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Abstract. TooLBUS allows to connect tools via a software bus. Pro-
gramming is done using the scripting language TSCRIPT, which is based
on the process algebra ACP. In previous work we presented a method for
analyzing a TSCRIPT by translating it to the process algebraic language
mCRL2, and then applying model checking to verify certain behavioral
properties. We have implemented a prototype based on this approach.
As a case study, we have applied it on a standard example from the
TooLBuUs distribution, distributed auction, and detected a number of
behavioral irregularities in this auction TSCRIPT.

1 Introduction

TooLBUSs [1,2] provides a simple, service-oriented view on organizing software
systems by separating the coordination of software components from the ac-
tual computation that they perform. It organizes a system along the lines of a
programmable software bus. Programming is done using the scripting language
TSCRIPT that is based on the process algebra ACP (Algebra of Communicating
Processes) [3] and abstract data types. The tools connected to the ToOOLBUS
can be written in any language and can run on different machines.

A TSCRIPT can be tested, as any other software system, to observe whether
it exhibits the desired behavior. An alternative approach for analyzing commu-
nication protocols is model checking, which constitutes an automated check of
whether some behavioral property is satisfied. This can be, roughly, a safety
property, which must be satisfied throughout any run of the system, or a live-
ness property, which should eventually be satisfied in any run of the system. To



perform model checking, the communication protocol must be specified in some
formal language, and the behavioral properties in some temporal logic. Strong
points of model checking are that it attempts to perform an exhaustive explo-
ration of the state space of a system, and that it can often be fully automated.

As one of the main aims of TSCRIPT, Bergstra and Klint [2] mention that
it should have “a formal basis and can be formally analyzed”. The formal basis
is offered by the process algebra ACP, but ways to formally analyze TSCRIPTs
were lacking until recently [4]. There a number of obstructions for an automatic
translation from TSCRIPT to ACP were classified, and solutions were proposed.
Firstly, each TSCRIPT process has a built-in queue to store incoming messages,
which is left implicit in the process description; in mCRL2, all of these queues
are specified explicitly as a separate process. Secondly, TSCRIPT supports dy-
namic process creation; in mCRL2, we chose to start with a fixed number of
TooLBUS processes, and let a master process divide connecting tools over these
processes. Thirdly, we expressed the iterative star operator of TSCRIPT as a re-
cursive equation in mCRL2. And fourthly, we developed some guidelines on how
to deal with so-called result variables in TSCRIPT.

The work in [4] was initiated by the developers of the TOOLBUS, who are keen
to integrate model checking into the design process. Based on [4], we have now
implemented a prototype translation from TSCRIPT into the formal modeling
language mCRL2 [5]. This language is also based on the process algebra ACP,
extended with equational abstract data types [6]. As a result, TSCRIPT can then
be model checked using the mCRL2 or CADP toolset [7].

We report on an exploratory case study, to investigate in how far the auto-
mated translation from TSCRIPT to mCRL2 can serve as a way to formally verify
TscripTs. The case study concerns a distributed auction, in which the auction
master and the bidders are cooperating from different computers. This auction
TSCRIPT has been used extensively for teaching purposes at various universities
and in numerous demonstrations of the TooLBUS. We translated the TSCRIPT
of the auction system to mCRL2, and analyzed the resulting model with sev-
eral different approaches. We performed on-the-fly model checking with CADP.
On-the-fly means that only the part of the state space needed for checking a
property is generated; this is essential here, because the state space of the trans-
lated auction system is infinite. Moreover, we enriched the model with behavior
from the environment, containing an error action that is triggered if a certain
series of events occurs. To perform symbolic model checking, we translated the
model and the property that we wanted to check into a Parametrized Boolean
Equation System [8], and analyzed this symbolic object with the mCRL2 toolset.

This analysis revealed two deadlocks and a race condition in the auction
system. First of all, a deadlock occurs when the master process is busy with a
sale, and a new bidder connects to the system, but disconnects very quickly. In
this case, the master wishes to synchronize with the bidder process, and will wait
indefinitely for this synchronization. A second deadlock occurs since processes
that subscribe to certain types of notes in the ToolBus, may never unsubscribe.
This can happen when a process terminates after completing its task. Although



not considered to be a real error, it does show up in our analysis. A third and
more serious error is that a bidder can, for a very short time slot, bid for the last
item that has already been sold, while the master interprets this as a bid for the
next item. Finally, we discuss a possible Denial of Service attack. We proposed
fixes for the problems we found, and verified that with these fixes the system
behaves correctly.

This paper is set up as follows. Section 2 gives a brief overview (taken from
[4]) of the TOOLBUS and TSCRIPT, and presents the auction example. Section 3
gives a brief overview (taken from [4]) of mCRL2 and CADP. Section 4 discusses
the translation scheme from TSCRIPT to mCRL2 that originates from [4]. Section
5 presents an analysis of the auction example using this translation scheme.
Finally, Section 6 contains conclusions.

Related Work Our work has its origins in the formal verification of interface
languages [9,10]. The aim is to get a separation of concerns, in which the (in
our case TSCRIPT) interfaces that connect software components can be analyzed
separately from the components themselves. Our work is closest in spirit to
Pipa [11], an interface specification language for an aspect-oriented extension
of Java called AspectJ [12]. In [11] it is discussed how one could transform
an AspectJ program together with its Pipa specification into a Java program
and JML specification, in order to apply existing JML-based tools for verifying
AspectJ programs, see also [13].

Many publications on model checking and other verification experiments in
process algebra present one of the following two setups. Either verification of
a (hand-made) model is presented, without an implementation in mind, or a
model is reverse engineered from the source code of a working system, and then
analyzed. Here we mention the works that focus on using process algebra for
both the (forward) development and the analysis of a system.

ToolBus is not the only system where process algebra is used as a scripting
language to describe coordination of software components. Many of these put
focus on the architectural design as well as on obtaining the working executable
system by either code generation or interpretation of process algebra. Some of
these make use of the verification possibilities process algebra-based tools like
FDR2, CADP, xCRL, mCRL2 and CWB offer.

In [14] a distributed Java system based on CSP is proposed. In [15] a method-
ology for control system implementation is proposed based on the ideas of [14].
In [16] Analytical Software Design (ASD) method based on Sequence-Based
Specifications (SBS) [17] is presented. As demonstrated in [18], the method al-
lows for verified software development where a CSP model is generated from
SBSs and verified in FDR2. Yet another CSP-based approach is CSP++ [19],
which is a C++ library for executing CSP models.

The most recent version of CAESAR from the CADP toolset provides a func-
tionality called EXEC/CAESAR for C code generation. This C code interfaces
with the real world, and can be embedded in applications. This allows rapid
prototyping directly from the LOTOS specification. The implementation of the
process algebraic formalism x [20], for modeling and analyzing the dynamics and



control of, for instance, production plants, is also centered around the ToOLBUS.
In [21] a method of software integration based on x is presented. It allows to
generate source code and test cases from y models.

As related work in the context of the ToOLBUS, Diertens [22,23] uses the
TooLBUS to implement a platform for simulation and animation of process
algebra specifications in the language PSF. In this approach, TSCRIPT is auto-
matically generated from a PSF specification.

2 ToolBus and Tscript

The behavior of the TOOLBUS consists of the parallel composition of a vari-
able number of processes. In addition to these processes, a variable number of
external tools written in different languages may be connected to the TOOL-
Bus via network sockets or OS level pipes. All interactions between processes
and connected tools are controlled by T'SCRIPTs, which are based on predefined
communication primitives. The classical procedure interface (a named procedure
with typed arguments and a typed result) is thus replaced by a more general
behavior description.

A TSCRIPT process is built from the standard process algebraic constructs:
atomic actions (including the deadlock delta and the internal action tau), al-
ternative composition +, sequential composition - and parallel composition ||.
The binary star operation p * ¢q represents zero or more repetitions of p, followed
by ¢g. Atomic actions are parametrized with data parameters (see below), and
can be provided with a relative or absolute time stamp. A process definition is
of the form Pname(x1,...,x,) is P, with P a TSCRIPT process expression and
x1,...,Ty, a list of data parameters. Process instances may be created dynami-
cally using the create statement.

The following communication primitives are available. A process can send
a message (using snd-msg), which should be received, synchronously, by an-
other process (using rec-msg). Furthermore, a process can send a note (using
snd-note), which is broadcast to other, interested, processes. A process may
subscribe and unsubscribe to certain notes. The receiving processes read notes
asynchronously (using rec-note) at a low priority. Processes only receive notes
to which they have subscribed. Communication between TOOLBUS and tools is
based on handshaking communication. A process may send messages in several
formats to a tool (snd-eval, snd-do, snd—ack—event), and can receive values
(rec-value) and events (rec-event) from a tool.

The only values that can be exchanged between the TOOLBUS and connected
tools are terms of some sort (basic data types booleans, integers, strings and
lists). In these terms, two types of variables are distinguished: value variables
whose value is used in expression, and result variables (written with a question
mark) who get a value assigned to them as a result of an action or a process
call. Manipulation of data is completely transparent, i.e., data can be received
from and sent to tools, but inside TOOLBUS there are hardly any operations on
them. ATERMS [24] are used to represent data terms; ATERMS support maximal



subterm sharing, and use a very concise, binary format. In general, an adapter is
needed for each connected tool, to adapt it to the common data representation
and message protocols imposed by TooLBUS.

The TooLBUS was introduced in the mid-1990s for the implementation of the
ASF+SDF Meta-Environment [25, 26] but has been used for the implementation
of various other systems as well. The source code and binaries of the ToOLBUS
and related documentation can be found at www.meta-environment.org.

2.1 The Auction Example

Consider a completely distributed auction, in which the auction master and the
bidders are cooperating via a workstation in their own office. Challenges are how
to synchronize bids, how to inform bidders about higher bids, and how to decide
when the bidding is over. In addition, bidders may connect and disconnect from
the auction whenever they want. This example is described in full detail in [2].
Since that time it has become a standard application of the TOOLBUS, most of
all it has been used extensively in teaching and demonstrations. Its architecture
is shown in Fig. 1, where TOOLBUS processes are represented by ellipses.

The auction is initiated by the process Auction, which executes the master
tool (the user interface used by the auction master), and then handles connec-
tions and disconnections of new bidders, the introduction of new items for sale
at the auction, and the actual bidding process. A delay is used to determine the
end of the bidding activity per item. A Bidder process is created for each new
bidder tool that connects to the auction; it describes the possible behavior of
the bidder. The auxiliary process ConnectBidder, which handles the connection
of a new bidder to the auction, consists of the following steps:

- Receive a connection request from some bidder. This may occur when some-
one executes a bidder tool outside the TooOLBUS (possibly on another com-
puter). As part of its initialization, the bidder tool will attempt to make a
connection with the ToOOLBUS system running the auction T'SCRIPT.

- Create an instance of the process Bidder that defines the behavior of this
particular bidder.

- Ask the bidder for its name, and send that name to the auction master.

The auxiliary process OneSale handles all steps needed for the sale of one item:

- Receive an event from the master tool announcing a new item for sale.

- Broadcast this event to all connected bidders, and perform one of the fol-
lowing four steps as long as the item is not sold:

e Receive a new bid from one of the bidders. If the bid is too low, reject
it and inform the bidder. If the bid is acceptable, inform the bidder and
notify all bidders that a higher bid has been received.

e Ask for a final bid if no bids were received during the last 10 seconds.

e Declare the item sold if no new bids arrive within 10 seconds after asking
for a final bid.

e Connect a new bidder.

The TSCRIPT of this auction system takes care of the issues mentioned earlier,
i.e., synchronizing bids, informing bidders, and completing a sale.
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Fig. 1. Architecture of the auction application.

3 mCRL2 and CADP

An mCRL2 [5] specification is built from the standard process algebraic con-
structs: atomic actions (including the deadlock ¢ and the internal action ),
alternative composition +, sequential composition - and parallel composition ||.
One can define synchronous communication of actions. The following two oper-
ators combine data with processes. The sum operator ), ,, p(d) describes the
process that can execute the process p(d) for values d of sort D. The conditional
operator - — _o _ describes the if-then-else. The process b — z oy (where b is a
boolean) has the behavior of z if b is true and the behavior of y otherwise.

Data elements are terms of some sort. Next to equational abstract data
types, mCRL2 also supports built-in functional data types. Atomic actions are
parametrized with data parameters, and can be provided with an absolute time
stamp. A process definition is of the form Pname(zy,...,x,) = P, with P an
mCRL2 process and x1,...,x, a list of parameters.

The mCRL2 toolset (www.mcrl2.org) supports formal reasoning about sys-
tems specified in mCRL2. It is based on term rewriting techniques and on formal
transformation of process algebraic and data terms. mCRL2 specifications are
first transformed to a linear form [5, Section 5], in a condition-action-effect style.
The resulting specification can be simulated interactively or automatically, there
are a number of symbolic optimization tools, and the corresponding Labeled
Transition System (LTS) can be generated. This LTS can, in turn, be minimized
modulo a range of behavioral semantics, and model checked with the mCRL2
toolset or the CADP toolset [7].

4 From Tscript to mCRL2

Both TscrIPT and mCRL2 are based on the process algebra ACP [3]. In spite
of this common origin, the languages have some important differences. In [4], we



proposed how these differences can be bridged. For instance, the binary star op-
eration in TSCRIPT can be encoded by means of recursive equations in mCRL2.
And dynamic process creation in TSCRIPT can be modeled in mCRL2 by stat-
ically fixing the maximal number of process instances that can be active simul-
taneously; these process instances are present from the start, and the master
process divides connecting tools over these processes. And the notion of discrete
time in TSCRIPT can be modeled using a tick action synchronization (cf. [27—
29]). Here we go over two of the main differences, and show how they relate to
the auction example.

Asynchronous Communication According to the semantics of the TOOLBUS,
each process created by TSCRIPT has a queue for incoming notes. A rec-note
will inspect the note queue of the current process, and if the queue contains a note
of a given form, it will remove the note and assign values to variables appearing
in its argument list; these can be used later on in the process expression in which
the rec-note occurs.

mCRL2 contains no built-in primitives for asynchronous communication.
Therefore, in mCRL2, note queues are handled by a separate AsyncComm pro-
cess. It also takes care of subscriptions/unsubscriptions and lets any process send
any note at any time. Any process can inspect its queue for incoming notes by
synchronously communicating with AsyncComm.

AsyncComm(subscribers:L(Pid), queues:L(L(Msg))) =
> p:pia F-subscribe(p) - AsyncComm(subscribers < p, queues)

+ >, pig F-unsubscribe(p)-

AsyncComm(rem _list_elem(subscribers, p), set_elem(queues, p,[]))

+ D ote: Msg -Snd-note(note)-

AsyncComm(subscribers, distr_note(queues, subscribers, note))

+ Zp:Pid Zntype:NoteType

(p < #queues A has_note_of _type(queues.p, ntype)) —
s_rec_note(p, get_first_of _type(queues.p, ntype))-
AsyncComm (subscribers, set_elem(queues, p,
rem_first_of _type(queues.p, ntype)))

The process AsyncComm is parametrized by the list of subscribers (for the
sake of simplicity we assume that processes can subscribe/unsubscribe to all
notes simultaneously), and by the list of note queues containing the pending
notes for the subscribed processes. The four summands of the process definition
reflect the four actions that AsyncComm react upon.

The first two summands handle the subscription and unsubscription. A pro-
cess willing to subscribe performs s_subscribe(id) action that synchronizes to the
r_subscribe(p) action of the first summand. This can only happen for the value of
p that is equal to id, and as a result of this action the id is added to subscribers.
In a similar way an id of the unsubscribing process is removed from subscribers
and its queue is emptied.

The third summand says that a sent note is distributed into the queues of all
subscribers. The fourth summand deals with reception of a note by a process p.



It can only happen if its queue has a note of the appropriate type. In this case
the first note of this type is taken from the queue, and is delivered to process p.

4.1 Structure of the Translator

The actual translation program is implemented as a sequence of transformation
steps. The first step performs unfoldings of T'SCRIPTS and some other syntac-
tic sugar removals as a TSCRIPT to TSCRIPT transformation implemented in
ASF [26].

The simplified TSCRIPT is then compiled by a part of the TOOLBUS system
to an internal representation, containing a finite automata representation for
each process in the TSCRIPT. Each state n of such a representation is translated
to an mCRL2 process of the form

Pu(0:V) = Xy e1(0) = au(F(0),79) - Py (377, 7))
+

+ Zm k(7)) — ak(ﬁ(ﬁ), R) - pn(k) (g—g(?’ )

where k is the number of outgoing transitions from state n and for any transition
i such that 1 < ¢ < k, n(i) is the next state of process P. The vector v:
represents the local variables of process P in state n. The vectors m represent
the input variables (if any) that are being assigned by performing the action
a; of transition 7. These variables are used to determine the values of the local
variables in the next state using the vector of functions g7 (7, 77).

As the final step, the standard parts, like the AsyncComm process, are added
to the generated mCRL2 model. As a result the generated mCRL2 model per-
forms the actions of the T'SCRIPT. By performing deadlock or reachability anal-
ysis one can obtain a trace to an undesirable state of the mCRL2 model. The
actions in this trace map directly to the actions of the TSCRIPT.This gives a pos-
sibility to locate and correct the problem in the TSCRIPT. The modified TSCRIPT
can be translated to mCRL2 again and the analysis can be repeated. In this it-
erative way one can get a TSCRIPT where all formulated behavioral properties
are satisfied. Executing this TSCRIPT and performing some tests of the working
system can reveal additional problems that can also be formulated as behavioral
properties and checked with the mCRL2 level.

5 Analysis of the Auction System

We translated the TSCRIPT of the auction system to mCRL2 using the prototype
translator. A small example is given in Figure 2.

The structure of the resulting mCRL2 model is presented in Figure 3. Here
each TOOLBUS process is represented by an mCRL2 process, and an extra pro-
cess AsyncComm is added to model the asynchronous communication of TOOL-
Bus.



Tscript fragment

tool bidder is {}
%% Declaration of the tool type "bidder"

process ConnectBidder is
let Bidder : bidder in
rec-connect (Bidder?) . snd-msg(new(Bidder))
endlet
%% Suppose the auction runs on location ($HOST, $PORT). Then a tool of
%% type "bidder" can be launched on any client by entering the command:
%% wish-adapter $HOST $PORT -TB_TOOL_NAME bidder ...

becomes mCRL2 fragment

sort bidder; Msg = struct new(bidder) |any-higher-bidl... ;
%% Tool types are represented in mCRL2 as sorts. "Msg" is a sort
%% added to the mCRL2 specification to represent a Tscript message.

act rec-connect : bidder; snd-msg : Msg;
%% Some mCRL2 declarations of Tscript built-in actions.

proc ConnectBidder() = sum(Bidder:bidder,
rec-connect (Bidder) . ConnectBidder1(Bidder));
%% "sum(Bidder:bidder" introduces a local variable "Bidder" of sort "bidder".
%% "rec-connect" communicates with "snd-connect" defined in an environment.

ConnectBidder1(Bidder : bidder) = snd-msg(new(Bidder))
%% Here "Bidder" is initialised with the value received by "rec-connect".

Fig. 2. Fragment of a translation from TSCRIPT into mCRL2

The mCRL2 translation of the auction TSCRIPT has been analyzed! for the
presence of deadlocks and some other behavioral properties. This revealed two
deadlocks and a race condition. Moreover, we encountered a possible Denial of
Service attack. We proposed fixes for the detected problems and verified that
with these fixes the system behaves correctly.

Finding 1: two deadlocks due to a fast disconnect One deadlock occurs when
a newly connected bidder disconnects immediatly instead of sending its name.
In this case the newly created Bidder process handles the disconnect, and the
Master process keeps waiting for the bidder’s name forever. This problem can be
resolved by postponing the creation of the Bidder process till after the reception
of the name of the new bidder.

Another problem occurs when the Master process is busy with OneSale, and
anew bidder connects to the system. After executing ConnectBidder (Mid,Bid?),
the Master process attempts to do snd-msg(Bid,new-item(Descr,HighestBid)).
This has to synchronize with the rec-msg of the connected new bidder. In case
that bidder has already disconnected by that time, the synchronization is impos-

! The source code of the auction script and the full mCRL2 model can be found
at www.win.tue.nl/"yusenko/sources/Auction/sources.zip
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Fig. 3. Auction TSCRIPT in mCRL2.

sible and the Master process and the whole system deadlocks. Many solutions
are possible for this problem. The one we chose consists of two parts.

1. The Bidder process has to perform a rec-msg before disconnecting. This
patch alone, however, does not solve the problem, since it introduces another
one. In case the bidder tool connects not during an ongoing sale, the rec-msg
would wait for synchronization forever. That is why we need another patch
as well.

2. When a new bidder connects at a moment that there is no sale, the Master
process does snd-msg(Bid,no-new-item). The newly-created Bidder pro-
cess waits for either new-item or a no-new-item message before proceeding
further, or receiving a disconnect from its tool.

After bringing this fix into the TSCRIPT, we could regenerate the mCRL2 model
and verify that this deadlock has been resolved.

Finding 2: a missing unsubscribe The Bidder process contains no unsubscribe
commands, also not before successful termination. This situation can be seen
as a violation of the stylistic constraint that every subscribe command has a
corresponding unsubscribe command. We found this situation by generating the
underlying LTS of our mCRL2 model with the 1ps21ts tool. The tool reported a
deadlock situation: due to the way we modeled the process creation/termination
mechanism in mCRL2, the missing unsubscribe command lead to a deadlock.
To be more precise, in case a new Bidder tool connects to the system after
the missing unsubscribe command, the corresponding Bidder process cannot
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Fig. 4. Normal external behavior

perform subscribe any longer. We resolved this problem by adding the missing
unsubscribe.

Finding 3: buying the next item while bidding for the previous one A third and
more serious error that we detected is that a bidder can, for a very short time
slot, bid for the last item that has already been sold, while the master interprets
this as a bid for the next item.

We demonstrate this race condition with a small example. Suppose that the
auction master sells a table and a bicycle, both for the price of E1. Bidder Bl
intends to bid E2 (a larger amount than E1) for the table. In the next paragraphs
we explain the desired behavior of the auction, and possible erroneous behavior
that may occur in this situation.

The desired scenario for the aforementioned example is as follows. After a
new item (the table) is presented at the auction for the price of E1, the bidder
bids E2. The bid is accepted, and the bidder is informed about this fact. Then
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Fig. 5. Erroneous external behavior

every bidder receives a note that the current price is raised to E2. Bidder Bl
does not bid anymore, receives a note any-higher-bid, and receives a note that
the item is sold for the price of E2. From this bidder Bl can derive that he has

bought the table. This sequence of events is depicted in Fig. 4.

However, using model checking, we found the following erroneous scenario.
After the table is presented at the auction for the price of E1, the item is sold
for this price. During the selling of that item, three broadcasts are performed
to the bidders: new-item, any-higher-bid, and sold. Bidder Bl bids E2 under
the illusion that he bids on the table, because the note sold has not arrived yet.
The bid gets accepted, but the auction master thinks that this is a bid for the

next item, being the bicycle. This sequence of events is depicted in Fig. 5.

To find this issue, we used the following property:
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If a Bidder tool bids m and this bid gets accepted (accept (accepted)
message is received), then the following sold(n) message it receives
should be such that m <n.

We used two methods to check this property. One way is in formulating the
property as a p-calculus [30] formula and performing on-the-fly model checking
with the mCRL2 toolset or with the CADP tool evaluator [7]. Another way is
in adding an observer process in parallel to the system. The process will observe
the relevant actions in the way the environment (Bidder tool) does it. In case
the property violation is detected, the observer performs the s_error action.
The presence of this action and a shortest trace to it can be detected with the
mCRL2 tool 1ps21ts during the LTS generation. Concretely, the relevant part
of the observer process look as follows:

ToolBidder_1(tid: TId, accepted: Bool, my_last_bid:Int) =
D msg: Msg T-aCk-event(tid, msg)-
(accepted A is_bid1(msg)) — ToolBidder_1(tid, false, bid1 _0(msg))
© ToolBidder_1(tid, accepted, my _last _bid)
+ D msg: Msg T-do(tid, msg)-
(is_sold0(msg) —
((my_last_bid > sold0_0(msg)) — s_error-
ToolBidder_1(tid, accepted, 0)
© ToolBidder_1(tid, accepted, 0)
)
o is_acceptO(msg) —
((accept0_-0(msg) = trm_accepted) —
ToolBidder_1(tid, true, my_last_bid)
o ToolBidder_1(tid, false, my_last_bid)

)

o ToolBidder_1(tid, accepted, my_last _bid)

)
+o

Here the first summand reacts to the r_ack_event action and, in case the
last bid has been accepted, sets the value of the my_last_bid parameter to the
amount in the last bid. The second summand reacts to r_do. Here two messages
of the TSCRIPT are important: sold and accept. The latter one is used to set
the accepted parameter to represent the fact that our last bid has been accepted.
The former one leads to the check if our property my_last_bid > sold0_0(msg)
holds. In case it does not, the s_error action is executed.

We believe that this problem can be resolved in many different ways. How-
ever, not much can be done without increasing the level of detail in the com-
munication protocol between the auction TSCRIPT and the tools. We propose
a solution to this problem without changing this protocol. We extend the bid
message that is synchronously communicated from the Bidder process to the
Auction process with the description of the item for which the bid is valid. In
case the Auction process receives a bid for a wrong item, it rejects this bid.
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Additionally we had to add an extra condition to the case when a new bidder
connects during an ongoing sale. Namely, we make it impossible to connect in this
way if the item has already been sold. In this case the connection is performed
after this sale round is finished.

To verify the fact that this solution actually works we had to decorate the
accept and sold messages that are sent to the Bidder tool with the description
and the amount information. An important assumption for our solution to work
is that the consecutive sale items must have different descriptions. We could
verify that the resulting TSCRIPT does not have the erroneous behavior.

An important observation related to this problem has been proposed by an
anonymous reviewer. The root of the problem lays in the fact that a bid comes
into a race condition with the sold message. In case a bid comes late and there
is no next item to be sold, the bidder will have to wait for the rejection of its bid
forever. To avoid this problem the reviewer proposed to allow a choice between
snd-msg(bid(...,...)) and rec-note(sold(...)). We implemented this fix
and checked that the rejection is always received by the bidder tool.

Finding 4: infinite queues Although using on-the-fly model checking we could
detect some important issues, we could not analyze the entire behavior of the
auction TSCRIPT, due to the fact that its LTS is infinite. We could handle some
sources of infinity, like infinite domains for data types, by bounding these do-
mains.

Another source of infinity has to do with the asynchronous communication
and queues for notes. For example, one process may keep sending notes while
another process is not willing to receive them. Such a situation can happen in
case one of the bidders keeps bidding very actively. The following part of the
Bidder process illustrates such a phenomenon.

( rec-event (Bid, bid(Amount?)).

+ rec-note(update-bid (Amount?))

snd-do (Bid, update-bid (Amount))
+ rec-note (any-higher-bid) . snd-do(Bid, any-higher-bid)
+ rec-disconnect (Bid).delta ) *

In case a Bidder tool is active in sending bids, the first alternative is enabled
and can be chosen. As a result, the parallel OneSale process adds an update-bid
note to the message queue of our Bidder process. For any fixed-size note queue,
an overflow can be reached by executing a sufficiently large number of first
alternatives without ever taking the second one.

This can be seen as a problem that has to be solved by the scheduler of the
TooLBuUs. Another way to look at this problem is to see it as a possibility of a
Denial of Service attack, leading to an overflow.

Some of such queue size problems can be tackled with the help of timing. We
could impose that no time can progress as long as a process can receive a note
(so-called maximal progress). However, the aforementioned problem can happen
without reception of any notes and, therefore, without any progress of time at
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all. To solve this issue we chose to limit the number of bids per time unit that the
Bidder process is willing to accept from its tool. By combining the two timing
restrictions into the mCRL2 model, we could get to a finite LTS.

6 Conclusions and Future Work

Our general aim is to have a process algebra-based software development envi-
ronment where both formal verification and production of an executable system
is possible. We implemented a prototype translation from TSCRIPT to mCRL2.
This translation makes it possible to verify TSCRIPT in an automated fashion,
and to explore behavioral properties of executable software systems that have
been built with the TooLBuUS.

We automatically translated a standard TSCRIPT application, a distributed
auction, to mCRL2, and analyzed it using on-the-fly and symbolic model check-
ing techniques. As a result, four flaws were detected in the original T'SCRIPT
description of this auction system. We could fix all the issues, and verified the
correctness of the fixed TSCRIPT by automatically translating it to mCRL2. We
could also execute and test the fixed model to ensure it still works.

In the future we aim at applying the presented techniques to analyze a large
existing T'SCRIPT with the help of model checking. An example of such a system
is the the ASF4+SDF Meta-Environment [25,26]. It is also of our interest to
develop a new TSCRIPT from scratch in a way that formal verification with
mCRL2 contributes to every stage of the development process.
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