Efficient Annotated Terms

M.G.J. van den Brand'
H.A. de Jong2
P. Klint"?
P.A. Olivier’

! CWI, Department of Software Engineerin%
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

! University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

19th December 2000

Abstract

How do distributed applications exchange tree-like data structures?
We introduce the abstract data type of Annotated Terms (ATerms) and
discuss their design, implementation and application. A comprehensive
procedural interface enables creation and manipulation of ATerms in C
or Java. The ATerm implementation is based on maximal subterm shar-
ing and automatic garbage collection. A binary exchange format for the
concise representation of ATerms (sharing preserved) allows the fast ex-
change of ATerms between applications. In a typical application—parse
trees which contain considerable redundant information—Iless than 2 bytes
are needed to represent a node in memory, and less than 2 bits are needed
to represent it in binary format. The implementation of ATerms scales
up to the manipulation of ATerms in the giga-byte range.

1 Introduction

Cut and paste operations on complex data structures are standard in most desk-
top software environments: one can easily clip a part of a spreadsheet and paste
it into a text document. The exchange of complex data is also common in dis-
tributed applications: complex queries, transaction records, and more complex
data are exchanged between different parts of a distributed application. Com-
pilers and programming environments consist of tools such as editors, parsers,
optimizers, and code generators that exchange syntax trees, intermediate code,
and the like.

How is this exchange of complex data structures between applications
achieved? One solution is Microsoft’s Object Linking and Embedding

(OLE) [Cha96]. This is a platform-specific, proprietary, set of primitives to
construct Windows applications. Another, language-specific, solution is to use
Java’s serialization interface [GJS96]. This allows writing and reading Java
objects as sequential byte streams. Yet another solution is to use OMG’s
Interface Definition Language (part of the Common Object Broker Architec-
ture [OMG97]) to define data structures in a language-neutral way. Specific
language-bindings provide the mapping from IDL data structures to language-
specific data, structures.

All these solutions have their merits but do not really qualify when looking
for an open, simple, efficient, concise, and language independent solution for the
exchange of complex data structures between distributed applications. To be
more specific, we are interested in a solution with the following characteristics:

Open: independent of any specific hardware or software platform.
Simple: the procedural interface should contain 10 rather than 100 functions.
Efficient: operations on data structures should be fast.

Concise: inside an application the storage of data structures should be as small
as possible by using compact representations and by exploiting sharing.
Between applications the transmission of data structures should be fast
by using a compressed representation with fast encoding and decoding.
Transmission should preserve any sharing of in-memory representation in
the data structures.

Language-independent: data structures can be created and manipulated in any
suitable programming language.

Annotations: applications can transparently extend the main data structures
with annotations of their own to represent non-structural information.

In this paper we describe the data type of Annotated Terms, or just ATerms,
that have the above characteristics. They form a solution for our implementation
needs in the areas of interactive programming environments [K1i93, BKMO97]
and distributed applications [BK98] but are more widely applicable. Typically,
we want to exchange and process tree-like data structures such as parse trees,
abstract syntax trees, parse tables, generated code, and formatted source texts.
The applications involved include parsers, type checkers, compilers, formatters,
syntax-directed editors, and user-interfaces written in a variety of languages.
Typically, a parser may add annotations to nodes in the tree describing the
coordinates of their corresponding source text and a formatter may add font or
color information to be used by an editor when displaying the textual represen-
tation of the tree.

The ATerm data type has been designed to represent such tree-like data
structures and it is therefore very natural to use ATerms both for the internal
representation of data inside an application and for the exchange of information
between applications. Besides function applications that are needed to represent

the basic tree structure, a small number of other primitives are provided to make
the ATerm data type more generally applicable. These include integer constants,
real number constants, binary large data objects (“blobs”), lists of ATerms, and
placeholders to represent typed gaps in ATerms. Using the comprehensive set
of primitives and operations on ATerms, it is possible to perform operations on
an ATerm received from another application without first converting it to an
application-specific representation.

First, we will give a quick overview of ATerms (Section 2). Next, we discuss
implementation issues (Section 3) and give some insight in performance issues
(Section 4). An overview of applications (Section 5) and an overview of related
work and a discussion (Section 6) conclude this paper.

2 ATerms at a Glance

We now describe the constructors of the ATerm data type (Section 2.1) and the
operations defined on it (Section 2.2).

2.1 The ATerm Data Type
The data type of ATerms (ATerm) is defined as follows:

e INT: An integer constant (32-bits integer) is an ATerm.!
e REAL: A real constant (64-bits real) is an ATerm.

e APPL: A function application consisting of a function symbol and zero or
more ATerms (arguments) is an ATerm. The number of arguments of the
function is called the arity of the function.

e LIST: A list of zero or more ATerms is an ATerm.

e PLACEHOLDER: A placeholder term containing an ATerm representing the
type of the placeholder is an ATerm.

e BLOB: A “blob” (Binary Large data OBject) containing a length indication
and a byte array of arbitrary (possibly very large) binary data is an ATerm.

e A list of ATerm pairs may be associated with every ATerm representing a
list of (label,annotation) pairs.

Each of these constructs except the last one (i.e., INT, REAL, APPL, LIST,
PLACEHOLDER, and BLOB) form subtypes of the data type ATerm. These subtypes
are needed when determining the type of an arbitrary ATerm. Depending on
the actual implementation language they will be represented as a constant (C,
Pascal) or a subclass (C++, Java).

1We are currently upgrading the ATerm library to support 64-bit architectures as well.

The last construct is the annotation construct, which makes it possible to
annotate terms with transparent information?.

Appendix A contains a definition of the concrete syntax of ATerms. The
primary reason for having a concrete syntax is to be able to exchange ATerms
in a human-readable form. In Section 3 we also discuss a compact binary format
for the exchange of ATerms in a format that is only suitable for processing by
machine. We will now give a number of examples to show some of the features
of the textual representation of ATerms.

e Integer and real constants are written conventionally: 1, 3.14, and -0.7E34
are all valid ATerms.

e Function applications are represented by a function name followed by an
open parenthesis, a list of arguments separated by commas, and a clos-
ing parenthesis. When there are no arguments, the parentheses may be
omitted. Examples are: f(a,b) and "test!"(1,2.1,"Hello world!").
These examples show that double quotes can be used to delimit function
names that are not identifiers.

e Lists are represented by an opening square bracket, a number of list ele-
ments separated by commas and a closing square bracket: [1,2,"abc"],
[1, and [f,g([1,2]),x] are examples.

e A placeholder is represented by an opening angular bracket followed by a
subterm and a closing angular bracket. Examples are <int>, <[3]>, and
<f(<int>,<real>)>.

e Blobs do not have a concrete syntax because their human-readable form
depends on the actual blob content.

2.2 Operations on ATerms

The operations on ATerms fall into three categories: making and matching
ATerms (Section 2.2.1), reading and writing ATerms (Section 2.2.2), and anno-
tating ATerms (Section 2.2.3). The total of only 13 functions provide enough
functionality for most users to build simple applications with ATerms. We refer
to this interface as the level one interface of the ATerm data type.

To accommodate “power” users of ATerms we also provide a level two inter-
face, which contains a more sophisticated set of data types and functions. It is
typically used in generated C code that calls ATerm primitives, or in efficiency-
critical applications. These extensions are useful only when more control over
the underlying implementation is needed or in situations where some operations
that can be implemented using level one constructs can be expressed more con-
cisely and implemented more efficiently using level two constructs. The level

2Transparent in the sense that the result of most operations is independent of the an-
notations. This makes it easy to completely ignore annotations. Examples of the use of
annotations include annotating parse trees with positional or typesetting information, and
annotating abstract syntax trees with the results of type checking.

two interface is a strict superset of the level one interface (see Appendix B for
further details).

Observe that ATerms are a purely functional data type and that no destruc-
tive updates are possible, see Section 3.2 for more details.

2.2.1 Making and Matching ATerms

The simplicity of the level one interface is achieved by the make-and-match
paradigm:

e make (compose) a new ATerm by providing a pattern for it and filling in
the holes in the pattern.

e match (decompose) an existing ATerm by comparing it with a pattern and
decompose it according to this pattern.

Patterns are just ATerms containing placeholders. These placeholders deter-
mine the places where ATerms must be substituted or matched. An example of
a pattern is "and (<int>,<appl>)". These patterns appear as string argument
of both make and match and are remotely comparable to the format strings
in the printf/scanf functions in C. The operations for making and matching
ATerms are:

e ATerm ATmake(String p, ATerm ay, ..., ATerm a,): Create a new
term by taking the string pattern p, parsing it as an ATerm and filling
the placeholders in the resulting term with values taken from a; through
an. If the parse fails, a message is printed and the program is aborted.
The types of the arguments depend on the specific placeholders used in
pattern. For instance, when the placeholder <int> is used an integer is
expected as argument and a new integer ATerm is constructed.

e ATbool ATmatch(ATerm ¢, String p, ATerm *a;, ..., ATerm *a,):

Match term ¢ against pattern p, and bind subterms that match with place-
holders in p with the result variables a; through a,. Again, the type of the
result variables depend on the placeholders used. If the parse of pattern
p fails, a message is printed and the program is aborted. If the term itself
contains placeholders these may occur in the resulting substitutions. The
function returns true when the match succeeds, false otherwise.

e Boolean ATisEqual(ATerm t;, ATerm t3): Check whether two ATerms
are equal. The annotations of ¢; and ¢, must be equal as well.

o Integer ATgetType(ATerm t): Retrieves the type of an ATerm. This
operation returns one of the subtypes mentioned before in Section 2.1.

2.2.2 Reading and Writing ATerms

For reasons of efficiency and conciseness, reading and writing can take place in
two forms: text and binary. The text format uses the textual representation
discussed earlier in Section 2.1 and Appendix A. This format is human-readable,
space-inefficient®, and any sharing of the in-memory representation of terms is
lost.

The binary format (Binary ATerm Format, see Section 3.5) is portable,
machine-readable, very compact, and preserves all in-memory sharing. The
operations for reading and writing ATerms are:

e ATerm ATreadFromString(String s): Creates a new term by parsing the
string s. When a parse error occurs, a message is printed, and a special
error value is returned.

e ATerm ATreadFromTextFile(File f): Creates a new term by parsing
the data from file f. Again, parse errors result in a message being printed
and an error value being returned.

e ATerm ATreadFromBinaryFile(File f): Creates a new term by reading
a binary representation from file f.

e Boolean ATwriteToTextFile(ATerm t, File f): Write the text repre-
sentation of term ¢ to file f. Returns true for success and false for
failure.

e Boolean ATwriteToBinaryFile(ATerm ¢, File f): Write a binary rep-
resentation of term ¢ to file f. Returns true for success, and false for
failure.

e String ATwriteToString(ATerm ¢): Return the text representation of
term ¢ as a string.

Either format (textual or binary) can be used on any linear stream, including
files, sockets, pipes, etc.

2.2.3 Annotating ATerms

Annotations are (label, annotation) pairs that may be attached to an ATerm.
Recall that ATerms are a completely functional data type and that no destruc-
tive updates are possible. This is evident in the following operations for manip-
ulating annotations:

e ATerm ATsetAnnotation(ATerm ¢, ATerm [, ATerm a): Return a copy
of term ¢ in which the annotation labeled with [has been changed into a.
If ¢ does not have an annotation with the specified label, it is added.

3The unnecessary size explosion could be avoided by extending the textual representation
with a mechanism for labeling and referring to terms. Instead of f£(g(a),g(a)), one could
then write £(1:g(a), #1). The first occurrence of g(a) is labeled with “1”, and the second
occurrence refers to this label (“#1”).

ATerm ATgetAnnotation(ATerm ¢, ATerm [): Retrieve the annotation
labeled with [from term ¢. If ¢ does not have an annotation with the
specified label, a special error value is returned.

ATerm ATremoveAnnotation(ATerm ¢, ATerm [): Return a copy of term
t from which the annotation labeled with [has been removed. If ¢ does
not have an annotation with the specified label, it is returned unchanged.

3 Implementation

3.1

Requirements

In Section 1 we have already mentioned our main requirements: openness, sim-
plicity, efficiency, conciseness, language-independence, and capable of dealing
with annotations. There are a number of other issues to consider that have a
great impact on the implementation, and that make this a fairly unique problem:

By providing automatic garbage collection ATerm users do not need to
deallocate ATerm objects explicitly. This is safe and simple (for the user).

The expected lifetime of terms in most applications is very short. This
means that garbage collection must be fast and should touch a minimal
amount of memory locations to improve caching and paging performance.

The total memory requirements of an application cannot be estimated in
advance. It must be possible to allocate more memory incrementally.

Most applications exhibit a high level of redundancy in the terms be-
ing processed. Large terms often have a significant number of identical
subterms. Intuitively this can be explained from the fact that most ap-
plications process terms with a fixed signature and a limited tree depth.
When the amount of terms that is being processed increases, it is plausible
that the similarity between terms also increases.

In typical applications less than 0.1 percent of all terms have an arity
higher than 5.

Many applications will use annotations only sparingly. The implementa-
tion should not impose a penalty on applications that do not use them.

In order to have a portable yet efficient implementation, the implemen-
tation language will be C. This poses some special requirements on the
garbage collection strategy?.

With these considerations in mind, we will now discuss maximal (in-memory)
sharing of terms (Section 3.2), garbage collection (Section 3.3), the encoding of
terms (Section 3.4), and the Binary ATerm Format (Section 3.5).

4We have implemented the library in Java as well. In this case, many of the issues we
discuss in this paper are irrelevant, either because we can use built-in features of Java (garbage
collection), or because we just cannot express these low level concerns in Java.

3.2 Maximal Sharing

Our strategy to minimize memory usage is simple but effective: we only create
terms that are new, i.e., that do not exist already. If a term to be constructed
already exists, that term is reused, ensuring maximal sharing. This strategy
fully exploits the redundancy that is typically present in the terms to be built
and leads to maximal sharing of subterms. The library functions that construct
terms make sure that shared terms are returned whenever possible. The sharing
of terms is thus invisible to the library user.

3.2.1 The Effects of Maximal Sharing

Maximal sharing of terms can only be maintained when we check at every term
creation whether a particular term already exists or not. This check implies a
search through all existing terms but must be fast in order not to impose an
unacceptable penalty on term creation. Using a hash function that depends on
the internal code of the function symbol and the addresses of its arguments, we
can quickly search for a function application before creating it. The terms are
stored in a hash table. The hash table does not contain the terms themselves,
but pointers to the terms. This provides a flexible mechanism of resizing the
table and ensures that all entries in the table are of equal size. Hence the
(modest but not negligible) cost at term creation time is one hash table lookup.

Fortunately, we get two returns on this investment. First, the considerably
reduced memory usage also leads to reduced execution time. Second, we gain
substantially as the equality check on terms (ATisEqual) becomes very cheap:
it reduces from an operation that is linear in the number of subterms to be
compared to a constant operation (pointer equality).

Another consequence of our approach is less fortunate. Because terms can
be shared without their creator knowing it, terms cannot be modified without
creating unwanted side-effects. This means that terms effectively become im-
mutable after creation. Destructive updates on maximally shared terms are not
allowed. Especially in list operations, the fact that ATerms are immutable can
be expensive. It is often the responsibility of the user of the library to choose
algorithms that minimize the effect of this shortcoming.

3.2.2 Searching for Shared Subterms

Maximal sharing of terms requires checking at term creation time whether this
term already exists. This search must be fast in order to ensure efficient term
creation. A hash function based on the addresses of the function symbol and
the arguments of a function application allows for a quick lookup in the hash
table to find a function application before creating it.

Collisions One issue in hash techniques is handling collisions. The simplest
technique is linear chaining [Knu73]. This requires one pointer in each object
for hash chaining, which in our implementation implies a memory overhead of

about 25 percent. Other solutions for collision resolution will either increase
the memory requirements, or the time needed for insertions or deletions (see
[Knu73]). We therefore use linear hash chaining in our implementation.

Direct or Indirect Hashing Another issue is whether to store all terms
directly in the hash table, or only references. Storing the objects directly in
the hash table saves a memory access when retrieving a term as well as the
space needed to store the reference. However, there are severe drawbacks to
this approach:

e We cannot rehash old terms because rehashing means that we have to move
the objects in memory. When using C as an implementation language,
moving objects in memory is not allowed because we can only determine a
conservative root set and therefore are not allowed to change the pointers
to roots. This would mean that the hash table could not grow beyond its
initial size.

e Internal fragmentation is increased, because empty slots in the hash table
are as large as the object instead of only one machine word.

e We would need a separate hash table for each term size to decrease the
internal fragmentation.

Because of these problems, we use linear hash chaining combined with indi-
rect hashing. When the load of the hash table reaches a certain threshold, we
rehash into a larger table.

The user can increase the initial size of the hash table to save on resizing
and rehashing operations. The ATerm library provides facilities for defining hash
tables as well. This allows the implementation of a fast lookup mechanism for
ATerms. User-defined hash tables are used, for instance, to implement memo-
functions in the ASF4SDF to C compiler (see Section 5.3).

3.3 Garbage Collection
3.3.1 Which Technique?

The most common strategies for automatic recycling of unused space are ref-
erence counting, mark-compact collection, and mark-sweep collection. In our
case, reference counting is not a valid alternative, because it takes too much
time and space and is very hard to implement in C. Mark compact garbage
collection is also unattractive because it assumes that objects can be relocated.
This is not the case in C where we cannot identify all references to an object.
We can only determine the root set conservatively which is good enough for
mark-sweep collection discussed below, but not for mark-compact collection.

Mark-sweep Garbage Collection Mark-sweep garbage collection works us-
ing three phases. In the first phase, all objects on the heap are marked as ‘dead’.

In the second phase, all objects reachable from the known set of root objects
are marked as ‘live’. In the third phase, all ‘dead’ objects are swept into a list
of free objects.

Mark-sweep garbage collection can be implemented in C efficiently, and with-
out support from the programmer or compiler [BW88, Boe93]. Mark-sweep
collection is more efficient, both in time and space than reference counting
[JL96]. A possible drawback is increased memory fragmentation compared to
mark-compact collection. The typical space overhead for a mark-sweep garbage
collection algorithm is only 1 bit per object, whereas a reference count field
would take at least three or four bytes.

3.3.2 Reusing an Existing Garbage Collector

A number of excellent generic garbage collectors for C are freely available, so
why do we not reuse an existing implementation?

We have examined a number of alternatives, but none of them fit our needs.
The Boehm-Weiser garbage collector [BW88] came close, but we face a number
of unusual circumstances that render existing garbage collectors impractical:

e The hash table always contains references to all objects. It must be pos-
sible to instruct the garbage collector not to scan this area for roots.

e After an object becomes garbage, it must also be removed from the hash
table. This means that we need very low level control over the garbage
collector.

e The ATerm data type has some special characteristics that can be ex-
ploited to dramatically increase performance:

— Destructive updates are not allowed. In garbage collection terminol-
ogy, this means that there are no pointers from old objects to younger
objects. Although we do not exploit it in the current implementation,
this characteristic makes the use of a generational garbage collector
very attractive.

— The majority of objects have an in-memory representation of 8, 12,
or 16 bytes.

— Practical experience has shown that not many root pointers are kept
in static variables or on the generic C heap. Performance can be
increased dramatically if we eliminate the expensive scan through the
heap and the static data area for root pointers. The only downside is
that we require the programmer to explicitly supply the set of roots
that is located on the heap or in static variables.

These observations allow us to gain efficiency on several levels, using everything
from low level system ‘hacks’ to high-level optimizations.

10

3.3.3 Implementing the Garbage Collector

Considering both performance and the maintainability of the code that uses the
ATerm library, we have opted for a version of the mark-sweep garbage collector.
Every object contains a single bit used by the mark-sweep algorithm to indicate
‘live’ (marked) objects. At the start of a garbage collection cycle, all objects
are unmarked. The garbage collector tries to locate and mark all live objects by
traversing all terms that are explicitly protected by the programmer (using the
ATprotect function), and by scanning the C run-time stack looking for words
that could be references to objects. When such a word is found, the object (and
the transitive closure of all of the objects it refers to) are marked as ‘live’.

This scan of the run-time stack causes all objects referenced from local vari-
ables to be protected from being garbage collected. Our garbage collector is a
conservative collector in the sense that some of the words on the stack could
accidentally have the same bit pattern as object references. Because there is no
way to separate these ‘fake’ bit patterns from ‘real’ object references, this can
cause objects to be marked as ‘live’ when these are actually garbage. Note that
bit patterns on the stack that do not point to valid objects are not traversed at
all. Only when a bit pattern represents an address that is a valid object address
it is followed to mark the corresponding object.

When all live objects are marked, a single sweep through the heap is used
to store all objects that are free in separate lists of free objects, one list for each
object size.

As we shall see in Section 3.4, most objects consist of only a couple of machine
words. By restricting the maximum arity of a function, we can also set an upper
bound on the maximum size of objects. This enables us to base the memory
management algorithms we use on a small number of block sizes. Allocation of
objects is now simply a matter of taking the first element from the appropriate
free-list, which is an extremely cheap operation. If garbage collection does
not yield enough free objects, new memory blocks will be allocated to satisfy
allocation requests.

3.4 Term Encoding

An important issue in the implementation of ATerms is how to represent this
data type so that all operations can be performed efficiently in time and space.

The very concise encoding of ATerms we use is as follows. Assume that one
machine word consists of four bytes. Every ATerm object is stored in two or
more machine words. The first byte of the first word is called the header of the
object, and consists of four fields (see Figure 1):

e A field consisting of one bit used as a mark flag by the garbage collector.

e A field consisting of one bit indicating whether or not this term has an
annotation.

e A field consisting of three bits that indicate the type of the term.

11

e A field consisting of three bits representing the arity (number of pointers
to other terms) of this object. When this field contains the maximum
value of 7, the term must be a function application and the actual arity
can be found by retrieving the arity of the function symbol (see below).

Depending on the type of the node (as determined by the header byte in
the first word) the remaining bytes in the first word contain either a function
symbol, a length indication, or they are unused.

The second word is always used for hashing, and links together all terms in
the same hash bucket.

The type of the node determines its exact layout and contents. Figure 2
shows the encoding of the different term types which we will now describe in
more detail.

INT encoding In an integer term, the third word contains the integer value.
The arity of an integer term is 0.

REAL encoding In an real term, the third and fourth word contain the real
value represented by an 8 byte IEEE floating point number. The arity of a real
term is 0.

APPL encoding The remaining 3 bytes following the header in the first word
are used to represent the index in a table containing the function symbols. The
words following the second word contain references to the function arguments.
In this way, function applications can be encoded in 2 + n machine words, with
n the arity of the function application.

LIST encoding The binary list constructor can be seen as a special function
application with no function symbol and an arity of 2. The third word points to
the first element in the list, this is called the first field, the fourth word points
to the remainder of the list, and is called the next field. The length of the list
is stored in the three bytes after the header in the first word. The empty list® is
represented using a LIST object with empty first and next fields, and a length
of 0.

After the function application, the list construct is the second most used
ATerm construct. A (memory) efficient representation of lists is therefore very
important. Due to the nature of the operations on ATerm lists, there are two
obvious list representations: an array of term references or a linked list of term
references. Experiments have shown that in typical applications quite varying
list sizes are encountered. This renders the array approach inferior, because
adding and deleting elements of a list would become too expensive. Conse-
quently, we have opted for the linked list approach. Lists are constructed using
binary list constructors, containing a reference to the first element in the list

5Due to the uniqueness of terms, only one instance of the empty list is present at any time.

12

and to the tail of the list. Each list operation must ensure that the list is “nor-
malized” again. This makes it very easy to perform the most commonly used
operations on list, namely adding or removing the first element of a list.

Other operations are more expensive, since we do not allow destructive up-
dates. Adding an element to the tail of a list for instance, requires n list creation
operations, where n is the number of elements in the newly created list.

PLACEHOLDER encoding The placeholder term has an arity of 1, where
the third word contains a pointer to the placeholder type.

BLOB encoding The length of the data contained in a BLOB term is stored
in the three bytes after the header. This means that up to 16,777,200 bytes can
be encoded in a single BLOB term. A pointer to the actual data is stored in
the third word.

Annotations In all cases, annotations are represented using an extra word at
the end of the term object. The single annotation bit in the header indicates
whether or not an annotation is present. Only when this bit is set, an extra
word is allocated that points to a term with type LIST, which represents the
list of annotations.

3.5 ATerm Exchange: the Binary ATerm Format

The efficient exchange of ATerms between tools is very important. The simplest
form of exchange is based on the concrete syntax presented in Appendix A. This
would involve printing the term on one side and parsing it on the other. The
concrete syntax is not a very efficient exchange format however, because the
sharing of function symbols and subterms cannot be expressed in this way.

A better solution would be to exchange a representation in which sharing
(both of function symbols and subterms) can be expressed concisely. A raw
memory dump cannot be used, because addresses in the address space of one
process have no meaning in the address space of another process.

In order to address these problems, we have developed BAF, the Binary
ATerm Format. Instead of writing addresses, we assign a unique number (in-
dex) to each subterm and each symbol occurring in a term that we want to
exchange. When referring to this term, we could use its index instead of its
address.

When writing a term, we begin by writing a table (in order of increasing
indices) of all function symbols used in this term. Each function symbol consists
of the string representation of its name followed by its arity.

ATerms are written in prefix order. To write a function application, first
the index of the function symbol is written. Then the indices of the arguments
are written. When an argument consists of a term that has not been written
yet, the index of the argument is first written itself before continuing with the

13

next argument. In this way, every subterm is written exactly once. Every time
a parent term wishes to refer to a subterm, it just uses the subterm’s index.

3.5.1 Exploiting ATerm Regularities

When sending a large term containing many subterms, the subterm indices
can become quite large. Consequently many bits are needed to represent these
indices. We can considerably reduce the size of these indices when we take
into account some of the regularities in the structure of terms. Empirical study
shows that the set of function symbols that can actually occur at each of the
argument positions of a function application with a given function symbol is
often very small. A explanation for this is that although ATerm applications
themselves are not typed, the data types they represent often are. In this case,
function applications represent objects and the type of the object is represented
by the function symbol. The type hierarchy determines which types can occur
at each position in the object.

We exploit this knowledge by grouping all terms according to their top func-
tion symbol. Terms that are not function applications are grouped based on
dummy function symbols, one for each term type. For each function symbol, we
determine which function symbols can occur at each argument position. When
writing the table of function symbols at the start of the BAF file, we write this
information as well. In most cases this number of function symbol occurrences is
very small compared to the number of terms that is to be written. Storing some
extra information for every function symbol in order to get better compression
is therefore worthwhile.

When writing the argument of a function application, we start by writing the
actual symbol of the argument. Because this symbol is taken from a limited set
of function symbols (only those symbols that can actually occur at this position),
we can use a very small number to represent it. Following this function symbol
we write the index of the argument term itself in the table of terms over this
function symbol instead of the index of the argument in the total term table.

3.5.2 Example

As an example, we show how the term mult(s(s(z)),s(z)) is represented in
BAF. This term contains three function symbols: mult with arity two, s with
arity one, and z with arity zero. When grouping the subterms by function
symbol we get;:

0: mult 1: s 2: z
mult(s(s(z)),s(=2)) | s(s(z)) z
s(z)

When we look at the function symbols that can occur at every argument position
(> 0) we get:

14

position | mult s z
0 s s,z
1 s

We start by writing this symbol information to file. To do this, we have to
write the following bytes®:

4 "mult" : The length (4) and AsciI representation of mult.

2 : The arity (2) of mult.

11 : There is only one symbol (1) that can occur at the first argument
position of mult. This is symbol s with index (1)

11 : At the second argument position, there is only (1) possible
top symbol and that is s with index (1).

1ms : The length (1) and AscII representation of s.

1 : The arity (1) of s.

212 : The single argument of s can be either of two (2) different top
function symbols: s with index (1) or z with index (2).

1mz" : The length (1) and AscII representation of z.

0 : The arity (0) of z.

Following this symbol information, the actual term mult(s(s(z)),s(z)) can
be encoded using only a handful of bits. Note that the first function symbol in
the symbol table is always the top function symbol of the term (in this case:
mult):

: No bits need to be written to identify the function symbol s,

—_

because it is the only possible function symbol at the first
argument position of mult.

: One bit indicates which term over the function symbol s is

written (s(s(z))). Because this term has not been written yet,
it is done so now.

: The function symbol of the only argument of s(s(z)) is s.
: s(z) has index 1 in the term table of symbol s.
: Symbol z has index 1 in the symbol table of symbol s.

: Because there is only one term over symbol z, no bits are

needed to encode this term. Now we only need to encode the
second argument of the input term, s(z).

: No bits are needed to encode the function symbol s, because

it is the only symbol that can occur as the second argument of mult.

: s(2) has index 1 in the term table of symbol s. Because

this term has already been written, we are done.

8When the value of these numbers used exceeds 127, two or more bytes are used to encode

them

. Strings are written as strings to improve readability.

15

Only five bits are thus needed to encode the term mult(s(s(z)),s(z)).
As mentioned earlier, the amount of data needed to write the table of function
symbols at the start of the BAF file is in most cases negligible compared to the
actual term data.

4 Performance Measurements

4.1 Benchmarks

How concise is the ATerm representation and how fast can BAF files be read
and written? Since results highly depend on the actual terms being used, we
will base our measurements on a collection of terms that cover most applications
we have encountered so far.

4.1.1 Artificial Cases

Two artificial cases are used that have been constructed to act as borderline
cases:

Random-unique: arandomly generated term over a signature of 9 fixed func-
tion symbols with arities ranging from 1 to 9 and an arbitrary number
of constant symbols (functions with arity 0). The terms are generated in
such a way that all constants are unique. These terms are the worst case
for our implementation: there is no regularity to exploit and there are
many subterms with a relatively high arity.

Random: a randomly generated term over a signature of 10 function symbols
with arities ranging from 0 to 9. In these terms only a single constant can
occur which will be shared, but no other regularities can be exploited and
there are many subterms with a relatively high arity.

4.1.2 Real Cases

Several real-life cases are used that are based on actual applications:

COBOL Parse Table: a generated parse table for COBOL including embed-
ded SQL and CICS. The grammar consists of 2,009 productions and the
generated automaton has 6,699 states. The parse table contains an action-
table (2,0947 non-empty entries) and a goto-table (76527 non-empty en-
tries). This is an example of an abstract data type represented as ATerm.

COBOL System: a COBOL system consisting of 117 programs with a total
of 247,548 lines of COBOL source code. It has been parsed with the above
parse table. The parse trees constructed for these COBOL programs are
represented as ATerms, see Section 5.1.1 for more details.

16

Risla Library: a parse tree of the component library for the Risla language, a
domain specific language for describing financial products [ADR95]. This
component library consists of 10,832 lines of code.

LPO: alinear process operator (LPQO) describing the “firewire” protocol with 1
bus and 9 links [GL99, Lut99]. LPOs are the kernel of the uCRL ToolKit
[DGI5] which is a collection of tools for manipulation process and data
descriptions in pCRL (micro Common Representation Language) [GP95].
An LPO is a structured process, where the state consists of an assignment
to a sequence of typed data variables and its behaviour is described by
condition, action and effect functions. These states are represented as
ATerms, and are rather complex.

Casl specifications: a collection of abstract syntax trees represented as ATerms
of 98 Casl files, the total number of lines of Casl code is 2,506. For more
details on Casl and the abstract syntax tree representation as ATerms we
refer to Section 5.1.2.

lcc Parse Forest: a new back-end similar to the ASDL back-end [WAKS97]
has been added to the lcc compiler [Han99]. This back-end maps the
internal format used by the lcc compiler to ATerms. The ATerm repre-
sentation and the ASDL representation of a C program contain equivalent
information.

Given this back-end the C sources of the lcc compiler itself are mapped to
ATerms. The lcc compiler consists of 34 source files, consisting of a total
of 13,588 lines of source code.

S-expressions: a simple translator has been developed which transforms an
S-expression into an ATerm. This translator has been used to process an
arbitrary collection of “.el” files containing S-expressions found within the
Emacs source tree under Linux. The total number of “.el” files was 738,
these files together contained 286,973 lines of code.

In the cases of the COBOL System, Casl Specifications, lcc Parse Forest, and S-
Expressions the set of ATerms are combined into and processed as one ATerm.
Measurements were performed on an ULTRA SPARC-5 (270 MHz) with 256
Mb of memory. All times measured are the user CPU time for that particular
job.

4.2 Measurements

In Table 1, we give results for the memory usage of our sample terms’. The

five columns give the total number of nodes in each term, the number of unique
nodes in each term, the sharing percentage, the amount of memory (in bytes)
used for the storage of the term, and the average number of bytes needed per

7Since we consider the Random-unique and Random cases to be unrepresentative, we only
present the averages for the real cases in this and the following tables.

17

Term # nodes | # unique | Sharing | Memory | Bytes/
nodes (%) (bytes) Node
Artificial Cases
Random-unique 1,000,000 | 1,000,000 0.00 | 15,198,694 15.20
Random 1,000,000 92,246 90.81 | 2,997,120 3.00
Real Cases

COBOL Parse Table 961,070 97,516 89.85 | 2,836,529 2.95
COBOL System 31,332,871 470,872 98.50 | 12,896,609 0.41
Risla Library 708,838 40,073 94.35 960,170 1.35
LPO 8,894,391 225,229 97.47 | 3,701,438 0.42
Casl Specifications 34,526 11,699 66.12 235,655 6.83
lcc Parse Forest 360,829 86,589 76.00 1,547,713 4.29
S-expressions 593,874 283,891 52.20 | 9,111,863 15.34
| Real Case Averages || | | 82.07 | | 451

Table 1: Memory usage of ATerms

node. As can be seen in these figures, at least in our applications sharing does
make a difference. By fully exploiting the redundancies in the input terms, we
can store a node using on the average 4.5 bytes, and still perform operations on
them efficiently. The worst case behaviour is 15 bytes per node. The amount of
sharing is clearly less high in case of abstract syntax trees than in case of parse
trees represented as ASFIX terms. The ASFIX terms contain much redundant
information which can be optimally shared. The amount of sharing in the
abstract syntax trees for Casl is lower, but this is due to the fact that the set
of Casl specifications is small and each specification tests another feature of the
Casl language, so not much sharing was to be expected. The S-expressions have
the lowest ratio of sharing, but this was to be expected: they represent ad hoc
hand-written Lisp programs while in the other cases the ATerms are obtained by
a systematic translation from source code. In the latter case, recurring patterns
in the translation scheme result in higher levels of sharing.

Figure 3 shows the amount of sharing with respect to the size of a large
number of COBOL programs. Three different sets of COBOL programs were
considered. The first system consists of 151 files, the second of 116 files, and
the last of 98 files. From this figure it can be concluded that the amount of
sharing increases with the size of the COBOL system. In all three systems,
the percentage of sharing converges to slightly over 90%. We find this high
percentage in combination with the strong correlation between size and sharing
very remarkable and will analyze its causes and consequences in further detail
in a separate paper.

In Table 2 we give results for reading and writing our sample terms as AScCI1
text files. The six columns give the size of the text representation of the test
term in bytes, the average number of bytes per node, the time needed to read

18

Term Asci Bytes/ | Read | Read/ | Write | Write/

Node Node Node

(bytes) (s) (ps) (s) (ps)
Artificial Cases
Random-unique 6,888,889 6.80 | 34.76 | 34.76 4.06 4.06
Random 6,200,251 6.20 | 1590 | 15.90 3.67 3.67
Real Cases
COBOL Parse Table 4,211,366 4.38 6.33 6.95 2.30 2.29
COBOL System 135,350,005 4.32 | 199.43 6.36 | 65.02 2.08
Risla Library 2,955,964 4.17 4.25 6.00 1.40 1.98
LPO 41,227,481 4.64 81.90 9.21 | 29.16 3.28
Casl Specifications 217,958 6.31 0.36 | 10.43 0.08 2.32
lIcc Parse Fores 2,132,245 6.22 3.13 9.14 0.86 2.51
S-expressions 7,954,550 13.39 | 15.09 | 25.41 2.49 4.19
| Real Case Averages || | 6.20] | 10.50 | | 266 |

Table 2: Reading and writing ATerms as ASCII text

the text file, the average time needed to read a node, the time needed to write
the text file, and the average time needed to write a node. On the average, a
node requires 6.2 bytes and reading and writing requires 10.5 us and 2.7 us,
respectively.

In Table 3 we give results for reading and writing BAF files for the same
set of sample terms. The columns give in order: the size of the BAF files in
bytes, the average number of bytes needed per node, the time to read the BAF
representation, the average read time per node, the time to write the BAF
representation, and the average write time per node. Typically, we can read a
node in 1.3 ps and write it in 2.4 ps.

Note that reading a BAF term is faster than writing the same term, whereas
in case of Ascir the writing is faster than reading. This is caused by the fact
that reading the Ascii representation of an ATerm involves numerous match-
ing operations, whereas reading the BAF representation can be done with less
matching. On the other hand, writing the BAF representation involves more
calculations to encode the sharing of terms, whereas writing the ASCII repre-
sentation involves a straightforward term traversal.

In Table 4 we show how the compression in BAF files compares to the
compression of the standard Unix utility gzip. Considering the same set of
examples, we give figures for a straightforward dump of each term as Ascii
text (column 1), the size of the BAF version of the same term (column 2) and
percentage of compression achieved (column 3). Next, we give the results of
compressing the AsciI version of each term with gzip (column 4), and com-
pression achieved (column 5). The compression factors are 85% for BAF and
92% for gzip. The worst case compression of gzip (66%) is considerably bet-

19

Term BAF Bytes/ | Read | Read/ | Write | Write/
Node Node Node
(bytes) (s) | (ps) (s) (ps)
Artificial Cases
Random-unique 6,073,795 6.07 | 8.85 8.85 | 11.57 11.57
Random 567,419 0.57 | 2.06 2.06 2.76 2.76
Real Cases
COBOL Parse Table 370,450 0.39 | 0.63 0.66 1.75 1.82
COBOL System 2,279,066 0.07 | 4.88 0.16 | 20.76 0.66
Risla Library 141,946 0.20 0.22 0.31 0.75 1.06
LPO 1,106,661 0.12 1.86 0.21 9.40 1.06
Casl Specifications 32,083 0.93 | 0.05 1.45 0.15 4.34
lcc Parse Forest 358,318 099 | 034 0.99 0.95 2.77
S-expressions 4,438,229 747 | 3.31 5.507 | 10.49 6.23
| Real Case Averages || | 145] | 1.32] 2.42 |
Table 3: Reading and writing ATerms as BAF

Term Ascit BAF Comp. gzip Comp.

(bytes) (bytes) (%) (bytes) (%)

Artificial Cases
Random-unique 6,888,889 | 6,073,795 11.8 | 2,324,804 66.3
Random 6,199,981 567,419 90.9 439,293 92.9
Real Cases
COBOL Parse Table 4,211,366 370,450 91.2 230,297 94.5
COBOL System 135,350,005 | 2,279,066 98.3 | 3,072,774 97.7
Risla Library 2,955,964 141,946 95.2 80,009 97.3
LPO 41,227,481 | 1,106,661 97.3 804,521 98.0
Casl Specifications 217,958 32,083 85.3 20,767 90.5
lec Parse Forest 2,244,691 358,318 84.0 244,502 89.1
S-expressions 7,954,550 | 4,438,229 44.2 | 1,858,366 76.6
| Real Case Averages | | | 85.1] 92.0 |

Table 4: BAF wversus gzip

ter than the worst case compression using BAF (12%). No gains are to be
expected from using gzip instead of BAF, since this would imply first writing
the ATerm in textual format (an expensive operation which looses sharing) and
then compressing it with gzip.

20

| | Memory | Asci | BAF |

Size per node (bytes) 4.51 6.20 | 1.45
Read node (us) 10.50 | 1.32
Write node (us) 2.66 | 2.42

Table 5: Summary of measurements (based on Real Case averages)

4.3 Summary of Measurements

These measurements are summarized in Table 5. For in-memory storage, 4.5
bytes are needed per node. Using BAF, only 1.54 bytes are needed to represent
a node. Also observe that reading BAF is an order of magnitude faster than
reading terms in textual form. In case of parse trees represented as ASFIX
(COBOL System and Risla Library) less than 2 bytes are needed to represent
a node in memory and less than 2 bits (0.20 bytes) are needed to represent it
in binary format.

5 Applications

ATerms have already been used in applications ranging from development tools
for domain specific languages [DK98] to factories for the renovation of COBOL
programs [BSV97]. The ATerm data type is also the basic data type to repre-
sent the terms manipulated by the rewrite engines generated by the ASF+SDF
compiler [BKO99] and they play a central role in the development of the new
AsF+SDF Meta-Environment [BKMO97).

5.1 Representing Syntax Trees: AsFix and CasFix

The ATerm data type proves to be a powerful and flexible mechanism to repre-
sent syntax trees. By defining an appropriate set of function symbols parse trees
and abstract syntax trees can be represented for any language or formalism. We
describe two examples: ASFix (a parse tree format for ASF+SDF, Section 5.1.1)
and CasFix (an abstract syntax tree format for Casl, Section 5.1.2).

5.1.1 AsFix

ASF1x (AsrF+SDF Fixed format) is an incarnation of ATerms for representing
Asr+Spr [HHKR92, BHK89, DHK96]. Asr+SDF is a modular algebraic spec-
ification formalism for describing the syntax and semantics of (programming)
languages. SDF (Syntax Definition Formalism) allows the definition of the con-
crete and abstract syntax of a language and is comparable to (E)BNF. AsF
(Algebraic Specification Formalism) allows the definition of the semantics in
terms of equations, which are interpreted as rewrite rules. The development of

21

ASF+4SDF specifications is supported by an integrated programming environ-
ment, the ASF+SDF Meta-Environment [K1i93].

Using ASF1X, each module or term is represented by its parse tree which
contains both the syntax rules used and all original layout and comments. In
this way, the original source text can be reconstructed from the ASF1x represen-
tation, thus enabling transformation tools to access and transform comments in
the source text. Since the ASFIX representation is self-contained (all grammar
information needed to interpret the term is also included), one can easily de-
velop tools for processing ASF1x terms which do not have to consult a common
database with grammar information. Examples of such tools are a (structure)
editor or a rewrite engine.

ASF1X is defined by an appropriate set of function symbols for represent-
ing common constructs in a parse tree. These function symbols include the
following:

e prod(T') represents production rule 7.

e appl(Th,T>) represents applying production rule 77 to the arguments T5.
e 1(T) represents literal 7T

o sort(T') represents sort 7.

e lex(Ty,T5) represents (lexical) token Ty of sort Tb.

e w(T) represents white space 7.

o attr(T') represents a single attribute.

e attrs(T) represents a list of attributes.

e no-attrs represents an empty list of attributes.

The following context-free syntax rules (in SDF [HHKR92]) are necessary to
parse the input sentence true or false.

sort Bool
context-free syntax
true -> Bool
false -> Bool
Bool or Bool -> Bool {left}

The parse tree below gives the ASFIX representation for the input sentence
true or false.

appl (prod([sort ("Bool"),1("or") ,sort("Bool")],sort("Bool"),
attrs([attr("left")]1)),
[appl (prod([1("true")],sort("Bool") ,no-attrs), [1("true")]),
w(ll ||),1(||°r||)’w(|| ||)’
appl (prod ([1("false")],sort("Bool") ,no-attrs), [1("false")])
ip)

22

Two observations can be made about this parse tree. First, this parse tree
is an ordinary ATerm, and can be manipulated by all ATerm utilities in a
completely generic way.

Second, this parse tree is completely self-contained and does not depend on
a separate grammar definition. It is clear that this way of representing parse
trees contains much redundant information. Therefore, both maximal sharing
and BAF are essential to reduce their size. In our measurements, ASFIX only
plays a role in the cases COBOL System and Risla Library.

The annotations provided by the ATerm data type can be used to store
auxiliary information like position information derived by the parser or font
and/or color information needed by a (structure) editor. This information is
globally available but can be ignored by tools that are not interested in it.

5.1.2 CasFix

Casl (Common Algebraic Specification Language) is a new algebraic specifica-
tion formalism [CL98] developed as part of the CoFI initiative. It is a general
algebraic specification formalism incorporating common features of most exist-
ing algebraic specification languages. In addition to the language itself, a set of
tools is planned for supporting the development of Casl specifications. Existing
tools will be reused as much as possible.

In order to let the various tools, like parsers, editors, rewriters, and proof
checkers, communicate with each other an intermediate format was needed for
Casl. ATerms have been selected as intermediate format and a specialized ver-
sion for representing the abstract syntax trees of Casl has been designed (CasFix
[BKO98]). Contrast this with the approach taken for ASFIX, where the more
concrete parse trees are used as intermediate representation.

CasFix is obtained by defining an appropriate set of function symbols for
representing Casl’s abstract syntax [CL98] and by defining a mapping from
Casl’s concrete syntax to its abstract syntax. For each abstract syntax rule an
equivalent CasFix construct is defined as in:

ALTERNATIVE ::= "total-comnstruct" OP-NAME COMPONENTS*
-
total-construct (<OP-NAME> ,COMPONENTS* ([<COMPONENTS>]))

In this example "total-construct" and "COMPONENTS*" are function symbols
and <OP-NAME> and <COMPONENTS> represent the subtrees of the corresponding
sort.

5.2 ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [K1i93] is an interactive development envi-
ronment for writing language specifications in ASF+SDF. A new generation of
this environment is being developed based on separate components connected
via the ToolBus [BK98]. A description of this new architecture can be found

23

Specification || ASF+SDF | ASF+SDF | Generated | ASF+SDF C

C code compiler | compiler
(equations) (lines) (lines) (sec) (sec)
ASFLSDF 1,876 8,699 85,185 216 323

compiler

Table 6: Some figures on the ASF+SDF compiler.

in [BKMO97]. The new Meta-Environment provides tools for parsing, com-
pilation, rewriting, debugging, and formatting. ATerms and ASFix play an
important role in the new Meta-Environment:

e The parser generator [Vis97] produces a parse table represented as ATerm.

e The parser uses this parse table and transforms an input string into a
parse tree which is represented as ASFIX term.

e After parsing, the modules of an ASF+SDF specification are stored as
ASFix terms. Information concerning the specification such as the rewrite
rules that must be compiled are exchanged as ASFIX terms.

e The ASF+SDF compiler (see next section) reads and writes ASFIX terms.

5.3 ASF+SDF to C compiler

The AsF+SDF to C compiler [BKO99] is a compiler for ASF+SDF. It generates
ANSI-C code and depends on the ATerm library as run-time environment. All
terms manipulated by the generated C code are represented as ATerms thus
taking advantage of maximal subterm sharing and automatic garbage collection.

The optimized memory usage of ATerms has already been exploited in var-
ious industrial projects [BDKT96, BKV98] where memory usage is a critical
success factor. This ASF+SDF compiler has, for instance, been applied suc-
cessfully in projects such as the development of a domain-specific language for
describing interest products (in the financial domain) [ADR95] and a renovation
factory for restructuring COBOL code [BSV97].

The ASF+SDF compiler is an ASF+SDF specification and has been boot-
strapped. Table 6 gives some figures on the size of this specification and the
time needed to compile it. Table 7 gives an impression of the effect of compiling
the ASF+SDF compiler with and without sharing. More information on the
compiler itself and on performance issues can be found in [BK099].

5.4 Other Applications

Other applications are still under development and include:

24

| Application | Time (sec) | Memory (Mb) |
ASF+SDF compiler (with sharing) 216 16
ASF+SDF compiler (without sharing) 661 117

Table 7: Performance with and without maximal sharing.

e A tool for protocol verification [GL99]. The ATerms are used to represent
the states in the state space of the protocol. Because of the huge amount
of states (> 1,000,000) it is necessary to share as many states as possible.

e A tool for the detection of code clones in legacy code.

e The Stratego compiler [VBT98].

6 Discussion

6.1 Related Work

S-expressions in LISP Many intermediate representations are derived in
some form or another from the S-expressions in LISP. ATerms are no exception
to this rule. The main improvements of ATerms over S-expressions are

e ATerms support arbitrary binary data (Blobs, see Section 2.1).
e ATerms support annotations.

e ATerms support maximal sharing in a systematic way.

ATerms support a concise, sharing preserving, exchange format that ex-
ploits the implicit signature of terms.

The ATerm library provides a comprehensive collection of access functions
based on the match-and-make paradigm.

Intermediate representations in compiler frameworks There exist nu-
merous frameworks for compilers and programming environments that provide
facilities for representing intermediate data. Examples are Centaur’s VTP [?],
Eli [GHL*92], Cocktail’s Ast [Gro92], SUIF [WFW*94], ASDL [WAKS97], and
Montana [Kar98]. These systems either provide an explicit intermediate format
(Eli, Ast, SUIF) or they provide a programmable interface to the intermediate
data (VTP, Montana, ASDL). Lamb’s IDL [Lam87] and OMG’s IDL [OMG97]
are frameworks for representing intermediate data that are not tied to a spe-
cific compiler construction paradigm but have objectives similar to the systems
already mentioned.

These approaches typically use a grammar-like definition of the abstract
syntax (including attributes) and provide (generated) access functions as well

25

as readers and writers for these intermediate data. In most cases support exists
for accessing the intermediate data from a small collection of source languages.

The major difference between these approaches and ATerms is that they
operate at different levels of abstraction. ATerms just provide the lower-level
representation for terms (or more precisely directed acyclic graphs), while in-
termediate representations for compilers are more specialized and give a higher-
level view on the intermediate data. They provide primitives for representing
program constructs, symbol tables, flow graphs and other derived information.
In most cases they also provide a fixed format for representing programs at dif-
ferent levels of abstraction ranging from call graphs to machine-like instructions.
ATerms are thus simpler and more general and they can be used to represent
each of these compiler’s intermediate formats.

Another difference is that most compiler frameworks use a statically typed
intermediate representation. The major advantage is early error-detection. The
disadvantages are, however, less flexibility and the need to generate different
access functions for each different intermediate format. In the case of ATerms,
a dynamic check may be necessary on the intermediate data but only a single,
generic, set of access functions is needed.

ASDL The abstract syntax definition language (ASDL) [WAKS97] is a lan-
guage for describing tree data structures and is used as intermediate represen-
tation language between the various phases of a compiler [Han99]. We consider
ASDL in more detail, because of its public availability and the fact that the
goals of ASDL and ATerms are quite similar as they are both used to exchange
of syntax trees between tools, although ATerms are more general in the sense
that other types of information, such as unstructured binary objects and annota-
tions, can also be represented as an ATerm. Everything that can be represented
by a grammar can be represented in ATerms as well as ASDL.

ASDL pickles and the BAF format for ATerms are comparable with respect
to functionality, both are binary representations of (among others) syntax trees.
The pickle and unpickle functions are generated from the ASDL description and
are thus application specific (this may be more efficient) whereas the reading
and writing of BAF is entirely generic (this avoids the proliferation of versions).

ASDL and ATerms can be compared at two different levels:

e Low level: ASDL pickle versus plain ATerms. By providing an ASDL
definition of ATerms we can compare the size of the same object as ATerm
(Ascil and BAF) and as ASDL pickle. This is done in Table 8 for the
COBOL Parse Table. In this case, the representation in BAF is an order
of magnitude smaller than the ASDL pickle.

e High level: compare at the level of parse trees or abstract syntax trees.
ASDL is typically used to represent abstract syntax trees while ATerms
can be used to represent both as we have discussed in Section 5.1. To make
a meaningful comparison, we compare the abstract syntax trees generated
by the lcc back-end in ATerm format (both in Ascil and BAF) and the

26

Term Ascrii BAF | ASDL pickle
COBOL Parse Table || 4,211,366 | 370,450 5,262,426

Table 8: Sizes of the COBOL parse table (in bytes)

Term Ascri BAF | ASDL pickle
lcc Parse Forest || 2,246,436 | 624,091 1,290,595

Table 9: Sizes of abstract syntax trees (in bytes)

corresponding ASDL pickles. These figures are presented in Table 9 for
the abstract syntax trees generated for the lcc source files. In this case
the BAF representation is 2 times smaller than the ASDL pickle. Note
that the figure for the BAF representation differs from the figure in Table
3, this is caused by the fact that in Table 3 all files are combined into one
BAF term whereas in Table 9 each file is a separate BAF term and their
sizes are added.

XML The Extensible Markup Language [XML98] is a recently standardized
format for Web documents. Unlike HTML, XML makes a strict distinction be-
tween content and presentation. XML can be extended by adding user-defined
tags to parts of a document and by defining the overall structure of the document
thus enabling well-formedness checks on documents. Although the original ob-
jectives are completely different, there are striking similarities between ATerms
and XML: both serve the representation of hierarchically structured data and
both allow arbitrary extensions (adding tags versus adding function symbols).
There is also a straightforward translation possible between ATerms and XML.

The main difference between the two is that XML is more verbose and does
not provide a simple mechanism to represent sharing, whereas ATerms provide
the BAF format. This may not be a problem for Web documents like catalogs
and database records, but is does present a major obstacle in our case when
we need to exchange huge terms between tools. We are currently considering
whether some link between ATerms and XML may be advantageous.

Data encodings As described in Section 3.5, we use a form of data encoding
to compress ATerms when they are exchanged between tools. Of course, encod-
ing and data compression techniques are in common use in telecommunications.
For instance, the ASN.1 standard gives detailed rules for data encoding [ASN95].

In an earlier project in our group, the Graph Exchange Language
(GEL) [Kam94] has been developed. It is similar in goals to BAF, but BAF
can only represent acyclic directed graphs, whereas GEL can represent arbitrary
(potentially cyclic) graphs. The technical approaches are different as well. GEL
uses a binary-encoded postfix format to represent the nodes in the graph and

27

introduces explicit labels to reuse previously constructed parts of the graph.
BAF uses a prefix format augmented by generated symbol tables.

A final difference is in the usage of both approaches. GEL was used as
a separate library that could be used in applications and the graph encoding
was therefore visible to the programmer using it. BAF is, on the other hand,
completely integrated in the ATerm implementation and is only used by the
standard read and write functions for ATerms. The BAF format is therefore
never visible to programmers.

Hash consing In LISP, the success of hash consing [All78] has been limited
by the existence of the functions rplaca and rplacd that can destructively
modify a list structure. To support destructive updates, one has to support
two kinds of list structures “mono copy” lists with maximal sharing and “multi
copy” lists without maximal sharing. Before destructively changing a mono
copy list, it has to be converted to a multi copy list. In the 1970’s, E. Goto
has experimented with a Lisp dialect (HLisp) supporting hash consing and list
types as just sketched. See [TK90] for a recent overview of this work and its
applications.

A striking observation can be made in the context of SML [AG93] where
sharing resulted in slightly increased execution speed and only marginal space
savings. On closer inspection, we come to the conclusion that both methods
for term sharing are different and can not be compared easily. We share terms
immediately when they are created: the costs are a table lookup and the storage
needed for the table while the benefits are space savings due to sharing and a
fast equality test (one pointer comparison). In [AG93] sharing of subterms is
only determined during garbage collection in order to minimize the overhead of
a table lookup at term creation. This implies that local terms that have not
yet survived one garbage collection are not yet shared thus loosing most of the
benefits (space savings and fast equality test) as well.

6.2 History

Terms are so simple that most programmers prefer to write their own imple-
mentation rather than using (or even looking for) an existing implementation.
This is all right, except when this happens in a group of cooperating developers
as in our case.

A very first version of the ATerm library was developed as part of the Tool-
Bus coordination architecture [BK98]. It was used to represent data which
were transported between tools written in different languages running on differ-
ent machines. Simultaneously, we were developing a formalism for representing
parse trees [GB94]. In addition, incompatible term formats were in use in var-
ious of our compiler projects [FKW98]. Observing the similarities between all
these incompatible term data types triggered the work on ATerms as described
here. The benefits are twofold. First, a common term data type is used in more
applications and investments in it are well rewarded. Second, the mere existence

28

of a common data type leads to new, unanticipated, applications. For instance,
we now use ATerms for representing parse tables as well.

6.3 Conclusions

As stated in the introduction, ATerms are intended to form an open, simple,
efficient, concise, and language independent solution for the exchange of (tree-
like) data structures between distributed applications.

ATerms are open and language independent since they do not depend on
any specific hardware or software platform. ATerms are simple: the level one
interface consists of only 13 functions. ATerms are efficient and concise as shown
by the measurements in Section 4. Last but not least, ATerms are also useful
as shown on Section 5.

The ATerm format is supported by a binary exchange format (BAF) which
provides a mechanism to exchange ATerms in a concise way. This BAF format
maintains the in-memory sharing of terms and uses a minimal amount of bits
to represent the nodes, in case of ASFIX terms only 2 bits are needed per node.

The most innovative aspects of ATerms are the simple procedural interface
based on the make-and-match paradigm, term annotations, maximal subterm
sharing, and the concise binary encoding of terms that is completely hidden
behind high-level read and write operations.

Availability
The ATerm library can be obtained via

http://wuw.wins.uva.nl/pub/programming-research/software/aterm/

The current version of the library is available for Unix (including Linux) and
Windows/NT. We are currently working on a 64-bits implementation of the
library.

Acknowledgments

We want to thank all current users of the ATerm library. Special thanks to
Jan-Friso Groote (for his input and sometimes severe requirements, and his
implementation of the ATermTable and ATermIndexedSet related functionality)
and to Merijn de Jonge and Jeroen Scheerder (for detecting a large number of
intricate bugs). We thank Alexander van den Bergh for porting the ATerm
library to Windows/NT as part of his Master thesis project, and Joost Visser
for providing us with useful information on ASDL and for writing a tool to
pickle ATerms. We thank Pierre-Etienne Moreau for the fruitful discussions
on this subject during his stay in Amsterdam. Finally, we want to thank the
anonymous referees for their constructive remarks.

29

References

[ADR95]

[AG93]

[ALI78]
[ASNOS5]

[BDK*96]

[BHKS8Y]

[BK98]

[BKMOY7]

[BKO9S]

[BKO99)

[BKV98]

B.R.T. Arnold, A. van Deursen, and M. Res. An algebraic specifica-
tion of a language for describing financial products. In M. Wirsing,
editor, ICSE-17 Workshop on Formal Methods Application in Soft-
ware Engineering, pages 6-13. IEEE, April 1995.

A.W. Appel and M.J.R. Goncalves. Hash-consing garbage collec-
tion. Technical Report CS-TR-412-93, Princeton University, 1993.

J.R. Allen. Anatomy of LISP. McGraw-Hill, 1978.

Information Technology — Abstract Syntax Notation One (ASN.1):
Encoding Rules — Packed Encoding Rules (PER). Technical report,
International Telecommunication Union, 1995. ITU-T Recommen-
dation X.691.

M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and
AE. van der Meulen. Industrial applications of ASF+SDF. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Soft-
ware Technology (AMAST ’96), volume 1101 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specifi-
cation. ACM Press/Addison-Wesley, 1989.

J.A. Bergstra and P. Klint. The discrete time ToolBus — a soft-
ware coordination architecture. Science of Computer Programming,
31(2-3):205-229, July 1998.

M.G.J. van den Brand, T. Kuipers, L. Moonen, and P. Olivier.
Design and implementation of a new asf+sdf meta-environment.
In A. Sellink, editor, Proceedings of the Second International
Workshop on the Theory and Practice of Algebraic Specifications
(ASF+SDF’97), Workshops in Computing, Amsterdam, November
1997. Springer-Verlag.

M.G.J. van den Brand, P. Klint, and P.A. Olivier. Aterms: Ex-
changing data between heterogeneous tools for CASL. Note T-3, in
[?], 1998.

M.G.J. van den Brand, P. Klint, and P.A. Olivier. Compilation
and Memory Management for ASF+SDF. In S. Jdhnichen, editor,
Compiler Construction (CC’99), volume 1575 of LNCS, pages 198—
213, 1999.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Term rewriting
for sale. In C. Kirchner and H. Kirchner, editors, Proceedings of

30

[Boe93]

[BSV97]

[BWSS]

[Cha96]

[CLYS8]

[DGY5]

[DHK96]

[DK98]

[FKWO8]

[GBY4]

[GHL*92]

[GIS96]

the First International Workshop on Rewriting Logic and its Ap-
plications, volume 15 of Electronic Notes in Theoretical Computer
Science, pages 139-161. Elsevier Science, 1998.

H. Boehm. Space efficient conservative garbage collection. PLDI,
pages 197-206, 1993.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation
of components for software renovation factories from context-free
grammars. In I.D. Baxter, A. Quilici, and C. Verhoef, editors, Pro-
ceedings of the Fourth Working Conference on Reverse Engineering,
pages 144-153, 1997.

H. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software - Practice and Experience (SPE), 18(9):807—
820, 1988.

D. Chappell. Understanding ActiveX(TM) and OLE. MicroSoft
Press, 1996.

CoFI-LD. CASL — The CoFT Algebraic Specification Language —
Summary, version 1.0. Documents/CASL/Summary-v1.0, in [?],
1998.

D. Dams and J.F. Groote. Specification and implementation of
components of a uCRL toolbox. Technical Report 152, Utrecht
University, 1995.

A. van Deursen, J. Heering, and P. Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific, 1996.

A. van Deursen and P. Klint. Little languages: Little maintenance?
Journal of Software Maintenance, 10:75-92, 1998.

W. Fokkink, J.F.Th. Kamperman, and H.R. Walters. Within
ARM’s reach: Compilation of left-linear rewrite systems via min-
imal rewrite systems. ACM Transactions on Programming Lan-
guages and Systems, 20(3):679-706, 1998.

C. Groza and M.G.J. van den Brand. The algebraic specification
of annotated abstract syntax trees. Technical Report P9414, Uni-
versity of Amsterdam, Programming Research Group, 1994.

R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite.
Eli: A complete, flexible compiler construction system. Communi-
cations of the ACM, 35(2):121-130, 1992.

James Gosling, Bill Joy, and Guy Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

31

[GL99]

[GP95]

[Gro92)

[Han99]

[HHKR92]

[JL96]

[Kam94]

[Kar98]

[K1i93]

[Knu73]

[Lam87]

[Lut99]

[OMG97]

[TK90]

J.F. Groote and B. Lisser. Tutorial and reference guide for the
pCRL toolset version 1.0. Technical report, CWI, Amsterdam,
1999. In preparation.

J.F. Groote and A. Ponse. The syntax and semantics of uCRL. In
Algebra of Communicating Processes ’94, Workshops in Computing,
pages 26-62. Springer-Verlag, 1995.

J. Grosch. Ast — a generator for abstract syntax trees. Technical
Report 15, GMD Karlsruhe, 1992.

D.R. Hanson. Early Experience with ASDL in lcc. Software—
Practice and Experience, 29(3):417-435, 1999.

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntaz
definition formalism SDF - reference manual, 1992. Earlier version
in SIGPLAN Notices, 24(11):43-75, 1989.

R. Jones and R. Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, 1996.

J.F.Th. Kamperman. GEL, a graph exchange language. Technical
Report CS-R9440, CWI, Amsterdam, 1994.

M. Karasick. The architecture of Montana: an open and extensible
programming environment with an incremental C++ compiler. In
Proceedings of the ACM SIGSOFT sixth International Symposium
on Foundations of Software Engineering, pages 131-142, 1998.

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodol-
ogy, 2:176-201, 1993.

D. Knuth. The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, 1973.

D.A. Lamb. IDL: Sharing intermediate representations. ACM
Transactions on Programming Languages and Systems, 9(3):297—
318, 1987.

S.P. Luttik. Description and formal specification of the link layer
protocol (SEN-R9706). Technical report, CWI, Amsterdam, 1999.

OMG. The common object request broker: Architecture and spec-
ification, revision 2,0. Technical Report 97-02-25, Object Manage-
ment Group, 1997. Available at: http://www.omg.org.

M. Terashima and Y. Kanada. HLisp—its concept, implementation
and applications. Journal of Information Processing, 13(3):265—
275, 1990.

32

[VBTO8]

[Vis97]

[WAKS97]

[WEW+94]

[XML9S]

E. Visser, Z. Benaissa, and A. Tolmach. Building program op-
timizes with rewriting strategies. In International Conference on
Functional Programming (ICFP’98), pages 13-26, 1998.

E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

D.C. Wang, A.W. Appel, J.L. Korn, and C.S. Serra. The Zephyr
Abstract Syntax Description Language. In Proceedings of the Con-
ference on Domain-Specific Languages, pages 213-227, 1997.

R.P. Wilson, R.S. French, Ch.S. Wilson, S.P. Amarasinghe, J.M.
Anderson, S.W.K.Tjiang, Shih-Wei Liao, Chau-Wen Tseng, M.W.
Hall, M.S. Lamm, and J.L. Hennessy. SUIF: An infrastructure
for research on parallilizeing and optimizing compilers. SIGPLAN
Notices, 29(12):31-37, 1994.

Extensible markup language (XML) 1.0. Technical re-
port, World Wide Web Consortium, 1998. Available at:
http:www.w3.org/TR/REC-xml.

A Concrete Syntax of ATerms

A formal definition of the concrete syntax of ATerms using the syntax definition
formalism SpF [HHKR92] is presented here. Note that there is no concrete
syntax defined for blobs, because a humanly readable representation of blobs
depends on the type of data stored in the blob.

hiddens

sorts EscChar AFunChar ATerms Annotation
lexical syntax

“\7’ ND

— EscChar

“\”[01][0-7][0-7] — EscChar
~[\000-\040”\] — AFunChar
EscChar — AFunChar

context-free syntax

ATerm
ATerm

— ATerms
“” ATerms — ATerms

“{” ATerms “}” — Annotation

exports

sorts ATerm ATermList ATermAppl ATermInt ATermReal

ATermPlaceholder AFun
lexical syntax

[L\n\t]

— LAYOUT

[a-zA-Z][a-zA-Z0-9_\x\+\-]* — AFun
“\”” AFunCharx“\”” — AFun

33

[0-9]+ — ATermlnt

“~” ATermInt — ATermInt

ATermInt “.’[0-9]+ — ATermReal

ATermInt “.”[0-9]+“e” ATermInt — ATermReal
context-free syntax

AFun — ATermAppl
AFun “(” ATerms “)” — ATermAppl
“I" 9 — ATermList
“[” ATerms “]” — ATermlList
“<” ATerm “>” — ATermPlaceholder
ATermAppl — ATerm
ATermAppl Annotation — ATerm
ATermList — ATerm
ATermList Annotation — ATerm
ATermInt — ATerm
ATermInt Annotation — ATerm
ATermReal — ATerm
ATermReal Annotation — ATerm
ATermPlaceholder — ATerm

ATermPlaceholder Annotation — ATerm

B Level 2 interface for ATerms

The operations described in Section 2 are not sufficient for all applications.
Some applications need more control over the underlying implementation, or
need operations that can be implemented using level one constructs but can be
expressed more concisely and implemented more efficiently using more special-
ized constructs.

We have therefore designed a level 2 interface that is a strict superset of the
level 1 interface described in Section 2. Some new datatypes are introduced, as
well as some new operations on ATerms.

The level 2 interface introduces 7 new datatypes. Except for the auxil-
iary datatype AFun for representing function symbols, they are subtypes of the
ATerm datatype, and implement the different term types. These subtypes allow
us to introduce operations that are only valid for one specific term type, instead
of the general ATerm operations described earlier.

ATermlInt: This datatype represents integer terms. The operations on ATer-
mlnt are:

o ATermInt ATmakeInt(Integer v): Construct a new integer term corre-
sponding to the integer value v.

34

e Integer ATgetInt(ATermInt %): Retrieve the value of an integer term.

ATermReal: This datatype represents real-number terms. The operations on
ATermReal are:

e ATermReal ATmakeReal (Real v): Construct a new real term.

e Real ATgetReal (ATermReal 7): Retrieve the value of a real term.

AFun: An AFun consists of a string defining the function name, an arity, and
an indication whether the symbol name is quoted or not. The operations on
symbols are:

e AFun ATmakeAFun(String nm, Integer ar, Boolean ¢): Construct a
new symbol. If a symbol with the given name nm, arity ar, and quotation
q already exists, the existing symbol is returned. Otherwise a new symbol
is created and returned. AFuns are also subject to garbage collection in
order to avoid long running (interactive) programs from slowly running
out of symbols.

e String ATgetName(AFun s): Retrieve the name of symbol s.

e Integer ATgetArity(AFun s): Retrieve the arity of a symbol.

e Boolean ATisQuoted(AFun s): Check if a symbol is quoted.
ATermAppl: This datatype represents function applications consisting of a

function symbol and a number of arguments. The operations on this datatype
are:

e ATermAppl ATmakeAppln (AFun f, ATerm ag, ..., ATerm a, 1): This
is a family of operations, one for each n between 0 and 6 (inclusive).
These operations are used to construct a new function application with
the given function symbol f and arguments.

o ATermAppl ATmakeAppl(AFun f, ATermList as): Construct a new func-
tion application with the given function symbol f and a list of arguments
args

e AFun ATgetFun(ATermAppl ap): Retrieve the function symbol of a func-
tion application.

e ATerm ATgetArgument (ATermAppl ap, Integer m): Retrieve a specific
argument.

35

ATermList: This datatype represents the binary list constructor. Element
indices start at 0. Thus a list of length n has elements 0,...,n — 1. The
operations on ATermList are:

ATermlList ATmakelistn(ATerm eg,..., ATerm e,_;1): This is a family
of operations, one for each n between 0 and 6 (inclusive). These operations
are used to quickly construct small lists of terms.

Integer ATgetLength(ATermList 1): Retrieve the length of [.
ATerm ATgetFirst(ATermList [): Retrieve the first element of list [.

ATermList ATgetNext(ATermList [l): Retrieve all but the first element
of list .

ATermList ATgetPrefix(ATermList [): Retrieve all but the last element
of list 1.

ATerm ATgetLast(ATermList l): Retrieve the last element from list [.

ATermList ATgetSlice(ATermList [, Integer frm, Integer to):
Retrieve the portion of list [from position frm through to — 1.

Boolean ATisEmpty(ATermList [): Check if list contains zero elements.

ATermList ATinsert(ATermList [, ATerm e): Insert a single element e
at the start of list [.

ATermList ATinsertAt(ATermList [, ATerm e, Integer i): Insert a
single element e at position ¢ in list /.

ATermList ATappend(ATermList [, ATerm e): Append a single element
e to the end of list .

ATermlList ATconcat(ATermList [;, ATermList [l5): Concatenate lists
{1 and [5.

Integer ATindex0f (ATermList [, ATerm e, Integer ¢): Search for an
element e in list [and return the index of the first location where e is
present. Start searching at index 4. If the element is not present, return
—1.

Integer ATlastIndex0f (ATermList [, ATerm e, Integer i): Search
backwards for element e in list /, and return the index of the last lo-
cation where the element is present. Start searching at index i. If the
element is not present, return —1.

ATerm ATelementAt(ATermList [, Integer ¢): Retrieve element at po-
sition ¢ from list /.

ATermList ATremoveElement (ATermList [, ATerm e): Remove once oc-
currence of element e from list [.

36

e ATermList ATremoveElementAt(ATermList !, Integer ¢): Remove the
element at position ¢ from list /.

ATermPlaceholder: This datatype represents placeholder terms. The oper-
ations on ATermPlaceholder are:

e ATermPlaceholder ATmakePlaceholder (ATerm tp): Construct a new
placeholder term.

e ATerm ATgetPlaceholder (ATermPlaceholder ph): Retrieve the type of
this placeholder.

ATermBlob: This datatype represents Binary Large OBject terms. The op-
erations on ATermBlob are:

e ATermBlob ATmakeBlob(Integer n, Data d): Construct a new blob
term of size n and containing data d.

e Integer ATgetBlobSize(ATermBlob b): Retrieve the size of blob b.

e Data ATgetBlobData(ATermBlob blobd): Retrieve the data pointer stored
in blob b.

The memory management of blobs must be done explicitly by the application
programmer.

Auxiliary: The level two interface provides functionality to create and ma-
nipulate user-defined hash tables.

37

Type Arity

== o Z
o35 5>

bit 0 1 2 7

Figure 1: The header layout

38

byte 0

INT

REAL

APPL

LIST

PLACEHOLDER

BLOB

Header

Unused

Next hash entry

Integer value

Optional Annotation

Unused

Next hash entry

--Real-value

Optional Annotation

Function symbol

Next hash entry

Argument 0

Argument 1

Argument n

Optional Annotation

Length

Next hash entry

First

Next

Optional Annotation

Unused

Next hash entry

Placeholder type

Optional Annotation

Datasize

Next hash entry

Data pointer

Figure 2: Encoding of the different term types

39

A WNPFPO W N = O

WN PO

n+l

n+2

A WNEFEO

wWN PO

WN PO

sharing percentage

COBOL System1l © -
COBOL System? +

6 . . . COBOL System3 O
0 1000 2000 3000 4000 5000 6000 7000

number of linesin the original source code

Figure 3: Sharing of a large number of COBOL parse trees

40

