
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

A Language Development Environment for Eclipse

M.G.J. van den Brand, H.A. de Jong, P. Klint,
A.T. Kooiker

REPORT SEN-R0307 AUGUST 31, 2003

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A Language Development Environment for Eclipse

ABSTRACT
The Asf+Sdf Meta-Environment provides a collection of tools for the generation of programming
environments. We show how Eclipse can be extended with these generic language tools. By
integrating the GUI and text editor of the Meta-Environment with Eclipse using ToolBus
technology, we demonstrate the integration of third party, non-Java, software in Eclipse. By
doing so, we create an experimentation framework for further programming language research.
We describe our experiences and sketch future work.

Keywords and Phrases: generic language technology;component interconnection;GUI;plugin;Asf+Sdf Meta-
Environment;ToolBus

A Language Development Environment for Eclipse

M.G.J. van den Brand ∗ †

www.cwi.nl/�markvdb

H.A. de Jong ∗

www.cwi.nl/�jong

P. Klint ∗ ‡

www.cwi.nl/�paulk

A.T. Kooiker ∗

e-mail: Taeke.Kooiker@cwi.nl

Abstract

The ASF+SDF Meta-Environment provides a col-
lection of tools for the generation of programming
environments. We show how Eclipse can be ex-
tended with these generic language tools. By in-
tegrating the GUI and text editor of the Meta-
Environment with Eclipse using TOOLBUS tech-
nology, we demonstrate the integration of third
party, non-Java, software in Eclipse. By doing so,
we create an experimentation framework for fur-
ther programming language research. We describe
our experiences and sketch future work.

1 Introduction

Eclipse [7] is an open source framework for cre-
ating programming environments. Currently ver-
sions exist for C / C++1, Java and Cobol2. New
tools and languages can be added by writing Java
applications that perform parsing, type checking
and the like for a new language. Eclipse provides
a rich set of tools oriented toward user-interface
construction and Java compilation. The level of
automation for building environments for new lan-
guages is, however, low.

The ASF+SDF Meta-Environment [3, 6] is a
programming environments generator: given a lan-
guage definition consisting of a syntax definition
(grammar) and tool descriptions (using rewrite
rules) a language specific environment is gener-
ated. A language definition typically includes such

∗CWI, Dept. of Software Engineering, Kruislaan 413, NL-
1098 SJ Amsterdam, The Netherlands

†Hogeschool van Amsterdam, Instituut Informatica en Elec-
totechniek, Weesperzijde 190, NL-1097 DZ Amsterdam, The
Netherlands

‡University of Amsterdam, Programming Research Group,
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

1Available at www.eclipse.org/cdt
2Available at www.eclipse.org/cobol

features as pretty printing, type checking, analysis,
transformation and execution of programs in the
target language. The ASF+SDF Meta-Environment
is used to create tools for domain-specific lan-
guages and for the analysis and transformation of
software systems.

As the Eclipse and Meta-Environment technolo-
gies are to a large extent complementary, it is
worthwhile to investigate how they can be inte-
grated.

1.1 Eclipse Plugin Technology

The Eclipse Platform is designed for building inte-
grated development environments (IDEs) [7]. An
IDE can be built by providing the Eclipse Platform
with a plugin contributing to an extension point of
some other plugin. In fact the Eclipse Platform is a
number of plugins itself. It consists of a small ker-
nel which starts all necessary plugins to run a basic
instance of the Eclipse Platform. All other func-
tionality is located in plugins which extend these
basic plugins. In this way Eclipse provides tool
providers with a mechanism that leads to seam-
lessly integrated tools.

Eclipse plugins are written in Java and consist
of a manifest file and Java classes in a JAR archive.
The manifest file declares the extension points of
the plugin and which other plugins it extends. On
start-up the Eclipse Platform discovers which plu-
gins are available and it generates a plugin registry.
The plugin itself is loaded when it actually needs to
be run.

1.2 Meta-Environment Technology

The ASF+SDF formalism [1, 4] is used for the def-
inition of syntactic as well as semantic aspects of
a language. It can be used for the definition of
a range of languages (for programming, writing
specifications, querying databases, text processing,

1

Figure 1: The Meta-Environment GUI.

or other applications). In addition it can be used for
the formal specification of a wide variety of prob-
lems. ASF+SDF can be characterized as a modular,
rewriting-based, specification formalism in which
syntax and semantics are completely integrated.

The ASF+SDF Meta-Environment is both a pro-
gramming environment for ASF+SDF specifica-
tions and a programming environment generator
which uses an ASF+SDF specification for some
(programming) language L to generate a stand-
alone environment for L. The design of the
Meta-Environment is based on openness, reuse,
and extensibility. The Meta-Environment offers
syntax-directed editing of ASF+SDF specifications
as well as compilation of ASF+SDF specifica-
tions into dedicated interactive stand-alone envi-
ronments containing various tools such as a parser,
unparser, syntax-directed editor, debugger, and in-
terpreter or compiler.

Figure 1 shows the user interface developed us-
ing JFC/Swing. This figure shows the modular
structure of the specification. Each node in the
graph can be clicked and allows the invocation of a
syntax, equation, or term editor.

The various types of editors are decorated with

Text EditorGUI

UnparserParserParser
Generator

Structure
Editor

I/O tool

Compiler

Interpreter

Term
Store

ToolBus

Eclipse

Figure 2: Architecture of the Meta-Environment
using the ToolBus.

different pull-down menus. All editors have func-
tionality to invoke the parser, view the parse tree of
the focus as graph, and to move the focus. Term ed-
itors may have language specific pull-down menus.

In order to achieve a strict separation be-
tween coordination and computation we use the
TOOLBUS coordination architecture [2], a pro-
grammable software bus based on process algebra.
Coordination is expressed by a formal description
of the cooperation protocol between components
while computation is expressed in components that
may be written in any language. We thus obtain
interoperability of heterogeneous components in
a (possibly) distributed system. The components
are not allowed to communicate directly with each
other, but only via the TOOLBUS. This leads to a
rigorous separation of concerns.

2 Architectural considerations

The Meta-Environment consists of about 20 coop-
erating components, including a parsetable genera-
tor, a parser and unparser, a term store (for caching
results), and an interpreter and compiler. Also, a
graphical user interface and a number of text ed-
itors (such as GNU Emacs3 and Vim4) as well
as a structure editor are connected to the Meta-
Environment. These allow user interaction with the
system, and in particular allow users to edit syntax,
equations and terms. Figure 2 is a (simplified) view
showing these components connected to the TOOL-
BUS.

Current architecture: using JFC/Swing and ex-
ternal editors. Figure 2 shows the current imple-
mentation with separate components for the GUI
and the various text editors. Currently, the GUI is

3Available at www.gnu.org/software/emacs
4Available at www.vim.org

2

implemented in JFC/Swing. Each time a text edit-
ing session is requested by the user, a new instance
of one of the supported system editors is executed
to take care of the editing session. These text ed-
itors need only implement a minimal interface to
be usable by the Meta-Environment. Some form of
operating system level communication channel is
needed (e.g. socket, pipe). The editor then needs
to be able to receive and execute commands to add
a menu to the menu-bar, set the cursor at a specific
location, and highlight or select a region of text.

Target architecture: using Eclipse for both GUI
and editors. Eclipse exports many GUI features
that can be used to write plugins and also has
a built-in editor which implements the required
Meta-Environment text editor interface. From
an Eclipse point of view, it is interesting to be
able to reuse the generic language technology of-
fered by the Meta-Environment. From the Meta-
Environment point of view, it would be interesting
to see if Eclipse could be used to implement the
GUI and the text editors (the dotted rectangle in
Figure 2). From a TOOLBUS point of view, it is
interesting to see how a single tool (Eclipse in this
case) can serve as the implementation of multiple
components (both GUI and text editor).

3 Implementation

In Section 3.1 we describe some of the implementa-
tion details of the current Meta-Environment GUI.

In the target architecture we replace both the
JFC/Swing GUI and the external text editors by
Eclipse as described in Section 3.2.

3.1 JFC/Swing-based implementation

The TOOLBUS principle to separate functionality
leads to a generic implementation of the user inter-
face. To meet the Meta-Environment requirements
the user interface only has to implement some ba-
sic functionality. The JFC/Swing implementation
extends the Meta-Environment with a GUI that
supports several components: a tree panel, graph
panel, and some informational panels. The tree and
graph panels provide the user with a representation
of opened and imported modules in a textual and
graphical way, respectively. Status messages and
information about selected modules are displayed
in dedicated informational panels. Each of these
GUI elements is dumb: it is capable of presenting a

graphical representation of its data and it communi-
cates events (e.g. a mouse click) to the TOOLBUS,
but it abstracts from the details of these events. The
actual implementation of an event (e.g. perform-
ing a refactoring operation on a selected module) is
handled elsewhere in the Meta-Environment.

The provided basic framework can be extended
dynamically with user interface elements by means
of TOOLBUS messages sent to the user interface.
These messages contain the type of user interface
element to be added (e.g. menu, tool-bar button),
the caption to be displayed, and the action that has
to be performed when selecting this user interface
element. This setup ensures that the user inter-
face does not know about any functionality imple-
mented in the Meta-Environment.

Text editing functionality is provided by means
of external text editors as described before. In gen-
eral the choice of text editor is free as long as it is
capable of adding menus and methods for display-
ing a focus. After connection with the TOOLBUS is
established it will receive its specific menus, menu
items, and corresponding actions.

3.2 Eclipse-based implementation

In order to use Eclipse for the implementation of
the Meta-Environment GUI and text editor, we
adapt the Meta-Environment architecture as shown
in Figure 3. In a TOOLBUS setting external tools
(such as a GUI and text editor) are rigorously sep-
arated components which never directly commu-
nicate with each other, but always do so via the
TOOLBUS. In order to connect Eclipse (a single
operating system level component) to the Meta-
Environment, we use a second TOOLBUS which
acts as a proxy between the Meta-Environment on
one side, and the actual implementations of the
GUI and text editor in Eclipse on the other. This
second TOOLBUS, together with two instances of
a transparent stub (one for the GUI and one for the
text editor) takes care of any (de-)marshalling and
forwarding from the Meta-Environment to Eclipse
and back.

The Eclipse Meta plugin is implemented as an
Eclipse perspective, containing extensions of an ex-
plorer (to display the modules), several views (e.g.
to display status messages) and instances of an ex-
tension of the built-in editor. The perspective it-
self takes care of setting up a connection to the
TOOLBUS before instantiating the other Eclipse
view parts which receive their operational details
from the TOOLBUS. Figure 4 shows the Eclipse

3

UnparserParserParser
Generator

Structure
Editor

I/O tool

Compiler

Interpreter

Term
Store

Eclipse

GUI Text Editor

Proxy ToolBus

Meta ToolBus

Figure 3: Eclipse as implementation of the GUI
and text editors.

Figure 4: The Meta-Environment in Eclipse.

user interface of the Meta-Environment.

4 Lessons learned

We have identified several opportunities for
improvement in both the JFC/Swing Meta-
Environment (Section 4.1) as well as in Eclipse
(Section 4.2).

4.1 Meta-Environment issues

Complex editor management. Before we
started integrating the Meta-Environment and
Eclipse, all text editor management was handled
in several TOOLBUS processes. For each editing
session, the TOOLBUS invoked a new instance of
the system editor. This conflicted with Eclipse,
because Eclipse already handles multiple editor
instances itself. Since the original setup was
quite complex, we decided to encapsulate this
complexity in a separate tool. The JFC/Swing

implementation now uses this tool, the Eclipse
setting handles the editor management inside
Eclipse itself.

4.2 Eclipse issues

Most of the Meta-Environment functionality
present in the JFC/Swing version was implemented
equally well in the Eclipse version, but we did en-
counter some difficulties which we would hope to
see eliminated in a future version of Eclipse.

No support for File Open dialog. An important
difference between the current Meta-Environment
and Eclipse is exposed when we consider how
to open new modules. The current JFC/Swing
implementation delegates open module events to
the TOOLBUS, where other processes subsequently
ask for the instantiation in the GUI of a “File Open”
dialog to ask the user for the name of the module
to be opened. Because Eclipse does not have such
a dialog, we had to implement the opening of mod-
ules quite differently. The user first selects a file in
the module explorer, and then hits the open module
button. This causes the order of user interaction in
Eclipse (select file, hit button) to be the opposite of
the original order in JFC/Swing (hit button, select
file).

No access to files outside workspace. Eclipse
only allows access to files residing in the
workspace. Files outside the workspace first need
to be imported into the workspace, before they can
be used. However, when the Meta-Environment
uses a module, it also needs the transitive closure of
its imported modules which are not necessarily lo-
cated in the workspace (they could be anywhere on
the file system). As a consequence, a user cannot
edit any module that is not part of the workspace.

Plugin configurability too rigid. The plugin
manifest file is not usually edited by plugin users.
One of the things that is hard coded in this man-
ifest, is the link between file extension and corre-
sponding editor to be used in Eclipse when such
a file needs to be edited. Because the Meta-
Environment has no fixed language, and file exten-
sions are often associated with a particular, new,
language, an explicit link between each developed
language and the Meta-Environment plugin editor
has to be inserted in the manifest manually.

4

Workbench state management too Eclipse cen-
tric Eclipse keeps track of the state of the work-
bench. There is no flexibility when an external tool
also needs to maintain a portion of this state. This
interferes with the way the Meta-Environment op-
erates. Upon Eclipse startup, views from a previous
session are still present in the workbench, but they
do not have the state from the previous session.
Most notably, any connection to the TOOLBUS is
lost, and in fact, the rest of the Meta-Environment
components may not even have been started yet. A
Perspective.close()method (not yet avail-
able, as other plugin writers have noted in the
Eclipse newsgroups) would already have been use-
ful, as it would have allowed us to simply close any
view that is managed by the Meta-Environment.

5 Conclusions

The main contributions of this work are as follows:
i) A proof-of-concept connection between Eclipse
and the Meta-Environment: this extends Eclipse
with language definition tools and extends the
Meta-Environment with richer user-interface func-
tionality.
ii) The TOOLBUS provides a general mechanism
for connecting non-Java tools to Eclipse.
iii) We have pinpointed several issues of possible
improvement in both systems.

The presented Eclipse Meta Plugin consists
of a user interface and text editing capabilities
as already provided by the JFC/Swing Meta-
Environment. Through the Eclipse user interface,
all generators of the Meta-Environment are avail-
able.

We plan to work on extending each system by
integrating functionality from the other one. On
the one hand, Eclipse provides functionality for
on-line help, documentation and error reporting.
All these can be borrowed by the ASF+SDF Meta-
Environment.

On the other hand, we are currently integrating
the Meta-Environment’s graph viewer into Eclipse.
Other useful functionality is APIGEN [5] which
generates application program interfaces in C and
Java from a grammar definition. This might make
Eclipse further open for non-Java tools.

The integration experiment we described
in this paper shows that the combination
Eclipse/ASF+SDF Meta-Environment creates
a versatile experimentation platform for program-
ming language research.

6 About the Authors

Mark van den Brand is senior researcher at
Centrum voor Wiskunde en Informatica (CWI,
the Dutch national research center for computer
science and mathematics) and lecturer at the
Hogeschool voor Amsterdam. Hayco de Jong is
a PhD researcher at CWI. Paul Klint is head of the
software engineering department at CWI and pro-
fessor in computer science at the University of Am-
sterdam. Taeke Kooiker is a graduate student at the
University of Amsterdam.

References

[1] J.A. Bergstra, J. Heering, and P. Klint, editors.
Algebraic Specification. ACM Press/Addison-
Wesley, 1989.

[2] J.A. Bergstra and P. Klint. The discrete time
ToolBus – a software coordination architec-
ture. Science of Computer Programming, 31(2-
3):205–229, 1998.

[3] M.G.J. van den Brand, A. van Deursen,
J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier,
J. Scheerder, J.J. Vinju, E. Visser, and
J. Visser. The ASF+SDF Meta-Environment:
a Component-Based Language Development
Environment. In R. Wilhelm, editor, Compiler
Construction (CC ’01), volume 2027 of Lec-
ture Notes in Computer Science, pages 365–
370. Springer-Verlag, 2001.

[4] A. van Deursen, J. Heering, and P. Klint, ed-
itors. Language Prototyping: An Algebraic
Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific, 1996.

[5] H.A. de Jong and P.A Olivier. Generation
of abstract programming interfaces from syn-
tax definitions. Technical Report SEN-R0212,
St. Centrum voor Wiskunde en Informatica
(CWI), August 2002. To appear in Journal of
Logic and Algebraic Programming.

[6] P. Klint. A meta-environment for generating
programming environments. ACM Transac-
tions on Software Engineering and Methodol-
ogy, 2:176–201, 1993.

[7] Eclipse platform technical overview. Object
Technology International, Inc., 2003.

5

