
Compiling Language Definitions: The ASF+SDF
Compiler

M. G. J. VAN DEN BRAND

CWI and Vrije Universiteit

J. HEERING

CWI

P. KLINT

CWI and University of Amsterdam

and

P. A. OLIVIER

CWI

The ASF+SDF Meta-Environment is an interactive language development environment whose
main application areas are definition and implementation of domain-specific languages, generation

of program analysis and transformation tools, and production of software renovation tools. It

uses conditional rewrite rules to define the dynamic semantics and other tool-oriented aspects of
languages, so the effectiveness of the generated tools is critically dependent on the quality of the
rewrite rule implementation.

The ASF+SDF rewrite rule compiler generates C code, thus taking advantage of C’s portability

and the sophisticated optimization capabilities of current C compilers as well as avoiding potential
abstract machine interface bottlenecks. It can handle large (10 000+ rule) language definitions
and uses an efficient run-time storage scheme capable of handling large (1 000 000+ node) terms.
Term storage uses maximal subterm sharing (hash-consing), which turns out to be more effective
in the case of ASF+SDF than in Lisp or SML. Extensive benchmarking has shown the time and

space performance of the generated code to be as good as or better than that of the best current
rewrite rule and functional language compilers.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and

Theory—Semantics; D.3.2 [Programming Languages]: Language Classifications—Specialized
application languages; D.3.4 [Programming Languages]: Processors—code generation; compil-
ers; optimization; F.4.2 [Mathematical Logic and Formal Languages]: Rewriting Systems

This research was supported in part by the Telematica Instituut under the Domain-Specific Lan-

guages project. Parts of this article emphasizing memory management issues have appeared in
preliminary form in S. Jähnichen (ed.), Compiler Construction (CC ’99), vol. 1575 of Lecture

Notes in Computer Science, Springer-Verlag, 1999, pp. 198–213.
Authors’ addresses: M. G. J. van den Brand, Department of Software Engineering, CWI, Kruis-
laan 413, 1098 SJ Amsterdam, The Netherlands; email: Mark.van.den.Brand@cwi.nl; J. Heering,

Department of Software Engineering, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Nether-
lands; email: Jan.Heering@cwi.nl; P. Klint, Department of Software Engineering, CWI, Kruislaan

413, 1098 SJ Amsterdam, The Netherlands; email: Paul.Klint@cwi.nl; P. A. Olivier, Depart-
ment of Software Engineering, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; email:
Pieter.Olivier@cwi.nl.



2 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

1. INTRODUCTION

ASF+SDF [Bergstra et al. 1989; van Deursen et al. 1996] is the metalanguage
of the ASF+SDF Meta-Environment [Klint 1993; van den Brand et al. 2001], an
interactive environment for the development of languages and language-oriented
tools, covering parsing, typechecking, translation, transformation, and execution of
programs.

ASF+SDF is a modular specification formalism based on the Algebraic Speci-
fication Formalism ASF and the Syntax Definition Formalism SDF. The latter is
a BNF-like formalism for defining the lexical, context-free and abstract syntax of
languages [Heering et al. 1989; Visser 1997], featuring a close integration of lexical
and context-free syntax. The implementation of SDF is beyond the scope of this
article. Suffice it to say, it supports fully general context-free parsing without a
separate lexical scanning phase.

The ASF component of ASF+SDF uses rewrite rules to describe the semantics
of languages. Such semantics may be static (typechecking) or dynamic. The latter
may have an interpretive or translational character, it may include program trans-
formations, and so on. These are all described in terms of rewrite rules whose left-
and right-hand sides are sentences in the language defined by the SDF-part of the
language definition.

Rewriting is the simplification of algebraic expressions or terms everybody is
familiar with. It is ubiquitous in (computer) algebra as well as in algebraic semantics
and algebraic specification. Rewriting is also important in functional programming,
program transformation and optimization, and equational theorem proving. Useful
theoretical surveys of rewriting are [Klop 1992; Dershowitz and Jouannaud 1990],
but we assume only a basic understanding of rewrite systems on the part of the
reader. In addition to regular rewrite rules, ASF+SDF features conditional rewrite
rules, associative (flat) lists, and default rules. These will be explained below.

ASF+SDF’s current application areas are

—Definition and implementation of domain-specific languages

—Generation of program analysis and transformation tools

—Production of software renovation tools.

Table I gives details and further references. Another application area is defini-
tion and implementation of general purpose programming languages, but we have
accumulated relatively little experience in this area so far.

Each ASF+SDF module defines the syntax and semantics of a language or lan-
guage fragment, ranging from the simple language of boolean expressions or ex-
pressions involving type environments to (part of) Cobol or Java. Correspondingly,
the semantics may range from the simple evaluation of boolean expressions or ex-
pressions involving type environments to the restructuring of Cobol programs, the
typechecking of Java programs, or the execution behavior of a domain-specific or
general purpose language.

The contributions of the ASF+SDF formalism and its implementation are twofold:

—A seamless integration of syntax and semantics. The rewrite rules defining the
semantics may use both the concrete syntax of the language to be defined as



Compiling Language Definitions: The ASF+SDF Compiler · 3

Domain-Specific Languages

—Risla [van Deursen and Klint 1998] (financial product specification)

—EURIS [Groote et al. 1995] (railroad safety)

—Action Semantics [van Deursen 1994] (programming language semantics)

—Manifold [Rutten and Thiébaux 1992], ToolBus [Bergstra and Klint 1998] (coordination
languages)

—ALMA-0 [Apt et al. 1998] (backtracking and search)

—Languages of the ASF+SDF Meta-Environment itself [van den Brand et al. 2001]:
—SDF (syntax definition)
—Box (prettyprinting specification)

—ASF+SDF (language definition—this article)

Program Analysis

—Typechecking of Pascal [van Deursen et al. 1996, Chapter 2]

—Typechecking and execution of CLaX [Tip and Dinesh 2001]

—µCRL [Hillebrand 1996] (proof checking and simulation toolkit)

—Dahl [Moonen 1997] (dataflow analysis framework)

—Type inference, object identification, and documentation generation for Cobol [van Deursen
and Moonen 2000]

Program Transformation

—Interactive program transformation for Clean [van den Brand et al. 1995] and Prolog
[Brunekreef 1996]

—PIM [Field 1992] (compiler toolkit)

—Automatic program transformation for C++ [Dinesh et al. 2001]

Software Renovation

—Description of the multiplicity of languages and dialects encountered in software reno-

vation applications such as Cobol (including embedded languages like SQL and CICS)
[van Deursen et al. 1999]

—Automatic program transformation for restructuring of Cobol programs (including embed-

ded languages like SQL and CICS) [van den Brand et al. 2000]

—Extraction of grammars from compilers and on-line manuals [Sellink and Verhoef 2000]

Table I. Current application areas of the ASF+SDF Meta-Environment.

well as user-defined concrete syntax for semantic operations. Both are covered
by SDF.

—A uniform approach to the definition of data types with user-defined notation
and languages with operations like typechecking, execution, and transformation.

ASF+SDF is more expressive than attribute grammars, which it includes as the
subclass of definitions that are non-circular primitive recursive schemes (NPRSs)
[Courcelle and Franchi-Zannettacci 1982]. This is the natural style for most type-
checkers and translators. Using this correspondence, van der Meulen [1996] has
transferred incremental evaluation methods originally developed for attribute gram-
mars to NPRS-style ASF+SDF definitions.



4 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

We describe the current ASF+SDF compiler and compare its performance with
that of other rewrite system and functional language compilers we were able to
run, namely, Clean [Plasmeijer and van Eekelen 1994; Smetsers et al. 1991], Elan
[Kirchner and Moreau 2001], Haskell [Peyton Jones et al. 1993; Peyton Jones 1996],
Maude [Clavel et al. 1999], Opal [Didrich et al. 1994], and SML [Appel 1992].

The effectiveness of the tools generated by the ASF+SDF Meta-Environment is
critically dependent on the quality of the rewriting implementation. The original in-
terpretive implementation left room for improvement. Its author, inspired by earlier
rewrite compilation work of Kaplan [1987], sketched a more efficient compilational
scheme [Dik 1989] that ultimately served as a basis for the compiler described in
this article.

The real-world character of ASF+SDF applications has important consequences
for the compiler:

—It must be able to handle ASF+SDF definitions of up to 50 000 lines. Disre-
garding layout and syntax declarations (SDF-parts), this corresponds to 10 000
(conditional) rewrite rules.

—It must include optimizations for the major sources of inefficiency encountered
in practice.

This article is organized as follows: brief survey of the ASF+SDF language
(Sec. 2); general compilation scheme (Sec. 3); major design considerations for the
ASF+SDF compiler (Sec. 4); the µASF abstract syntax representation (Sec. 5);
preprocessing (Sec. 6); code generation (Sec. 7); postprocessing (Sec. 8); bench-
marking (Sec. 9); conclusions and further work (Sec. 10). Related work is discussed
at appropriate points throughout the text rather than in a separate section.

2. BRIEF SURVEY OF THE ASF+SDF LANGUAGE

In addition to regular rewrite rules, ASF+SDF features conditional rewrite rules,
associative (flat) lists, default rules, and simple modularization. In our discussion
of these features we will emphasize issues affecting their compilation rather than
issues of language design. For the use of ASF+SDF see [van Deursen et al. 1996].

2.1 Syntax Definitions

An ASF+SDF module can define arbitrary lexical and context-free syntax. An
example of the former is shown in Fig. 1.1 It defines sort ID for identifiers using
a regular expression involving character classes. It imports module Layout, which
defines lexical syntax for white space, comments, etc. (not shown). Furthermore,
again using a regular expression, it defines a set of variables of sort ID. All definitions
(including the variable declarations) are exported from the module, meaning they
are available in modules importing it.

A simple context-free syntax for statements is shown in Fig. 2. It imports mod-
ules Identifiers and Expressions (not shown). In this way, it obtains definitions
for sorts ID and EXP. It then defines sort STAT for single statements and STATS for

1To bring out the correspondence with later phases of the compilation process, we present speci-
fications as typed in by the specification writer rather than in the typeset form produced by the

ASF+SDF Meta-Environment.



Compiling Language Definitions: The ASF+SDF Compiler · 5

module Identifiers

imports Layout

exports

sorts ID

lexical syntax

[a-z] [a-z0-9]* -> ID

variables

"Id" [0-9\’]* -> ID

Fig. 1. Definition of identifiers in ASF+SDF.

module Statements

imports Identifiers Expressions

exports

sorts STAT STATS

context-free syntax

ID ":=" EXP -> STAT

"if" EXP "then" STATS "fi" -> STAT

"while" EXP "do" STATS "od" -> STAT

{STAT ";"}+ -> STATS

variables

"Stat"[0-9\’]* -> STAT

Fig. 2. Definition of statements in ASF+SDF.

module Types

imports Layout

exports

sorts TYPE

context-free syntax

"int" -> TYPE

"real" -> TYPE

"string" -> TYPE

"nil-type" -> TYPE

variables

"Type" [0-9\’] -> TYPE

Fig. 3. Definition of type constants in ASF+SDF.



6 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

lists of statements. List constructs like {STAT ";"}+ denote separator lists. In this
case, a list of statements consists of one or more statements separated by semicolons
(but no semicolon at the end).

2.2 Conditional Rewrite Rules

We assume throughout that the terms being rewritten are ground terms, i.e., terms
without variables. A rule is applicable to a subterm if its left-hand side matches the
subterm, and its conditions (if any) succeed after substitution of the values found
during matching. Such a subterm is called a redex for that particular rule. The
process of exhaustively rewriting a term is called normalization. The resulting term
is called a normal form (if normalization terminates). Conditions may be positive
(equalities) or negative (inequalities).

Negative conditions succeed if both sides are syntactically different after normal-
ization. Otherwise they fail. They are not allowed to contain variables not already
occurring in the left-hand side of the rule or in a preceding positive condition. This
means both sides of a negative condition are ground terms at the time the condition
is evaluated.

Positive conditions succeed if both sides are syntactically equal after normaliza-
tion. Otherwise they fail. One side of a positive condition may contain one or more
new variables not already occurring in the left-hand side of the rule or in a preced-
ing positive condition. This means one side of a positive condition need not be a
ground term at the time it is evaluated, but may contain existentially quantified
variables. Their value is obtained by matching the side they occur in with the other
side after the latter has been normalized. The side containing the variables is not
normalized before matching.

Variables occurring in the right-hand side of the rule must occur in the left-hand
side or in a positive condition, so the right-hand side is a ground term at the time
it is substituted for the redex.

As running example we will use a definition of the “language” of type environ-
ments (Fig. 4). From the viewpoint of ASF+SDF this is just a (small) language
definition. As explained in Sec. 1, ASF+SDF does not distinguish data types with
user-defined notation from language definitions with operations like typechecking,
execution, and transformation.

Module Type-environments defines a type environment (sort TENV) as a list of
pairs, where each pair (sort PAIR) consists of an identifier (sort ID) and a type
(sort TYPE). The latter is defined in module Types (Fig. 3), which is imported
by Type-environments. It defines bracket notations for pairs and lists of pairs as
well as appropriate distfix notation for the operations lookup and add. A sample
sentence of the type environment language would be

add d with real to [(a:int),(b:real),(c:string)].

The semantics of the language is defined by rewrite rules for the operations lookup
and add. Consider rule [at-2] in Fig. 4 keeping the above in mind. Its application
proceeds as follows:

(1) Find a redex matching the left-hand side of the rule (if any). This yields values



Compiling Language Definitions: The ASF+SDF Compiler · 7

module Type-environments

imports Identifiers Types

exports

sorts TENV PAIR

context-free syntax

"(" ID ":" TYPE ")" -> PAIR

"[" {PAIR ","}* "]" -> TENV

"lookup" ID "in" TENV -> TYPE

"add" ID "with" TYPE "to" TENV -> TENV

variables

"Pair" [0-9]* -> PAIR

"Pairs" [0-9]* -> {PAIR ","}*

"Tenv" [0-9]* -> TENV

equations

[l-1] lookup Id in [Pairs1, (Id:Type), Pairs2] = Type

[default-l-2]

lookup Id in Tenv = nil-type

[at-1] add Id with Type1 to [(Id:Type2), Pairs] = [(Id:Type1), Pairs]

[at-2] Id1 != Id2,

add Id1 with Type1 to [Pairs1] = [Pairs2]

===================================================================

add Id1 with Type1 to [(Id2:Type2), Pairs1] = [(Id2:Type2), Pairs2]

[at-3] add Id with Type to [] = [(Id:Type)]

Fig. 4. Definition of a simple type environment in ASF+SDF.

for the variables Id1, Type1, Id2, Type2, and Pairs1.
(2) Evaluate the first condition. This amounts to a simple syntactic inequality

check of the two identifiers picked up in step 1. If the condition succeeds,
evaluate the second one. Otherwise, the rule does not apply.

(3) Evaluate the second condition. This is a positive condition containing the new
list variable Pairs2 in its right-hand side. The value of Pairs2 is obtained by
matching the right-hand side with the normalized left-hand side. Since Pairs2
is a list variable, this involves list matching, which is explained below. In this
particular case, the match always succeeds.

(4) Finally, replace the redex with the right-hand side of the rule after substituting
the values of Id2 and Type2 found in step 1 and the value of Pairs2 found in
step 3.



8 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

2.3 Lists

ASF+SDF lists are associative (flat) and list matching is the same as string match-
ing. Unlike a term pattern, a list pattern may match a redex in more than one
way. This may lead to backtracking within the scope of the rule containing the list
pattern in the following two closely related cases:

—A rewrite rule containing a list pattern in its left-hand side might use conditions
to select an appropriate match from the various possibilities.

—A rewrite rule containing a list pattern with new variables in a positive condition
(Sec. 2.2) might use additional conditions to select an appropriate match from
the various possibilities.

List matching may be used to avoid the explicit traversal of structures. Rule
[l-1] in Fig. 4 illustrates this. It does not traverse the type environment explicitly,
but picks an occurrence (if any) of the identifier it is looking for using two list
variables Pairs1 and Pairs2 to match its context. The actual traversal code is
generated by the compiler. In general, however, there is a price to be paid. While
term matching is linear, string matching is NP-complete [Benanav et al. 1985].
Hence, list matching is NP-complete as well. It remains an important source of
inefficiency in the execution of ASF+SDF definitions [Vinju 1999].

2.4 Default Rules

A default rule has lower priority than ordinary rules in the sense that it can be
applied to a redex only if all ordinary rules are exhausted. In Fig. 4, lookup
uses default rule [default-l-2] to return nil-type if rule [l-1] fails to find the
identifier it is looking for.

2.5 Modules

ASF+SDF supports import, renaming, and parameterization. Renaming corre-
sponds to replacing a syntax rule with another one and replacing the correspond-
ing textual instances. Modularization is eliminated at the preprocessing level. An
ASF+SDF function definition may be distributed over several modules. Since the
compiler maps ASF+SDF functions to C functions, this hampers separate compi-
lation. The full specification has to be scanned for each function.

2.6 Rewriting Strategies

ASF+SDF is a strict language based on innermost rewriting (call-by-value). This
facilitates compilation to and interfacing with C and other imperative languages. In
particular, it allows ASF+SDF functions to be mapped directly to C functions and
intermediate results produced during term rewriting to be stored in an efficient way
(Sec. 7.1). We also encountered cases (conditionals, for instance) where innermost
rewriting proved unsatisfactory. In such cases, rewriting of specific function argu-
ments can be delayed by annotating them with the delay attribute. See [Bergstra
and van den Brand 2000] for details.

3. GENERAL COMPILATION SCHEME

Before we discuss the major design issues, it is useful for the reader to understand
the general layout of the compiler as shown in Fig. 5. The following compiler phases



Compiling Language Definitions: The ASF+SDF Compiler · 9

�
�
�
�ASF+SDF

?

Parsing�
�
�
�µASF

?

Preprocessing (Sec. 6)�
�
�
�µASF+

?

Code generation (Sec. 7)�
�

�
�C + ATerm Library primitives

?

Postprocessing (Sec. 8)�
�

�
�C + ATerm Library primitives

Fig. 5. General layout of the ASF+SDF compiler.

can be distinguished:

—Parsing. Since the syntax of ASF+SDF-definitions is largely defined by their
SDF-part, parsing them is a nontrivial two-pass process, whose details are beyond
the scope of this article. Suffice it to say, this phase yields an abstract syntax
representation of the input definition as usual. As indicated in the second box
from the top, the parser’s output formalism is µASF, an abstract syntax version
of ASF+SDF.

—Preprocessing. This is performed on the µASF representation, which is very
close to the source level. Typical examples are detection of variable bindings
(assignments) in conditions and introduction of elses for pairs of conditional
rewrite rules with identical left-hand sides and complementary conditions. The
output formalism of this phase is µASF+, a superset of µASF.

—Code generation. The compiler generates C extended with calls to the ATerm
library, a run-time library for term manipulation and storage. Each µASF func-
tion is compiled to a separate C function. The right-hand side of a rewrite rule is
translated directly to function calls if necessary. Term matching is compiled to a
finite automaton. List matching code depends on the complexity of the pattern
involved. A few special list patterns that do not need backtracking are eliminated
by transforming them to equivalent term patterns in the preprocessing phase, but



10 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

the majority is compiled to special code.
—Postprocessing. This is performed on the C code generated in the previous phase.

A typical example is constant caching.

4. MAJOR DESIGN CONSIDERATIONS

The design of the compiler was influenced by the experience gained in previous com-
piler activities within the ASF+SDF project itself [Dik 1989; Fokkink et al. 1998;
Hendriks 1991; Kamperman 1996] as well as in various functional language and
Prolog compiler projects elsewhere. The surveys [Hartel et al. 1996] on functional
language compilation and [van Roy 1993] on Prolog compilation were particularly
helpful.

4.1 Choice of C as Target Language

Generating C code is an efficient way to achieve portability as well as interoperabil-
ity with C programs. Folk wisdom has it that C code is 2–3 times slower than native
code, but this is not borne out by the “Pseudoknot” benchmark results reported
in [Hartel et al. 1996, Table 9], where the best functional language and rewrite
system compilers generate C code. The probable reason is that many C compilers
perform sophisticated optimizations [Muchnick 1997], although this raises the issue
of tuning the generated C code to the optimizations done by different C compilers.
At least in our case, the fact that C is in some respects less than ideal as a compiler
target [Peyton Jones et al. 1998] does not invalidate these favorable observations.

4.2 Choice of ASF+SDF as Implementation Language

Not unexpectedly in view of its application domain, large parts of the compiler can
be expressed very naturally in ASF+SDF, so it was decided to write the compiler
in its own source language. Since the compiler is fairly large, self-compilation is an
interesting benchmark.

4.3 Pitfalls in High-Level Transformations and Abstract Machine Interfaces—The Bot-
tleneck Effect

High-level transformations have to be applied with extreme care, especially if their
purpose is to simplify the compiler by reducing the number of different constructs
that have to be handled later on. For instance, by first transforming conditional
rewrite rules to unconditional ones or associative list matching to term matching,
the compiler can be simplified considerably, but at the expense of a serious degrada-
tion in the performance of the generated code. Similarly, transformation of default
rules (which can be applied only when all other rules fail) to sets of ordinary rewrite
rules that catch the same cases would lead to very inefficient code. These transfor-
mations would perhaps be appropriate in a formal semantics of ASF+SDF, but in
a compiler they cause a bottleneck whose effect is hard to undo at a later stage.

Since it would require a high-level transformation phase of the above kind, the
compiler does not generate code for the Abstract Rewrite Machine (ARM) [Fokkink
et al. 1998], which was developed especially for use in rewrite system compilers. In
fact, any fixed abstract machine interface is a potential bottleneck in the compila-
tion process. The modularization advantage gained by introducing it may be offset
by a serious loss in opportunities for generating efficient code. This happens when,



Compiling Language Definitions: The ASF+SDF Compiler · 11

in the words of Franz [1994, Sec. 2], “the code generator effectively needs to recon-
struct at considerable expense, information that was more easily accessible in the
front-end, but lost in the transition to the intermediate representation.”

The factors involved in the use of an abstract machine have a qualitatively differ-
ent character. The abstract machine interface facilitates construction and verifica-
tion of the compiler, but possibly at the expense of the performance of the generated
code. See also the discussion in [van Roy 1993, Sec. 2.4] on the pros and cons of
the use of the Warren Abstract Machine (WAM) in Prolog compilers. Although
the bottleneck effect is hard to describe in quantitative terms, it has to be taken
seriously, the more so since the elegance of the abstract machine approach is not
conducive to a thorough analysis of its performance in terms of overall compiler
quality.

Of course, C also acts as an abstract machine interface, but, compared with
ARM or other abstract machines, it is much less specialized and more flexible,
acting proportionally less as a bottleneck. The compiler does not simply generate
C, however, but C extended with calls to the ATerm library, a run-time library for
term manipulation and storage (Sec. 7.1). C cannot be changed, but the ATerm
library can be adapted to prevent it from becoming an obstacle to further code
improvement, should the need arise. We note, however, that the fact that the
ATerm library interface is made available as an API to users outside the compiler
makes it harder to adapt.

Although we feel these to be useful guidelines, they have to be applied with care.
Their validity is not absolute, but depends on many details of the actual implemen-
tation under consideration. The compiler for the lazy functional language Clean
[Plasmeijer and van Eekelen 1994; Smetsers et al. 1991], for instance, generates
native code via an abstract graph rewriting machine, contravening several of our
guidelines. Nevertheless, our benchmarks (Sec. 9) show the Clean compiler and the
ASF+SDF compiler to generate code with comparable performance.

4.4 Organization of Term Storage

ASF+SDF applications may involve rewriting of large terms (> 106 nodes). Usu-
ally, this requires constructing and matching many intermediate results and the
proper organization of term storage becomes critical to the run-time performance
of the term datatype provided by the ATerm library and, as a consequence, to the
run-time performance of the generated code as a whole. Fortunately, intermediate
results created during rewriting tend to have a lot of overlap. This suggests use of
a space saving scheme where terms are created only when they do not yet exist.
The various trade-offs involved in this choice are discussed in Sec. 7.1.

5. THE µASF ABSTRACT SYNTAX REPRESENTATION

µASF is the abstract syntax representation (prefix notation only) of ASF+SDF
produced by the parsing phase (Fig. 5). As such, it is never written by the user. A
semantics by example of µASF, which helped to answer the questions that emerged
while the compiler was being written, is given in [Bergstra and van den Brand
2000].

The µASF representation of the simple type environment of Fig. 4 after textual
expansion of its imports is shown in Fig. 6. There are some points to be noted. The



12 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

module Type-environments

signature

int

real

string

nil-type

pair(_,_)

type-env(_)

lookup(_,_);

add-to(_,_,_)

rules

[l-1] lookup(Id,type-env(conc(*Pairs1,conc(pair(Id,Type),*Pairs2))))

= Type;

[l-2] default: lookup(Id,Tenv)

= nil-type;

[at-1] add-to(Id,Type1,type-env(conc(pair(Id,Type2),*Pairs1)))

= type-env(conc(pair(Id,Type1),*Pairs1));

[at-2] Id1 != Id2 &

add-to(Id1,Type1,type-env(*Pairs1)) == type-env(*Pairs2)

==>

add-to(Id1,Type1,type-env(conc(pair(Id2,Type2),*Pairs1)))

= type-env(conc(pair(Id2,Type2),*Pairs2));

[at-3] add-to(Id,Type,type-env(null))

= type-env(list(pair(Id,Type)))

Fig. 6. µASF version of the simple type environment of Fig. 4.

functions and constants used in the rules are declared in the signature section with
their argument positions (if any) indicated by underscores. Although ASF+SDF
is a many-sorted formalism, the sorts can be dispensed with after parsing and
conversion to µASF. The predefined list constructors list (conversion to single
element list), conc (associative list concatenation), and null (the empty list) need
not be declared.

Symbols starting with a capital are variables. These need not be declared in the
signature. List variables are prefixed with a “*” if they can match the empty list
or with a “+” if they cannot. The predefined symbols used in the rules are listed
in Table II. The =, ==, and != operators have higher precedence than & and ==>.

6. PREPROCESSING

Fig. 7 is a refinement of Fig. 5 showing the preprocessing steps as well as other
actions performed in later phases of the compiler. The output language of the
preprocessing phase is µASF+, which is µASF with the additional constructs shown



Compiling Language Definitions: The ASF+SDF Compiler · 13

�
�
�
�ASF+SDF

?

Parsing�
�
�
�µASF

?

Preprocessing (Sec. 6):

© Collection of rules per function
© Linearization of left-hand sides
© Introduction of assignments in conditions
© Elimination of constructor arguments from

left-hand sides

© Simplification of patterns in assignment
conditions

© Simplification of list patterns
© Combination of rules with identical

conditions

© Introduction of else cases�
�
�
�µASF+

?

Code generation (Sec. 7):

© Term matching automata
© List matching code
© Memoization�

�
�
�C + ATerm Library primitives

?

Postprocessing (Sec. 8):

© Tail recursion elimination
© Constant caching�

�
�
�C + ATerm Library primitives

Fig. 7. Layout of the ASF+SDF compiler. This is a refinement of Figure 5.



14 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

= left-to-right rewrite

== equality in positive condition

!= inequality in negative condition
& conjunction of conditions

==> implication
default: default rule flag

list conversion to single element list

conc associative list concatenation
null empty list

Table II. The predefined symbols used in µASF rewrite rules.

:= assignment

{ } nesting of rules
else alternative

list head first element of list
list tail tail of list

list last last element of list

list prefix prefix of list
not empty list list-not-empty predicate

t, f true, false

Table III. Additional predefined symbols of µASF+.

in Table III. Their purpose will become clear later on when the preprocessing
(Sec. 6) and code generation (Sec. 7) are discussed. Some of them, like nested rules
and the else-construct, are similar to constructs available in functional languages
and might very well be added to ASF+SDF, but this remains to be done.

We now discuss the main preprocessing steps in more detail. As noted in Sec. 4.3,
they have to be chosen judiciously to prevent them from becoming counterproduc-
tive. Each step has to preserve the innermost rewriting strategy2 as well as the
backtracking behavior of list matching.

6.1 Collection of Rules per Function

An ASF+SDF function definition may be distributed over several modules (Sec. 2.5).
The preprocessing phase starts by traversing the top module for which code has
to be generated and all modules directly and indirectly imported by it, collecting
the rewrite rules for each function declared in its signature, i.e., the rules whose
left-hand side has the function as its outermost symbol. Functions without any
such rules are marked as constructors in the µASF+ intermediate representation.

6.2 Linearization of Left-Hand Sides

A rewrite rule is non-linear if its left-hand side contains more than one occurrence
of the same variable. Different occurrences of the same variable have to obtain
the same value during matching, so non-linearity amounts to an implicit equality
check. Non-linearities are eliminated by adding appropriate positive conditions.

2Function arguments annotated with the delay attribute (Sec. 2.6) have to be taken into account

as well, but will be ignored in this article for the sake of readability.



Compiling Language Definitions: The ASF+SDF Compiler · 15

Innermost rewriting guarantees that these conditions do not cause spurious rewrite
steps not done by the original non-linear match.

For example, rules [l-1] and [at-1] in Fig. 6 are non-linear since variable Id
occurs twice in their left-hand side. Rule [at-1] would be transformed into

[at-1’] Id == Id1

==>

add-to(Id,Type1,type-env(conc(pair(Id1,Type2),*Pairs1)))

= type-env(conc(pair(Id,Type1),*Pairs1))

with new variable Id1 not already occurring in the original rule, and similarly for
[l-1].

Linearization simplifies the matching automaton and enables further transforma-
tions, especially the introduction of elses if there is a corresponding rule with a
negative condition as is often the case (see below). The condition is implemented
very efficiently as a pointer equality check as will be explained in Sec. 7.1.

6.3 Introduction of Assignments in Conditions

As explained in Sec. 2.2, one side of a positive condition may contain variables that
are uninstantiated at the time the condition is evaluated. A value is assigned to
them by matching the side they occur in with the other side after the latter has
been normalized. The side containing the uninstantiated variables is not normalized
before matching. To flag this case to the code generation phase, the µASF equality
is replaced by the µASF+ assignment. If necessary, the left- and right-hand side of
the original condition are interchanged.

Rule [at-2] in Fig. 6 is of this kind since its second condition contains the new
list variable *Pairs2. It would be transformed into

[at-2’] Id1 != Id2 &

type-env(*Pairs2) := add-to(Id1,Type1,type-env(*Pairs1))

==>

add-to(Id1,Type1,type-env(conc(pair(Id2,Type2),*Pairs1)))

= type-env(conc(pair(Id2,Type2),*Pairs2)).

6.4 Simplification of List Patterns

To simplify the generation of list matching code, list patterns in the left-hand side
of a rule or an assignment are brought in a standard form containing, apart from
the list constructors list and conc, only variables and constants. Other more
complicated subpatterns are replaced by new variables that are evaluated in new
assignment conditions. This transformation preserves the backtracking behavior of
list matching.

Rule [at-1’], for example, will be transformed into

[at-1’’] pair(Id1,Type2) := P &

Id == Id1

==>

add-to(Id,Type1,type-env(conc(P,*Pairs1)))

= type-env(conc(pair(Id,Type1),*Pairs1))

and similarly for [at-2’] and [l-1].
List matching may cause backtracking, but list patterns containing only a single

list variable or no list variables at all never do. In such cases, list matching can be



16 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

eliminated using the µASF+ list functions in Table III. For example, [at-1’’] is
transformed into

[at-1’’’] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P &

Id == Id1

==>

add-to(Id,Type1,type-env(*Pairs))

= type-env(conc(pair(Id,Type1),*Pairs1)),

where t is the boolean value true (Table III), and similarly for [at-2’’].

6.5 Combination of Rules with Identical Conditions

Rules [at-1’’’] and [at-2’’’] resulting from the previous step have their left-
hand side and first four conditions in common (up to renaming of variables). By
factoring out the common elements after a suitable renaming of variables, they can
be combined into the single nested rule

[at-1-2] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P

==>

add-to(Id,Type1,type-env(*Pairs)) =

{

Id == Id1

==>

type-env(conc(pair(Id,Type1),*Pairs1));

Id != Id1 &

type-env(*Pairs2) := add-to(Id,Type1,type-env(*Pairs1))

==>

type-env(conc(pair(Id1,Type2),*Pairs2))

},

where the accolades are in µASF+. The depth of nesting produced in this way may
be arbitrarily large.

6.6 Introduction of else Cases

µASF+ provides an else construct which is used to combine pairs of conditional
rewrite rules with identical left-hand sides (up to renaming of variables) and com-
plementary conditions. Introducing it in the result of the previous step yields

[at-1-2’] t := non_empty_list(*Pairs) &

P := list_head(*Pairs) &

*Pairs1 := list_tail(*Pairs) &

pair(Id1,Type2) := P

==>

add-to(Id,Type1,type-env(*Pairs)) =

{

Id == Id1



Compiling Language Definitions: The ASF+SDF Compiler · 17

term equal(t1,t2) Check if terms t1 and t2 are equal

make list(t) Create list with t as single element

conc(l1,l2) Concatenate lists l1 and l2

insert(t,l) Insert term t in front of list l

null() Create empty list
list head(l) Get head of list l

list tail(l) Get tail of list l

list last(l) Get last element of list l

list prefix(l) Get prefix of list l

not empty list(l) Check if list l is empty
is single element(l) Check if list l has a single element

slice(p1, p2) Take slice of list starting at pointer p1 and

ending at p2

check sym(t,s) Check if term t has outermost symbol s

arg i(t) Get i-th argument
make nfi(s,t0,...,ti-1) Construct normal form with outermost

symbol s and arguments t0,. . .,ti-1

Table IV. Selected ATerm library functions.

==>

type-env(conc(pair(Id,Type1),*Pairs1))

else

type-env(*Pairs2) := add-to(Id,Type1,type-env(*Pairs1))

==>

type-env(conc(pair(Id1,Type2),*Pairs2))

}.

7. CODE GENERATION

7.1 The ATerm Library

7.1.1 Introduction. The compiler generates C extended with calls to the ATerm
library, a run-time library for term manipulation and storage. In this section we
discuss the ATerm library from the perspective of the compiler. For a broader
viewpoint and further applications see [van den Brand et al. 1999; van den Brand
et al. 2000].

Selected ATerm library functions are listed in Table IV. Many of them corre-
spond directly to predefined symbols of µASF (Table II) and µASF+ (Table III).
Examples of actual code using them is given in Sec. 7.2 and Sec. 7.3.

7.1.2 Term Storage. The decision to store terms uniquely, is a major factor in
the good run-time performance of the code generated by the compiler. If a term
to be constructed during rewriting already exists, it is reused, thus guaranteeing
maximal sharing. This strategy exploits the redundancy typically present in the
terms built during rewriting. The sharing is transparent, so the compiler does not
have to take precautions during code generation.

Maximal sharing of terms can only be maintained if the term construction func-
tions make nf0, make nf1, . . . (Table IV) check whether the term to be constructed
already exists. This implies a search through all existing terms which must be very
fast in order not to impose an unacceptable penalty on term construction. Using
a hash function depending on the internal code of the function symbol and the



18 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

addresses of its arguments, make nfi can quickly search for a function application
before constructing it. Hence, apart from the space overhead caused by the initial
allocation of a hash table of sufficient size,3 the modest (but not negligible) time
overhead at term construction time is one hash table lookup.

We get two returns on this investment:

—Reduced memory usage. The amount of space gained by sharing terms is usually
much larger than the space used by the hash table. This is useful in itself, but it
also yields a substantial reduction in (real-time) execution time.

—Fast equality check. Since terms are stored uniquely, term equal, the equality
check on terms, only has to check for pointer equality rather than structural
equality. The compiler generates calls to term equal in the pattern matching and
condition evaluation code. For the same reason, this storage scheme combines
very well with memoization (Sec. 7.4).

It turns out the increased term construction time is more than compensated for by
fast equality checking and less use of space (and hence time).

7.1.3 Shared Terms vs. Destructive Updates. Shared terms cannot be modi-
fied without causing unpredictable side-effects, the more so since the ATerm li-
brary is not only used by compiler generated code but also by other components
of the ASF+SDF Meta-Environment. Destructive updates would therefore cause
unwanted side-effects throughout the system.

During rewriting by compiler generated code the immutability of terms causes no
efficiency problems since they are created in a non-destructive way as a consequence
of the innermost reduction strategy. Normal forms are constructed bottom-up
and there is no need to perform destructive updates on a term once it has been
constructed. Also, during normalization the input term itself is not modified but
the normal form is constructed separately. Modification of the input term would
result in graph rewriting instead of (innermost) term rewriting.

List operations like concatenation and slicing may become expensive, however, if
they cannot simply modify one of their arguments. List concatenation, for instance,
can only be performed using ATerm library primitives by taking the second list,
successively prepending the elements of the first list to it, and returning the new
list as a result.

The idea of subterm sharing is known in the Lisp community as hash-consing
[Allen 1978]. Its success has been limited by the existence of the Lisp functions
rplaca and rplacd, which modify a list destructively. HLisp (Hash Lisp) is a
Lisp dialect supporting hash-consing at the language level [Terashima and Kanada
1990]. It has two kinds of list structures: “monocopy” lists with maximal sharing
and “multicopy” lists without maximal sharing. Before a destructive change is
made to a monocopy list, it has to be converted to a multicopy list.

ASF+SDF does not have functions like rplaca and rplacd, and the ATerm
library only supports the equivalent of HLisp monocopy lists. Although the avail-
ability of destructive updates would make the code for some list operations more
efficient, such cases are relatively rare. This explains why the technique of subterm
sharing can be applied more successfully in ASF+SDF than in Lisp.

3Hash table overflow is not fatal, but causes allocation of a larger table followed by rehashing.



Compiling Language Definitions: The ASF+SDF Compiler · 19

7.1.4 Garbage Collection. During rewriting, a large number of intermediate re-
sults is created, most of which will not be part of the end result and have to be
reclaimed. There are basically three realistic alternatives for this. We will dis-
cuss their advantages and disadvantages in relation to the ATerm library. For an
in-depth discussion of garbage collection in general and these three alternatives in
particular, we refer the reader to Jones and Lins [1996].

Since ATerms do not contain cycles, reference counting is an obvious alternative
to consider. Two problems make it unattractive, however. First and most impor-
tant, there is no portable way in C to detect when local variables are no longer
in use without help from the programmer. Second, the memory overhead of refer-
ence counting is large. Most ATerms can be stored in a few machine words, and it
would be a waste of memory to add another word solely for the purpose of reference
counting.

The other two alternatives are mark-compact and mark-sweep garbage collec-
tion. The choice of C as an implementation language is not compatible with mark-
compact garbage collection since there is no portable and at the same time reliable
way in C to find all local variables on the stack without help from the programmer.
This means pointers to ATerms on the stack cannot be made to point to the new
location of the corresponding terms after compactification. The usual solution is
to “freeze” all objects that might be referenced from the stack, and only relocate
objects that are not. Not being able to move all terms negates many of the advan-
tages of mark-compact garbage collection such as decreased fragmentation and fast
allocation.

The best alternative turns out to be mark-sweep garbage collection. It can be
implemented efficiently in C, both in time and space, and with little or no support
from the programmer [Boehm 1993]. We implemented this garbage collector from
scratch, with many of the underlying ideas taken directly from Boehm’s garbage
collector, but tailored to the special characteristics of ATerms both to obtain better
control over the garbage collection process as well as for reasons of efficiency.

Starting with the former, ATerms are always referenced from a hash table, even
if they are no longer in use. Hence, the garbage collector should not scan this table
for references. We also need enough control to remove an ATerm from the hash
table when it is freed, otherwise the table would quickly fill up with unused term
references.

As for efficiency, experience shows that typically very few ATerms are referenced
from static variables or from generic datastructures on the heap. By providing a
mechanism (ATprotect) to enable the user of the ATerm library to register ref-
erences to ATerms that are not local (auto) variables, we are able to completely
eliminate the expensive scan of the static data area and the heap.

We also have the advantage that almost all ATerms can be stored using only a
few words of memory. This makes it convenient to base the algorithm used on only
a small number of block sizes compared to a generic garbage collector that cannot
make any assumptions about the sizes of the memory chunks that will be requested
at run-time.

7.1.5 Discussion. Our positive experience with hash-consing in ASF+SDF re-
futes the theoretical arguments against its potential usefulness in the equational



20 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

programming language Epic mentioned by Fokkink et al. [1998, p. 701]. Also,
while our experience seems to be at variance with observations made by Appel and
Gonçalves [1993] in the context of SML, where sharing resulted in only slightly bet-
ter execution speed and marginal space savings, both sharing schemes are actually
rather different. In our scheme, terms are shared immediately at the time they are
created, whereas Appel and Gonçalves delay the sharing of subterms until the next
garbage collection. This minimizes the overhead at term construction time, but
at the same time sacrifices the benefits (space savings and a fast equality test) of
sharing terms that have not yet survived a garbage collection. The different usage
patterns of terms in SML and ASF+SDF may also contribute to these seemingly
contradictory observations.

7.2 Matching

7.2.1 Term Matching. After collecting the rules making up a function definition
(Sec. 6.1), the compiler transforms their left-hand sides into a deterministic finite
automaton that controls the matching of the function call at run-time, an approach
originally due to Hoffmann and O’Donnell [1982]. In this way, each generated C
function gets its own local matching automaton.

The semantics of ASF+SDF does not prescribe a particular way to resolve am-
biguous matches, i.e., more than a single left-hand side matching the same inner-
most redex, so the compiler is free to choose a suitable disambiguation strategy. To
obtain a deterministic matching automaton it uses the specificity order defined in
[Fokkink et al. 1998, Definition 2.2.1]. Rewrite rules with more specific left-hand
sides take precedence over rules whose left-hand sides are more general. Default
rules correspond to “otherwise” cases in the automaton.

In the generated C code the matching automata are often hard to distinguish
from the conditions of conditional rules, especially since the latter may have been
generated in the preprocessing phase by the compiler itself to linearize or simplify
left-hand sides.

The matching automata generated by the compiler are not necessarily optimal.
We decided to keep the compiler simple, and take the suboptimal code for granted,
especially since it usually does not make much difference. Consider the following
two rules

f(a,b,c) = g(a)
f(X,b,d) = g(X),

where a, b, c, d are constants, and X is a variable. The compiler currently generates
the following code in this case:

ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {

if term_equal(arg0,a) {

if term_equal(arg1,b) {

if term_equal(arg2,c) {

return g(a);

}

}

}

if term_equal(arg1,b) {

if term_equal(arg2,d) {



Compiling Language Definitions: The ASF+SDF Compiler · 21

return g(arg0);

}

}

return make_nf3(fsym, arg0, arg1, arg2)

},

where fsym is a constant corresponding to the function name f. The generated
matching automaton is straightforward. It checks the arguments of each left-hand
side from left to right using the ATerm library function term equal, which does
a simple pointer equality check (Sec. 7.1.2). If neither left-hand side matches,
the appropriate normal form is constructed by ATerm library function make nf3
(Table IV).

Slightly better code could be obtained by dropping the left-to-right bias of the
generated automaton4 and checking arg1 rather than arg0 first:

ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {

if term_equal(arg1,b) {

if term_equal(arg0,a) {

if term_equal(arg2,c) {

return g(a);

}

}

else if term_equal(arg2,d) {

return g(arg0);

}

}

return make_nf3(fsym, arg0, arg1, arg2)

}.

7.2.2 List Matching. As was pointed out in Sec. 6.4, a few simple cases of list
matching that do not need backtracking are transformed to ordinary term matching
in the preprocessing phase. The other cases are translated to nested while-loops.
These handle the (limited form of) backtracking that may be caused by condition
failure (Sec. 2.3). Further optimization of the generated code has turned out to be
hard [Vinju 1999].

7.3 Evaluation of Conditions and Right-Hand Sides

The code generated for rule [at-1-2’] (Sec. 6.6) is shown in Fig. 8. As in the pre-
vious example, the various ATerm functions used in the code are listed in Table IV.
The µASF+ else of the rule corresponds to the first else in the C code.

7.4 Memoization

To obtain faster code, the compiler can be instructed to memoize explicitly given
ASF+SDF functions. The corresponding C functions get local hash tables to store
each set of arguments5 along with the corresponding result (normal form) once it
has been computed. When called with a “known” set of arguments, the result is

4Nedjah et al. [1997] discuss optimization of the matching automaton under a left-to-right con-

straint.
5Function arguments annotated with the delay attribute need not be in normal form when stored
in the memo table.



22 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

ATerm add_to(ATerm arg0, ATerm arg1, ATerm arg2)

{

ATerm tmp[6];

if (check_sym(arg2, type_env_sym)) { /* arg2 = type-env(*Pairs) */

ATerm atmp20 = arg_0(arg2);

if (not_empty_list(atmp20)) { /* t := non_empty_list(*Pairs) */

tmp[0] = list_head(atmp20); /* P := list_head(*Pairs) */

tmp[1] = list_tail(atmp20); /* *Pairs1 := list_tail(*Pairs) */

if (check_sym(tmp[0], pair_sym)) { /* pair(Id1,Type2) := P */

tmp[2] = arg_0(tmp[0]); /* Id1 */

tmp[3] = arg_1(tmp[0]); /* Type2 */

if (term_equal(arg0, tmp[2])) { /* Id == Id1 */

return make_nf1(type_env_sym,

conc(make_list(make_nf2(pair_sym, arg0, arg1)),

tmp[1]));

}

else {

tmp[4] = add_to(arg0, arg1, make_nf1(type_env_sym, tmp[1]));

/* tmp[4] = add-to(Id,Type1,type-env(*Pairs1)) */

if (check_sym(tmp[4], type_env_sym)) {

/* tmp[4] = type-env(*Pairs) */

tmp[5] = arg_0(tmp[4]);

return make_nf1(type_env_sym,

conc(make_list(make_nf2(pair_sym, tmp[2], tmp[3])),

tmp[5]));

}

}

}

}

else {

return type_env(make_list(make_nf2(pair_sym, arg0, arg1)));

}

}

return make_nf3(add_to_sym, arg0, arg1, arg2);

}

Fig. 8. Code generated for rule [at-1-2’].

obtained from the memo table rather than recomputed. See also Field and Harrison
[1988, Chapter 19].

Maximal subterm sharing (hash-consing) as used in the ATerm library (Sec. 7.1.2)
combines very well with memoization. Since memo tables tend to contain many
similar terms (function calls), memo table storage is effectively reduced by sharing.
Furthermore, the check whether a set of arguments is already in the memo table is
a simple equality check on the corresponding pointers. There is currently no hard
limit on the size of a memo table, so the issue of replacement of table entries does
not (yet) arise.



Compiling Language Definitions: The ASF+SDF Compiler · 23

Unfortunately, since its effects may be hard to predict, memoization is something
of a “fine art”, not unlike adding strictness annotations to lazy functional programs.
Memoization may easily become counterproductive if the memoized functions are
not called with the same arguments sufficiently often, and finding the right subset
of functions to memoize may require considerable experimentation and insight.

8. POSTPROCESSING

The quality of the generated C code is further improved by tail recursion elimination
and constant caching. Not all C compilers are capable of tail recursion elimination,
and no compiler known to us can do it if it has to produce code with symbolic
debugging information, so the ASF+SDF compiler takes care of this itself. In prin-
ciple, this optimization could also be done by the preprocessor if a while-construct
were added to µASF+.

Constant caching is a restricted form of memoization. Unlike the latter, it is
performed fully automatically on ground terms occurring in right-hand sides of rules
or in conditions. These may be evaluated more than once during the evaluation
of a term, but since their normal form is the same each time (no side-effects),
they are recognized and transformed into constants. The first time a constant is
encountered during evaluation, the associated ground term is normalized and the
result is assigned to the constant. In this way, the constant acts as a cache for the
normal form.

There are good reasons to prefer this hybrid compile-time/run-time approach to
a compile-time only approach:

—The compiler would have to normalize the ground terms in question. Although
a suitable µASF interpreter that can be called by the compiler exists, such nor-
malizations potentially require the full definition to be available.

—The resulting normal forms may be quite big, causing an enormous increase in
code size.

9. BENCHMARKING

Table V lists some of the semantic features of the languages used in the benchmark-
ing of the ASF+SDF compiler. Modularization aspects are not included. As can be
seen in the second column, not all languages are of the same type. Like ASF+SDF,
Elan and Maude are first-order rewriting languages, whereas Clean, Haskell, Opal,
and SML are general purpose higher-order functional languages. At least to some
extent, this difference in orientation and purpose complicates selection of suitable
benchmark programs and interpretation of the results obtained.

Keeping this in mind, we devised benchmark programs with a highly synthetic
character to evaluate specific implementation aspects, such as the effect of subterm
sharing, graph rewriting, strict vs. lazy evaluation, and the like. They do not
provide an overall comparison of the various systems. In selecting benchmarks
suitable for ASF+SDF, we inevitably cover only a small part of the feature space
of Clean, Haskell, Opal, and SML. The “Pseudoknot” benchmark [Hartel et al.
1996] would have provided broader coverage, but its emphasis on numerical (floating
point) computation makes it unsuitable for ASF+SDF, which is aimed at definition
of languages and language-based tool generation.



24 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

Type of language and

Language semantic characteristics Compiled to

ASF+SDF Language definition formalism C
• First-order

• Strict
• Conditional (both pos and neg)

• Default rules

• A-rewriting (lists)

Clean Functional language Native code via
[Plasmeijer and van Eekelen 1994] • Higher-order ABC abstract

[Smetsers et al. 1991] • Lazy graph rewriting

• Strictness annotations machine
• Polymorphic typing

Elan Rewriting logic language C

[Kirchner and Moreau 2001] • First-order
• Strategy specification

• AC-rewriting

Haskell Functional language C

[Peyton Jones et al. 1993] • Higher-order
[Peyton Jones 1996] • Lazy

• Strictness annotations

• Polymorphic typing

Maude Rewriting logic language Interpreted
[Clavel et al. 1999] • First-order Core Maude

• Reflection
• AC-rewriting

Opal Algebraic programming language C
[Didrich et al. 1994] • Higher-order

• Strict
• Parametric typing

SML Functional language Native code

[Appel 1992] • Higher-order

• Strict
• Polymorphic typing

Table V. Languages used in the benchmarking of the ASF+SDF compiler.

Sec. 9.1 gives the results of our synthetic benchmarks for the languages listed
in Table V. These figures are supplemented with results for some large ASF+SDF
definitions in actual use, both with and without maximal subterm sharing in Sec.
9.2. Using profile information, the effects of maximal sharing are discussed in more
detail in Sec. 9.3.

9.1 Three Synthetic Benchmarks

All three benchmarks deal with the symbolic manipulation of natural number
expressions, where the natural numbers involved are in successor representation
(unary representation).

The benchmarks are based on the normalization of expressions 2n mod 17, with
17 ≤ n ≤ 23. They are small programs that give rise to computations on very
big terms. The fact that there are much more efficient ways to compute these
expressions is of no concern here, except that this makes it easy to validate the
results. The sources are available in [?].



Compiling Language Definitions: The ASF+SDF Compiler · 25

Fig. 9. Execution times for the evalsym benchmark.

Measurements for ASF+SDF were obtained both with and without maximal sub-
term sharing. For this purpose, the possibility to switch subterm sharing off, which
is not a standard compiler option, was added. Some systems failed to compute
results for the full range 17 ≤ n ≤ 23. In those cases, the corresponding graph ends
prematurely. Measurements were performed on a Mobile Pentium II (266 Mhz)
with 128 MB of memory running Linux.

9.1.1 The evalsym Benchmark. The first benchmark is called evalsym and uses
an algorithm that is CPU intensive, but does not use a lot of memory. The results
are shown in Fig. 9. The differences between ASF+SDF, Elan, Haskell, Opal, and
SML are relatively small, but Clean is about 1.7 times faster. Maude is about 5
times slower than the other systems, except for ASF+SDF without sharing. This
is caused by the fact that Maude is interpreted (after translation to core Maude).
The reason for including Maude in our benchmarks is the fact that, compared with
other interpreters, the Maude interpreter is extremely fast.

9.1.2 The evalexp Benchmark. The second benchmark is called evalexp. As
shown in Fig. 10, implementations that do not use some form of subterm sharing
cannot cope with the excessive memory requirements of this benchmark. Opal,
which is a strict language, probably achieves its good performance by the combined



26 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

Fig. 10. Memory usage for the evalexp benchmark.

Fig. 11. Execution times for the evalexp benchmark.



Compiling Language Definitions: The ASF+SDF Compiler · 27

use of common subexpression elimination, peephole optimization, and so-called lazy
compile-time reference counting garbage collection, ASF+SDF and Elan, which are
also strict, both use maximal subterm sharing (Elan also uses the ATerm library),
and Clean (lazy) uses lazy graph rewriting. Laziness is not enough, however, as is
shown by the figures for Haskell.

Execution times are plotted in Fig. 11. Only Clean (lazy) is faster than ASF+SDF,
actually about twice as fast.

9.1.3 The evaltree Benchmark. The third benchmark is called evaltree and
is based on an algorithm that uses a lot of memory both with lazy and strict
implementations, even those based on graph rewriting. Fig. 12 shows that only
Elan and ASF+SDF scale up for n > 20. They can keep memory requirements at
an acceptable level due to their use of maximal subterm sharing. The execution
times are shown in Fig. 13. Not surprisingly, the extreme memory usage of the
other systems leads to a degradation in execution times. In particular, Clean (lazy)
is much slower than ASF+SDF this time.

Recall that the sharing scheme used by the ASF+SDF implementation is trans-
parent to the rewriting process. In particular, it does not lead to graph rewriting,
where multiple occurrences of a redex can be replaced in one stroke, but subterm
sharing is usually not maximal. This explains why in some cases graph rewriting
is faster than term rewriting with maximal subterm sharing while it is slower in
others.

9.2 Some Large ASF+SDF Definitions

Table VI gives some statistics for several large ASF+SDF definitions whose perfor-
mance is shown in Table VII. The ASF+SDF compiler was written in ASF+SDF
itself, so the top entry in the fourth column of Table VI gives the self-compilation
time.

We briefly describe the other applications. The Java servlet generator produces
Java servlet code for a textual representation of a UML-like specification. The
latter models data base applications, e.g., of banks and insurance companies. The
generated Java servlet code implements a GUI to access the data bases via web
pages.

The typesetter generates a textual representation from a box expression describ-
ing the formatting of a document in an abstract way [de Jonge 2001].

The SDF normalizer translates an SDF specification to an intermediate repre-
sentation in so-called KernelSDF. This involves removal of its modular structure
and simplification of complex grammar constructions. A detailed description of the
operations performed during normalization can be found in [Visser 1997].

Finally, the Pico interpreter is an evaluator for the toy language Pico. The various
Pico language constructions are evaluated given some value environment.

The C compilation times in the last column of Table VI were obtained using the
gcc compiler with maximal optimizations on a 500 Mhz Pentium III PC running
Linux.

Table VII shows the effects of maximal subterm sharing on the performance of
the compiled versions. The figure in the top entry of the leftmost column is again
the self-compilation time of the ASF+SDF compiler, but in this case only the time



28 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

Fig. 12. Memory usage for the evaltree benchmark.

Fig. 13. Execution times for the evaltree benchmark.



Compiling Language Definitions: The ASF+SDF Compiler · 29

Definition ASF+SDF ASF+SDF Generated ASF+SDF to C C
(rules) (lines) C code compilation compilation

(lines) time (sec) time (sec)

ASF+SDF compiler 1322 8373 45605 67 171

Java servlet generator 1446 12578 37193 174 179

Typesetter 607 2685 12231 12 36

SDF normalizer 941 3932 16192 20 45

Pico interpreter 200 448 2462 2 8

Table VI. Size and compilation time for some large ASF+SDF definitions.

Application Time (sec) Memory (MB)
with without with without

sharing sharing sharing sharing

ASF+SDF compiler 45 155 27 134

Java servlet generator 12 50 10 34

Typesetter 10 49 5 5

SDF normalizer 8 28 8 11

Pico interpreter 20 80 4 4

Table VII. Performance of some large ASF+SDF definitions with and without maximal subterm

sharing.

spent on rewriting was measured, whereas the corresponding figure in Table VI
includes pre- and postprocessing phases.

9.3 The Effects of Maximal Subterm Sharing

In this section we present some further figures to shed more light on the effects of
maximal subterm sharing. Figure VIII shows the results of profiling the typesetter
application used in the previous section. We profiled one run with maximal subterm
sharing and the standard pointer equality check, one run with sharing but with a
“deep” equality check mimicking the equality check when subterm sharing is not
necessarily maximal (as would be the case for graph rewriting), and a third run
without sharing.

Figure VIII lists the functions that contribute most to total run time with the rel-
ative and absolute time spent by them, and the number of times they were called.
In the standard configuration with sharing enabled, the ATerm library function
make nf1 (Table IV) takes the largest percentage of the total run time, followed at
a considerable distance by lf 28 and other functions. Hence, the compiled speci-
fication spends most of its time building function applications with one argument.
To be more precise, it spends most of its time checking whether the term already
exists. If a new term has to be created, the ATerm library function alloc term
has to allocate space for it, but alloc term is called very rarely as can be seen
by comparing the number of calls to make nf1 and alloc term. This is a clear
indication of the success of sharing.

In the second section, the use of a “deep” equality causes the term equal function



30 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

Function Rel. time (%) Abs. time (sec) No. of calls

Sharing and make nf1 33.56 5.81 36 033 817

pointer equality lf 28 17.91 3.10 1 671 423
make list 10.80 1.87 10 103 016

get prefix 5.72 0.99 10 273 671
lf 2 4.27 0.74 8 372 608

...

alloc term 0.12 0.02 110 047
...

Sharing and make nf1 23.93 5.64 36 033 817

deep equality term equal 23.42 5.52 69 603 654

lf 28 14.76 3.48 1 671 423
make list 8.23 1.94 10 103 016

insert 3.82 0.90 3 084 966
...

No sharing sweep phase 28.59 14.69 1 222

and structural mark term 18.20 9.35 2 124 199

equality term equal 11.35 5.83 72 134 451
alloc term 9.58 4.92 50 074 596

lf 28 7.34 3.77 1 671 423
mark phase 4.73 2.43 1 222

free term 3.17 1.63 49 962 171

make nf1 3.06 1.57 36 033 817
...

Table VIII. Profiling information for the typesetter application. The lf xx functions correspond
to ASF+SDF functions in the typesetter specification, the other ones are term manipulation
functions from the ATerm library.

to pop up at the second position in the profile, taking almost as much time as
make nf1. This causes an increase in total run time and a corresponding drop in the
percentages of the other functions. This difference indicates that the replacement
of a deep equality check with a pointer comparison leads to a gain of about 24% in
execution time in this example.

The last section shows why performance degrades so drastically when sharing is
disabled. The garbage collector has to perform extra work to reclaim space occu-
pied by short-lived terms. This explains the rise of the sweep phase, mark term,
mark phase, and free term functions. The make nf1 function has actually become
more efficient, because it does not have to check for existence of terms. It can sim-
ply call alloc term each time and fill in the term to be created. Consequently, the
make nf1 function has dropped to the eighth position with only 3% of the time.

Note that the last profile also suggests that the ATerm garbage collector takes
a large amount of time, and that this is the reason ASF+SDF performs so badly
when sharing is turned off. The only reason this is not noticeable when sharing is
turned on, is because in that case relatively few new terms are actually created and
garbage collection plays a minor role.



Compiling Language Definitions: The ASF+SDF Compiler · 31

10. CONCLUSIONS AND FURTHER WORK

10.1 Conclusions

The ASF+SDF compiler generates high quality C code in a relatively straight-
forward way. The main factors contributing to its performance are the decisions
to generate C code directly and to use a run-time term storage scheme based on
maximal subterm sharing. The specific benefits of using maximal subterm sharing
are:

—Reduced memory usage. This saves time as well. Very large terms can be pro-
cessed efficiently.

—Fast equality check. Structural equality checks can be replaced by much more
efficient pointer equality checks.

—Space efficient memoization. Since memo tables tend to contain many similar
terms, less memo table storage is needed.

We feel our results show maximal subterm sharing to be a promising implementation
technique for other term processing applications as well.

10.2 Further Work

Some possibilities for further improvement and extension are:

—Incorporation of additional preprocessing steps such as argument reordering dur-
ing matching, evaluation of sufficiently simple conditions during matching in a
dataflow fashion, i.e., as soon as the required values become available, and re-
ordering of independent conditions.

—Optimization of repeated applications of a rule like rule [s-1] in Sec. 7.2.2, or of
successive applications of different rules by analyzing their left- and right-hand
sides. Similarly, elimination of the redex search phase in some cases (“matchless
rewriting”).

—Incorporation of other rewrite strategy options besides default rules and the
delay attribute that are currently supported.

—Combination of maximal subterm sharing with graph rewriting. As shown by
our benchmarks, in some cases graph rewriting is faster than term rewriting with
maximal subterm sharing, while it is slower in others, so it may be worthwhile
to investigate their combination.

—Use of an incremental garbage collector.

ACKNOWLEDGMENTS

We would like to thank Hayco de Jong for his contribution to the implementation
of the ATerm library, Jurgen Vinju for looking into the efficiency of list matching
and maintaining the current version of the ASF+SDF compiler, Wan Fokkink for
his useful remarks, and Pierre-Etienne Moreau for discussions on the compilation of
term rewriting systems in general. The idea for the benchmark programs in Sec. 9.1
is due to Jan Bergstra.



32 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

REFERENCES

Allen, J. R. 1978. Anatomy of Lisp. McGraw-Hill.

Appel, A. W. 1992. Compiling with Continuations. Cambridge University Press.

Appel, A. W. and Gonçalves, M. J. R. 1993. Hash-consing garbage collection. Tech. Rep. CS-
TR-412-93, Princeton University.

Apt, K. R., Brunekreef, J. J., Partington, V., and Schaerf, A. 1998. Alma-0: An impera-
tive language that supports declarative programming. ACM Transactions on Programming

Languages and Systems 20, 1014–1066.

Benanav, D., Kapur, D., and Narendran, P. 1985. Complexity of matching problems. In Rewriting
Techniques and Applications (RTA ’85), J.-P. Jouannaud, Ed. Lecture Notes in Computer

Science, vol. 202. Springer-Verlag, 417–429.

Bergstra, J. A. and van den Brand, M. G. J. 2000. Syntax and semantics of a high-level
intermediate representation of ASF+SDF. Tech. Rep. SEN-R0030, CWI, Amsterdam.

Bergstra, J. A., Heering, J., and Klint, P., Eds. 1989. Algebraic Specification. ACM

Press/Addison-Wesley.

Bergstra, J. A. and Klint, P. 1998. The discrete time ToolBus—A software coordination archi-
tecture. Science of Computer Programming 31, 205–229.

Boehm, H. 1993. Space efficient conservative garbage collection. ACM SIGPLAN Notices 28, 6

(June), 197–206. Proceedings of the 1991 Conference on Programming Language Design and
Implementation (PLDI ’91).

van den Brand, M. G. J., de Jong, H. A., Klint, P., and Olivier, P. A. 2000. Efficient annotated
terms. Software—Practice and Experience 30, 259–291.

van den Brand, M. G. J., Eijkelkamp, S. M., Geluk, D. K. A., Meijer, Osborne, H. R.,
and Polling, M. J. F. 1995. Program transformations using ASF+SDF. In Proceedings of

ASF+SDF ’95. Technical Report P9504. Programming Research Group, University of Amster-

dam, 29–52.

van den Brand, M. G. J., Klint, P., and Olivier, P. A. 1999. Compilation and memory man-

agement for ASF+SDF. In Compiler Construction (CC ’99), S. Jähnichen, Ed. Lecture Notes

in Computer Science, vol. 1575. Springer-Verlag, 198–213.

van den Brand, M. G. J., Sellink, M., and Verhoef, C. 2000. Generation of components for soft-

ware renovation factories from context-free grammars. Science of Computer Programming 36,

209–266.

van den Brand, M. G. J., van Deursen, A., Heering, J., de Jong, H. A., de Jonge, M., Kuipers,

T., Klint, P., Moonen, L., Olivier, P. A., Scheerder, J., Vinju, J. J., Visser, E., and

Visser, J. 2001. The ASF+SDF Meta-Environment: A component-based language develop-
ment environment. In Compiler Construction (CC 2001), R. Wilhelm, Ed. Lecture Notes in

Computer Science, vol. 2027. Springer-Verlag, 365–370.

Brunekreef, J. J. 1996. A transformation tool for pure Prolog programs. In Logic Program
Synthesis and Transformation (LOPSTR ’96), J. P. Gallagher, Ed. Lecture Notes in Computer

Science, vol. 1207. Springer-Verlag, 130–145.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., and Quesada,

J. 1999. Maude: Specification and programming in rewriting logic — Maude system documen-

tation. Tech. rep., SRI International. March.

Courcelle, B. and Franchi-Zannettacci, P. 1982. Attribute grammars and recursive program
schemes I and II. Theoretical Computer Science 17, 163–191 and 235–257.

Dershowitz, N. and Jouannaud, J.-P. 1990. Rewrite systems. In Handbook of Theoretical Com-

puter Science, volume B, J. van Leeuwen, Ed. Elsevier Science Publishers, 243–320.

van Deursen, A. 1994. Executable language definitions: Case studies and origin tracking techniques.
Ph.D. thesis, University of Amsterdam.

van Deursen, A., Heering, J., and Klint, P., Eds. 1996. Language Prototyping. AMAST Series

in Computing, vol. 5. World Scientific.

van Deursen, A. and Klint, P. 1998. Little languages: Little maintenance? Journal of Software
Maintenance 10, 75–92.



Compiling Language Definitions: The ASF+SDF Compiler · 33

van Deursen, A., Klint, P., and Verhoef, C. 1999. Research issues in the renovation of legacy
systems. In Fundamental Approaches to Software Engineering (FASE ’99), J.-P. Finance, Ed.

Lecture Notes in Computer Science, vol. 1577. Springer-Verlag, 1–21.

van Deursen, A. and Moonen, L. 2000. Exploring legacy systems using types. In Proceedings
of the Seventh Working Conference on Reverse Engineering. IEEE Computer Society Press,

32–41.

Didrich, K., Fett, A., Gerke, C., Grieskamp, W., and Pepper, P. 1994. Opal: Design and

implementation of an algebraic programming language. In International Conference on Pro-
gramming Languages and System Architectures, J. Gutknecht, Ed. Lecture Notes in Computer
Science, vol. 782. Springer-Verlag, 228–244.

Dik, C. H. S. 1989. A fast implementation of the Algebraic Specification Formalism. M.S. thesis,
University of Amsterdam, Programming Research Group.

Dinesh, T. B., Haveraaen, M., and Heering, J. 2001. An algebraic programming style for nu-

merical software and its optimization. Scientific Programming 8, 4 (September/October). To
appear; CoRR E-print Server xxx.lanl.gov/abs/cs.SE/9903002.

Field, A. J. and Harrison, P. G. 1988. Functional Programming. Addison-Wesley.

Field, J. 1992. A simple rewriting semantics for realistic imperative programs and its application to

program analysis. In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation. San Francisco, 98–107. Published as Yale University Technical
Report YALEU/DCS/RR–909.

Fokkink, W. J., Kamperman, J. F. Th., and Walters, H. R. 1998. Within ARM’s reach: Compi-
lation of left-linear rewrite systems via minimal rewrite systems. ACM Trans. Program. Lang.
Syst. 20, 679–706.

Franz, M. 1994. Code-generation on-the-fly: A key to portable software. Ph.D. thesis, ETH Zurich.
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th10497.ps.

Groote, J. F., Koorn, J. W. C., and van Vlijmen, S. F. M. 1995. The safety guaranteeing
system at station Hoorn-Kersenboogaard. In Proceedings of the Tenth Annual Conference on

Computer Assurance (COMPASS ’95). IEEE, 57–68.

Hartel, P. H. et al. 1996. Benchmarking implementations of functional languages with ‘Pseudo-
knot’, a float-intensive benchmark. J. Funct. Program. 6, 621–655.

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. 1989. The syntax definition for-
malism SDF — Reference manual. SIGPLAN Notices 24, 11, 43–75. Most recent version:

ftp.cwi.nl/pub/gipe/reports/SDFManual.ps.Z.

Hendriks, P. R. H. 1991. Implementation of modular algebraic specifications. Ph.D. thesis, Uni-
versity of Amsterdam.

Hillebrand, J. A. 1996. Experiments in specification re-engineering. Ph.D. thesis, University of
Amsterdam.

Hoffmann, C. M. and O’Donnell, M. J. 1982. Pattern matching in trees. J. ACM 29, 68–95.

Jones, R. and Lins, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley.

de Jonge, M. 2001. A pretty-printer for every occassion. Tech. Rep. SEN-R0115, CWI, Amsterdam.

Kamperman, J. F. Th. 1996. Compilation of term rewriting systems. Ph.D. thesis, University of

Amsterdam.

Kaplan, S. 1987. A compiler for conditional term rewriting systems. In Rewriting Techniques
and Applications (RTA ’87), P. Lescanne, Ed. Lecture Notes in Computer Science, vol. 256.

Springer-Verlag, 25–41.

Kirchner, H. and Moreau, P.-E. 2001. Promoting rewriting to a programming language: A

compiler for non-deterministic rewrite programs in associative-commutative theories. J. Funct.

Program. 11, 2, 207–251.

Klint, P. 1993. A meta-environment for generating programming environments. ACM Transactions

on Software Engineering and Methodology 2, 176–201.

Klop, J. W. 1992. Term rewriting systems. In Handbook of Logic in Computer Science, volume 2,

S. Abramsky, D. Gabbay, and T. S. E. Maibaum, Eds. Oxford University Press, 1–116.



34 · M. G. J. van den Brand, J. Heering, P. Klint, P. A. Olivier

van der Meulen, E. A. 1996. Incremental typechecking. In Language Prototyping: An Algebraic
Specification Approach, A. van Deursen, J. Heering, and P. Klint, Eds. AMAST Series in Com-

puting, vol. 5. World Scientific, 199–248.

Moonen, L. 1997. A generic architecture for data flow analysis to support reverse engineering. In
Proceedings of the Second International Workshop on the Theory and Practice of Algebraic
Specifications (ASF+SDF ’97), M. P. A. Sellink, Ed. Electronic Workshops in Computing.

Springer/British Computer Society.

Muchnick, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.

Nedjah, N., Walter, C. D., and Eldridge, S. E. 1997. Optimal left-to-right pattern-matching

automata. In Algebraic and Logic Programming (ALP ’97/HOA ’97), M. Hanus, J. Heering,

and K. Meinke, Eds. Lecture Notes in Computer Science, vol. 1298. Springer-Verlag, 273–286.

Olivier, P. A. 1999. Benchmarking of functional/algebraic language implementations.

http://adam.wins.uva.nl/∼olivierp/benchmark/.

Peyton Jones, S. L. 1996. Compiling Haskell by program transformation: A report from the
trenches. In Programming Languages and Systems (ESOP ’96), H. R. Nielson, Ed. Lecture

Notes in Computer Science, vol. 1058. Springer-Verlag, 18–44.

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W. D., and Wadler, P. L. 1993.

The Glasgow Haskell compiler: A technical overview. In Proceedings of Joint Framework for
Information Technology Technical Conference (JFIT), Keele. DTI/SERC, 249–257.

Peyton Jones, S. L., Nordin, T., and Oliva, D. 1998. C--: A portable assembly language. In
Implementation of Functional Languages (IFL ’97), C. Clack, K. Hammond, and T. Davie,
Eds. Lecture Notes in Computer Science, vol. 1467. Springer-Verlag, 1–19.

Plasmeijer, M. J. and van Eekelen, M. C. J. D. 1994. Concurrent CLEAN—version 1.0—

Language refence manual. Tech. rep., University of Nijmegen, Department of Computer Science.
Draft.

Rutten, E. P. B. M. and Thiébaux, S. 1992. Semantics of Manifold: Specification in ASF+SDF and

extension. Tech. Rep. CS-R9269, Centrum voor Wiskunde en Informatica (CWI), Amsterdam.

Sellink, M. P. A. and Verhoef, C. 2000. Development, assessment, and reengineering of language
descriptions. In Fouth European Conference on Software Maintenance and Reengineering,

J. Ebert and C. Verhoef, Eds. IEEE Computer Society. adam.wins.uva.nl/∼x/cale/cale.html.

Smetsers, S., Nöcker, E., van Groningen, J., and Plasmeijer, M. J. 1991. Generating efficient
code for lazy functional languages. In Functional Programming and Computer Architecture

(FPCA ’91), J. Hughes, Ed. Lecture Notes in Computer Science, vol. 524. Springer-Verlag,
592–617.

Terashima, M. and Kanada, Y. 1990. HLisp—Its concept, implementation and applications. Jour-

nal of Information Processing 13, 3, 265–275.

Tip, F. and Dinesh, T. B. 2001. A slicing-based approach for locating type errors. ACM Transac-
tions on Software Engineering and Methodology 10, 1 (January), 5–55.

van Roy, P. 1993. The wonder years of sequential Prolog implementation. J. Logic Program. 19/20,

385–441.

Vinju, J. J. 1999. Optimizations of list matching in the ASF+SDF compiler. M.S. thesis, University
of Amsterdam, Programming Research Group. www.cwi.nl/∼jurgenv/.

Visser, E. 1997. Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam.

Available at www.cs.uu.nl/∼visser/publications/ftp/Vis97.thesis.ps.gz.


