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Abstract The TOOLBUS is a software coordination architecture for the integra-
tion of components written in different languages running on different computers.
It has been used since 1994 in a variety of projects, most notably in the complete
renovation of the ASF+SDF Meta-Environment. In this paper we summarize the
experience that has been gained in these projects and sketch preliminary ideas
how the TOOLBUS can be further improved. Topics to be discussed include the
structuring of message exchanges, crash recovery in distributed applications, and
call-by-value versus call-by-reference.

1 Generic Language Technology

Our primary interest is generic language technology that aims at the rapid construction
of tools for a wide variety of programming and application languages. Its central notion
is a language definition of some programming or application language.

The common methodology is that a language is identified in a given domain, that
relevant aspects of that language are formally defined and that desired tools are gen-
erated on the basis of this language definition. This generative approach is illustrated
in Figure 1. Using a definition for some language L as starting point, a generator can
produce a range of tools for editing, manipulating, checking or executing L programs.

Language aspects have to be defined, analyzed, and used to generate appropriate
tooling such as compilers, interpreters, type checkers, syntax-directed editors, debug-
gers, partial evaluators, test case generators, documentation generators, and more.

Language definitions are used, on a daily basis, in application areas as disparate as
Cobol renovation, Java refactoring, smart card verification and in application generation
for domains including finance, industrial automation and software engineering. In the
case of Cobol renovation, the language in question is Cobol and those aspects that are
relevant for renovation have to be formalized. In the case of application generation, the
language in question is probably new and has to be designed from scratch.

1.1 One realization: the ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [25,10] is an incarnation of the approach just de-
scribed and covers both the interactive development of language definitions and the
generation of tools based on these language definitions.

In this paper we are primarily interested in the software engineering aspects of
building such a system. Starting point is the ASF+SDF Meta-Environment as we had



Figure 1. From language definition to generated programming environment

completed it in the beginning of the 1990’s. This was a monolithic 200 KLOC Lisp
program that was hard to maintain. It had all the traits of a legacy system and was the
primary motivation to enter the area of system and software renovation.

1.2 Towards a component-based architecture

We give a brief time line of the efforts to transform the old, monolithic, implementation
of the Meta-Environment into a well-structured, component-based, implementation.

In 1992, first, unsuccessful, experiments were carried out to decompose the system
into separate parts [1]. The idea was to separate the user-interface and the text editor
from the rest of the system. The user-interface was completely re-implemented as a sep-
arate component and as text editor we re-used Emacs. In hindsight, we were unaware
of the fact that we made the transition from a completely sequential system to a sys-
tem with several concurrent components. Unavoidably, we encountered hard to explain
deadlocks and race conditions.

In 1993, a next step was to write a formal specification of the desired system be-
havior [34] using PSF, a specification language based on process algebra and algebraic
specifications [27]. Simulation of this specification unveiled other, not yet observed,
deadlocks. Although this was clearly an improvement over the existing situation, this
specification approach also had its limitations and drawbacks:

– The specification lacked generality. It would, for instance, have been a major change
to add the description of a new component.

– The effort to write the PSF specification was significant and there was no way to
derive an actual implementation from it.

In 1994, the first version of the TOOLBUS was completed [4,6]. The key idea was to
organize a system along the lines of a software bus and to make this bus programmable
by way of a scripting language (TSCRIPT) that was based on ACP (Algebra of Commu-
nicating Processes, [8]). Another idea was to use a uniform data format (called TOOL-
BUS terms) to exchange data between TOOLBUS and tools. At the implementation



level, TSCRIPTs were executed by an interpreter and communication between tools and
TOOLBUS took place using TCP/IP sockets. In this way, multi-language, distributed,
applications could be built with significantly less effort than using plain C and sockets.

Based on various experiments [30,18,26,20], in 1995 a new version of the TOOL-
BUS was designed and implemented: the Discrete Time ToolBus [5,7,2]. Its main in-
novations were primitives for expressing timing considerations (delay, timeout) and for
operating on a limited set of built-in data-types (booleans, integers, reals, lists). The
Discrete Time TOOLBUS has been used for the restructuring of the ASF+SDF Meta-
Environment [11]. A first version was released in 2001 [10].

In the meantime, the exchange format has also evolved from the TOOLBUS terms
mentioned above to ATerms [12]: a term format that supports maximal subterm shar-
ing and a very concise, sharing preserving, binary exchange format. ATerms decrease
memory usage thanks to sharing and they permit a very fast equality test since structural
equality can be replaced by pointer equality thanks to the maximal subterm sharing.

Another line of development is the TOOLBUS Integrated Debugging Environment
(TIDE) described in [31].

Today, beginning 2003, it turns out that the original software engineering goals that
triggered the development of the TOOLBUS have been achieved and that the Meta-
Environment can now be even further stretched than anticipated [13]. Therefore, it is
time for some reflection. What have we learned from this major renovation project and
what are the implications for the TOOLBUS design and implementation?

1.3 Plan of this Paper

In §2 we discuss component coordination, representation and computation and intro-
duce the TOOLBUS: our component coordination architecture. Following, in §3, we
demonstrate some of the TOOLBUS-features by means of an example. In §4 we show
how we used the TOOLBUS in the ASF+SDF Meta Environment to migrate from a
monolithic to a distributed architecture. Then, in §5 we elaborate on the various issues
that we would like to tackle in a next generation of the TOOLBUS. We conclude the
paper with an overview of the current status of our current implementation of this next
generation TOOLBUS (§6) and some concluding remarks (§7).

2 The TOOLBUS Architecture

In [22] is was advocated that the overall architecture of a software system can be im-
proved by separating coordination from computation. In addition to this, we also dis-
tinguish representation and use the following definitions:

– Coordination: the way in which program and system parts interact (using procedure
calls, remote method invocation, middleware, and others).

– Representation: language and machine neutral data exchanged between compo-
nents.

– Computation: program code that carries out a specialized task.



Figure 2. Separating coordination from computation

Figure 3. The TOOLBUS architecture

The assumption is now that a rigorous separation of coordination, representation and
computation leads to flexible and reusable systems. This subdivision is sketched in Fig-
ure 2. Our TOOLBUS approach follows this paradigm and is illustrated in Figure 3

The goal of the TOOLBUS is to integrate tools written in different languages running
on different machines. This is achieved by means of a programmable software bus.
The TOOLBUS coordinates the cooperation of a number of tools. This cooperation is
described by a TSCRIPT that runs inside the TOOLBUS. The result is a set of concurrent
processes inside the TOOLBUS that can communicate with each other and with the
tools. Tools can be written in any language and can run on different machines. They
exchange data by way of ATerms.

A typical cooperation scenario is illustrated in Figure 4. A user-interface (UI) and
a database (DB) are combined in an application. Pushing a button in the user-interface
leads to a database action and the result is displayed in the user-interface. In a traditional
approach, the database action is directly connected to the user-interface button by means
of a call-back function. This implies that the user-interface needs some knowledge about
the database tool and vice versa. In the TOOLBUS approach the two components are



Figure 4. A typical cooperation scenario

completely decoupled: pushing the button only leads to an event that is handled by some
process in the TOOLBUS. This process routes the event to the database tool (likely via
some intermediary process) and gets the answer back via the inverse route. This implies
that the configuration knowledge is now completely localized in the TSCRIPT and that
UI and DB do not even know about each others existence.

The primitives that can be used in TSCRIPTs are listed in Table 1.

3 An example: the Address Book Service

To make the scenario from Figure 4 more concrete, we describe the construction of
an address book holding (name, address) pairs. Typical uses include creating a new
address, finding an address based on the name, etc. First we consider some aspects of
the User Interface. An instance of the UI connects to the TOOLBUS and during the
subsequent session, the user can:

create a new entry in the address book database;
delete an existing entry from the database;
search for an entry in the database;
update an existing entry in the database.

Each of these use cases can be described as a TOOLBUS process which, together
with a process that explains how these use cases interact, form the TOOLBUS script
describing our Address Book Service.

3.1 TOOLBUS processes for the Address Book Service

The ADDRESSBOOK process tells the TOOLBUS that an instance of our address-
book tool is to be executed, followed by a loop which invokes one of the processes



Primitive Description

delta inaction (“deadlock”)
+ choice between two alternatives (P1 or P2)
. sequential composition (P1 followed by P2)
* iteration (zero or more times P1 followed by P2)
create process creation
snd-msg send a message (binary, synchronous)
rec-msg receive a message (binary, synchronous)
snd-note send a note (broadcast, asynchronous)
rec-note receive a note (asynchronous)
no-note no notes available for process
subscribe subscribe to notes
unsubscribe unsubscribe from notes
snd-eval send evaluation request to tool
rec-value receive a value from a tool
snd-do send request to tool (no return value)
rec-event receive event from tool
snd-ack-event acknowledge a previous event from a tool
if ... then ... fi guarded command
if ... then ... else ... fi conditional

expressions
|| communication-free merge (parallel composition)
let ... in ... endlet local variables
:= assignment
delay relative time delay
abs-delay absolute time delay
timeout relative timeout
abs-timeout absolute timeout
rec-connect receive a connection request from a tool
rec-disconnect receive a disconnection request from a tool
execute execute a tool
snd-terminate terminate the execution of a tool
shutdown terminate TOOLBUS

attach-monitor attach a monitoring tool to a process
detach-monitor detach a monitoring tool from a process

Table1. Overview of TOOLBUS primitives



CREATE, UPDATE or DELETE in each iteration. This construction, using the + operator
ensures that at this level, the sub-processes can be regarded atomically: this means that
for example no DELETE will happen during an UPDATE.

process ADDRESSBOOK is
let AB : address-book
in
execute(address-book, AB?) .
(

CREATE(AB) + DELETE(AB) + SEARCH(AB) + UPDATE(AB)
) * delta

endlet

The operating system level details of starting the tool are defined in a separate sec-
tion (one for each tool if multiple tools are involved):

tool address-book is {
command = "java-adapter -class AddressBookService"

}

In this case, the TOOLBUS is told that our tool is written in Java, and that the main
class to be started is called AddressBookService.

The CREATE process can be described as a TOOLBUS process as follows:

process CREATE(AB : address-book) is
let AID : int
in
rec-msg(create-address) .
snd-eval(AB, create-entry) .
rec-value(AB, new-entry(AID?)) .
snd-msg(address-created(AID))

endlet

The request to create a new address book entry is received and delegated to the tool,
so it can update its state. In this case, our tool yields a unique id for reference to the new
entry, which is returned as the result of the creation message. Note that communication
between processes involves the matching of the arguments of snd-msg and rec-msg.
The same holds for the communication between a process and a tool using snd-eval
and rec-value. In all these cases, a result variable of the form V? gets a value
assigned as the result of a successful match.

The DELETE process differs only from the CREATE process in that it does not need a
return value:

...
rec-msg(delete-address(AID?) .
snd-do(AB, delete-entry(AID)) .
snd-msg(address-deleted(AID))

...



The SEARCH process in our example implements but a single query: finding an address
book entry by name. It shows how different results from a tool-evaluation request can
be processed in much the same way that different messages are handled. Upon receiving
a find-by-name message from another process, this request is delegated to the tool.
Depending on whether or not the entry exists in the database, the tool replies with a
found or a not-found message, respectively. This result is then propagated to the
process that sent the initial find-by-name message.

process SEARCH(AB : address-book) is
let
Aid : int,
Name : str

in
rec-msg(find-by-name(Name?)) .
snd-eval(AB, find-by-name(Name)) .
(

rec-value(AB, found(Aid?)) .
snd-msg(found(Aid))

+
rec-value(AB, not-found) .
snd-msg(not-found)

)
endlet

The UPDATE process is more interesting. It shows that each update of an address entry
is guarded. A process wanting to update an entry first has to announce this fact by
sending an update-address message, before it can do one or more updates to the
entry. It then finishes the update by sending an update-address-done message.
This message pair thus acts as a very primitive locking scheme. More elaborate schemes
are very well possible, but are not discussed in this paper. Summarizing, the UPDATE
process shows that outside the implementation of the address book service, we can
enforce the order in which certain parts of the service are invoked, as well as mutual
exclusion of some of its sections.

process UPDATE(AB : address-book) is
let
AID : int,
Name : str,
Address : str

in
rec-msg(update-entry(AID?)) .
( rec-msg(set-name(Name?)) .

snd-do(AB, set-name(AID, Name))
+ rec-msg(set-address(Address?)) .

snd-do(AB, set-address(AID, Address))
) *
rec-msg(update-entry-done(AID))

endlet



3.2 TOOLBUS process for the User Interface

Because users can connect at any time to the TOOLBUS to start a session with the
Address Book Service, the TOOLBUS itself does not execute instances of the UI (as
it did with the address book tool). Instead UITool instances can connect, make zero
or more requests to the service, and disconnect at their convenience. The following
definition of the UI process shows how UI requests for the creation of a new entry and
a name-change can be realized:

process UI is
let
UITool : ui,
AID : int,
Name : str

in
rec-connect(UITool?) .
(

rec-event(UITool, create-address) .
snd-msg(create-address) .
rec-msg(address-created) .
snd-ack-event(UITool, create-address)

+
rec-event(UITool, update-name(AID?, Name?)) .
snd-msg(update-entry(AID)) .
snd-msg(set-name(Name)) .
snd-msg(update-entry-done(AID)) .
snd-ack-event(UITool, update-name(AID, Name))

+
... /* more UI requests */

)
* rec-disconnect(UITool)

endlet

4 Application to the ASF+SDF Meta-Environment

As already sketched in §1.2, the TOOLBUS has been used to restructure the ASF+SDF

Meta-Environment. It consists of a cooperation of 27 tools ranging from a user-interface,
graph browser, various editors, compiler and interpreter, to a parser generator and a
repository for parse trees. A simplified view is shown in Figure 5.

Our insight can be further increased by considering some statistics. Table 2 shows
the relative sizes of the various implementation languages used in the Meta-Environment.
In the column language the various languages are listed. In column KLOC the size (in
Kilo Lines Of Code) is given for each language. The result is 107 KLOC for the whole
system of which 4.6% are TSCRIPTs. If we consider the fact that ASF+SDF specifica-
tions are compiled to C code, another view is possible as well: 12 KLOC of ASF+SDF

generates 170 KLOC of C code. Taking this generated code into account, the total size
of the whole system amounts to 277 KLOC of which 1.8% are TSCRIPTs. This is com-
patible with the expectation that TSCRIPTs are relatively small and form high-level
“glue” to connect much larger components.



Figure 5. Architecture of the ASF+SDF Meta-Environment.

Language KLOC† Generated KLOC Total KLOC

ASF+SDF 12 170 (C)
C 80††

Java, Tcl/Tk 5
Makefiles, etc 5
TSCRIPT 5
Total LOC: 107 170 277
TSCRIPT 4.6% 1.8%

† Kilo Lines of Code excluding third party code such as emacs, dot, and the like.
†† This includes 10 KLOC (C code) for the TOOLBUS implementation itself.

Table2. Facts concerning implementation languages

Part of the generated C code is currently done by ApiGen[23]: an API generator
which takes an SDF grammar as input and generates a C library which gives type-safe
access to the underlying ATerm representation of the parse trees over this grammar.

Another conclusion from these facts is that low-level information for building the
software (makefiles and configuration scripts) are of the same size as the high level
TSCRIPTs. This points into the direction that the level of these build scripts should be
raised. This conclusion will, however, not be further explored in this paper.

Another view is given in Table 3 where the frequency of occurrence of TSCRIPT

primitives is shown. Clearly, sequential composition (.) is the dominant operator and
sending/receiving (snd-msg, rec-msg) messages is the dominant communication
mechanism, followed by communication with tools (snd-do, snd-eval). It may be
surprising that parallel composition (||) is used so infrequently. However, one should
be aware that at the top level all TOOLBUS processes run concurrently and that || is
only used for explicit concurrency inside a process. The level of concurrence is therefore
approximately 100 (104 process definitions and 3 explicit || operators).

Empirical evidence shows that:

– The TOOLBUS-based version of the ASF+SDF Meta-Environment is more flex-
ible as illustrated by the fact that clones of the Meta-Environment start to ap-



Primitive Number of occurrences

process definitions 104
tool definitions 27
. (sequential composition) 4343
+ (choice) 341
* (iteration) 243
|| (parallel composition) 3
snd-msg 555
rec-msg 541
snd-note 100
rec-note 24
snd-do/snd-eval 220
rec-event 56
create 58

Table3. Facts concerning TSCRIPT primitives

pear for other languages than ASF+SDF. Examples are Action Semantics [28] and
Elan [14].

– Various components of the ASF+SDF Meta-Environment are being reused in other
projects [18,9].

5 Issues in a Next-Generation TOOLBUS

The TOOLBUS has been used in various applications of which the Meta-Environment
is by far the largest. Some of the questions posed by our users and ourselves are:

– I find it difficult to see which messages are requests and which are replies; can you
provide support for this? See §5.1.

– If a tool crashes, what is the best way to describe the recovery in the TSCRIPT? See
§5.2.

– I have huge data values that are exchanged between tools and the TOOLBUS be-
comes a data bottleneck; can you improve this? See §5.3.

– The TOOLBUS and tools are running as separate tasks of the operating systems.
Would it not be more efficient to run TOOLBUS and tools in single task? See §6.

5.1 Undisciplined Message Patterns

The classical pattern of a remote procedure call is shown in Figure 6: a caller performs
a call to a callee. During the call the caller suspends execution and the callee executes
until it has computed a reply. At that point in time, the caller continues its execution.

Compare this simple situation with general message communication as shown in
Figure 7: the caller continues execution after sending a message msg1 to Callee1 and
may even send a message msg2 to Callee2. At a certain point in time Callee2 may send
message msg3 back to Caller. In this case, the three parties involved continue their



Figure 6. Communication pattern for remote procedure call

Figure 7. Communication pattern for general messages

execution while messages are being exchanged and there is no obvious pairing of calls
and replies.

In the TOOLBUS case, a snd-msg and a rec-msg can interact with each other if
their arguments match. A typical sequence is:

Process A: Process B:
snd-msg(calculate(E)) . rec-msg(calculate(E?)) .
... other actions ... ... actions that compute value V ...
rec-msg(value(E, V?)) snd-msg(value(E, V))

What we see here is that a form of call/reply regime is encoded in the messages: process
B returns the value V that it has computed as snd-msg(value(E, V)). The E is
completely redundant but serves as identification for process A to which message this
is an answer.

The call/reply regime is thus implicitly encoded in messages. This makes error han-
dling harder (which reply did not come?) and makes the TSCRIPTs harder to under-



stand. This is particularly so, since unstructured combinations of snd-msg/rec-msg
and sequential composition, choice, iteration and parallel composition are allowed.

The only solution for the above problems is to limit the occurrences of snd-msg or
rec-msg in such a way that a form of very general call/reply regime is enforced. Our
approach is to syntactically enforce that snd-msg/rec-msg or rec-msg/snd-msg
may only occur in (possibly nested) pairs and that in between arbitrary operations are
allowed. In fact, the matching snd-msg or rec-msg may be an arbitrary expression
provided that all its alternatives begin with a matching snd-msg or rec-msg.

We replace thus

snd-msg(req(E)) . arbitrary process expression . rec-msg(ans(A?))

by

snd-msg(req(E)) { arbitrary process expression } rec-msg(ans(A?))

and also allow more general cases like:

snd-msg (req(E)) { arbitrary process expression}
( rec-msg(ans(A?)) + rec-msg(error(M?) )

It is an interesting property of Process Algebra that every process expression can
be normalized to a so-called action prefix form: a list of choices where each choice
starts with an atomic action. An action prefix form has the following structure: a1.P1

+ a2.P2 +...+ an.Pn. Using this property we can formulate the most general con-
straint that we impose on occurrences of snd-msg and rec-msg. Consider P1 { Q
} P2 and let P1’ and P2’ be the action prefix forms of, respectively, P1 and P2. Our
requirement is now that each choice in P1’ starts we a snd-msg and each choice in
P2’ with a rec-msg, or vice versa. Note that this constraint can be checked statically.

5.2 Exception Handling

Exception handling is notorious for its complexity and impact on the structure of pro-
gram code. The mainstream exception handling approach as used in, for instance, Java
associates one or more exception handlers with a specific method call. If the call com-
pletes successfully, the handlers are ignored. If the call raises an exception, it is checked
whether this exception can be handled locally by one of the given handlers. If not, the
exception is propagated to the caller of the current code. This model does, however,
not work well in a setting where multiple processes are active and the occurrence of an
exception may require recovery in several processes.

Local Exception Handling We start with the simpler case of local error handling and
introduce the disrupt operator (>>) proposed in LOTOS [15]. A process algebra variant
of this operator is described in [19]. It has the form P >> E, where P describes the nor-
mal processing and E the exceptional processing. It adds the exception E as alternative
to each atomic action in P. If the action prefix form of P is a1.P1 + a2.P2 +...+
an.Pn, then

P >> E ≡ (a1 + E).(P1 >> E) +.. + (an + E).(Pn >> E).



Figure 8. Call-by-reference in a distributed application

Figure 9. Call-by-value in a (Java-based) distributed application

Global Exception Handling Global exception handling in distributed systems is a very
well-studied subject from the perspective of crash recovery and transaction manage-
ment in distributed databases. An overview of rollback-recovery protocols in message-
passing systems is, for instance, given in [21].

In the context of system reliability, the notion of a recovery block has been intro-
duced by Randell [32]. Its purpose was to provide several alternative algorithms for
doing the same computation. Upon completion of one algorithm, an acceptance test is
made. If the test succeeds, the program proceeds normally, but if it fails a rollback is
made to the system state before the algorithm was started and one of the alternative
algorithms is tried. In [24] this idea is applied to backtracking in string processing lan-
guages. It turns out that the preservation of the system state can be done efficiently by
only saving updates to the state after the last recovery point.

Recovery blocks also form the basis for Coordinated Atomic Actions described
in [36]. Recovery blocks are intended for the error recovery in a single process. They
can be generalized to conversations between more than one process: several processes
can enter a conversation at different times but they can only leave it simultaneously,
when all participating processes satisfy their acceptance test. In case one participant
fails to pass its test, each participant is rolled back to the state when it entered the
conversation.

We are currently studying this model since it can be fit easily in the TOOLBUS

framework and seems to solve our problem of global exception handling. It is helpful
that a backtrack operator similar to the one described in [24] has also been described
for Process Algebra [3]. What remains to be studied is how the recovery of tools has
to be organized. Most likely, we will add a limited undo request to the tool interface to
recover from the last few operations carried out by a tool.

5.3 Call-by-value versus Call-by-reference

Background The concepts of call-by-reference and call-by-value are well-known in
programming languages. They describe how an actual parameter value is transmitted
from a procedure call to the body of the called procedure. In the case of call-by-
reference, a pointer to the parameter is transmitted to the body. Call-by-reference is



Figure 10. Value-based (a) versus channel-based (b) transmission in the TOOLBUS

efficient (only a pointer has to be transmitted) and the parameter value can be changed
during execution of the procedure body (via the pointer). In the case of call-by-value,
a physical copy of the parameter is transmitted to the procedure body. Call-by value is
less efficient for large values and does not allow the called procedure to make changes
to the parameter value in the calling procedure.

These considerations also apply to value transmissions in a distributed setting, with
the added complication that values can be accessed or modified by more than one party.
Call by reference (Figure 8) is efficient for infrequent access or update. It is the preva-
lent mechanism in, for instance, CORBA [17]. However, uncontrolled modifications by
different parties can lead to disaster.

Call-by-value (Figure 9) is inefficient for large values and any sharing between calls
is lost. To us, this is of particular interest, because we need to preserve sharing in huge
parse trees. In the case of Java RMI [33], value transmission is achieved via serializa-
tion and works only for communication with other Java components. Using IIOP [29]
communication with non-Java components is possible.

Current TOOLBUS approach Currently, the TOOLBUS provides a transport mechanism
based on call-by-value as shown in Figure 10(a). It is transparent since the transmitted
values are ATerms (see §1.2) that can be exchanged with components written in any
language. Since pure values are exchanged, there is no need for distributed garbage
collection.

Note that the call-by-reference model can easily be mimicked in the TOOLBUS.
For instance, one tool can maintain a shared database and can communicate with other
tools using record keys and field names so that only the values of record fields have to be
exchanged (as opposed to complete records or even the complete database). In this way
the access control to the shared database can be spelled out in detail and concurrency
conflicts can be avoided. This solves one of the major disadvantages of the pure call-
by-reference model in a distributed environment.

The downside is, however, that the TOOLBUS becomes a data bottleneck when huge
values really have to be transmitted between tools. Currently, two workarounds are used.
A first workaround is to get temporary relief by sending compressed values rather than
the values themselves. A second workaround is to store the large value in the filesystem



and to send a file name rather than the file itself. It does scale, but it also creates an
additional inter-tool dependency and assumes that both tools have access to the same
shared file system.

We will now first discuss how related frameworks handle call-by-reference and then
we come back to implications for the TOOLBUS design. In particular, we will discuss
channel-based transmission as already shown in Figure 10(b).

5.4 Related frameworks: Java RMI, RMI-IIOP and Java IDL

Given our needs and desires for a next generation TOOLBUS it is interesting to see
what other solutions are applied in similar projects. In this section, we briefly look at
three related mechanisms:

– Java Remote Method Invocation (RMI) which connects distributed objects written
in Java;

– Java RMI over Internet Inter-ORB Protocol (IIOP) which is like RMI, but uses IIOP
as the underlying protocol;

– Java IDL which connects Java implementations of CORBA interfaces.

Java RMI Java Remote Method Invocation is similar to the TOOLBUS architecture
in the sense that it connects different tools, possibly running on different machines. It
differs from the TOOLBUS setting because it is strictly Java based: only components
written in Java can communicate via RMI.

For components to work together in RMI, first a remote interface is established.
This is a Java interface that has a “real” implementation in the tool (or server) and
a “stub” implementation on the client sides (Figure 11). The interface is written by
the programmer as opposed to the generated interfaces in a TOOLBUS setting where
they are derived from the communication patterns found in the TOOLBUS script. The
stubs in the RMI setting are then generated from this Java interface using rmic: the
RMI compiler. Stubs act as a client-side proxy, delegating the method call via the RMI
system to the server object. In RMI, any object that implements a remote interface is
called a remote object.

In RMI, arguments to or return values from remote methods can be primitive data
(e.g. int), remote objects, or serializable objects. In Java, an object is said to be seri-
alizable if it implements the java.util.Serializable interface. Both primitive
data and serializable objects are passed by value using Java’s object serialization. Re-
mote objects are essentially passed by reference. This means that changes to them are
actually performed on the server, and updates become available to all clients. Only the
behavior that was defined in the remote interface is available to the clients.

RMI programmers should be aware of the fact that any parameters, return values
and exceptions that are not remote objects are passed by value. This makes it hard to
understand when looking at a system of RMI objects exactly which method calls will
result in a local (i.e. client side) state change, and which will have global (server side)
effect.

Consider, again, our address book example. If the AddressBookService is imple-
mented as a remote object in RMI, then client-side invocations of the setAddress



Figure 11. Client-server model in RMI framework.

method will cause a global update. If, on the other hand, the AddressBookEntries are
made serializable and instances of this class are returned as the result of a query to
the AddressBookService, then updates on these instances will have a local state change
only.

Finally, before two RMI components can connect, the server side needs to regis-
ter itself with an rmiregistry, after which the client needs to explicitly obtain a
reference to the (remote) server object.

Java RMI over IIOP By making RMI programs conform to some restrictions, they can
be made available over the Internet Inter-ORB Protocol (IIOP). This means that func-
tionality offered by the RMI program can be made available to CORBA clients written
in any (CORBA supported) language. The restrictions are mostly namespace oriented:
programmers need to take special care not to use certain names that might collide with
CORBA generated names, but some reservations should also be made regarding sharing
preservation of object references. References to objects that are equal according to the
== operator in one component, need not necessarily be equal in a remote component.
Instead the equals method should be used to discern equality.

RMI over IIOP is best used when combining several Java tools for which the pro-
grammer would like to use RMI, and some tools written in another CORBA-supported
language need to use (some of) the services provided by the Java tools. The compo-
nent’s interface is established by writing a Java interface, just as in plain RMI.

Java IDL Apart from Java RMI, which is optimized for connecting components that are
all written in Java, there is also a connection from Java to CORBA using the Java Inter-
face Definition Language (IDL). This alternative to Java RMI is for Java programmers
who want to program in the Java programming language, based on interfaces defined in
the CORBA Interface Definition Language.

Using this bridge, it becomes possible to let Java components communicate with
CORBA objects written in any language that has Interface Definition Language (IDL)
mappings.

Instead of writing a Java interface as is done in RMI, in Java IDL the definition
is written in IDL: a special purpose interface language used as the base for CORBA



TOOLBUS RMI RMI-IIOP Java IDL

Architecture Component Client Client Client
coordination Server Client Server

Interface TSCRIPT Java Interface Java Interface IDL
GC yes yes no no
parameters / by-value local: by-value local: by-value depends on
return values remote: by-ref remote: by-ref signature
language any with only Java CORBA objects if any with

TB adapter interface in Java IDL binding
component yes no no no
coordination

Figure 12. Related architectures: a feature overview.

implementations. This IDL definition is then used to generate the necessary stubs (client
side proxies to delegate method invocations to the server) and skeletons, holder and
helper classes (server side classes that hide low-level CORBA details).

Feature summary Figure 12 shows some of the similarities and differences in TOOL-
BUS, RMI, RMI-IIOP and Java IDL.

– RMI, RMI-IIOP and Java IDL make an explicit distinction between client and
server sides of a set of cooperating components. In the TOOLBUS setting all com-
ponents are considered equal (and none are more equal than others).

– In RMI and RMI-IIOP, the programmer writes a Java interface which describes the
component’s incoming and outgoing method signature, from which stubs and skele-
tons are generated. In Java IDL a CORBA interface is written. In the TOOLBUS

setting, these signatures are generated from the TOOLBUS script which describes
much more of the component’s behavior in terms of method call interaction, rather
than just method signatures.

– The TOOLBUS takes care of garbage collection of the ATerms that are used to rep-
resent data as it is sent from one component to another. RMI allows programmers
access to Java’s Distributed Garbage Collection API. In RMI-IIOP and Java IDL
however, this is not possible, because the underlying CORBA architecture is used,
which does not support (distributed) GC, but places this burden entirely on the de-
veloper.

– In the TOOLBUS all data is sent by-value. RMI and RMI-IIOP use both pass-by-
value and pass-by-reference, depending on whether the relevant data is serializable
(it is a primitive type, or it implements Serializable) or is a remote object.
In Java IDL the components abide by IDL prescribed interfaces. Determination of
whether a parameter is to be passed by-value or by-reference is made by exami-
nation of the parameter’s formal type (i.e. in the IDL signature of the method it
is being passed to). If it is a CORBA value type, it is passed by-value. If it is an
ordinary CORBA interface type (the “normal” case for all CORBA objects), it is
passed by-reference.



– The TOOLBUS allows components in any language for which a TOOLBUS adapter
exists. Programming languages such as C and Java are supported, but adapters also
exist for a wide range of languages and applications, including e.g., Perl, Prolog,
MySQL, Tcl and ASF+SDF. In RMI, only Java components can be connected;
in RMI-IIOP the service is implemented in Java, its functionality (client-side) is
available to CORBA clients. The Java IDL framework is fully CORBA compliant.

– Only the TOOLBUS has coordination support for component interaction. In the
three other cases any undesired sequence of incoming and outgoing method calls
will have to be prohibited by adding code to the component’s internals. Whereas
RMI, RMI-IIOP and Java IDL just perform the wiring that connects the compo-
nents, the TOOLBUS also provides workflow support. In relation to this workflow
support, it would be interesting to compare the TOOLBUS to related workflow de-
scription languages such as the Business Process Modeling language [16] and the
Web Services Description Language [35].

Implications for the TOOLBUS Approach To overcome the problems of value-based
transmission, we envisage the introduction of channels as sketched in Figure 10(b).
This model is inspired by the second workaround mentioned at the end of §5.3 and is
completely transparent for the user.

The idea is to stick to the strict call-by-value transmission model, but to imple-
ment the actual value transmission by data communication between sending tool and
receiving tool thus offloading the TOOLBUS itself. Via the TOOLBUS, only an identi-
fication of the data value is transmitted between sender and receiver. The downside of
this model is that it introduces the need for distributed garbage collection, since a value
may be distributed to more than one receiving tool and the sender does not known when
all receivers have retrieved their copy. Adding expiration times to values or reference
counting at the TOOLBUS level may solve this problem.

6 Current Status

The current TOOLBUS was first specified in ASF+SDF and has then been implemented
manually in C. Its primary target was the renovation of the ASF+SDF Meta-Environment.

The next generation TOOLBUS is being implemented in Java and aims at sup-
porting larger applications such as, for instance, a multi-user game site like www.
gamesquare.nlwith thousands of users. High performance and recovery of crashed
game clients are then of paramount importance. The Java implementation is organized
in such a way that the actual implementation of tools is as much hidden as possible. This
is achieved by introducing the interface ToolInterface that describes the required
TOOLBUS/tool interaction. This interface can be implemented by a variety of classes:

ClassicToolBusTool: this implements the TOOLBUS/tool communication as used
in current applications. The tool is executed as a separate, operating system level,
process and the TOOLBUS/tool communication is achieved using sockets.

JavaTool: this implements a new model that addresses one of the issues mentioned
in §5: when TOOLBUS and tool run on the same computer and the tool is written



in Java, then the tool can be loaded dynamically in the executing TOOLBUS, e.g.
using Java Threads. In this way, the overhead of interprocess communication can
be eliminated.

JavaRMITool: this is a special case where a Java tool runs on another computer.
SOAPTool: this implements communication with a tool that has a SOAP interface.

A prototype implementation is under development that allows experimentation with the
features mentioned in this paper.

7 Concluding Remarks

In this paper we have reflected on our experiences over the past years with the use of
the TOOLBUS as a means to refactor a previously monolithic system: the ASF+SDF

Meta Environment. This real test case of the TOOLBUS has taught us some of its short-
comings: its data bottleneck in case very large data items are sent using pass-by-value,
maintenance issues related to undisciplined message passing and questions such as how
to deal with exceptions caused by e.g. crashing tools.

Some of the ideas we showed in this paper could be implemented by changing or
extending the TSCRIPT (e.g. to implement a call-reply regime as discussed in §5.1),
others will also require extending the TOOLBUS and the tool-adapters (e.g. to detect
crashed tools in combination with exception handling as discussed in §5.2).

We have also studied some related ideas and frameworks and we are now in a posi-
tion where we have a new prototype of the TOOLBUS in Java, with a very open structure
which allows for all sorts of experiments and case studies based on the experience we
have with the existing TOOLBUS and the ideas presented in this paper.
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