statement
while Expression do Statement -> Statement
Id -> Procedure-statement
Id "(" Expression-list ")" -> Procedure-statement
Id -> Variable
Id "[" Expression "]" -> Variable

Using SDF lists

SDF supports the following list constructs which may be used in the left-
hand side of context-free functions:

S* Zero or more repetitions of S
S+ One or more repetitions of S
{S t}* Zero or more repetitions of S, separated by ¢
{S t}+ One or more repetitions of 9, separated by ¢

Advantages of using these list constructs of SDF, instead of coding lists in
the grammar, are

e definitions become shorter and easier to read,
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e the trees generated contain flat lists of elements, instead of nested ones,
which makes it easier in the semantic part of the definition to obtain
an element of a list, and

e the insert-hole functionality of the generated editors becomes available.

The rules for Optional-statements and Statement-list can then simply be re-
placed by {Statement ";"}*. The definition of module Statements becomes
in that case:

imports
Tokens Expressions

exports
sorts
Compound-statement Statement Variable
context-free syntax

begin {Statement ";"}* end -> Compound-statement
Compound-statement -> Statement
Variable ":=" Expression => Statement
if Expression then Statement
else Statement => Statement
while Expression do Statement => Statement
Id -> Statement
Id "(" {Expression ","}+ ")" -> Statement
Id -> Variable
Id "[" Expression "]" -> Variable

The declaration of the sort Ezpression-list and its grammar rules can also
be removed from module Ezpressions.

5.3.5 Module Declarations

Now that we use the SDF list constructs, the translation of module Decla-
rations becomes:

imports
Tokens

exports
sorts
Declaration Type Standard-type
context-free syntax

var {Id ","}+ ":" Type ";" -> Declaration
Standard-type -> Type
array "[" Num ".." Num "]" of Standard-type -> Type

integer -> Standard-type
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real -> Standard-type

One could consider to remove the sort Standard-type and use four rules
that define Type, like

integer -> Type
real -> Type
array "[" Num ".." Num "]" of integer -> Type
array "[" Num ".." Num "]" of real -> Type

This would improve the “expand behaviour” again, as a user can then
in one step insert an array of reals. However, the sort Standard-type is also
used in module Subprograms; this would mean that the declaration of integer
and real functions has to be separated also, which seems less natural. So we
choose to leave module Declarations as it is.

This deliberation shows that with SDF, in which one defines many syn-
tactic aspects simultaneously, an advantage for one component can be a
disadvantage for another. This is in contrast to systems providing a dif-
ferent formalism for each of the subcomponents. These give more freedom
to the writer of a specification. Definitions in SDF are, on the other hand,
much more compact.

5.3.6 Module Subprograms

The rules for function and procedure declarations can also be expressed easily
in an SDF module.

imports
Declarations Statements

exports
sorts
Subprogram-declaration Subprogram-head Arguments Parameter
context-free syntax
Subprogram-head Declaration* Compound-statement ";" =>
Subprogram-declaration

function Id Arguments ":" Standard-type ";" -> Subprogram-head
procedure Id Arguments ";" -> Subprogram-head
"(" {Parameter ";"J}+ ")" -> Arguments

=> Arguments
{Id ","}+ ":" Type => Parameter

A consequence of this definition however is that if the user clicks at the
keyword “function”, only the function heading will be taken in the focus,
instead of the entire function. See Fig. 5.10.
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Term in module Subprograms El
O tree text expand help

reduce

function ged(a,b: integer): integer;

begin

if b=B then gcd = a

else god := gedibh, a mod b)
end;

Figure 5.10: A click on “function” places only the heading in the focus

Term in module Subprograms El
O tree text expand help

reduce

function godf{a,b: integer}: integer;
hegin

if b=B then gcd := a

else god := godib, a mod bl

end;

Figure 5.11: The entire function declaration is placed in the focus

We consider this undesirable and we modify the definition in order to
obtain the “click behaviour” as shown in Fig. 5.11. This leads to long (and
harder to read) rules, but this is the only price paid.

imports
Declarations Statements

exports
sorts
Subprogram-declaration Arguments Parameter
context-free syntax
function Id Arguments ":" Standard-type
Declaration*
Compound-statement ";" => Subprogram-declaration
procedure Id Arguments ";"
Declaration*
Compound-statement ";" -> Subprogram-declaration

.n
3

"(" {Parameter ";"}+ ")" -> Arguments
=> Arguments
{Id ","}+ “:" Type -> Parameter
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5.3.7 Module Program

The final module, Program, imports all other modules and contains just one
rule.

imports
Declarations Subprograms Statements

exports
sorts
Program
context-free syntax
program Id "(" {Id ","}+ ")" ;"
Declaration*
Subprogram-declaration*
Compound-statement "." -> Program

This concludes our SDF definition of the syntax of a subset of Pascal. We
have rewritten this definition several times in order to improve readability
and editor behaviour. Such an interactive development of an SDF definition
is typical and is supported fully by ASF+SDF system. The final definition
is listed in its entirety in [Appendix B of this thesis].

5.4 Concluding remarks

An advantage of SDF over related formalisms is that one definition covers
nearly all aspects of syntax analysis: lexical syntax, context-free syntax, ab-
stract syntax and syntax directed behaviour of an editor.! This has as a
consequence that the writer of a grammar does not have to bother with dif-
ferent formalisms for defining different syntactic aspects, or with exchanging
information between the different definitions.

Some general hints which might be of use to writers of SDF definitions
are:

e A good modular structure is important, but difficult to achieve for a
real language. Invest effort in this structure, as a well designed modular
structure results in elegant specifications.

e In the example given in this paper, all rules that define a sort are
in the module in which the sort is declared. This is a very strict
organization, which is not per se required by the ASF+SDF formalism.

We also automatically derive a pretty-printer from an SDF definition. This turns out
to be reasonably easy, and the resulting pretty-printer is of acceptable quality.
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One can imagine situations where another organization would be more
appropriate. For example, a module Integers which imports Booleans
and defines a comparison function INT ">" INT -> BOOL. This rule,
although it has a Boolean as result, clearly belongs in module Integers
and not in module Booleans.

Write the specification bottom-up and test modules with some typical
sentences before importing them in others. Also observe the effect of
the grammar design on the syntax directed behaviour of the editors
generated.

Use the SDF features like the lists and priority declarations. They
make a specification shorter and easier to understand.

Avoid intermediate sorts. They easily introduce unexpected ambigu-
ities in the semantic part and they make the parser big and parsing
slow.

It is difficult to express complicated regular expressions in the lexical
syntax part. In most cases, it seems best to circumvent all intermediate
sorts. This will speed up the interaction between scanner and parser
considerably anyway.



Chapter 6

An Implementation of SDF

6.1 Introduction

On the basis of the incremental scanner generator for modular regular gram-
mars [Kli91a], the generalized LR parser [Chapter 1 of this thesis], the in-
cremental parser generator for modular grammars [Chapter 2 of this thesis],
the restricted parsing method [Chapter 3 of this thesis] and the virtual tree
processor [CIL89], we are now able to implement SDF [HHKR&9].

We will describe this implementation with two objectives in mind: (1) to
document the current implementation and to guide programmers who use it,
and (2) to give an impression of the software infrastructure needed to ensure
proper operation of the algorithms we use.

The implementation of SDF is based on the notion of a Syntax Manager,
which is a large data structure containing all information derived from the
SDF definition (like, for instance, sorts, lexical functions and context-free
functions), all its mutual dependencies, as well as the actual “implementa-
tion” derived from it (scanner, parser and abstract syntax definition).

A Syntax Manager is capable of incrementally adding or deleting parts of
an SDF definition, of parsing texts in accordance with the current definition,
of selecting a subset of the SDF definition to use when parsing, and it can
provide information about the SDF definition.

The SDF implementation is currently in use as parsing component of
the generic syntax-directed editor GSE [Koo], which in its turn is used in
the ASF+SDF system [K1i91b, Hen91, chapter 5]. SDF can also be used to
define syntax for the Centaur system [BCD™88]; the generated parser is in
this case used by the editor ctedit of Centaur.
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Figure 6.1: The internal structure of the implementation

6.1.1 Internal structure of the implementation

The implementation is written in LeLisp [LeL.87], and uses itself to parse SDF
definitions. The flow of information through the implementation is roughly
as shown in Fig. 6.1. The SDF definition is split into regular expressions,
grammar rules, priority declarations and an abstract syntax definition. The
regular expressions are compiled into a scanning automaton by the scanner
generator MSG [Kli91a]. The grammar rules are compiled into a parse table
by a parser generator which combines the features of the incremental parser
generator IPG [Chapter 2 of this thesis] and the restricted parsing method
described in [Chapter 3 of this thesis]. The abstract syntax is implemented
with the VTP [CIL89].

An input text is tokenized by the scanner and translated into (possibly
several) parse trees by the Generalized LR parser [Chapter 1 of this thesis].
These trees are then reduced to a single parse tree and converted into an
abstract syntax tree. To solve ambiguities the priority declarations are used
and the user may be asked to make choices.

To give an idea of the size of the components, we have annotated the
boxes in Fig. 6.1 with the size of their corresponding lisp sources in kilobytes.
The size of the “SDF implementation”, in comparison to the others, gives a
good indication of the complexity of the translation of SDF definitions into
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definitions for the subcomponents.

6.2 Parsing with a Syntax Manager

6.2.1 The abstract syntax

The trees generated by the parser are in accordance with an abstract syntax
which is implemented with the VTP [CIL89]. In VTP, an abstract syntax is
called “formalism” and mainly consists of a set of “phyla” and “operators”.
Phyla roughly correspond to the sorts in an SDF definition. An operator
corresponds to a context-free function, a context-free list or a lexical token.
A phylum is a named set of operators and each operator belongs to at least
one phylum.

Each node in a VTP tree is labeled with an operator. This operator
determines to which phylum the operator of each subtree of the node must
belong. For example, the SDF context-free function

if Exp then Stat -> Stat

introduces a binary operator. A tree node typed by this operator must have
two subnodes of which the operator of the first one must belong to phylum
FEzp, and the second to Stat. The operator of the node itself belongs to (at
least) phylum Stat.

An SDF list construct, such as {Stat ";"}+, defines a variadic operator
of which the arguments must all belong to the same phylum, here Stat.

If a sort has one or more lexical definitions, an atomic operator is created
for that sort. A tree node typed by such an operator does not have children,
but an atomic value which contains the string recognized.

An SDF injection does not introduce an operator by itself, but causes
other operators to belong to more than one phylum. For example, an in-
jection “A -> B” makes A a subsort of B, which means that all operators
contained in phylum A are contained in phylum B as well.

6.2.2 Parsing text

The most simple use of a syntax manager to parse a text is by calling the
following function:
(#:SDFimpl:parse
SM
kind-of-text
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text
requested-phyla) — VTPtree

It tries to parse its input text in tezt in accordance with the Syntax Manager
SM and returns a VTP tree if the parse succeeds; if not, it prints an error
message and returns (). The argument kind-of-text may be ’string, ’strings or
filename. The arguments of #:SDFimpl:parse are a subset of the arguments
of #:SDFimpl:parse-text and will be explained in more detail in the sequel.

The parsing capabilities of the Syntax Manager will mostly be used from
within a syntax-directed editor. Such an editor needs a tree representation
of the text in its buffer. On textual modifications it updates the tree incre-
mentally by selecting some subtree that covers the modification. The text
belonging to this subtree is parsed and the subtree is replaced by the result
of the parse. This kind of use imposes additional constraints on the trees
the parser returns

e The tree will, in most cases, have to be of the same phylum as the tree
it is replacing.

e To inform the editor about the relationship between text and tree, the
tree has to be annotated with position information indicating for each
subtree the part of the text it covers.

e The editor may need to know whether a tree replacement will cause a
priority conflict.

o If an ambiguity arises during parsing, which can not be solved by
the priority declarations, the parser has to ask the calling editor to
disambiguate it. This is necessary as an abstract syntax tree can only
be generated for a non-ambiguous parse tree.

In order to meet these requirements the SDF implementation also of-
fers the more sophisticated function #:SDFimpl:parse-text, which allows for
more options than #:SDFimpl:parse above.

(#:SDFimpl:parse-text

SM the Syntax Manager

kind-of-text ‘string, ’strings or ’filename

text the text corresponding to kind-of-text
requested-phyla a list of phyla or ()

surrounding-operator —an operator or ()
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rank-in-operator the rank in surrounding-operator or ()
start-column a column number or ()

start-line a line number or ()

caller an identification of the caller or ()

) — parse-result
These arguments have the following meaning

SM
The Syntax Manager containing the SDF definition to be used.

kind-of-text

The format of the text, which may be ’string, ’strings or ’filename.

text

The text to be parsed in a format in accordance with kind-of-text. If it
is 'filename, text is interpreted as the name of the file where the actual
text is to be found.

requested-phyla
The operator of the resulting VI'P tree must belong to one of the phyla
in this list. If requested-phyla is () all phyla are allowed.
surrounding-operator and rank-in-operator

If surrounding-operator and rank-in-operator are not nil, a check is
performed whether the new tree might cause a priority conflict.

Surrounding-operator is the operator of the tree in which the new
tree is to be inserted, and rank-in-operator indicates at which rank
in surrounding-operator it will be inserted.

start-column and start-line

These two indicate the column and line number which should be as-
signed to the first character of text. This makes it easier for the calling
editor to provide the parser with a part of its complete text buffer and
still obtain correct position information.

caller

An identification of the editor calling the parser. If ambiguities arise
the parser asks caller to solve them.



120 CHAPTER 6. AN IMPLEMENTATION OF SDF

6.2.3 The result of a parse

The result of #:SDFimpl:parse-text is not a VTP tree (like #:SDFimpl:parse
of Section 6.2.2 returns), but is an object parse-result that contains more
information. For each call to #:SDFimpl:parse-text a new instance of this
structure is created in order to leave results of previous calls to the parser
intact.

(defstruct #:SDFimpl:parse-result
status
message
data
phylum
layout-only)

The field status of #:SDFimpl:parse-result indicates to what extent parsing
succeeded. In case parsing did not succeed, the message field contains a list
of strings to inform the user about the kind of error. In appropriate cases
data contains position information which the calling editor might add to the
message given to the user. The phylum field indicates to which phylum the
generated tree belongs. The layout-only field is a Boolean that is set to true
if the input text of the parser was found empty (or consisted entirely of
layout characters).

The following values are possible for status

input-error
One of the arguments of #:SDFimpl:parse-text was of wrong type or

could not be used. Message contains a detailed error message and the
other fields are not set.

scanner-fails

The scanner failed during its scan of the input and returns the token
ERROR to the parser. Data contains the area in the text (of the size
of one character) where the error occurred. See Section 6.2.4 for a
description of the position information contained in an area.

parser-fails

No parse tree could be generated for text. Data contains the area of
the last token read by the parser. Message will (in the near future)
be extended with information about what the parser expected at the
point of failure.
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internal-conflict

All possible parses contained a priority conflict and were therefore
rejected (a function in the SDF definition with a non-assoc attribute
can cause this quite exceptional status). Data contains the area of the
conflict.

wrong-phylum

It is possible to parse the text, but there is no tree whose top operator
belongs to one of the requested-phyla. Data contains a list of the phyla
which were possible. Section 6.2.5 suggests some precautions an editor
can take to avoid this status as much as possible.

unsolved-ambiguity

During the generation of the VTP tree an ambiguity occurred which
could not be solved by caller. Data contains the area in the text where
the ambiguity occurred. See Section 6.2.6 for a description on how the
calling editor caller is asked to solve an ambiguity.

external-conflict

The parse succeeded but the resulting VTP tree will introduce a pri-
ority conflict with its environment. Data contains the VTP tree. The
editor can respond to this status by surrounding the text with brackets
(see also Section 6.3.4), it can order a reparse at a higher level in the
tree, or it can just let the parse fail.

parse-succeeded

The parse succeeded completely. Data contains the VTP tree, and
phylum contains the phylum chosen.

6.2.4 Position information

If both start-column and start-line are provided in the call to the parser,
the parser returns position information in area data structures. Areas can
be contained in the data field of #:SDFimpl:parse-result (as described in
Section 6.2.3), and each subtree in the VTP tree is annotated with areas
denoting which part of the input text is covered by the subtree. The name
of the decor of these annotations is “area”.! Position information will not
be computed if start-column or start-line is ().

1For an explanation of the use of annotations and decors we refer to [CIL89].
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An area contains a start and an end coordinate of an area in the text,
and is computed with respect to start-column and start-line. The contents
of an area can be accessed with the following functions:

(#:SDFimpl:area:bline area) — line number begin
:SDFimpl:area:bcol area) — column number begin
p )
(#:SDFimpl:area:eline area) — line number end
:SDFimpl:area:ecol area) — column number end
p

6.2.5 The phylum of the resulting VTP tree

The top operator of the VIP tree as returned by the parser will always
belong to one of the requested-phyla provided in the call to the parser. If
this is not possible, the parser fails with status wrong-phylum. The editor
calling the parser should avoid this status as much as possible, by only
using requested-phyla if it is needed and by providing the most general phyla
possible.

If the phyla requested are (), the parser makes a random choice among
the possibilities and status wrong-phylum will never occur. Which phylum
is chosen, is always communicated to the calling editor via the field phylum
of parse-result.

6.2.6 Solving ambiguities

Before the parser can generate an abstract syntax tree, all ambiguities must
have been solved. If ambiguities are still present after the priority declara-
tions have been applied, the caller of the parser is asked to make a choice in
the following way:

(send ’solve-ambiguity caller area VTPtrees) — VTPtree

Area contains the sub-area in the text which is ambiguous and VTPtrees
contains a list of the VI'P trees which are possible for that area. The caller
must return one of these trees. It could in one way or another ask the user to
solve the conflict (and maybe re-use previous answers), but could also make
a random choice between the possibilities.

If something goes wrong in this communication, the parser fails with
status unsolved-ambiguity.
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6.3 Getting information from a Syntax Manager

A Syntax Manager can provide information about the SDF definition used
and about the abstract syntax trees generated.

6.3.1 Abstract syntax

As explained in Section 6.2.1, the trees generated by the parser are in ac-
cordance with an abstract syntax which is coded in a VTP formalism. This
formalism can be obtained by

(#:SDFimpl:get-vtpdef SM) — VTP formalism
The following function returns the phylum created for sort sortname.
(#:SDFimpl:get-phylum SM sortname) — phylum

To know which operator was created for an SDF construct the following
function can be used.

(#:SDFimpl:get-operator SM kind string) — operator

Kind must be one of ’fun, ’list or ’lex and string is as the string returned by
#:SDFimpl:get-menu-string (see Section 6.3.4).

An operator can belong to several phyla, but there is always one phylum
it was initially created for. One can obtain this “lowest” phylum with

(#:SDFimpl:lowest-phylum SM operator) — phylum

6.3.2 Trees

To distinguish the different kinds of trees, a function is provided to ask for
the “kind” of a tree and its operator.

(#:SDFimpl:tree:kind tree) — kind

The returned kind can be one of list, function, constant, lexical, variable or
metavar.

For trees with kind Iist or function, the VTP function ({tree}:sons tree)
will return a list of its children. For trees with kind Ilexical, the VTP function
({tree}:atom_value tree) will return the atomic value of tree. Trees of kind
constant do not have children or atomic values. For more information about
trees with kind variable or metavar, the following functions can be used:

(#:SDFimpl:var:name tree) — name
(#:SDFimpl:var:class tree) — {tree} or {sublist}
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(#:SDFimpl:var:phylum tree) — phylum
It is also possible to ask an operator for its kind with
(#:SDFimpl:operator:kind operator) — kind

For this function it is however not possible to make a distinction between
kinds variable and metavar, and these two cases are mapped to var.

6.3.3 Metavariables

To allow parsing of incomplete sentences, each phylum has an associated
metavariable representation. This is a string which may be used as place-
holder for a subtree of kind phylum.

(#:SDFimpl:get-metavar-string SM phylum) — string
(#:SDFimpl:get-metavar-tree SM phylum) — tree

The second function returns a VTP tree for the metavariable.

If a syntax-directed editor wants to provide a facility to expand a meta-
variable, it needs to know all operators that belong to the phylum of the
metavariable. To generate a menu with the different possibilities it needs
a string representation of each operator which is recognizable for the user.
Also, if the user makes a choice, the editor needs a string representation
of the operator that can be parsed. As an example, for the operator of
an if-statement the menu-string representation will be something like “if
Exp then Stat -> Stat” and the expand-string representation “if <Exp>
then <Stat>”.

To obtain the list of the operators that may replace a tree of kind metavar
the following function can be used

({phylum}:contents (#:SDFimpl:var:phylum tree))

For a string representation of operator that looks like the construct in the
SDF definition it was created for, use

(#:SDFimpl:get-menu-string SM operator [phylum]) — string
For a string representation of operator that can be parsed, use
(#:SDFimpl:get-expand-string SM operator [phylum]) — string

If string is parsed again, it results in a subtree with top-operator operator of
which all subtrees are metavariables of the appropriate kind.
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6.3.4 Pretty printing

To allow for the derivation of default pretty-printers from an SDF definition,
the following functions are provided.

(#:SDFimpl:get-pp-list SM operator [phylum]) — pp-list
(#:SDFimpl:get-brackets SM phylum) — pp-list

Both functions return a list pp-list which contains strings for the keywords
and the atom son as placeholder for each child. For example, the pp-list of
a typical if-statement would be “("if" son "then" son)”.

For pretty printing trees with kind list, the separator of the list is needed.
The following function, which may only be used for list operators, returns
this.

(#:SDFimpl:get-list-separator SM operator) — string

It returns an empty string for lists which do not have a separator.

Also, a pretty-printer should know if brackets surrounding a construct
are needed in order to ensure that the generated string will, if re-parsed,
result in the same tree. For this purpose the following function is available

(#:SDFimpl:priority-conflict
SM
father-operator
kid-operator
rank-in-father) — Bool

The function returns true if kid-operator is in conflict with father-operator,
and therefore brackets would be needed for the corresponding subtree.

6.3.5 The no-operator

The functions

#:SDFimpl:get-menu-string,
#:SDFimpl:get-expand-string and
#:SDFimpl:get-pp-list

allow an optional phylum argument. Since an operator can have different
representations depending on the phylum it has to belong to, this argument
serves to discriminate between them. These different representations are
caused by SDF functions with a no-operator argument. Take for example
this SDF definition
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if-then if-then
N PN
a print a +
| PN
+ a +
PN PN
a —+ b c
PN
b c
(a) (b)

Figure 6.2: Two trees of “if a then print a+b+c”

context-free syntax

if Exp then Stat -> Stat

print Exp -> Stat {no-operator}
Id -> Exp

Exp "+" Exp -> Exp {left}

Fig. 6.2 shows two abstract syntax trees of the string “if a then print
a+b+c”. The one in Fig. 6.2(a) is the tree ordinarily generated, the one in
(b) is generated if the no-operator attribute is present.

The representation of the operator for “Exp "+" Exp -> Exp” now de-
pends on the context in which it is used. The pp-list (see Section 6.3.4) of
the highest “+” in Fig. 6.2 should be “("print" son "+" son)”, while that
of the lowest is “(son "+" son)”. This difference lies in the phylum the op-
erator must belong to, Stat or Fxp. The same holds for the expand-strings
and the menu-strings. This means that if a representation for an operator is
needed, its phylum should be provided in order to get a correct result. The
phylum argument is optional for cases where it is unknown.

6.3.6 CHAR variables

If the SDF definition contains one or more variable declarations over the
pre-defined sort “CHAR”, a context free function

"SOI‘t" ||(II CHAR+ ||)ll -> SORT

is generated by the implementation for every sort SORT that has a lexical
definition. These context-free functions make it possible in a semantic for-
malism to access the contents of lexical tokens (see [HHKR89, section 7.2]
for more information).
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For the implementation of such a semantic component it is of impor-
tance to be able to match the lexical operator of a sort with the operator of
the generated context-free function, and vice versa. We therefore introduce
the notion of “charpartner”. This is an annotation on operators which is
used to link the two operators together. If a CHAR variable is present, the
charpartner annotation of each lexical operator is set to the operator of its
context-free function, and the other way round.

The decor (see [CIL89]) of this charpartner annotation is available through
(#:SDFimpl:SDFlang:charpartner SM) — decor

6.4 Generating a Syntax Manager

The simplest way to create a Syntax Manager for an SDF definition is to
call

(#:SDFimpl:gen-SM filename) — SM

This function reads an SDF definition from file and generates a Syntax
Manager SM that implements the definition. Clearly, this function is non-
incremental.

6.4.1 Incremental generation

It is also possible to create an empty Syntax Manager, to add various SDF
constructs to a Syntax Manager, and to remove them again. After each
modification the Syntax Manager can be used immediately.

An empty Syntax Manager is created with

(#:SDFimpl:init caller) — SM
Its argument caller must provide functions add-message, del-message and
name, which will be called in the following manner:

(send ’add-message caller string) — MESShandle
(send ’del-message caller MESShandle)
(send 'name caller) — atom

These are needed for displaying and removing messages describing eventual
errors found in the SDF definition.

The functions to add parts of an SDF definition to a Syntax Manager
are:

(#:SDFimpl:add-sort SM caller VTPtree) — SMhandle
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(#:SDFimpl:add-lex-function SM caller VT Ptree) — SMhandle
(#:SDFimpl:add-cf-function SM caller VT Piree) — SMhandle
(#:SDFimpl:add-variable SM caller VTPiree) — SMhandle
(#:SDFimpl:add-prior-chain SM caller VTPiree) — SMhandles

(#:SDFimpl:add-prior-relation SM caller SMhandle! SMhandle2) — SMhandle
:SDFimpl:add-assoc-relation SM caller kind SMhandles) — SMhandle
P

The first five of these add functions have a VTP tree as argument. These
VTP trees must be generated with the Syntax Manager of SDF itself, which
is stored in the variable

#:SDFimpl:stdSDFlang.

Only trees generated by parsing SDF definitions with this Syntax Man-
ager are accepted by the add-functions. The result of all add-functions are
SMhandles which can be used to identify added constructs later on.

The functions #:SDFimpl:add-prior-relation and #:SDFimpl:add-assoc-
relation can be used instead of #:SDFimpl:add-prior-chain. The SMhandle’s
which are provided to them must have been obtained with the function
#:SDFimpl:add-cf-function, as the arguments of priority declarations are
context-free functions.

All added constructs can be removed again from a Syntax Manager with
the following function:

(#:SDFimpl:del-from-SM SM SMhandle)

If an error is found in one of the SDF constructs given to the Syntax Manager,
an error message is sent to its caller. On removal of the SMhandle in question
the message will be removed as well. It depends on the error made how much
of the construct still is processed.

6.4.2 Facilities for modular syntax analysis

In modular SDF, each module needs a parser which only works in accordance
with the module itself and the exported parts of the modules imported in
it. As described in [Chapter 3 of this thesis] an efficient implementation for
generating and updating a number of parsers which import each other is to
generate one parser for the union of all modules and to use a selection of
this parser to work for each individual module. A selection of a parser only
works according to the rules which are enabled in it.

The following functions exist to implement selections:

(#:SDFimpl:new-selection SM caller) — Selection
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(#:SDFimpl:del-selection Selection)
(#:SDFimpl:enable Selection SMhandle)
(#:SDFimpl:disable Selection SMhandle)

In the ASF+SDF system (which implements modular SDF) all modules
have their own Selection. This system adds the SDF constructs found in
each module to one general SM, but each SMhandle (see Section 6.4) is only
enabled in the Selection of its own module and, if exported, enabled in the
Selection’s of the modules which import the module.

The caller in #:SDFimpl:new-selection must again be able to respond to
the calls add-message, del-message and name (see Section 6.4).

The information functions and the parse functions both accept an SM
and a Selection as Syntax Manager. Some information functions however do
not yet use the subset defined in the Selection, but use the entire definition.

6.5 Assessment

As might be gathered from the description of its interface, the implementa-
tion of SDF is a complicated piece of software. Several reasons can be given
for this complexity:

e SDF is a high level syntax specification language. It combines the
description of lexical syntax, context-free syntax, abstract syntax and
priority declarations in one single formalism. The different components
which implement these sub-formalisms all have their own interface and
peculiarities. Only the top-level part knows the original SDF defini-
tion, and can maintain the cross-references between the objects in the
different sub-formalisms.

e The implementation is incremental. As a consequence, all commands
given to the sub-components must be stored in some way, in order to
be able to undo them again. Next to this, the system must be able to
work with (temporarily) incorrect definitions.

e As SDF is used interactively, efficient implementation techniques must
be used. These are in general more complex than straightforward
solutions.

e SDF contains a reasonable amount of “bells and whistles” which have
to compensate, for example, for the fact that the abstract syntax is
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derived automatically from the context-free syntax. Suffice to mention
injections, bracket rules, no-operator rules, operator names and lists.

e SDF allows modular definitions, while the sub-components that imple-
ment the abstract syntax and the priority declarations do not. This
shortcoming has to be compensated for by the top-level part.

The complexity of the implementation makes it difficult to maintain the
software, and is also reflected in its speed and consumption of memory. As
a consequence, large SDF definitions are not handled satisfactorily in the
ASF+4SDF system.

Should SDF ever be re-implemented in order to comply with new de-
mands, we suggest the following measures to decrease the complexity of the
implementation:

e A modular version of the abstract syntax component would circumvent
many problems present in the current implementation.

e The priority declarations should be handled by a separate component
offering a clear interface.

e The implementation would become simpler if context-free lists would
be declared in a separate section, and would no longer appear on them-
selves in context-free functions or variable declarations.

e The automatic introduction of context-free functions in the case of
CHAR variables (see Section 6.3.6) is complicated and could also be
left to the writer of a specification.

o Less interesting features, like, for instance, naming of operators and
no-operator functions, should be removed from SDF.

On the whole, by being able to use a tool like the SDF implementation,
a great burden has been taken from the writer of a specification, who used
to have the sub-formalisms only and had to maintain all cross-references by
himself. The fact that SDF is incremental makes it very easy to tune a
definition interactively.



Appendix A

The algorithms in Lisp

To make it as easy as possible for the reader to experiment with the algo-
rithms discussed in this thesis, we present the following algorithms in their
lisp implementation.!

e Appendix A.1: The GLR recognizer of chapter 1.
e Appendix A.2: The GLR parser of chapter 1.

e Appendix A.3: The incremental parser generator IPG of chapter 2,
extended with the restricted parsing facilities of chapter 3.

e Appendix A.4: Some utilities to read in a grammar, print a parse tree
and print a parse table.

In this appendix, we do not explain how the algorithms work, but only
how they can be used. The corresponding papers are recommended for an
in depth explanation.

The implementations presented here are much more concise than the
versions used in the actual implementation of SDF:

e All SDF specific parts have been removed, the input grammars just
consist of BNF rules.

e The BNF rules are labeled. These labels can be used to select a group
of rules for restricted parsing.

To obtain the code in electronic form a request can be mailed to rekers@cwi.nl.
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e The input for the parsers and recognizers is a list of tokens, as opposed
to the algorithms in the implementation of SDF which use a lexical
scanner.

e The output of the parser is a, possibly ambiguous, parse tree.

LeLisp

The lisp dialect used is LeLisp [LeL.87], which is said to be close to Common
Lisp. We have tried to use only a small subset of the functionality of LeLisp,
in order to facilitate porting the code to other lisp dialects. We expect the
reader to be reasonably familiar with lisp, but some explanations of specific
LeLisp constructs are necessary.

“4t:sys-package:colon”
All our lisp files start with a declaration like
(defvar #:sys-package:colon 'recognizer).

This serves to structure the global name space, as it has the effect that all
symbols in the file starting with a colon will be prefixed by “#:” and the
name given. In the above example the prefix will be “#:recognizer”. We
use this mechanism to keep function names short within the file, while name
clashes with functions in other files are less likely to occur. Also, if a function
from another file is used, it stands out because of the prefix needed.

For example, in a file with the above declaration,
(defun :PARSEWORD (---) --+)
stands for
(defun #t:recognizer:PARSEWORD ( ---) -« ),
and
(setq parsers :PARSEWORD - - - ))
will be interpreted as
(setq parsers (#:recognizer:PARSEWORD - - - )).

Structures

Structures can be declared with “defstruct”. For example,

(defstruct stacknode state backlinks)
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declares a stacknode-object with two fields, state and backlinks. An instance
of this object is created with “(omakeq stacknode)”. The value of, for exam-
ple, the field state of a stacknode-object object can be set with

(#:stacknode:state object value)

and obtained with

(#:stacknode:state object).

It is also possible to set fields when an object is created.

These structures also allow for an object-oriented programming style.
For example, for an object with type stacknode, “(send ’show object)” will
result in a call of the function “(#:stacknode:show object)”. The type of an
object can be inspected with “(type-of object)”.

As we often use structures to create cyclic data structures, it is very
convenient that, if we define the function “#:stacknode:prin”, this function
will be used when printing an object with type stacknode. This allows to
print an abbreviation of an object instead of its full contents.

“Mapc”, “mapcar”, “any” and “every”
These are functions to apply a function f to all elements of a list .
e “(mapc f1)” applies fto each element of .

e “(mapcar f1)” applies fto each element of [ and returns a list containing
the result of the applications.

e “(any f[)” returns true if one of the applications of fto an element of
[ returns true.

o “(every f)” returns true if all applications of fto the elements of [
return true.

The function f may be defined with “defun”, but may also be a lambda
expression. For example, the following function

(defun :GET-STACKNODE (stacknodes state)
(any
(lambda (sn)
(when (eq (#:stacknode:state sn) state)
sn ))

stacknodes ))

uses any with a lambda expression as function argument.
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A.1 The GLR Recognizer

This is the LeLisp version of the Generalized LR recognizer as presented in
pseudo-code in chapter 1, section 3.

The recognizer can be characterized as follows:

(#:recognizer:PARSE grammar tokens) — Boolean.

It should be called with a grammar-object as generated by the parser gen-
erator of appendix A.3, and with a list of tokens. It returns t if the tokens
could be recognized, () otherwise.

(defvar #:sys-package:colon ’recognizer)
(defstruct stacknode state backlinks)

(defun :PARSE (grammar tokens)
(let ( parsers result )
(setq parsers
(list (omakeq stacknode state (#:RPG:GET-START-STATE grammar))) )
(while parsers
(setq parsers (:PARSEWORD parsers (or (nextl tokens) °EOF))) )
result ))

(defun :PARSEWORD (active-parsers token)
(let ( (for-actor active-parsers)
for-shifter )
(while for-actor
(:ACTOR (nextl for-actor)) )
(:SHIFTER for-shifter token) ))

(defun :ACTOR (parser)
(mapc
(lambda (action)
(selectq (car action)
(shift (newl for-shifter (cons parser (cdr action))) )
(reduce (:DO-REDUCTIONS parser
(#:RPG:rule:length (cdr action))
(#:RPG:rule:result (cdr action))
tt) )
(accept (setq result t)) ))
(#:RPG:ACTION (#:stacknode:state parser) token) ))

(defun :DO-REDUCTIONS (stacknode length result backlink-to-see backlink-seen)
(if (zerop length)
(when backlink-seen
(:REDUCER stacknode (#:RPG:GOTO (#:stacknode:state stacknode) result)))
H else
(mapc
(lambda (stacknode-1)
(:DO-REDUCTIONS
stacknode-1
(1- length)
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result

backlink-to-see

(or backlink-seen (eq stacknode-1 backlink-to-see)) ))
(#:stacknode:backlinks stacknode) )))

(defun :REDUCER (stacknode-1 gotostate)
(let ( stacknode )
(when gotostate
(setq stacknode (:GET-STACKNODE active-parsers gotostate))
(if stacknode
(unless (memq stacknode-1 (#:stacknode:backlinks stacknode))
(#:stacknode:backlinks stacknode
(cons stacknode-1 (#:stacknode:backlinks stacknode)))
(mapc
(lambda (sn)
(unless (memq sn for-actor)
(mapc
(lambda (action)
(when (eq (car action) ’reduce)
(:DO-REDUCTIONS sn
(#:RPG:rule:length (cdr action))
(#:RPG:rule:result (cdr action))
stacknode-1 () ) )
(#:RPG:ACTION (#:stacknode:state sn) token) )))
active-parsers ) )
H else
(setq stacknode
(omakeq stacknode state gotostate backlinks (list stacknode-1)))
(newl active-parsers stacknode)
(newl for-actor stacknode) ) )))

(defun :SHIFTER (for-shifter token)
(let ( stacknode new-active-parsers )
(mapc
(lambda ( (stacknode-1 . state) )
(setq stacknode (:GET-STACKNODE new-active-parsers state))
(if stacknode
(#:stacknode:backlinks stacknode
(cons stacknode-1 (#:stacknode:backlinks stacknode)))
H else
(setq stacknode
(omakeq stacknode state state backlinks (list stacknode-1)))
(newl new-active-parsers stacknode) ))
for-shifter )
new-active-parsers ))

(defun :GET-STACKNODE (stacknodes state)
(any
(lambda (sn)
(when (eq (#:stacknode:state sn) state)
sn ))
stacknodes ))
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A.2 The GLR parser

This is the LeLisp version of the Generalized LR parser as presented in
pseudo-code in chapter 1, section 5, and is an extension of the recognizer in
appendix A.l.

The parser can be characterized as follows:

(#:parser:PARSE grammar tokens) — parse-graph

It should be called with a grammar-object as generated by the parser gen-
erator of appendix A.3, and with a list of tokens. It returns a graph-like
representation of all possible parses in parse-graph (or () if parsing failed),
which can be printed with routine SHOW-TREFE of appendix A.4.

The resulting structure parse-graph is formed by instances of objects of
three types, rule node, symbol node and term node. All these have a field ¢d
which is not used in the algorithms of the parser itself, but only by routine
SHOW-TRFEE. A parse graph will in most cases contain many shared objects
and may even be cyclic. In all lisp routines, objects can be distinguished
by using the lisp function eq, which compares whether two objects occupy
the same memory location. This kind of comparison is less fit for humans.
Therefore, routine SHOW-TRFEFE assigns a unique number to the id field of
each object, and uses these to identify the objects in the printed output.

(defvar #:sys-package:colon ’parser)

(defstruct stacknode state stacklinks )

(defstruct stacklink treenode backlink )

(defstruct rulenode rule elements cover id)
(defstruct symbolnode  symbol possibilities  cover id)
(defstruct termnode token string cover id)

(defun :PARSE (grammar tokens)
(let ( parsers result (position 0) )

(setq parsers
(list (omakeq stacknode state (#:RPG:GET-START-STATE grammar))) )

(while parsers
(setq parsers (:PARSEWORD parsers)) )

(when result
(#:stacklink:treenode (car (#:stacknode:stacklinks result))) ) ))

(defun :PARSEWORD (active-parsers)
(let ( (for-actor active-parsers)
(token (or (mextl tokens) ’EOF))
generated-rulenodes generated-symbolnodes
for-shifter )
(while for-actor
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(:ACTOR (nextl for-actor)) )
(:SHIFTER for-shifter token (incr position)) ))

(defun :ACTOR (parser)
(mapc
(lambda (action)
(selectq (car action)
(shift (newl for-shifter (cons parser (cdr action))) )
(reduce (:DO-REDUCTIONS parser ()
(#:RPG:rule:length (cdr action))
(cdr action) t t) )
(accept (setq result parser) )))
(#:RPG:ACTION (#:stacknode:state parser) token) ))

(defun :DO-REDUCTIONS (#:stacknode treenodes length rule link-to-see link-seen)
(if (zerop length)
(when link-seen
(:REDUCER stacknode treenodes rule) )
H else
(mapc
(lambda (link)
(:DO-REDUCTIONS
(#:stacklink:backlink link)
(cons (#:stacklink:treenode link) treenodes)
(1- length)
rule
link-to-see
(or link-seen (eq link link-to-see)) ) )
(#:stacknode:stacklinks stacknode) )))

(defun :REDUCER (stacknode-1 treenodes rule)
(let ( (symbol (#:RPG:rule:result rule))
(rulenode (:GET-RULENODE rule treenodes))
state stacknode link )
(unless (setq state (#:RPG:GOTO (#:stacknode:state stacknode-1) symbol))
(return) )
(setq stacknode (:GET-STACKNODE active-parsers state))
(if stacknode
(unless
(any
(lambda (link)
(when (and (eq stacknode-1 (#:stacklink:backlink link))
(eq (type-of (#:stacklink:treenode link)) ’symbolnode) )
(:ADD-RULENODE (#:stacklink:treenode link) rulenode)
t )
(#:stacknode:stacklinks stacknode) )
(setq link (omakeq stacklink
treenode (:GET-SYMBOLNODE symbol rulenode)
backlink stacknode-1 ))
(#:stacknode:stacklinks stacknode
(cons link (#:stacknode:stacklinks stacknode)))
(mapc
(lambda ( sn )
(unless (memq sn for-actor)
(mapc
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(lambda ( action )
(when (eq (car action) ’reduce)
(:DO-REDUCTIONS sn ()
(#:RPG:rule:length (cdr action))
(cdr action) link ()) ) )
(#:RPG:ACTION (#:stacknode:state sn) token) )))
active-parsers ) )
H else
(setq stacknode
(omakeq stacknode
state state
stacklinks (list (omakeq stacklink
treenode (:GET-SYMBOLNODE symbol rulenode)
backlink stacknode-1))))
(newl for-actor stacknode)
(newl active-parsers stacknode) )))

(defun :SHIFTER (for-shifter token position)
(let ( termnode stacknode new-active-parsers link )
(setq termnode (omakeq termnode
token token
string (string token)
cover (cons position position) ))
(mapc
(lambda ( (stacknode-1 . state) )
(setq link (omakeq stacklink treenode termnode backlink stacknode-1))
(setq stacknode (:GET-STACKNODE new-active-parsers state))
(if stacknode
(#:stacknode:stacklinks stacknode
(cons link (#:stacknode:stacklinks stacknode)))
H else
(setq stacknode (omakeq stacknode state state stacklinks (list link)))
(newl new-active-parsers stacknode) ))
for-shifter )
new-active-parsers ))

(defun :GET-RULENODE (rule treenodes)
(let ( rulenode )
(setq rulenode
(any
(lambda (r)
(when (and (eq (#:rulenode:rule r) rule)
(every ’eq treenodes (#:rulenode:elements r)) )
r))
generated-rulenodes ))
(unless rulenode
(setq rulenode (omakeq rulenode
rule rule
elements treenodes
cover (:COVER treenodes) ))
(newl generated-rulenodes rulenode) )
rulenode ))

(defun :COVER (treenodes)
(let ( start end f )
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(mapc
(lambda (treenode)
(when (setq f (send ’cover treenode))
(if start
(setq end (cdr £))
H else
(setq start (car f))
(setq end (cdr £)) )) )
treenodes )
(if start (cons start end) nil ) ))

(defun :GET-SYMBOLNODE (symbol rulenode)
(let ( symbolnode )
(setq symbolnode
(any
(lambda (n)
(when (and (eq symbol (#:symbolnode:symbol n))
(equal (#:rulenode:cover rulenode)
(#:symbolnode:cover n)) )
n))
generated-symbolnodes ))
(if symbolnode
(:ADD-RULENODE symbolnode rulenode)
H else
(setq symbolnode (omakeq symbolnode symbol symbol
possibilities (list rulenode)
cover (#:rulenode:cover rulenode) ))
(newl generated-symbolnodes symbolnode) )
symbolnode ))

(defun :ADD-RULENODE (symbolnode rulenode)
(unless (memq rulenode (#:symbolnode:possibilities symbolnode))

(#:symbolnode:possibilities symbolnode
(cons rulenode (#:symbolnode:possibilities symbolnode))) ))

(defun :GET-STACKNODE (stacknodes state)
(any
(lambda (sn)
(when (eq (#:stacknode:state sn) state)
sn ))
stacknodes ))
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A.3 The parse table generator

This is the lisp implementation of the lazy and incremental parser generator
IPG of chapter 2, extended with the facilities for restricted parsing of chapter
3. The algorithm works for general context-free grammars, and it generates
an LR(0) parse table, which may contain shift-reduce and reduce-reduce
conflicts. These tables can be used to control the GLR recognizer of appendix
A.1 and the GLR parser of appendix A.2.

The interface offered by the parser generator can be divided in functions
for defining the grammars and the selections to use, and functions providing
parse table information.

The following functions are available for the definition of the grammar:
(#:RPG:INIT-GRAMMAR start-symbol) — grammar

This function initializes a grammar-object and should be called with a sym-
bol that will serve as start symbol.

Rules are added to a grammar-object with

(#:RPG:ADD-RULE grammar label result elements)

Label should be some atom and is used to refer to the rule in selections.
Labels need not to be unique among rules. Result is the result non-terminal
of the rule, and elements should be a list of zero or more terminals and
non-terminals. Both terminals and non-terminals are atoms, and the only
distinction in the parser generator between the two is that the latter appear
as result in some rule. The tokens read by the parser may be terminals and
non-terminals, which allows for parsing text containing non-terminal holes.

A rule can be removed from a grammar-object with

(#:RPG:DEL-RULE grammar label result elements)

A grammar-object is at all times ready to be used by a parser, but the
selection to work for should be mentioned first with

(#:RPG:RESTRICT-PARSER grammar selection)

Selection can be ’all, which states that all rules are selected and that the
restricted parsing facility is not to be used, or it can be a list of labels. In the
latter case a parser controlled by grammar will work as if only rules whose
label is in selection, are part of the grammar.

The other functions in the interface of the parser generator deal with
the parse table it generates. Recall that the parser and the recognizer are
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called with a grammar object as argument. The parse table must therefore
be accessible from this grammar object. The state in which parsing must
start can be obtained by:

(#:RPG:GET-START-STATE grammar) — state

For each state, the action and goto entries in the parse table can be obtained
by ACTION and GOTO.

(#:RPG:ACTION state symbol) — actions

Each of these actions is one of (shift state’ ), (reduce rule) or (accept).

(#:RPG:GOTO state symbol) — state’ or ()

By using these state-objects, we avoid an indirection via state numbers and
an actual parse table.

The test in routine FXPAND, whether an itemset with a given kernel
already exists, used to be an expensive one. Profiling information learned
us that about half of the time taken by the parse table generator was spent
in routine GET-ITEMSET-WITH-KERNEL, which performs this test. We
therefore use a hashing technique here.

(defvar #:sys-package:colon ’RPG)

(defstruct :rule ; definition of the structure of a grammar rule
elements ; list of grammar symbols
result ; the result non-terminal
label ; the label of the rule
selected ; set to t if label is in current set
id) ; unique identifier for this rule

(defun :rule:length (rule) (length (:rule:elements rule)))

(defstruct :itemset ; defintion of the structure of an itemset
type ; can be initial, complete, dirty, specialized
kernel ; this is a list of dotted rules
trans ; transitions, keyed by a symbol
reductions ; list of rules which can be reduced
sp-trans ; specialized transitions
sp-reds ; specialized reductions
id ; a unique identifier for this itemset
refcount ; how many times this itemset is refered to
grammar) ; the grammar of the itemset

(defstruct :grammar ; definition of the structure of a grammar
rules ; assoc-list of form (result rulel rule2 ... )
itemsets ; all itemsets for grammar, as a hash table
start-symbol ; start-symbol of the parser
start-state ; start state of the graph of itemsets

current-selection ; the current selection of labels
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highest-rule-id ; highest used rule identifier
highest-is-id) ; highest used itemset identifier

(defun :INIT-GRAMMAR (external-start-symbol)
(let ( start-state start-rule grammar )

(setq start-rule (omakeq :rule
result ’START
elements (list external-start-symbol)
selected t ; always selected
id 0 ))

(setq start-state (omakeq :itemset
type ’initial
id 0
kernel (list (cons start-rule 0))
refcount 1))

(setq grammar (omakeq :grammar
start-symbol ’START
start-state start-state
itemsets (:HASH-INITG start-state)
highest-rule-id 0
highest-is-id 0 ))

(:itemset:grammar start-state grammar)

grammar ))

(defun :GET-START-STATE (grammar)
(:grammar:start-state grammar) )

(defun :RESTRICT-PARSER (grammar selection)
(:grammar:current-selection grammar selection)
(:FOR-ALL-ITEMSETS grammar

(lambda (is)
(when (eq (:itemset:type is) ’specialized)
(:itemset:type is ’complete) ) ))
(:FOR-ALL-RULES grammar
(lambda (rule) (:SET-SELECTED grammar rule)) ) )

(defun :SET-SELECTED (grammar rule)
(if (or (eq (:grammar:current-selection grammar) ’all)
(memq (:rule:label rule) (:grammar:current-selection grammar)) )
(:rule:selected rule t)
(:rule:selected rule ()) ))

(defun :ADD-RULE (grammar label result elements)
(let ( (new-id (1+ (:grammar:highest-rule-id grammar)))
(rules (:grammar:rules grammar))
(start-state (:grammar:start-state grammar))
rule )

(:grammar:highest-rule-id grammar new-id)
(setq rule (omakeq :rule

elements elements

result result

label label

id new-id ))
(putassoc rules result rule)
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(:grammar:rules grammar rules)
(:FOR-ALL-ITEMSETS grammar
(lambda (is)
(when (and (memq (:itemset:type is) ’(complete specialized))
(assq result (:itemset:trans is)))
(:itemset:type is ’dirty) ) ))
(:SET-SELECTED grammar rule)
rule ))

(defun :DEL-RULE (grammar label result elements)
(let ( (rules (:grammar:rules grammar))
(start-state (:grammar:start-state grammar))
rule )
(setq rule
(any
(lambda (probe)
(when (and (equal (:rule:elements probe) elements)
(eq (:rule:label probe) label) )
probe ))
(cassq result rules) ) )
(when rule
(:grammar:rules grammar (remassoc rules result rule))

(:FOR-ALL-ITEMSETS grammar
(lambda (is)
(when (and (memq (:itemset:type is) ’(complete specialized))
(assq result (:itemset:trans is)))
(:itemset:type is ’dirty) ) )) ) ))

(defun :ACTION (state symbol)
(when (neq (:itemset:type state) ’specialized)
(when (neq (:itemset:type state) ’complete)
(:EXPAND-ITEMSET state) )
(:RESTRICT-STATE state))
(append (:itemset:sp-reds state)
(cassq symbol (:itemset:sp-trans state)) ) )

(defun :GOTO (state symbol)
(cdar (cassq symbol (:itemset:sp-trans state))) )

(defun :RESTRICT-STATE (itemset)
(let ( (selection (:grammar:current-selection (:itemset:grammar itemset))) )
(ifn (eq selection ’all)
(let ( sp-trans sp-reds )
(mapc
(lambda ( reduction )
(when (:rule:selected (cdr reduction))
(newl sp-reds reduction) ))
(:itemset:reductions itemset) )
(mapc
(lambda ( transition )
(cond
((equal (cadr transition) ’(accept))
(newl sp-trans transitiomn) )
((any (lambda ( (rule . dot) ) (:rule:selected rule) )
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(:itemset:kernel (cdadr tramsition)) )
(newl sp-trans transition) )
) )
(:itemset:trans itemset) )
(:itemset:sp-reds itemset sp-reds)
(:itemset:sp-trans itemset sp-trans)
(:itemset:type itemset ’specialized) )

(:itemset:sp-reds itemset (:itemset:reductions itemset))
(:itemset:sp-trans itemset (:itemset:trans itemset))
(:itemset:type itemset ’specialized)

DADD)

(defun :EXPAND-ITEMSET (itemset)
(selectq (:itemset:type itemset)
(initial
(:EXPAND itemset) )
(dirty
(let ( (refs (mapcar ’cdadr (:itemset:trans itemset))) )
(:EXPAND itemset)
(while refs
(:DECR-REFCOUNT (nextl refs)) ) )) ))

(defun :EXPAND (itemset)
(let ( (grammar (:itemset:grammar itemset))
s for-acts acts reds new-kernel new-itemset )
(mapc
(lambda (item)
(setq s (:NEXTSYMBOL item))
(if s
(putassoc for-acts s (:MOVE-DOT item))
(if (eq (:rule:result (car item)) (:grammar:start-symbol grammar))
(newl acts ’(EOF (accept)) )
(newl reds (cons ’reduce (car item))) ) ) )
(:K-CLOSURE (:itemset:kernel itemset) grammar) )
(mapc
(lambda ( (symbol . items) )
(setq new-kernel
(sort
(lambda ( (r1 . d1) (r2 . d2) )
(if (= d1 d2)
(> (:rule:id r1) (:rule:id r2))
(>dil d2) ) )
items ) )
(setq new-itemset (:GET-ITEMSET-WITH-KERNEL new-kernel grammar))
(newl acts (list symbol (cons ’shift new-itemset))) )
for-acts )
(:itemset:trans itemset acts)
(:itemset:reductions itemset reds)
(:itemset:type itemset ’complete) ))

(defun :K-CLOSURE (items grammar)
(let ( (i 0) (1 (length items))
(closure (mapcar ’identity items))
(rules (:grammar:rules grammar))
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done s item )
(while (< i 1)
(setq s (:NEXTSYMBOL (nth i closure)))
(when (and s (not (memq s done)) )
(newl done s)
(mapc
(lambda (rule)
(setq item (cons rule 0))
(when (not (member item items))
(newr closure item)
(incr 1) ))
(cassq s rules) ) )
(incr 1) )
closure ))

(defun :DECR-REFCOUNT (itemset)
(when itemset
(let ( (grammar (:itemset:grammar itemset)) )

(when (= 0 (:itemset:refcount itemset (1- (:itemset:refcount itemset))))
(:HASH-DELITEMSET itemset (:grammar:itemsets grammar))
(when (neq (:itemset:type itemset) ’initial)

(mapc
(lambda (ref)
(:DECR-REFCOUNT (cdadr ref)) )
(:itemset:trans itemset) ) )

)N

(defun :GET-ITEMSET-WITH-KERNEL (k grammar)
(prog ( (hashpos (:HASH-CODE k))
(hashtable (:grammar:itemsets grammar))
samehashcodes itemset new-id )
(setq samehashcodes (vref hashtable hashpos))
(while samehashcodes
(setq itemset (nextl samehashcodes))
(when (equal k (:itemset:kernel itemset))

(:itemset:refcount itemset (1+ (:itemset:refcount itemset)))

(return itemset) ) )

(setq new-id (1+ (:grammar:highest-is-id grammar)))

(:grammar:highest-is-id grammar new-id)
(setq itemset (omakeq :itemset

type ’initial

id new-id

kernel k

refcount 1

grammar grammar))

(vset hashtable hashpos (cons itemset (vref hashtable hashpos)))

(return itemset) ))

(defun :FOR-ALL-ITEMSETS (grammar function)
(mapvector
(lambda (itemsets)
(mapc function itemsets) )
(:grammar:itemsets grammar) ) )

(defun :FOR-ALL-RULES (grammar function)

145
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(mapc
(lambda ( assocentry )
(mapc function (cdr assocentry) ) )
(:grammar:rules grammar) ) )

(defun :MOVE-DOT ( (rule . placedot) )
(cons rule (1+ placedot)) )

(defun :NEXTSYMBOL ( (rule . placedot) )
(nth placedot (:rule:elements rule)) )

H
; Hash functions for the itemsets.

H
(defvar :hashtablesize 100)

(defun :HASH-INITG (start-state)
(let ( (:hashtable (makevector :hashtablesize ())) )
(vset :hashtable 0 (list start-state) )
:hashtable ))

(defun :HASH-DELITEMSET (itemset hashtable)
(let ( (hashpos (:HASH-CODE (:itemset:kernel itemset) )) )
(vset hashtable hashpos (remove itemset (vref hashtable hashpos))) ))

(defun :HASH-CODE ( ((rule . placedot) . restofkernel) )
(modulo (mul (:rule:id rule) (1+ placedot)) :hashtablesize) )

H
; putassoc and remassoc

(dmd putassoc (1 key value)
‘(setq ,1
((lambda (1 key value)
(let ( (pair (assq key 1)) )
(ifn pair
(acons key (list value) 1)
(rplacd pair (cons value (cdr pair)))
100
,1 ,key ,value)) )

(dmd remassoc (1 key value)
‘(setq ,1
((lambda (1 key value)
(let ( (pair (assq key 1)) )
(rplacd pair (delq value (cdr pair)))
(when (null (cdr pair))
(setq 1 (delq pair 1)) )
1)
,1 ,key ,value)) )
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A.4 Utilities

In order to facilitate using the algorithms presented in the previous appen-
dices, we present some utilities to:

e Read a grammar from file and generate a grammar-object for it.

e Recognize a list of tokens according to some selection of the rules in a
grammar-object.

e Parse a list of tokens according to some selection of the rules in a
grammar-object, and print the resulting graph.

e Print the contents of a grammar-object.

The top-level functions

The package “PGtool” contains a function to create a grammar-object and
fill it with grammar rules from a file:

(#:PGtool:GEN filename) — grammar

It is called with the name of a file containing grammar rules. It returns a
grammar-object to which these rules have been added. The format of the
grammar rules in the file must be:

(label result ::= elementy elementy - - - )

Routine #:PGtool:GEN initializes the grammar-object it generates with “S”
as start-symbol, which means that at least one of the rules should have this
symbol as result.

The recognizer and the parser can be called with

(#:PGtool:RECOGNIZE grammar selection tokens), and
(#:PGtool:PARSE grammar selection tokens)

of which the arguments are like the ones of #:RPG:RESTRICT-PARSER
and the underlying PARSE functions. Routine #:PGtool:RECOGNIZE re-
turns “t” or “()”. If parsing succeeds, #:PGtool:PARSE prints a linear
representation of the parse graph.

(defvar #:sys-package:colon ’PGtool)

(defun :GEN (filename)
(let ( grammar start-seen rules )
(ifn (probefile filename)
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(print "Can’t open file " filename)
(with ( (inchan (openi (catenate filename))) )
(untilexit eof (newl rules (read))) )
(setq grammar (#:RPG:INIT-GRAMMAR ’S))
(mapc
(lambda ( (label result arrow . elements) )
(when (eq result ’S)
(setq start-seen t) )
(ifn (eq arrow ’#:user:=)

(print "A rule should be of the form (label NT ::

(#:RPG:ADD-RULE grammar label result elements) )
rules )
(unless start-seen
(print "No rule seen with start-symbol S as result")
grammar

DADD)

(defun :RECOGNIZE (grammar selected-labels tokens)
(#:RPG:RESTRICT-PARSER grammar selected-labels)
(#:recognizer:PARSE grammar tokens) )

(defun :PARSE (grammar selected-labels tokens)

(#:RPG:RESTRICT-PARSER grammar selected-labels)
(#:parser:SHOW-TREE (#:parser:PARSE grammar tokens)) )

Printing a parse graph

ell el2 ..

DR

Routine SHOW-TREE visits all nodes in a parse graph, assigns a unique
number to them, and prints the nodes in a linear fashion. To print the rules
and the parse table contained in a grammar-object, SHOW-GRAMMAR can

be used.

These routines depend heavily on the send mechanism of LeLisp, and on
the fact that the general print routine uses the specialized prin-routines of

objects whenever possible.

(defun #:parser:SHOW-TREE (rootnode)
(let ( to-show seen to-process node (id-counter 0) )

(ifn rootnode

(print “parsing failed")

(send ’id rootmode (incr id-counter))

(newl seen rootnode)

(newl to-process rootnode)

(while to-process

(setq node (nextl to-process))
(when (eq (type-of node) ’symbolnode)

(mapc

(lambda (rulenode)

(unless (memg rulenode seen)
(send ’id rulenode (incr id-counter))
(newl seen rulenode) )
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(mapc
(lambda (el)
(when el
(unless (memg el seen)
(send ’id el (incr id-counter))
(newl seen el)
(newl to-process el)) ) )
(#:rulenode:elements rulenode) ) )
(#:symbolnode:possibilities node) )) )

(print "result: " rootnode)
(mapc
(lambda (node) (send ’show node))
(sort
(lambda (nl1 n2) (<= (send ’id n1) (send ’id n2)))
seen )) ) ))

(defun #:termnode:show (n)
(print n ": " (#:termnode:token n) " " (string (#:termnode:string n)) ))
(defun #:termnode:prin (n) (prin "T" (#:termnode:id n)))

(defun #:symbolnode:show (n)
(print n ": " (#:symbolnode:symbol n) " " (#:symbolnode:possibilities n)) )
(defun #:symbolnode:prin (n) (prin "S" (#:symbolnode:id n)))

(defun #:rulenode:show (n)
(print n ": " (#:rulenode:rule n) " " (#:rulenode:elements n)) )
(defun #:rulenode:prin (n) (prin "R" (#:rulenode:id n)))

(defun #:RPG:rule:prin (rule)
(prin "[" (#:RPG:rule:result rule) " ::=")
(mapc
(lambda (elem) (prin " " elem) )
(#:RPG:rule:elements rule) )
(prin "1") )

(defun #:RPG:SHOW-GRAMMAR (grammar)
(#:RPG:FOR-ALL-RULES grammar ’print)
(print) (print * ") (print)
(#:RPG:FOR-ALL-ITEMSETS grammar ’#:RPG:itemset:show) )

(defun #:RPG:itemset:show (is)
(prin is ": ")
(print (#:RPG:itemset:type is))
(selectq (#:RPG:itemset:type is)

(complete
(print "transitions: " (#:RPG:itemset:trans is))
(print "reductions: " (#:RPG:itemset:reductions is)) )
(specialized
(print "transitions: " (#:RPG:itemset:sp-trans is))
(print "reductions: " (#:RPG:itemset:sp-reds is)) ) )
(print) )

(defun #:RPG:itemset:prin (i) (prin "<is-" (#:RPG:itemset:id i) ">"))
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An example

We take a file containing the following rules:

(I1S:=z=a\s)
(2S :=Sa)
(3S =)

If we parse the sentence “a” according to this grammar, the (ambiguous)
result would be:

? (#:PGtool:PARSE (#:PGtool:GEN "ASA.grammar") ’all ’(a))
result: S1

Si: S (R2 RB)

R2: [S ::= S a] (S3 T4)

S3: S (R8)

T4: a a

R5: [S ::= a S] (T4 S6)

S6: S (R7)

R7: [S ::=]1 O

R8: [S ::=] O

The nodes in this graph are identified by a number prefixed by “S”, “T”
or “R”, which stands respectively for symbol node, term node or rule node.
Fig. A.1 depicts the same graph. If we parse “a” with as selection “(1 3)”,
the result is non-ambiguous, and stands for the right branch of Fig. A.1.

? (#:PGtool:PARSE (#:PGtool:GEN "ASA.grammar") °(1 3) ’(a))
result: S1

Si: S (R2)

R2: [S ::= a S] (T3 s4)

T3: a a

S4: S (R5)

R5: [S ::=] ()

Figure A.1: The parse graph of “a”
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An SDF definition

We list the SDF definition developed in [Chapter 5 of this thesis] once more
in its entirety.

Module Tokens

exports
sorts
Id Digits Num
lexical syntax

[ \t\n] -> LAYOUT
||{ll "[{}]* ||}l| -> LAYOUT
[a-zA-Z] [a-zA-Z0-9]%* -> Id
[0-9]+ -> Digits
Digits => Num
Digits "." Digits => Num
Digits "." Digits "E" Digits =-> Num
Digits "." Digits "E" [+\-] Digits -> Num
Digits "E" Digits => Num
Digits "E" [+\-] Digits -> Num

Module Expressions

imports
Tokens

exports
sorts
Expression
context-free syntax
Expression "=" Expression -> Expression {non-assoc}
Expression "<>" Expression -> Expression {non-assoc}
Expression "<" Expression -> Expression {non-assoc}
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Expression "<=" Expression -> Expression {non-assoc}
Expression ">=" Expression -> Expression {non-assoc}
Expression ">" Expression -> Expression {non-assoc}
"+" Expression => Expression
"-!" Expression -> Expression
Expression "+" Expression -> Expression {left}
Expression "-" Expression -> Expression {left}
Expression or Expression -> Expression {left}
Expression "*" Expression -> Expression {left}
Expression "/" Expression -> Expression {left}
Expression div Expression -> Expression {left}
Expression mod Expression -> Expression {left}
Expression and Expression -> Expression {left}
not Expression -> Expression
Id -> Expression
Id "(" {Expression ","}+ ")" -> Expression
"(" Expression ")" -> Expression {bracket}
Num -> Expression
priorities
{non—assoc: u=u’ ||<>||’ ||<||’ ||<=u’ ||>=||’ ||>||} <
{ "-" Expression -> Expression,

"+" Expression -> Expression,
Expression "+" Expression -> Expression,

Expression "-" Expression -> Expression,
or } <
{left: "x", "/", div, mod, and}
priorities
{left: Expression "+" Expression -> Expression,
Expression "-" Expression -> Expression,
or }

Module Statements

imports
Tokens Expressions

exports
sorts
Compound-statement Statement Variable
context-free syntax

begin {Statement ";"}* end -> Compound-statement
Compound-statement -> Statement
Variable ":=" Expression -> Statement
if Expression then Statement
else Statement => Statement
while Expression do Statement -> Statement
Id => Statement
Id “(" {Expression ","}+ ")" -> Statement

Id => Variable



Id "[" Expression "]" -> Variable

Module Declarations

imports
Tokens

exports
sorts
Declaration Type Standard-type
context-free syntax

var {Id II,II}+ II:II Type ll;ll

Standard-type

array "[" Num ".." Num "]" of Standard-type
integer

real

Module Subprograms

imports
Declarations Statements

exports
sorts
Subprogram-declaration Arguments Parameter
context-free syntax
function Id Arguments ":" Standard-type ";"
Declarationx*
Compound-statement ";"
procedure Id Arguments ";"
Declaration*
Compound-statement ";"

(" {Parameter " ; e u)u
{Id " s ||}+ won Type

Module Program

imports
Declarations Subprograms Statements

exports
sorts
Program
context-free syntax
program Id II(II {Id II’II}+ II)II II;II
Declarationx*
Subprogram-declaration*
Compound-statement "."

=> Declaration

-> Type
=> Type

-> Standard-type
-> Standard-type

Subprogram-declaration

Subprogram-declaration
Arguments

Arguments
Parameter

-> Program
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Samenvatting in het
Nederlands

Wat zijn parsers en parser generatoren?

Een taal wordt bepaald door een verzameling correcte zinnen. Een zin be-
staat uit een rijtje woorden en heeft een interne structuur. Een parser is in
staat om te beslissen of een zin tot een taal behoort en om uit te vinden wat
de interne structuur van die zin is.

Tk neem als voorbeeld de taal EFzpressies, waar onder andere de volgende
zinnen toe behoren:

axb ab

a maar niet: ax xb
axb+b X
axbxa a X
ax—>b a|b
axaxaxaxa

De vraag is hoe je kunt uitdrukken welke zinnen wel tot deze taal behoren
en welke niet. Alle goede (of alle foute) zinnen opsommen gaat niet omdat
dat er oneindig veel kunnen zijn. Je kunt deze taal wel beschrijven met een
grammatica:

START ::= FExpr (Ezpressies)
Ezxpr ::= Fxpr x Expr
Ezpr ::= Fxpr + Expr

FExpr := — FEzpr
Expr = a
Expr :=b
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Deze grammatica beschrijft welke zinnen tot de taal behoren via afleidingen:
hierbij moet elke stap via een regel uit de grammatica lopen. Een voorbeeld
van een afleiding is:

START leidt via de regel “START ::= FEzpr’ tot
Ezpr leidt via “Fxpr ::= Ezxpr + Ezpr’ tot
Ezxpr 4+ Ezpr  leidt via “Ezpr ::= a” tot

a + Ezpr leidt via “Fzpr ::= — Fxpr’ tot

a+ — Fapr leidt via “Fxpr ::= b” tot

a+—>b

Omdat er een afleiding bestaat van “START” naar “a + — b”, waarbij elke
stap in de afleiding via een regel uit de grammatica loopt, behoort de zin
“a + — b” tot de taal. (Merk op dat er volgens deze grammatica twee
verschillende afleidingen zijn die beide leiden tot de zin “a X b + ¢”. De
grammatica is dan ook ambigue.)

Een parser is in staat om zo’n afleiding in tegengestelde richting uit te
voeren: een parser leidt voor zijn invoerzin af welke grammaticaregels in
een afleiding gebruikt moeten worden om van START naar die zin te gaan en
representeert dit in een boomstructuur. Een parser zal de volgende boom
opleveren voor de zin “a + — b”:

Ezxpr

PN

Ezpr Ezpr

N

Ezpr

\
a + —

T -

De parse boom van “a 4+ — b” volgens Fxpressies

Fen parser is altijd maar voor één grammatica geschikt en moet voor elke
grammatica opnieuw geschreven worden. Het is daarom voordelig om parsers
automatisch te kunnen genereren voor een gegeven grammatica. Parsers en
parser generatoren vormen het centrale thema van dit proefschrift.

Parsers genereren voor interactieve omgevingen

Mijn onderzoek maakt deel uit van het Esprit project GIPE, dat het “au-
tomatisch genereren van interactieve programmeeromgevingen uit formele
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specificaties van programmeertalen” als doel heeft. In een interactieve pro-
grammeeromgeving kun je programma’s intypen, wijzigen en testen in een
omgeving die speciaal voor die taal geschikt is. De teksteditor bijvoorbeeld,
controleert steeds of het programma syntactisch correct is en kan allerlei
andere hulp bieden.

In dit project willen wij een dergelijke omgeving uit de beschrijving van
een taal genereren en hebben daarvoor, onder andere, een formalisme ontwor-
pen om syntax te definiéren. Dit syntax definitie formalisme (SDF) laat toe
om de lexicale syntax, de grammatica en de vorm van de bomen in één defi-
nitie op te schrijven en laat alle context-vrije grammatica’s toe. Uit een SDF
definitie kan automatisch een syntax gestuurde editor worden afgeleid. Het
is grotendeels mijn taak geweest om SDF te implementeren en mijn onder-
zoek heeft zich dan ook toegespitst op het oplossen van de vragen die door
dit formalisme worden opgeworpen.

Het parse algoritme

De eerste stap was het kiezen van het algoritme voor de parser. Deze parser
moet alle grammatica’s aan kunnen (wat hem aardig ingewikkeld maakt)
maar ook zeer efficient zijn. Ik heb hiervoor het Tomita algoritme gekozen.
Dit is een goed compromis tussen beide eisen omdat het zijn efficientie dy-
namisch aanpast. Op “makkelijke” invoer is het behoorlijk snel, op lastiger
stukken wat langzamer, maar hij komt er wel uit. Het werk aan dit algoritme
wordt beschreven in hoofdstuk 1 — Generalized LR parsing. Het is voorna-
melijk werk van Tomita met enkele kleine uitbreidingen. Mijn belangrijkste
bijdrage is hier dat ik dit algoritme uit de wereld van de natuurlijke taalver-
werking naar die van de programmeertalen gehaald heb.

De parser generator

De volgende stap is de parser generator. Het parse algoritme heeft namelijk
een parse tabel nodig waarin alle informatie over de grammatica is opgesla-
gen. Het construeren van zulke tabellen is op zich niet zo lastig want het
Tomita algoritme werkt al heel goed met de zeer eenvoudige LR(0) parse
tabellen. Alleen bleek al snel dat we meer wilden, we wilden niet alleen
interactieve programmeeromgevingen genereren maar ook grammatica’s in-
teractief definiéren en testen.
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Hiervoor heb je een incrementele generator nodig. Zo’n generator brengt
bij een kleine wijziging van de grammatica ook maar een kleine wijziging aan
in de al gegenereerde parser. Dit in tegenstelling tot conventionele methoden,
die na elke wijziging de oude parser weggooien en van vooraf aan beginnen.
Jan Heering, Paul Klint en ik hebben een aantal verschillende alternatie-
ven voor incrementele generatie onderzocht en uiteindelijk hebben we een
incrementele LR(0) parse tabel generator bedacht.

Deze incrementele generator is beschreven in hoofdstuk 2 — Incremental
parser generation — en dit is eigenlijk het meest innovatieve gedeelte van
mijn proefschrift. Tk heb dit werk op de SIGPLAN conferentie in Portland
gepresenteerd en het is geplaatst in het tijdschrift IEEE — Transactions on
Software Engeneering.

Modulaire grammatica’s

In een formele definitie van een programmeertaal hoort naast syntax ook
semantiek thuis. In het semantische gedeelte van een definitie beschrijft
men de betekenis van de taal. Dat kan zijn of een programma correct is, hoe
programma’s in die taal uitgevoerd moeten worden of wat een compiler moet
doen. Om semantiek te definiéren hebben we, los van SDF, het algebraisch
specificatie formalisme ASF ontwikkeld. ASF valt buiten het onderwerp van
mijn proefschrift en ik wil er niet meer over zeggen dan dat een ASF definitie
uit modules bestaat. ASF en SDF zijn later gekoppeld tot één formalisme
(met de prozaische naam ASF+SDF), waarin alle eigenschappen van een
programmeertaal gespecificeerd kunnen worden.

Het feit dat ASF modularisering ondersteunt, heeft bij het combineren
van beide formalismen gevolgen voor SDF. Een modulaire definitie bestaat
uit modules die elkaar kunnen ¢mporteren. Een SDF module beschrijft een
grammatica die bestaat uit een eigen definitie plus die van alle modules die
hij importeert.

Een recht toe, recht aan implementatie hiervan zou zijn om een aparte
parser voor de volledige grammatica van elke module te genereren. Hiermee
zou je echter veel dubbel werk doen, omdat er dan voor een module die
vaak geimporteerd wordt ook steeds opnieuw een parser gegenereerd wordt.
Daarnaast moet je bij een wijziging in een module de parsers aanpassen van
alle modules die hem importeren.

Een andere oplossing zou zijn om alleen voor het eigen gedeelte van elke
module een incomplete parser te genereren en deze parsers aan elkaar te
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koppelen. Echter, gegeven de in hoofdstuk 1 en 2 gekozen technieken is dit
onmogelijk.

Het is daarentegen wel mogelijk om één grote parser voor alle modules
tezamen te genereren en hier kleinere parsers uit af te leiden. Wat dan
ontstaat is weliswaar geen echte modulaire parser generator maar maakt het
wel mogelijk om binnen het ASF+SDF formalisme met modulaire definities
te werken. Deze nieuwe techniek is beschreven in hoofdstuk 3 — Restricting
a parser to a subgrammar.

Delen van zinnen herkennen

Hoofdstuk 4 — Substring parsing — is eigenlijk een zijstapje. Hier ontwik-
kelden Wilco Koorn en ik een substring parser. Deze parser herkent of zijn
invoer een deel van een volledige zin zou kunnen zijn hetgeen een slag com-
plexer is dan gewoon parsen. Deze techniek zou gebruikt kunnen worden om
incrementeel parsen te ondersteunen. Ook kan een substring parser ervoor
zorgen dat een parser niet op de eerste fout in de invoer stokt maar ook
verderop nog fouten vindt. De methode is echter (nog) te inefficiént om toe
te passen.

Uit de literatuur zijn andere oplossingen bekend voor het substring parsen.
Die werken echter alleen voor een beperkte klasse van grammatica’s. Op ba-
sis van het parse algoritme uit hoofdstuk 1 hebben wij een algemene en
bovendien elegante methode ontwikkeld. Tk heb dit werk gepresenteerd op
de IWPT conferentie in Mexico en gepubliceerd in het tijdschrift SIGPLAN
Notices.

SDF

De technieken uit de eerste drie hoofdstukken lossen de fundamentele pro-
blemen van de implementatie van SDF op. Om nu naar SDF zelf over te
stappen geef ik in hoofdstuk 5 — From BNF to SDF — een inleiding in het
gebruik van SDF aan de hand van een SDF definitie van een programmeer-
taal. Hoofdstuk 6 — An implementation of SDF — beschrijft het interface
van de implementatie van SDF zodanig dat deze code bruikbaar wordt voor
andere programmeurs.
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Tenslotte

Terugkijkend op de 6 jaar dat ik bij het GIPE project gewerkt heb, durf ik te
zeggen dat we erin geslaagd zijn om een groot aantal doelen te verwezelijken.
We hebben een aantal nieuwe technieken ontwikkeld en we zijn erin geslaagd
om met het ASF+SDF formalisme het definiéren van een programmeertaal
eenvoudiger te maken. Het enige minpunt van het ASF+SDF systeem is dat
al die geavanceerdheid het wat traag maakt in vergelijking met conventionele
systemen. Het aanpakken van dit probleem is echter eerder een klus voor de
industrie dan voor de wetenschap.



