The Evolution of Implementation Techniques
in the ASF4+SDF Meta-environment

P. Klint

Department of Software Technology, Centre for Mathematics
and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands
Programming Research Group, University of Amsterdam, P.O.
Box 41882, 1009 DB Amsterdam, The Netherlands

1 Introduction

The ASF+SDF Meta-environment is an interactive development environment for
formal language definitions. It is both a meta-environment supporting fully inter-
active editing of modular language definitions written in the formalism ASF4SDF
and a generator for dedicated environments for defined languages.

The actual development of this system started in 1985 as part of the GIPE!
projects [HKKL86]. Now, ten years later, it is worthwhile to assess what has been
achieved and, more importantly, which problems are still to be addressed.

A historical and at times methodological perspective is necessary in such an
assessment. However, rather than evaluating all aspects of the system I will con-
centrate on the evolution of the implementation techniques being used. This implies
that I will neither assess the formalism ASF+4SDF itself nor discuss more fundamen-
tal research questions related to topics like modularization, higher-order formalisms,
compiler generation, and the like.

Instead, I will try to distill lessons from the patterns that can be identified in
the evolution of the implementation techniques used so far. These lessons are used
to make projections for the future.

The ASF+SDF Meta-environment has been developed as part of the Centaur
system, the end result of the GIPE projects. The analysis to be given here will
completely focus on the Meta-environment and will only discuss those aspects of
Centaur that are directly relevant to this analysis. Other aspects of Centaur will
be mostly ignored.

The paper gives a chronological account: past, present, and future. Readers
interested in prehistoric considerations should consult [HK94]. An overview of the
Meta-environment is given in [K1i93].

2 The past: the GIPE I and GIPE II projects

Developments started in close cooperation with, in particular, INRIA in France,
in the ESPRIT projects GIPE I? and GIPE II?® projects. Both projects were suc-
cessful, and this makes it all the more interesting to start our investigations into
the evolution of implementation techniques by having a look at the original project
proposal, from which I quote:

LGIPE—Generation of Interactive Programming Environments.

2The GIPE I project was carried out in the period 1985-1989 with the following partners: BSO
(The Netherlands), CWI (The Netherlands, with University of Amsterdam as subcontractor),
INRIA (France), and SEMA-METRA (France).

3The GIPE II project was carried out in the period 1988-1993 with the following part-
ners: BULL (France), CWI (The Netherlands, with University of Amsterdam as subcontractor),
GIPSI (France), INRIA (France), Planet (Greece), PTT Research (The Netherlands), and SEMA-
METRA (France). Initially ADV-ORGA (Germany) was involved but early on they left the project
and their tasks were taken over by the University of Darmstadt (Germany). The University of
Linkdping (Sweden) joined the project during the last two years.

Proceedings of ASF+SDF95. A workshop on Generating Tools from Algebraic Specifications.
May 11 & 12, 1995, CWI, Amsterdam, M.G.J. van den Brand, A. van Deursen, T.B. Dinesh,
J.F.Th. Kamperman & E. Visser (eds.) Technical Report P9504, Programming Research

Group, University of Amsterdam

6 P. Klint

The main objective of this project is to investigate the possibilities of au-
tomatically generating interactive programming environments from lan-
guage specifications. An “interactive programming environment” is here
understood as a set of integrated tools for the incremental creation, ma-
nipulation, transformation and compilation of structured, formalized,
objects such as programs in a programming language, specifications in a
specification language, or formalized technical documents. Such an in-
teractive environment will be generated from a complete syntactic and
semantic characterization of the formal language to be used. In the pro-
posed project, a prototype system will be designed and implemented that
can manipulate large formally described objects (these descriptions may
even use combinations of different formalisms), incrementally maintain
their consistency, and compile these descriptions into executable pro-
grams.

The main steps in the plan were as follows:
e Establish a common software environment.
e Define common interfaces between components.

e Define a set of common examples to be used as “benchmarks” for language
specification formalisms.

Design and implement the environment generator.

Generate environments for the selected examples.

In retrospect this was a sensible approach that worked out well. Continuing with
the “establishment of a common environment” the proposal reads:

This task is concerned with the construction, installation and documen-
tation of a standard software environment as a point of departure for
experimenting with and making comparisons between language specifi-
cation techniques. The mecessary elements of this—UNIX-based— soft-
ware environment are: efficient and mutually compatible implementati-
ons of Lisp and Prolog, parser generator, general purpose algorithms for
syntaz-directed editing, general purpose pretty printing algorithms, soft-
ware packages for window management and graphics etc. Most of these
elements are already available or can easily be obtained; integrating these
components into one standard software environment will be the major
effort.

With the advantage of hindsight, we now know that the basic assumptions in this
description were wrong. The components we needed were not available and all
integration efforts turned out to have been systematically underestimated. Even
if components were available, like for instance the syntax-directed editor of the
Mentor system [DGHKL84], or the window systems that existed at that time, their
integration amounted in nearly every case to a complete re-implementation.
Another observation is that the proposal was based on too static a view on
technological developments and the response of researchers to them: the assumption
was that once a certain technology has been integrated it can stay in place. In reality,
technological development goes so fast, that new techniques have to be assessed on
a continuous basis and their integration requires an ongoing, significant, effort. The
world outside the project creates new technological opportunities, but it is in most
cases the pressure from inside the project by individual researchers that causes
transitions to new techniques. The fear to stay behind or to miss the connection

Evolution of ASF+SDF Implementation Techniques — 7

with a new development that is perceived as important are strong motivations for
this behaviour. Let’s be honest, which researcher does not recognize the child in
him- or herself that wants to play with new and exciting toys?

In the following paragraphs, I will discuss some specific technological develop-
ments that affected the project.

2.1 Implementation language

In the beginning, we were all convinced that one flexible, dynamic, implementation
language should be used for the implementation of all components of the system.
That language should support run-time type checking, garbage collection, run-time
generation of programs, and the like. INRIA’s Mentor system had been imple-
mented in Pascal and the lack of garbage collection and the limitations of Pascal’s
type system were felt as serious drawbacks. CWD’s work on “monolingual envi-
ronments” [HK85] was based on an earlier, positive, experience with the Summer
programming language [K1i80] that supported dynamic typechecking and automatic
garbage collection. Our collective experiences were thus consistent with each other.

INRIA’s research group for VLSI design had just completed a small, portable,
Lisp implementation (fashionably called “LeLisp”) that they intended to use for
building a design and test environment for VLSI chips. Since Common Lisp was
still in its infancy (and we all feared that the resulting language would be huge),
it was only natural to adopt LeLisp as a common implementation language. In
retrospect I think this was the wrong choice:

e Given the simplicity and portability of LeLisp we believed that it would be-
come a freely available, widely used, popular, language. However, as more
and more features were added to LeLisp it became less simple, and thus less
portable. When the further development and distribution of LeLisp were ta-
ken over by INRIA’s subsidiary ILOG, there also came an end to the free
availability of LeLisp, in particular for commercial users.

e Although a module concept was added to LeLisp later on, as a language it
remained weak in structuring large programs. At the time that the modules
were sufficiently mature (in version 16), the language had become so incom-
patible with previous versions that the project could not afford the cost of
converting all software to the new version.* At that time we were, of course,
completely trapped in the use of a non-standard language without further
support or perspective.

In retrospect, our language-centered approach was wrong. The requirements
listed above were, obviously, valid ones, but the conclusion that a single language
should provide them was untenable, as exemplified by the adoption of Prolog as
a second implementation language early in the project. In Section 2.5 we will see
that LeLisp has been used as the central glue to tie components together. This was
a requirement that was not on our list. From this perspective, LeLisp was certainly
a better choice than, for instance, C, but LeLisp was not particularly equipped for
component integration either. As a result, a substantial amount of work was needed
for the integration of each new component,

Given the technology that was available at that time, it would have been better
to leave the choice of an implementation language to the implementors of individual
components and to standardize only at the level of data representations. Each
component could then be implemented as a separate (UNIX-level) program (using
an appropriate implementation language) that exchanges data with other programs
according to predefined file formats.

4A conscious decision not to follow a new development!

8 P. Klint

2.2 User-interfaces

The impact of the developments sketched in the previous paragraph is quickly for-
gotten if we look at the breath-taking sequence of systems for constructing user-
interfaces that have played a role in the project:

e The Brown Workstation Environment (BWE) and in particular its window
manager A Screen Handler (ASH): This was one of first window systems for
UNIX workstations. All ASH library call were interfaced with LeLisp.

o SunWindows: One of the first window managers for Sun workstations built
by Lucasfilm Inc.

o X-windows: the now standard window system pioneered at MIT. The Xt
library was interfaced with LeLisp.

e Graphical Objects: an object-oriented construction kit implemented in LeLisp.

e Motif: alibrary on top of the basic X-windows library. The Motif library was
interfaced with LeLisp.

e Ul manager: a stand-alone user-interface manager developed at CWI and
UvA, based on Motif, implemented in C.

Since each new user-interface system typically included several hundreds of entry
points, the amount of integration work per new system was substantial.> Early on,
an attempt was made to define a set of abstract functions to interact with different
windowing systems. This attempt was a failure since no consensus could be reached
on what should be ezcluded from this interface.

2.3 Rewriting engines

While the rapid developments in the area of user-interfaces came, to a large extent,
from outside the project, I now wish to focus on developments coming completely
from the inside: the evolution of techniques for implementing rewrite systems. Here,
the list of efforts is also impressive:

e A first ASF typechecker was implemented in the Summer language (in fact,
this had already been done before the start of the GIPE project).

e In an effort to identify existing technology for term rewriting, we performed
experiments with O’Donnell’s Equation Interpreter and with C-Prolog [HK86].
The former system looked interesting since it performed extensive preproces-
sing on the specification in order to generate efficient rewriting code. Several
small ASF specifications were compiled (by hand) to the input language of the
Equation Interpreter and to Prolog.

At that time®, the preprocessing times needed by the Equation Interpreter
were preposterous and did not lead to significant improvements in execution
time when compared to the straightforward interpretation using C-Prolog.
Our obvious conclusion was that Prolog was the preferred implementation
vehicle.

5The people at INRIA should be credited for this work.

6We stopped following the development of the Equation Interpreter after drawing conclusions
from our experiments. Later publications show that its implementation has been improved com-
pared to the version we used.

Evolution of ASF+SDF Implementation Techniques — 9

e Several rewrite engines for ASF have been implemented that compile specifi-
cations to Prolog. They were different in the precise translation rules being
used and in the overall organization of the generated Prolog code [BW89).

— A scheme described by Drosten en Ehrig [Die89, Hen91].

— A scheme described by Van Emden/Yukawa, resembling the code we
generated in the experiments with the Equation Interpreter [Hen91].

¢ Prolog implementations are based on unification, while term rewriting only
needs matching. Clearly, improvements could be made by further exploiting
the specific properties of term rewriting. This has resulted in two approaches
that compile specifications to Lisp:

— A fully compilational approach first described by Kaplan and imple-
mented by Casper Dik in his master’s thesis.

— The Equation Manager that is used today in the AsF+SDF Meta-environ-
ment (implemented by Casper Dik).

e In our search for maximal efficiency, we also turned our attention to the com-
pilation of specifications into C. Based on a newly designed abstract machine
dedicated to term rewriting (ARM), the first ASF2C compiler translates spe-
cifications first to ARM code and then to C [KW93].

Each new implementation resulted in an increase of execution speed with as a
result that we currently have—as far as we know—the fastest rewriting techniques
in existence.

However, one could, with good reason, pose the question how many different
implementations are needed before the “final” one is reached. There are several
answers, none of them giving a clue how to avoid such an iterative development
process:

e Iterative development is unavoidable since it reflects the learning curve yiel-
ding increasingly better insights in the behaviour of term rewriting.

e Initially, we expected to piggy-back on the advances in Prolog compilation
technology. However, in order to profit from these advances, the generated
Prolog code has to contain more and more annotations to influence the Prolog
compiler. These annotations are different for each Prolog compiler, thus slowly
blocking the transition to even newer Prolog compilers.

e The interpretation of Horn clauses and term rewriting systems exhibit more
and more subtle differences, the closer one looks. The former need full unifi-
cation while the latter can be implemented with matching only.

e If efficiency is the ultimate aim, one should generate code in the most efficient
language around. For portability reasons, it is not attractive to generate
assembly language. Therefore, the best compromise seems to be to generate
plain C code.

2.4 Lazy/incremental generation techniques

Two forms of incremental behaviour can be distinguished: incrementality of the
generator and incrementality of the generated environment. One of the hall marks
of the current implementation of the ASF+SDF system is the use of lazy /incremental
techniques for the generation of lexical scanners, parsers, and, to a lesser extent,
term rewriting systems [HKR90, HKR92] This approach is guided by the following

principles:

10 P. Klint

e lazy: only generate those parts of an implementation that are currently nee-

ded.

e incremental: whenever the input description changes (e.g., the grammar used
by the parser generator to generate a parser), remove those parts of the al-
ready generated implementation that are inconsistent with the new input
description. Rely on lazy expansion of the adapted implementation to further
generate the implementation for the new input description.

This approach hides most details of generating implementations and makes the
ASF+SDF Meta-environment easy to use even for people who are unaware of im-
plementation aspects. However, as part of the current analysis, the following obser-
vations should be made:

e It is not easy to combine lazy/incremental program generation and global
optimization techniques: the former depends essentially on partial knowledge
while the latter needs global knowledge. A typical example is the use of
first/follow sets in a parser generator. By using these sets one can gene-
rate better parsers but this requires processing the whole grammar which is
contrary to the lazy/incremental approach. As a result, implementations ge-
nerated with a lazy/incremental generator will in most cases be inferior to
implementations generated by a more classical generator that can use global
information during the generation process.

e A lazy/incremental generator may detect errors in the given input description
in a later stage than a conventional generator.

e In lazy/incremental generators a lot of additional bookkeeping is necessary
(i-e., dependencies between the current input description and the correspon-
ding, partially generated, implementation). In large applications, the size of
this additional information can become prohibitive.

e Due to the bookkeeping just mentioned, lazy/incremental generators are more
complex to build (and maintain) than more conventional generators.

e A lazy/incremental generator needs the original input specification. In a fully
compiled, stand-alone, generated environment this is unnecessary overhead.

What can we infer from these observations? The current seemless integration
of editing specifications and generating implementations was and remains very at-
tractive: editing specifications and the use of the corresponding (generated) imple-
mentation can alternate without any further actions being required from the user.
It might very well be possible to develop fast, classical program generators, that
implement this behaviour with acceptable performance. Such generators would also
more naturally support the generation of stand-alone environments.

Incrementality in generated environments has been introduced and implemented
experimentally as described in [Meu90]. Nearly the same arguments as given above
apply to this form of incrementality: (1) the generator becomes more complex; (2)
when applications become larger the bookkeeping needed for incremental execution
increases and the benefits of the approach diminish due to the overhead of the larger
(virtual) memory that is needed.

2.5 Connecting components

From the previous analysis it will be clear that a major question is how to glue all
the different components together. We will briefly describe three approaches.

Evolution of ASF+SDF Implementation Techniques — 11

LeLisp as glue. Interfaces have been developed between LeLisp and C, ASH, C-
Prolog, mu-Prolog, X, Motif, and the X resource manager. In all these cases LeLisp’s
external function interface has played a crucial role in establishing connections with
(mostly C based) external software: by writing appropriate interface code and by
linking the external software with the LeLisp code, an extended version of the LeLisp
system is obtained. The following observations can be made about this approach:

e Writing the interfacing code is a repetitive, error prone task.

e The extension mechanism is static: all external software has to be included at
link time in the extended version of the LeLisp system. This results in ever
growing core images, unless one creates versions of LeLisp for each desired
combination of external packages.

e The rapidly growing memory requirements of the resulting systems led to the
desire to distribute the implementation over more than one machine. The
extension mechanism just described does not support this.

Software IC’s and SophTalk. These observations led the INRIA group to start
work on more general mechanisms for connecting software components. They chose
as metaphor the “integrated circuit” (IC): a building block that implements a cer-
tain functionality and that has a number of pins for making connections with other
IC’s. By using appropriate wires (or buses) one can build a system as a network
of cooperating IC’s [Clé90]. Later on, the software IC paradigm evolved into the
SophTalk system [BJ93], essentially a library of LeLisp functions for building net-
works of software IC’s. SophTalk also supports external IC’s: Unix programs that
implement an IC and are connected to LeLisp via sockets. Lisp expressions are
used to exchange data with the external IC. In this way, distributed client/server
applications can be build. The SophTalk system has been used with success in later
versions of the Centaur system.

I very much liked the ideas behind the SophTalk approach, but kept my doubts
about it. The major criticism was that these IC networks seem to be too distributed,
and do not permit an easy understanding of the cooperation between IC’s since
all control has been distributed as well. This was confirmed by the difficulties
encountered when trying to understand (and debug) such networks[Dis94].

Connecting Emacs. Most computer users spend most of their time using some
text editor or word processor. This explains why the editing facilities offered by a
system are a frequent source of complaints and criticism. The editor in the Meta-
environment (GSE [Ko0092]) was built as a research prototype and we have never
considered including elementary features like search, undo, and the like. Recogni-
zing, however, the importance of good editing capabilities for the overall acceptance
of the system we decided to perform an experiment and replace the text-editing func-
tions of GSE by Emacs [KB93]. The overall approach is sketched in Figure 1. In
the old situation, the Meta-environment was implemented as a single, monolithic,
Unix process. In the envisaged, new, situation three components were created, each
executing as a separate Unix process:

e A user-interface manager (UIM) built using Motif. All user-interface aspects
of the Meta-environment were handled by sending appropriate commands to

UIM.
e Epoch, a version of Emacs integrated with X-windows.

e The remaining parts of the Meta-environment including the structure-oriented
editing commands of GSE but excluding text-oriented commands.

12

P. Klint

old New
Other Other
parts parts
GSE GSE
struct & =
struct
text
Graphical
Objects

Figure 1: Making the connection with Emacs

With a considerable effort, this new implementation was completed but never

worked really satisfactorily for the following reasons:

e The outstanding misjudgement in this operation was that the consequences of

moving from a single process implementation to a multi-process implementa-
tion were recognized much too late. Initially, design and implementation were
focussed on individual components rather than on their cooperation. As a
result, synchronization problems started to occur after the design, coding and
testing of the individual components were mostly complete. At that stage,
these problems had to be solved by ad hoc means that could not guaran-
tee the overall correct behaviour of the cooperating components. A formal
specification and simulation of this cooperation [vVVvW94] revealed more,
at that moment not yet discovered, communication problems. These obser-
vations formed the starting point for the ToOLBUS approach discussed in
Section 3.2.

In our desire to gradually move from the old implementation to the new
one, the protocols between the components were made to mostly simulate the
old interfaces between components. However, these old interfaces assumed
a shared-memory between components with uniform access costs for all data
structures. The new situation was based on a distributed-memory model with
non-uniform access costs. As a result, the costs of communication between
components were relatively high and the performance of the new, distributed,
editor was rather poor.

2.6 Lessons

Goals Initially, we envisaged the generation of environments for “programs in
a programming language, specifications in a specification language, or formalized
technical documents” (see Section 2). All examples selected as benchmark for the
generator were small programming languages focusing on specific features (e.g.,
static and polymorphic typing, block structure, and goto’s.) During the project,
the relevance of application languages became clear. Typical examples are special
languages for database queries, form-based data-entry, product descriptions, pro-

Evolution of ASF+SDF Implementation Techniques — 13

duction planning, and financial products. As a result, the current Meta-environment
is biased towards solving idiosyncracies of the Fortran syntax rather than addres-
sing probably more relevant issues like how to define a syntax that can be used
to generate a form-based editor. For these applications it is also important to
generate small, stand-alone, environments that can run independently of the Meta-
environment.

Technology A long-term research project should try to make itself immune to the
rapid development of information technology by assuming a continuously changing
rather than a fixed technological infrastructure. In this project, for instance, the bias
towards a single implementation language (LeLisp) and towards specific technologies
(e.g., user-interface toolkits) was wrong. Since it is very hard to predict which
technical trends will become accepted standards, there seems to be no obvious
solution for this problem, other than selecting approaches that are as insensitive as
possible to technological changes.

System structure The larger the system becomes the more difficult it is to
maintain and extend it. Frankly, at the moment nobody dares to touch old code
out of fear that modifications will have unexpected effects on other parts of the
system. As a result many interesting results have not been incorporated in the
system as distributed.

Another development that makes the limitations of the current structure ma-
nifest is the desire to move towards a more open, distributed, implementation in
order to connect to externally available components (e.g., Emacs)

The overall structure of the implementation and the way components are con-
nected are hence becoming a growing concern.

How many roads? In [Bro74] a “second systems effect” is described. The first
time that a team builds a system, many design errors are made out of ignorance.
The second time, an effort is made to avoid all previous errors with as outcome an
unwieldy, unusable system. The third time, a well-balanced, clean, system can be
designed and build. This seems optimistic compared to the accounts given earlier
(see Section 2) and this raises the anxious question how many roads we must pass
by until7

3 The present: towards a next generation

The global requirements for the next generation Meta-environment can be distilled
from the lessons described in the previous section and are as follows:

G1 No bias towards a single implementation language.
G2 Transparent, language-independent, exchange of data between components.

G3 Explicit, clear mechanisms for describing the control interactions between
components.

G4 Transparent connection with externally available software packages.

G5 Implementation can be distributed over more than one process and/or com-
puter.

Two aspects of these requirements are now further discussed: data integration
(Section 3.1), and control integration (Section 3.2).

TFree after Donovan.

14 P. Klint

3.1 Data integration: GEL and AsFix

The requirement to have transparent, language-independent, exchange of data bet-
ween components can be further specialized as follows:

D1 The only data exchanged between components are terms.

D2 Any sharing in a term should be preserved when it is communicated between
components.

D3 The representation of terms should be concise, to permit representation and
exchange of terms containing millions of nodes.

D4 Terms should be self-descriptive, i.e., they should contain all necessary signa-
ture information to permit type-checking.

D5 It should be possible to attach annotations to terms in order represent arbi-
trary, descriptive, information.

D6 Specifications should also be represented as terms and should be self-descriptive.

Data integration mechanisms satisfying these requirements are provided by the
data representation languages GEL and ASFIX. The former is intended for the
concise, linear, encoding of arbitrary graphs. The latter will be used for the logical,
self-descriptive, representation of terms and specifications.

3.1.1 GEL—Graph Exchange Language

GEL (Graph Exchange Language) [Kam94] provides a means for concisely encoding
arbitrary graphs with as important special case: terms with sharing. Basically,
GEL provides a dictionary mechanism for introducing abbreviations for arbitrary
functions names, and a graph building engine that is programmed via postfix com-
mands. A concise, linear, encoding of graphs is achieved that requires circa one
byte per node for large graphs. The encoding and decoding can be done efficiently,
making GEL a good representation mechanism for communicating graphs between
components in a distributed application.

If we consider a standard definition of the Booleans, then the GEL encoding of
the term true & false will become:®

'a0:0=Booleans: "true" -> BOOL

a0

'al:0=Booleans: "false" -> BOOL

al

'a2:10=Booleans: BOOL "&" BOOL -> BOOL
a2

The three lines marked with ! introduce abbreviations for the constants true
and false and the & function. Each abbreviation has the form

L abbreviation : arity=string

with abbreviation the shorthand being introduced, arity the symbol’s arity (repre-
sented as binary number), and string an uninterpreted string that may contain
arbitrary (even binary) data of arbitrary size. One could, for instance, use an arbi-
trary bitmap as function name. The commands a0 and a1l push the constants true

8We use here a textual presentation of GEL, in the implementation a more concise byte encoding
is used.

Evolution of ASF+SDF Implementation Techniques — 15

and false on the graph stack. The command a2 consumes these two constants and
replaces them by the desired term.

Two aspects of GEL are not illustrated by this simple example. First, an ab-
breviation has to be introduced only once, but can be reused many times thus
contributing to a concise representation. Second, the instructions of the graph
engine permit the construction of arbitrary (cyclic) graphs.

"ContextFreeSyntax"
TrueDef
)))

;/ \r H
"CfFun'ction"
"Attributes" il

IICfE emsll llt uell IISO tll IIB OLII

FalseDef
© G Sl e ®

:J \"/ ’
"CfFun'ction"

"CfEYems" "false" "Sort" "BOBOL" "Attri(g\'l

AndDef
OO0 0
"CfFun'ction" i ﬁ
"CfEYems" "Sort" "BOOL" "Attributes'" "Teft"

IIBOLII IIQLA\H" IISO tll IIB OLII

Figure 2: Graph representation of the context-free syntax of the Booleans. The
nodes labeled TrueDef, FalseDef, and AndDef are referenced from terms (see Fi-
gure 3).

3.1.2 ASF1x—ASF+SDF prefix representation

The syntactic freedom provided by ASF+SDF makes it impossible to use a single,
fixed, syntax for each specification. This fact hinders the development of “meta-
level specifications”: ASF+SDF specifications manipulating ASF+4SDF specificati-
ons. Such specifications are essential for obtaining concise, readable, descripti-
ons of tools like typecheckers and compilers for ASF+SDF. ASFIX (derived from

16 P. Klint

Figure 3: Graph representation of the term true & false

ASF+SDF preFiz representation) is a fixed exchange format for ASF+SDF specifi-
cations [K1i94]. The overall representation of specifications is made very simple by
representing a complete ASF+4SDF specification as a single term. This representa-
tion is sufficiently self-contained to specify, for instance, the complete type checking
of ASF+SDF specifications. A generic annotation mechanism turns AsSFIX into a
versatile representation and storage medium for tools operating on ASF+4SDF spe-
cifications.

AsFIX is based on the notion of “ATerms”: applicative, annotated term struc-
tures. ATerms are either literal strings, or they are constructed using function
application (“[” and “]”), list construction (“;”) or annotation (“/”). An informal
definition of ATerms is:

e Literals: a literal is a term, e.g., "f" or "37".

e Lists: the empty list nil as well as expressions of the form T} ; T3 are terms.
Lists are used to represent sequences of terms. Example: a; b; c.

e Function application: Only unary function application is defined and has
the form [T} T5], where T} and T are arbitrary terms. For instance, "f"
is a legal term but ["f" "a";"b";"c"] as well as [["g" "1"; ["h" "2"]1]
"a";"b";"c"] are also legal terms. The equivalents of these three terms
in a more conventional notation would be: £, £(a,b,c), and g(1,h(2)) (a,
b, c). At the position where ordinarily a function name appears, we allow
thus an arbitrary term. Nonetheless, we will frequently call such a term the
“function symbol”.

o Annotations: a term T can be annotated with another term T,. This is
written as 77 / T and the result is also a term.

ATerms can be defined as follows.

Module ATerms
imports Literals3-1-2
exports
sorts ATerm
context-free syntax
Literal — ATerm
nil — ATerm
ATerm *;" ATerm — ATerm {right}
“I" ATerm ATerm “]" — ATerm
ATerm “/" ATerm — ATerm {left}
“(" ATerm)" — ATerm {bracket}
priorities
ATerm “/"ATerm — ATerm > ATerm “;"ATerm — ATerm

Evolution of ASF+SDF Implementation Techniques — 17

The imported module Literals contains straightforward definitions and is not
shown.

An ASFIX specification is now simply an ATerm of a certain prescribed form.
For instance, the SDF section

context-free-syntax
true —-> BOOL
false -> BOOL
BOOL "&" BOOL -> BOOL {left}

will be translated into

["ContextFreeSyntax"
["CfFunction" ["CfEelems" "true"]; ["Sort" "BOOL"]; ["Attributes" nill];
["CfFunction" ["CfElems" "false"]; ["Sort" "BOOL"]; ["Attributes" nil]];
["CfFunction" ["CfElems" ["Sort" "BOOL"]; ["QLit" "\"&\""]; ["Sort" "BOOL"]];
["Sort" "BOOL"]; ["Attributes" "left"]1]]

Each context-free function declaration, is represented by "CfFunction" followed
by three arguments: a list of context-free elements, a result sort, and a list of
attributes. Observe, that literals that need to be quoted are represented by "QLit",
other literals stand for themselves. The symbol "Sort" represents sort names in the
original specification. The graph presentation of this fragment is shown in Figure 2.

The ASFIX representation of terms satisfies requirement D4 given earlier: terms
should be self-descriptive, i.e., they should contain all necessary signature infor-
mation to permit type-checking. This is achieved by using contezt-free function
definitions as function symbols. Our example term true & false will then be
represented as follows:

[["CfFunction" ["CfElems" ["Sort" "BOOL"]; ["QLit" "\"&\""];

["Sort" "BOOL"]]; ["Sort" "BOOL"]; ["Attributes" "left"]]
[["CfFunction" ["CfElems" "true"]; ["Sort" "BOOL"]; ["Attributes" nil]] nill;
[["CfFunction" ["CfElems" "false"]; ["Sort" "BOOL"]; ["Attributes" nill]] nilll

Although its textual representation is verbose, the corresponding graph structure
is as simple as it should be as is shown in Figure 3. Observe that all terms share
the subgraphs TrueDef, FalseDef, and AndDef defined in Figure 2.

3.1.3 Discussion

AsF1x and GEL complement each other. The ASFIX version of a term represents
its logical structure and is self-descriptive. It contains many shared subterms. GEL
can be used to obtain a concise physical representation of the ASFIX version of the
term, taking into account all sharing.

3.2 Control integration: the TooLBUs

A solution for the control interconnection problem should satisfy the following re-
quirements:

C1 It has a formal basis and can be formally analysed.

C2 Tt is simple, i.e., it only contains information directly related to the objective
of control integration.

C3 It exploits a number of predefined communication primitives, tailored towards
our specific needs. These primitives are such, that the common cases of dead-
lock can be avoided by adhering to certain styles of writing specifications.

18 P. Klint

C4 The manipulation of data should be completely transparent.

C5 There should be no bias towards any implementation language for the tools
to be connected. We are at least interested in the use of C, Lisp, Tcl, and
Asr+SDF for constructing tools.

C6 It can be mapped onto an efficient implementation.

In [BK94, BK95] a proposal has been made for an architecture called the “ToOL-
Bus”. We will now briefly summarize the TOOLBUS architecture (Section 3.2.1)
and then we show how it can be used to build a syntax-directed editing environment
(Section 3.2.2).

3.2.1 TooLBus—a component interconnection architecture

TooLBUs:

and\ snd

eval value
do
ack-event event
Adapters:

TOOlS: h

Figure 4: Global organization of the TooLBUS

The global architecture of the ToOOLBUS is shown in figure 4. The TooLBUS serves
the purpose of defining the cooperation of a variable number of tools T; (i = 1, ...,m)
that are to be combined into a complete system. The internal behaviour or imple-
mentation of each tool is irrelevant: they may be implemented in different pro-
gramming languages, be generated from specifications, etc. Tools may, or may not,
maintain their own internal state. Here we concentrate on the external behaviour
of each tool. In general an adapter will be needed for each tool to adapt it to the
common data representation and message protocols imposed by the TooLBUS.
The TooLBUS itself consists of a variable number of processes® P; (i = 1,...,n).
The parallel composition of the processes P; represents the intended behaviour of
the whole system. Tools are external, computational activities, most likely corre-
sponding with operating system level processes. They come into existence either

9By “processes” we mean here computational activities inside the ToolBus as opposed to, for
instance, processes at the operating system level. When confusion might arize, we will call the
former ToolBus processes” and the latter “operating system level processes”. Typically, the whole
ToolBus will be implemented as a single operating system level process. This is also the case for
each tool connected to the ToolBus.

Evolution of ASF+SDF Implementation Techniques — 19

by an execution command issued by the ToOLBUS or their execution is initiated
externally, in which case an explicit connect command has to be performed by
the TooLBuUS. Although a one-to-one correspondence between tools and processes
seems simple and desirable, we do not enforce this and permit tools that are being
controlled by more than one process as well as clusters of tools being controlled by
a single process.

The TooLBUS is programmed by means of T scripts providing features like
creation, sequential and parallel composition, choice, and iteration of processes, and
operations related to tools like execution/termination, connection/disconnection,
and sending/receiving evaluation requests.

process TOP is
let Uid : ui, Sid : syn-edit, Eid : int, Filename : str
in
execute(ui, Uid?)
execute(syn-edit, Sid?)
(rec-event(Uid, edit(Filename?))
create (ED(Uid, Sid, Filename), Eid?)
snd-ack-event (Uid, edit(Filename))
+ rec-event(Uid, close(Filename?))
snd-msg(editor(Filename), close) . snd-ack-event(Uid, close(Filename))
) * rec-event(Uid, quit) . snd-note(quit) . snd-ack-event(Uid, quit)
shutdown ("End of editing")
endlet

#include "ed-defs.tb"

process ED (Uid : ui, Sid : syn-edit, Filename : str) is
subscribe(quit)
ED-STARTUP (Uid, Sid, Filename)
ED-COMMAND (Uid, Sid, Filename) * ED-SHUTDOWN(Uid, Sid, Filename)

tool syn-edit is { command = "syn-edit" }
tool ui is { command = "wish-adapter -script ui-edit.tcl" }
toolbus (TOP)

Figure 5: T script for editing environment.

3.2.2 A syntax-directed editor

Now we show how an environment for syntax directed editing can be described in
which a user can open and close an arbitrary number of syntax-directed editors
on different files. The T script to achieve this is shown in Figures 5 and 6. This
example is an oversimplification but clearly shows an approach that can be used for
defining similar, more realistic, systems.

Imagine a toplevel user interface containing three push buttons: Edit, Close,
and Quit:

e Pushing Edit results in a dialogue asking for a file name. Once the file name
has been provided by the user, a syntax-directed editor for the file is created.

e Pushing Close, also results in a dialogue asking for a file name in order to
identify the editor instance to be closed.

20 P. Klint

process ED-STARTUP (Uid : ui, Sid : syn-edit, Filename : str) is
let Msg : str
in
snd-eval(Sid, edit(Filename))
(rec-value(Sid, error(Msg?)) .
snd-do (Uid, displayError(Msg)) . delta
+ rec-value(Sid, ok)
)
snd-eval (Uid, mk-text-editor(Filename))
(rec-value(Uid, error(Msg?))
snd-do (Uid, displayError(Msg)) . delta
+ rec-value(Uid, ok)
)
endlet

process ED-COMMAND (Uid : ui, Sid : syn-edit, Filename : str) is
let X : int, Y : int, Bgn : str, End : str
in
(rec-event(Uid, Filename, tree-up)
snd-eval(Sid, tree-up(Filename))
+ rec-event(Uid, Filename, tree-down)
snd-eval (Sid, tree-down(Filename))
+ rec-event(Uid, Filename, tree-next)
snd-eval (Sid, tree-next(Filename))
+ rec-event(Uid, Filename, mouse(X7?7,Y7?))
snd-eval (Sid, mouse(Filename, X,Y))
)
rec-value(Sid, focus(Bgn?, End?))
snd-do (Uid, setFocus(Filename, Bgn, End))
snd-ack-event (Uid, Filename)
endlet

process ED-SHUTDOWN (Uid : ui, Sid : syn-edit, Filename : str) is
(rec-msg(editor(Filename), close) + rec—note(quit)

)
snd-do(Sid, close-editor(Filename))
snd-do(Uid, close-editor(Filename))

Figure 6: ed-defs.tb: auxiliary definitions for editing environment.

Evolution of ASF+SDF Implementation Techniques — 21

e Push Quit closes all editors and terminates the execution of the whole envi-
ronment.

The next question is how to model syntax-directed editing and how to coor-
dinate text editing and syntax-directed editing. We assume the existence of two
tools: a user-interface (ui) providing text editors and a syntax-directed editing tool
(syn-edit) providing structure information. The idea is now that a text editor
generates events whenever information is needed from the syntax-directed editor.
For instance, an “up” event from the text editor will lead to a request to the syntax-
directed editor to calculate a new focus, representing begin and end point of the
text area representing the parent of the current focus. This focus information can
then be used to adjust the focus area in the text editor.

In Figure 5 the main parts of the resulting T script are shown: a single process
TOP handles the user-interface described above and creates a new instance of process
ED for each new editor. It first executes the user-interface tool (ui) and the syntax-
directed editing tool (syn-edit). Next, it handles the cases Edit and Close in a
loop. On receiving Quit, this loop is terminated and the whole editing environment
is shutdown. The quit operation is implemented by broadcasting a quit note to all
editor processes.

The process ED first subscribes to “quit” notes, performs initialization, exe-
cutes editing commands in a loop, and then ends the execution of this editor in-
stance. The process ED is defined by three auxiliary parameterized process definiti-
ons ED-STARTUP, ED-COMMAND, and ED-SHUTDOWN shown in Figure 6. Typically, the
user-interface tool generates an event, e.g., mouse (10, 35), which is then transferred
to the syntax-directed editing tool in order to calculate a new focus. The latter is
then communicated back to the user-interface in order to highlight the new focus
in the text.

A characteristic of this approach is the complete decoupling between user-
interface and semantic processing. In a more conventional approach, a so-called
call back routine will be associated with each user-interface element. When, for
instance, a button is pushed by the user, its associated call back routine will be
activated to implement the button’s behaviour. In the editing example given above
we see that:

e Each event is represented abstractly by a term, e.g., tree-up.

e The binding between an event and its handler is dynamic rather than static.
This binding is determined by the T script rather than by the user-interface.

e The user-interface and the associated handlers can (a) run on different ma-

chines; (b) be implemented in different languages.

3.3 Discussion

Given the ingredients described in the previous section, the approach taken for re-
engineeringing the ASF+SDF Meta-environment can be made more precise. First,
a global architecture description can be made describing the required components
and their cooperations. Typical ingredients currently being developed are:

e Parser generator.
e Pretty printer generator [vdB93].
e Documentation tool generator [vdBV94].

e ASF4SDF compiler.

22 P. Klint

e Generic syntax-directed editor.

e Top level user-interface.

The components related to the user-interface are directly implemented in Tcl/Tk
[Ous94]. All other components are specified in ASF+SDF. This will yield a running
prototype for the next generation Meta-environment. The functional aspects of this
prototype can then be assessed before a possible re-implementation of time critical
components is considered.

4 The future: towards a ToolFactory

The previous sketch of current work directly related to the implementation of a
next generation ASF+SDF Meta-environment can be extended with work directly
or indirectly using the current system in diverse application areas, for instance,

e Visual editing [U94].

e Program transformations.

e Use of and connection with verification and proof systems.

e Simulation of traffic systems.

e Evolutionary development of existing and new formalisms.

e Building Meta-environments for other specification formalisms [vD94].

e Using origin tracking [vDKT93] and program slicing [Tip95] for reverse engi-
neering.

This list of subjects is so heterogeneous that it is unrealistic to expect that the
old ambition to generate environments for “programs in a programming language,
specifications in a specification language, or formalized technical documents” will
ever lead to a single environment generator that can accommodate all the require-
ments generated by these diverse application areas.

However, on closer inspection they have much in common. They can all be
seen as systems that read, write, store, transform, annotate and display terms.
For instance, a system for program transformations will read an initial program
design in textual form and parse it. Next, transformation rules will be applied to
it interactively yielding a new term and a set of proof obligations. The sequence of
transformation steps can be seen as a single term that is extended and displayed as
controlled by the user.

Another example is an interactive system for reverse engineering. First existing
“legacy code” is parsed yielding a term. Next, various tools are executed interac-
tively wich annotate the term with structure information that has been discovered
like, e.g., dependence graphs, program slices, and statement classifications. On
demand, parts of these annotations will be displayed and used to restructure or
translate the original program code.

The common functionalities that can be distinguished are:

e Parsing and prettyprinting: to convert programs from textual form to a term
and vice versa.

e Annotation of terms in order to attach extra information to terms like docu-
mentation links, proof obligations, recovered structure information, and the
like. Viewing mechanisms are needed to visualize this information.

Evolution of ASF+SDF Implementation Techniques — 23

e Persistent term storage. Currently, only the textual version of programs is
saved between editing sessions and the corresponding term representation is
reconstructed (by parsing) at the beginning of a new session. When the term
representation becomes richer than the textual representation, this is no longer
possible and the term representation should be stored persistently.

o Syntaz-directed editing for creating, changing, annotating, and storing terms.
In addition, arbitrary tools can be executed on program fragments in the
editor.

o User-interfaces, visualization. As the range of applications grows, it is no
longer possible to provide a single, pre-canned, user-interface. Instead, con-
nections with application-specific user-interfaces and visualization techniques
are necessary.

o Manipulating specifications as data. There are already several applications
that generate ASF4SDF specifications (e.g., ASD tools, pretty printer gene-
rator). It seems therefore a good idea to develop standard techniques for
manipulating specifications as data and to provide facilities for loading gene-
rated specifications.

This list of functions sounds, of course, very familiar, albeit somewhat more
elaborate than the functionality currently provided. So what is new?

The shift in perspective I propose is the packaging of this functionality. Cur-
rently, most of the above functions already exist somewhere in the implementation.
In most cases, various combinations of them are provided as a single primitive but
they cannot easily be identified (or used) as separate functions. A typical example
of this phenomenon is the difficulty to re-use matching/rewriting functions (which
exist, of course, in the rewrite engine) in a syntax-directed editor for performing
either structural searches or systematic structural replacements. This makes it hard
to build new combinations of functions that are needed in new applications. A more
open system architecture is clearly what is needed. The TooLBUS-based approach
currently pursued to build the next generation Meta-environment (Section 3.2) is
already a first step into this direction.

The longer term perspective is that this line of research will lead to an infrastruc-
ture for tool development (a “ToolFactory”) in which term formats and the com-
munication between common generators (parser generator, compiler, pretty printer
generator, generic syntax-directed editor) and generated tools (parsers, printers,
rewrite engines) are shared. By adding new generators and tools, and by combining
old and new tools in new ways, a level of flexibility may be reached that might meet
the new demands.

Acknowledgements

Part of the work described here is still in progress and has not yet, or only partly,
been described in other publications. This is the case for parser generation (Eelco
Visser), redesign of the Meta-environment (Pieter Olivier), the AsF2C compiler
(Jasper Kamperman, Pum Walters), and visual editing (Dinesh, Susan ﬂskﬁdarli).
Jan Heering and Eelco Visser commented on drafts of this paper.

References

[BJ93] J. Bertot and I. Jacobs. Sophtalk tutorials. Technical Report 149,
INRIA, 1993.

24

P. Klint

[BK94]

[BK95]

[Bro74]

[BW89)]

[C1690]

[DGHKL84]

[Die89)

[Dis94]

[Hen91]

[HK85]

[HK86]

[HK94]

[HKKLS6]

[HKR90]

J.A. Bergstra and P. Klint. The TooLBUS—a component intercon-
nection architecture. Technical Report P9408, Programming Research
Group, University of Amsterdam, 1994.

J.A. Bergstra and P. Klint. The Discrete Time TOOLBUS. Technical
Report P9502, Programming Research Group, University of Amster-
dam, 1995.

F.P. Brooks. The Mythical Man-Month. Addison-Wesley, 1974.

L.G. Bouma and H.R. Walters. Implementing algebraic specifications.
In J.A. Bergstra, J. Heering, and P. Klint, editors, Algebraic Specifi-
cation, ACM Press Frontier Series, pages 199-282. The ACM Press in
co-operation with Addison-Wesley, 1989. Chapter 5.

D. Clément. A distributed architecture for programming environ-
ments. In Proceedings of the jth ACM SIGSOFT Symposium on Soft-
ware Development Environments, pages 11-21, 1990. Sofware Engi-
neering Notes, Volume 15.

V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming
environments based on structured editors: the Mentor experience. In
D.R. Barstow, H. E. Shrobe, and E. Sandewall, editors, Interactive
Programming Environments, pages 128-140. McGraw-Hill, 1984.

N.W.P. van Diepen. SMALL dynamic semantics of a language with
GOTOs. In J.A. Bergstra, J. Heering, and P. Klint, editors, Algebraic
Specification, ACM Press Frontier Series, pages 133-161. The ACM
Press in co-operation with Addison-Wesley, 1989. Chapter 3.

S. Dissoubray. Using Esterel for control integration. In GIPE II:
ESPRIT project 2177, Sizth review report. january 1994.

P.R.H. Hendriks. Implementation of Modular Algebraic Specifications.
PhD thesis, University of Amsterdam, 1991.

J. Heering and P. Klint. Towards monolingual programming environ-
ments. ACM Transactions on Programming Languages and Systems,

7(2):183-213, 1985.

J. Heering and P. Klint. The efficiency of the Equation Interpreter
compared with the UNH Prolog interpreter (extended abstract). SIG-
PLAN Notices, 21(2):18-21, 1986.

J. Heering and P. Klint. Prehistory of the ASF+SDF system (1980—
1984). In From Universal Morphisms to Megabytes: a Baayen Space
Odyssey, pages 341-345. Centrum voor Wiskunde en Informatica, Am-
sterdam, 1994.

J. Heering, G. Kahn, P. Klint, and B. Lang. Generation of interac-
tive programming environments. In ESPRIT ’85: Status Report of
Continuing Work, pages 467-477. North-Holland, 1986. Part I.

J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.
IEEFE Transactions on Software Engineering, 16(12):1344-1351, 1990.
Also in: SIGPLAN Notices, 24(7):179-191, 1989.

[HKR92]

[Kam94]

[KB93]

[K1i80]

[K1i93]

[K1i94]

[Ko092]

[KW93]

[Meu90]

[Ous94]
[Tip95]

[094]

[vD94)

[vdB93]

[vdBV94]

Evolution of ASF+SDF Implementation Techniques — 25

J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical
scanners. ACM Transactions on Programming Languages and Sys-
tems, 14(4):490-520, 1992.

J. F. Th. Kamperman. GEL, a graph exchange language. Technical
Report CS-R9440, Centrum voor Wiskunde en Informatica, Amster-
dam, 1994.

J.W.C. Koorn and H.C.N. Bakker. Building an editor from existing
components: an exercise in software re-use. Technical Report P9312,
Programming Research Group, Univeristy of Amsterdam, 1993.

P. Klint. An overview of the SUMMER programming language. In
Conference Record of the Tth Annual ACM Symposium on Priciples
of Programming Languages, pages 47-55, 1980.

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology,
2(2):176-201, 1993.

P. Klint. Writing meta-level specifications in ASF+SDF. unpublished
note, 1994.

JW.C. Koorn. GSE: A generic text and structure editor. In
J.L.G. Dietz, editor, Conference Proceedings of Computing Science
in the Netherlands, CSN’92, pages 168-177. SION, 1992. Appeared
as Report P9202, University of Amsterdam. Available by ftp from
ftp.cwi.nl:/pub/gipe as Koo92b.ps.Z.

J. F. Th. Kamperman and H.R. Walters. ARM, abstract rewriting
machine. Technical Report CS-R93-30, CWI, 1993.

E.A. van der Meulen. Deriving incremental implementations from al-
gebraic specifications. Report CS-R9072, Centrum voor Wiskunde
en Informatica (CWI), Amsterdam, 1990. Extended abstract in
AMAST’91: Proceedings of the Second International Conference on
Algebraic Methodology and Software Technology, Workshops in Com-
puting, Springer-Verlag London (1992), pp 277-286. Available by ftp
from ftp.cwi.nl:/pub/gipe as Meu90.ps.Z.

J. K. Ousterhout. T¢cl and the Tk toolkit. Addison-Wesley, 1994.

F. Tip. Generation of Program Analysis Tools. PhD thesis, University
of Amsterdam, 1995.

S. Uskiidarli. Generating visual editos for formally specified languages.
Report P9416, Programming Research Group, University of Amster-
dam, 1994.

A. van Deursen. Ezxecutable Language Definitions. PhD thesis, Uni-
versity of Amsterdam, 1994.

M.G.J. van den Brand. Generation of language independent pretty
printers. Technical Report P9327, Programming Research Group, Uni-
versity of Amsterdam, 1993.

M.G.J. van den Brand and E. Visser. From Box to TeX: an algebraic
approach to the construction of documentation tools. Technical Re-
port P9420, Programming Research Group, University of Amsterdam,
1994.

26 P. Klint

[VDKT93] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of
Symbolic Computation, 15:523—-545, 1993.

[vVVvW94] S.F.M. van Vlijmen, P.N. Vriend, and A. van Waveren. Control
and data transfer in the distributed editor of the ASF+SDF meta-
environment. Technical Report P9415, Programming Research Group,
University of Amsterdam, 1994.

