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Abstract

Grammarware comprises grammars and all grammar-dependent software, i.e.,
software artifacts that directly involve grammar knowledge. The term grammar is
meant here in the widest sense to include XML schemas, syntax definitions, in-
terface descriptions, APIs, and interaction protocols. The most obvious examples
of grammar-dependent software are document processors, parsers, import/export
functionality, and generative programming tools. Even though grammarware is so
omnipresent, it is somewhat neglected — from an engineering point of view. We
lay out an agenda that is meant to promote research on improving the quality of
grammarware and on increasing the productivity of grammarware development.
To this end, we identify the problems with current foundations and practices, the
promises of an engineering discipline for grammarware, its ingredients, and re-
search challenges along the way.
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1 In need of well-engineered grammarware

Linguistics vs. information technology In linguistics, one has to face a tremendous
multitude of human languages. The overall attack to deal with such diversity and com-
plexity is to try to understand “the system of principles, conditions, and rules that are
elements or properties of all human languages . .. the essence of human language” [21].
(This is Chomsky’s controversial definition of the “universal grammar™.) Such research
cannot be separated from sociology, and other human sciences. Similarly, in informa-
tion technology, we are faced with a tremendous multitude of technical notations, APIs,
interaction protocols, and programming languages. Here, the overall attack must be,
again, to understand the principles, conditions, and rules that underly all these ‘gram-
mars’ and that enable their efficient use, reuse and evolution as well as their seamless
interoperation. Grammars cannot be reduced to a few formal aspects such as the Chom-
sky hierarchy and parsing algorithms. It is in the interest of a more complete software
engineering discipline that we make it grammar-aware by paying full attention to the
engineering aspects of grammars and grammar-dependent software.

Engineering of grammarware We coin the term ‘grammarware’ to comprise not
just grammars in the widest sense but also grammar-dependent software, i.e., all soft-
ware artifacts that directly involve grammar knowledge. To see what we mean by
‘engineering of grammarware’, we will consider a few scenarios:

e As a developer of database applications, you want to make a transition to a new
screen definition language, which has to be adopted gradually for all existing and
future information systems in your company.

e As a developer of Commercial Off-The-Shelf software, you want to import user
profiles in order to promote the user’s transition from an old to a new version, or
from a competing product to yours; think of web browsers.

e As an object-oriented application developer, you want to revise your application
to take advantage of a new inhouse API, or to use the latest release of a standard
API such as the SWING toolkit for user interfaces as part of the Java platform.

e As a manager for software configuration, you want to adapt your make infras-
tructure to work for a new version or a different dialect of the tools make, au-
tomake, or others. Also, you want to migrate from one shell dialect to another.

e As a developer of an inhouse domain-specific language (DSL), you give up on
trying to provide an upward-compatible redesign of the DSL, but you want to
provide at least a tool to convert existing DSL programs.

e As an online service provider, you want to meet your clients’ requirements to
serve new XML-based protocols for system use. For example, you want to re-
place an ad-hoc, CGl-based protocol by instant messaging via Jabber/XMPP.

By “engineering of grammarware” we mean that such scenarios should normally be
realised in a way that the involved grammars are systematically recovered, designed,
adapted, tested, customised, implemented, and so forth. While there is certainly a body
of versatile techniques available, grammarware is typically not treated as an engineer-
ing artifact.



A research agenda The present paper serves as an agenda for the stimulation of a
research effort on an engineering discipline for grammarware. This emerging discipline
is expected to improve the quality of grammarware and to increase the productivity of
grammarware development. The agenda substantiates that we need to join efforts in
the software engineering and programming language communities to make progress
with this goal as opposed to small-scale, short-term research activities. The agenda
also attempts an identification of a basis for such a joint effort. As an outlook, initial
scientific meetings, regular scientific events, and special issues in journals are needed
to progress from here.

The contribution of the agenda Because grammarware is so omnipresent, an effort
on an engineering discipline for grammarware will be to the advantage of software in
general. Furthermore, the proposed discipline will invigorate automated software en-
gineering. This is because software development tools such as CASE tools, compilers,
refactoring browsers and others are prime forms of grammarware. In essence, the re-
quired research has to provide foundations as well as best practices for engineering of
grammarware. This research faces major challenges. Most notably, a grammar tends
to reside in several artifacts that all deal with different grammar uses in different gram-
mar notations. Also, grammar structure tends to be all-dominant and other aspects end
up being entangled in grammarware. This makes it rather difficult to keep track of all
grammar dependencies in grammarware, and to master evolution of grammars as well
as co-evolution of grammarware. The present agenda integrates the body of knowledge
that addresses such crucial aspects of the proposed discipline.

Structure of the agenda In Sec. 2, we recall the omnipresence of grammarware in
software systems. This is followed by a rude awakening in Sec. 3, where we substan-
tiate that the reality of dealing with grammarware must be called hacking. In Sec. 4,
we analyse the dilemma underlying the current situation. Cutting this Gordian knot
prepares the ground for a significant research effort on engineering of grammarware.
In Sec. 5, we lay out the promises of an engineering discipline for grammarware. In
Sec. 6, we list the so-far identified ingredients of the emerging discipline. Special atten-
tion is paid to the role of automated transformations in Section 7. This is followed by
a related work discussion in Sec. 8, which substantiates that we are indeed concerned
with an emerging discipline rather than a hypothetical one. Ultimately, in Sec. 9, we
compile a substantial list of research challenges.
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2 Omnipresence of grammarware

Grammar forms and notations Grammarware comprises grammars in the widest
sense. Here is a categorisation of grammars with an indication of all the grammar
notations in use:

o Definitions of interchange and storage formats for application data — in the
form of XML schemas, or declarations of serialisable data in a programming
language, or domain-specific formalisms such as ASN.1 [31] (used primarily in
the telecommunication context).

o Interface descriptions for abstract datatypes, components in component-based
or distributed applications — in the form of CORBA’s IDLs, or interfaces in the
sense of the facade design pattern [38], or APIs offered by class libraries.

e Specifications of interaction protocols — normally in a form with specification
elements for structural concerns (i.e., sequences, alternatives, iteration, etc.); in-
teraction protocols describe how groups of objects or agents cooperate to com-
plete a task [90, 79], e.g., there are two forms of interaction diagrams in UML,
namely sequence and collaboration diagrams.

o Concrete and abstract syntax definitions of programming languages and domain-
specific languages [26], and meta-models — in Backus-Naur Form, or in the
abstract syntax description language ASDL [112] (used for interoperable com-
piler technology), or in graphical notations for BNF (e.g., the syntax diagrams
in [46]), or in the form of algebraic signatures, or object-oriented class dictionar-
ies subject to the design patterns visitor, composite and interpreter [38].

o Definitions of intermediate and internal representations such as annotated parse
trees [67], document models [30], intermediate representations in compilers [35,
23], system logging in the sense of the command design pattern [38] — using
some of the grammar notations discussed for the other categories.

Grammar-dependent software In addition to plain grammars, the term grammar-
ware also comprises grammar-dependent software, i.e., software artifacts that directly
involve grammar knowledge. Again, the term software artifact is meant here in the
widest sense including source code, documentation, and models or specifications at the
levels of design and analysis. It is fair to say that grammarware is everywhere. To use
a metaphor: grammars are the hardware of software, say grammars are the backbone
of (grammar-dependent) software. Here are examples of grammar-dependent software,
which are clearly shaped by grammars:

e Application generators [108] or tools for generative programming [32], aspect-
oriented weavers [59, 3], tools for program synthesis [105], tools for automated
software engineering, CASE tools (e.g., Rational Rose).

o Distributed or component-based applications where grammars occur in the sense
of required vs. supported interfaces as well as formats for input vs. output; most
business-critical systems are of that kind.
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Figure 1: So much grammarware, so little engineering.

e Functionality in language implementations, e.g., compilers, animators, docu-
mentation generators [106, 84], profilers, debuggers [91]: a typical compiler in-
volves several grammars and several components that use grammars, e.g., com-
ponents for optimisation, program specialisation [51], preprocessing, parsing,
code generation [33, 37].

e Functionality for automated software re-documentation [27], analysis and modi-
fication, e.g., source-code model extractors [69], transformation functionality [16,
76], pretty printers [17, 53], pre- and post-processors.

o Reference manuals, style guides, and industrial standards where grammars are
used for the documentation and the definition of an API, or a programming lan-
guage (e.g., [46]), or an interaction protocol.

Our criterion for saying that a software artifact directly involves grammar knowledge
is that grammar structure is encoded in the artifact, e.g., some productions defined by
a context-free grammar, or some patterns defined by a signature or a schemas. For
example, an XSLT program, via its templates, makes assumptions about element type
declarations that would need to be contained in the XML schema of a suitable input
document. An even stronger form of dependency holds if artifacts are systematically
derived from a grammar. For example, the definition of functionality for the serialisa-
tion of object structures follows the underlying class structure very closely.



Grammarware at a glance In Fig. 1, we visualise the omnipresence of grammar-
ware. The bottom layer lists principle grammar forms. The round-trip of the arrows
indicates that context-free grammars, class dictionaries and algebraic signatures can
be translated into each other — in a formal sense. Nevertheless, these forms make
original contributions. Context-free grammars are immediately prepared to deal with
concrete syntax as needed for the definition of programming languages. Signatures are
more concerned with abstract syntax and other abstract representations. Class dictio-
naries appeal to the object-oriented paradigm; they model inheritance and aggregation
relationships. The next layer lists actual grammar notations; the arrows connect these
notations with the principle form. Context-free grammars are normally specified using
some notation for (extended) Backus Naur Form (BNF) [4, 36]. Further context-free
notations typically add some specification constructs. For example, the SDF syntax
definition formalism [41, 109] adds constructs for modularisation and disambiguation.
We list two notations for class dictionaries: the common type system (CTS) for .NET’s
object structures and the XMI meta-data interchange format for UML models. For sig-
natures, we list ASDL [112] and ASN.1 [31] as formalisms for abstract syntax defini-
tion. We also list XML schemas, which serve for the representation of semi-structured
data. The layer above actual grammar notations deals with grammar-based notations.
These notations add specification or programming constructs to a basic grammar no-
tation. The semantics of such grammar-based notations can involve domain-specific
elements. For example, YACC [50] and PRECC [18] serve for parsing with actions for
parse-tree construction and others, whereas DGL [85] is not for parsing but for test set
generation. Many programming languages, e.g., C# and Haskell, are grammar-based
notations when the types of the language are viewed as grammars. Several specifica-
tion languages are grammar-based notations, e.g., ASF+SDF, which is a marriage of
the SDF syntax definition formalism and the ASF algebraic specification formalism [7].
The top layer in Fig. 1 lists typical categories of grammar-dependent software.

Multi-dimensional grammarware It is crucial to notice that software artifacts can
depend on several grammars at the same time in quite different ways. In an object-
oriented program, for example, there is a predominant class structure (i.e., a grammar).
In addition, the program’s methods are likely to employ some APIs (i.e., grammars).
Also, there could be an interaction protocol (i.e., a grammar) assumed for the use of the
program’s services. Furthermore, the program could be subject to wrapping according
to the adaptor pattern [38]. That is, the program’s services are made available to clients
that assume a specific interface or message protocol (i.e., a grammar).

Tangling of grammarware Grammar knowledge that is involved in a software ar-
tifact is not necessarily available in a pure form. For example, the typical industrial
compiler does not employ a parser generator, but its frontend is hand-crafted where
one can at best claim that a grammar is encoded in the frontend. More generally, gram-
mars tend to be entangled in functionality of grammar-dependent software in a more
or less traceable manner. There is normally no simple way to replace entangled gram-
mars; so they are indeed all-dominant. An XSLT program, for example, refers to the
underlying XML schema in all of its templates on the basis of the XPath parts.



Grammars as structural concerns We want to draw a line here regarding the ques-
tion what we count as grammars. Regarding the purpose of grammars, we view gram-
mars as means to deal with primarily structural concerns in software development
rather than inherently behavioural ones. However, this borderline is somewhat fuzzy
because grammars are sometimes used as structural means to describe behaviour —
with UML’s interaction diagrams being a good example. Regarding the expressiveness
of grammars, Fig. 1 suggests that we indeed restrict ourselves to context-free grammar-
like formalisms. For example, we refrain from considering arbitrary attribute gram-
mars [64, 93] as grammars in our sense. (In fact, attribute grammars belong to the
layer of grammar-based notations in Fig. 1. A separation of context-free structure and
attribute computations resembles the distinction of a predominant class structure vs.
the method implementations in an object-oriented program.) However, it is generally
acknowledged that context-free grammar-like formalisms lack convenience and expres-
siveness to deal with advanced structural concerns such as the definition of unambigu-
ous concrete syntax or context conditions. Hence, we have to take more expressive
notations into account when this is considered essential for structural concerns.

3 Stateof theart: grammarware hacking

At this point, the reader might face the dilemma that we describe later more closely:
“This omnipresence is obvious. Somehow we managed to deal with all these kinds of
grammarware for decades. So what?” Here is an important observation:

Given the omnipresence of grammarware, one may expect that
grammarware is treated as an engineering artifact — subject to
reasonable common or best practices. In reality, grammarware
is predominantly treated in an ad-hoc manner.

To give a concrete example, we consider the development of parsers for software re-
and reverse engineering; see Fig. 2. The common approach is to manually encode a
grammar in the idiosyncratic input language of a specific parser generator. The only
grammarware tool that occurs in this process is a parser generator. By contrast, an
engineering approach would be based on the following steps:

e A neutral grammar specification is recovered semi-automatically from the gram-
mar knowledge, e.g., from a semi-formal language reference. Extraction and
transformation tools are involved in this step. Thereby, the link between lan-
guage reference and the ultimate parser is preserved.

e Parser specifications are derived semi-automatically from the grammar specifi-
cation using a generative programming approach. Different parsing technologies
can be targeted as opposed to an eternal commitment to a specific technology.

This approach appears to be feasible because we and others have exercised parts of it
for a string of languages [101, 48, 75, 54, 80, 68], e.g., Cobol, which is widely used in
business-critical systems, and the proprietary language PLEX used at Ericsson.
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Figure 2: Parser development in the context of software re- and reverse engineering.

Lack of best practices Our claim about grammarware hacking can be substantiated
with a number of general observations that concern the treatment of grammars in soft-
ware development:

e There is no established approach for performing grammar evolution in a trace-
able manner — not to mention the even more difficult problem of co-evolution of
grammar-dependent software. This is a major problem because grammar struc-
ture is undoubtedly subject to evolution, e.g., an API of a long-living class li-
brary, or the interfaces in a distributed application for which enhancements are
continuously necessary.

e There is no established approach for maintaining consistency between the incar-
nations of conceptually the same grammar. It is, in fact, quite common to be
faced with various incarnations. For example, a grammar tends to reside in var-
ious artifacts, e.g., in a CASE tool and in the documentation of its meta-model.
Also, in a given artifact, several incarnations of the same grammar may reside,
e.g., a concrete syntax and an abstract syntax in a compiler frontend.



e Grammars are immediately implemented using specific technology, which im-
plies the use of idiosyncratic notations. An obvious example is parser specifi-
cation in YACC [50]. Using idiosyncratic notations in the first place makes it
difficult to alter the chosen technology or application context, e.g., to derive a
pretty printer rather than a parser. (A more subtle example is the use of attributes
in XML, which are often said not to be a part of the data but to provide informa-
tion for the software that wants to manipulate the data. This distinction between
content and other information is rather fragile and it hampers evolution.)

Lack of comprehensive foundations In fact, there is not just a lack of best or com-
mon practices. Even designated fundamental notions are missing. For example, there is
no comprehensive theory of testing grammarware; neither is there one for transforming
grammarware. Some further topics that are largely unexplored for grammarware are
version management, quality assessment, design patterns, and debugging. Such foun-
dations are needed for the sound provision of best practices that treat grammarware as
an engineering artifact.

4 Thegrammarware dilemma

We have shown that even though grammarware is so omnipresent, it is somewhat ne-
glected — from an engineering point of view. Is the lingering software crisis maybe to
some extent a grammarware crisis? Here is what we call the grammarware dilemma:

Improving on grammarware hacking sounds like such a good idea!
Why did it not happen?

We think that the answer to this question lies in a number of grammar myths. These
myths are like barriers for anyone who wants to do research on grammarware. So by
addressing these myths, we hope to prepare the ground for working on an engineering
discipline for grammarware.

Myth “Grammars are dead” While grammars are neglected engineering artifacts,
grammars in the sense of definitions of formal languages are well-studied subjects
in computer science. For the last three decades, the Chomsky hierarchy and parsing
algorithms have formed integral parts of university curricula. This intensive exposition
to grammars makes many of us maybe believe that grammars are a ‘buried subject’.
To refresh the researcher’s liaison with grammars, it really needs a re-commencement,
and a focus on engineering concerns, which were largely dismissed in the past. The
current XML hype seems to be helpful in this respect.

Myth “Engineering of grammarware = parser generation” One might feel tempted
to think that the widely established use of parser generators testifies a reasonable de-
gree of engineering for at least syntax definitions or parsers. However, reducing an
engineering discipline for grammarware like this is as narrow as reducing software en-
gineering to coding. Nevertheless, even parsing by itself has to be reconsidered from
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an engineering point of view. Many compiler developers refuse using parser gener-
ators for various reasons. For example, the means to customise the generated parsers
are often considered insufficient. In any case — with and without parser generators, in-
dustrial parser development requires considerable tweaking, and hence remains a black
art [15, 8].

Myth “XML is the answer” Recall the question: what are the software engineer’s
methods to deal with all forms of grammarware? XML is in need of an engineering
discipline as much as any other grammar notation and application domain. For exam-
ple, issues of schema evolution, co-evolution, and testing of schema-based software are
all urgent research topics even in the ‘narrow’” XML context. The proper engineering
of formats contributes to the interoperability promise of the XML age. Besides, it is
important to notice that XML is merely an interchange format as opposed to a universal
grammar notation. So while XML specifically addresses the issue of semi-structured
data, it does not address the issue of concrete syntax in the sense of programming lan-
guages. However, the latter issue is obviously of importance for our society’s software
assets, which are normally encoded in some programming language.

Myth “Grammarware is all about programming languages” The significance of
the engineering discipline for the ‘narrow’ programming language context is certainly
considerable, and it is not so much about compiler development, but more urgently
about software maintenance [74]. However, nowadays’ software assets depend more
and more on grammars other than programming language syntaxes, namely APIs, ex-
change formats, interaction protocols, and domain-specific languages. Just think of
the many APIs that nowadays come and go. Those APIs that stay for longer, tend to
evolve. The introduction, the evolution, and the displacement of such grammars are
prime issues to be addressed by the proposed engineering discipline.

In need of a paradigm shift To summarise, we visualise a comparison of the myth-
ical view and the proposed view on grammarware in Fig. 3. Left side: one might
feel tempted to just count the lines of code spent on grammars in compiler frontends
in relation to all software. This is not likely to trigger an effort on engineering of
grammarware. Right side: we emphasise the impact ratio of grammars. That is, they
make it into other software by direct or indirect dependencies; see the many arrows de-
parting from the inner circle. We also emphasise that the grammars that reside within
compiler frontends only provide a fraction of all the grammars there are. In fact, nowa-
days, more and more grammar lines of code are in existence that are concerned with
structural aspects other than concrete or abstract syntax for programming languages.
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Figure 3: The role of grammars from two different perspectives.

5 Engineering of grammarware —promises

An engineering discipline for grammarware clearly contributes to the software engi-
neering science. The new discipline poses certainly several research challenges, but
it is maybe even more important to stress its potential benefits for IT. At a general
level, the overall promise of the engineering discipline is to improve the quality of
grammarware and to increase the productivity of grammarware development. Recall
that grammarware is everywhere. Any business-critical system depends on a larger
number of grammars that shape its architecture or that reside in the processes for its
development and maintenance. So quality and productivity gains for grammarware
will be to the advantage of software systems in general. To substantiate these general
remarks, we will first review showcases. We will then go on to identify some more de-
tailed promises on the basis of these showcases and further scattered experiences with
viewing grammarware as an engineering artifact.

Showcase: grammar recovery Using elements of the emerging engineering disci-
pline for grammarware, two of the present authors were able to rapidly recover a rela-
tively correct and complete syntax definition of VS Caobol 11 [75]. The starting point for
this recovery project was IBM’s industrial standard for VS Cobol 11 [46]. The syntax
diagrams had to be extracted from the semi-formal document, and about 400 transfor-
mations were applied to the raw syntax in order to add missing constructs, to fix errors,
and to ultimately obtain a grammar that could be used for parsing. The recovery project
was completed in just a few weeks, which included the development of simple tools
for diagram extraction and grammar transformations. After that period, we were able
to parse the several millions lines of VS Cobol Il code that were available to us. (Ad-
ditional effort would be needed to develop general, mature tools, to deploy the syntax
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definitions in different industrial settings. We refer to [75] for a detailed discussion
of this showcase.) Key to success was a systematic process, automation of grammar
transformations, and separation of concerns such as development of a grammar specifi-
cation vs. an operational parser committing to specific parsing technology. The under-
lying concepts matured during a series of similar recovery projects [14, 101, 16]. The
recovered syntax definition for Cobol is widely used by tool developers and researchers
around the world. This was the first freely available, high-quality syntax definition for
Cobol in the 40 years of this language. (The costs for the industrial development of
a Cobol grammar imply that it is considered intellectual property. Recall that most
business-critical code today still resides in Cobol portfolios.)

Showcase: API-fication Generic language technology is a primary research theme
in our team. Here our work is centred around the ASF+SDF Meta-Environment [60, 9],
which supports executable specification of language-based tools, generation of parsers,
interactive language-based tools, and others. The current system is the result of many
man years of design, development and evolution. The system is being used in industrial
applications dealing, for example, with software renovation and application generation
from domain-specific specifications [10]. The development of generic language func-
tionality normally involves a generic format for data representation. In the case of
the ASF+SDF Meta-Environment, the ATerm format [11] is employed for this pur-
pose. Such formats encourage programmers to incorporate structural knowledge of the
manipulated data into the code, which leads to heavily tangled code. Such tangling
is inherent to generic functionality when it is encoded in mainstream languages. In
the case of the C- and Java-based ASF+SDF Meta-Environment, structural knowledge
of parse-tree formats was scattered all-over the system. In fact, there were several
parse-tree formats, and other representation formats for the kind of data structures and
notations used in the system. In [52], de Jong and Olivier describe the ‘API-fication® of
the ASF+SDF Meta-Environment. By API-fication, we mean the process of replacing
low-level APIs such as arbitrary ATerms by higher-level APIs for parse trees or other
formats. An essential element is here that these APIs are preferably generated from
grammars (again in the widest sense). The generated APl amounts to a set of Java
methods or C functions that provide access functionality according to the grammar at
hand. The API-fication of the ASF+SDF Meta-Environment resulted in the elimination
of almost half (1) of the manually written code; see [52] for details.

Productivity of grammarware development The showcase for the recovery of a
Cobol grammar suggests that an important promise of the emerging engineering dis-
cipline is productivity. Indeed, other known figures for the development of a quality
Cobol grammar are more in the range of two or three years [75, 74]. But why is such
a speedup important for IT? We answer this question in [74]. In essence, the ability to
recover grammars for the 500+ languages in use enables the rapid production of quality
tools for automated software analysis and modification. Such tools are needed to make
software maintenance and other parts of software engineering scalable in the view of
software portfolios in the millions-of-lines-of-code range. The reality of producing
tools for automated software analysis and modification is that parser hacking domi-
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nates the budget of corresponding projects or makes them even unaffordable. Major
productivity gains are by no means restricted to grammar recovery. For example, test-
ing grammarware with manually designed test suites alone is time-consuming. Some
aspects of testing can be both effectively and efficiently dealt with via automated test-
ing, e.g., stress testing or differential testing of different versions or products from dif-
ferent vendors. We refer to [86, 104] for success stories on automated testing reported
by others.

Maintainability and evolvability of grammarware The API-fication showcase sug-
gests maintainability as a promise. This is not just because of the code size that
was cut in half, but the resulting code is also better prepared for changing formats.
This was indeed the triggering motivation for the API-fication of the ASF+SDF Meta-
Environment. That is, a new parse-tree format had been designed, but the transition
to it was found to be difficult because of the hard-coded structural knowledge of the
old formats. By the transition to higher-level APIs some amount of static typing was
added, and such static typing makes evolution more self-checking. While static typing
has become a routine weapon in the implementation of normal grammarware, the API-
fication showcase is more involved because it deals with generic language technology.
(For normal grammarware, it is at least in principle clear how to employ grammars
such as abstract syntaxes or XML schemas as ‘types’ in programs.) The maintainabil-
ity / evolvability promise is further strengthened when we complement static typing
by another static guarantee, namely the claim that all scattered incarnations of a given
grammar agree to each other. This requires to trace all links between all grammars in
all grammarware. Examples of such links include the consistency of an XML schema
with respect to an underlying syntax definition [98], or the correctness of a tolerant
grammar with respect to a base-line grammar [6, 63].

Robustness of grammarware Static typing and the preservation of links between
grammar artifacts already contribute to a robustness promise in a vital manner. Let us
also review further approved means of gaining confidence in the proper functioning
of software, namely reuse and testing, and let us see how these means carry over to
grammarware:

e Reuse is a generally accepted means to take advantage of prior maturation as
opposed to the risks of developing functionality or data structures from scratch.
Reuse is hardly exercised for grammars because existing means of reuse are too
weak. They basically support reuse “as is’ via simple forms of modular compo-
sition. Grammarware tends to be too monolithic, too technology-dependent, too
application-specific for reuse. Improved reusability shall be an obvious contri-
bution of an engineering discipline for grammarware.
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e Testing is a generally accepted means to validate functionality. Testing is a par-
ticularly appealing method in a setting of data processing as opposed to an ab-
stract behavioural view. Empirical results (e.g., [86, 104, 80]) demonstrate that
grammar-based testing makes grammarware more robust. The proposed engi-
neering discipline for grammarware shall contribute a comprehensive testing ap-
proach including testing during development, automated test-set generation, and
testing for intermediate formats or APIs.

6 Engineering of grammarware —ingredients

We contend that an engineering discipline for grammarware is to be based on the fol-
lowing principles:

e Generality. We have enumerated the many different forms of grammars, nota-
tions for grammars, and application domains for grammarware. A unified en-
gineering discipline for grammarware shall identify commonalities while cate-
gorising all common variations.

e Abstraction. Grammar notations must not force us to commit ourselves too
early to specific technology and implementational choices. That is, we need
technology- and application-independent grammar specifications, say pure gram-
mars. Such a distinction of design vs. implementation improves reusability of
grammars because it encourages the derivation of actual grammarware solutions
from pure grammars.

e Customisation. The derivation of grammarware from pure grammars involves
customisation steps, which express commitment to specific technology and/or a
specific grammar use. For example, a grammar can be customised to serve as
a parser specification. Then, customisation will opt for specific parsing tech-
nology, e.g., in the way how disambiguation is achieved. (So we could opt for
decorated tokens [81], extra actions for semantics-directed parsing [95, 18], or
filters that are applied to parse forests [62, 13].)

e Separation of concerns. A piece of grammarware normally deals with several
concerns. Advanced means of modularisation are needed to effectively separate
these concerns [28]. To give an example, let us consider the scenario of “render-
ing”, which encompasses document processing for formatting stylesheets as well
as pretty-printing program text. Here, one concern is to associate all the possible
grammar patterns with rules for rendering them. Another concern could be the
preservation of preexisting formatting information wherever available [53]. The
challenge is that these concerns actually interact with each other.

e Evolution. The evolution of formats, APIs, interaction protocols, and others must
be effectively supported by a unified methodology. This is also challenged by the
fact that different incarnations of the same grammar could either need to evolve
jointly or independently of each other.
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Figure 4: The grammarware life cycle.

e Assessment. Claims about the quality of grammars in the sense of metrics, or
correctness and completeness must be feasible. In addition, grammar-based
methods are needed to enable claims about the quality of grammar-dependent
software, e.g., grammar-based testing.

e Automation. This principle is meant to help with achieving traceability and scal-
ability of the engineering processes for customisation, separation of concerns,
evolution, and assessment. For example, customisation and evolution suggest
using transformation technology as opposed to manual adaptation. Assessment
can be supported by automated metrics calculation and test-set generation.

We assume that establishing these principles for grammarware is more tractable than
for arbitrary software. This is because actual grammars are specifications with a rela-
tively simple syntax and semantics. Also, the traces of grammars in grammar-dependent
software artifacts can normally be identified in a systematic manner.

Base-line grammars and derived artifacts On the basis of the above principles,
we can now provide a life cycle for grammarware; see Fig. 4. The life cycle is cen-
tred around the notion of a base-line grammar, which is meant to serve as a reference
specification for the derivation of grammarware by means of customisation and imple-
mentation steps. Evolution should also be performed on the base-line grammar rather
than on customised or implemented grammars. Some evolution tasks might however
concern the customisation or implementation itself. We briefly discuss one of the life-
cycle scenarios from Fig. 4: going from a base-line grammar to a visitor framework via
a customised class hierarchy. Here the base-line grammar would be preferably in the
form of a class dictionary, but such a class dictionary could also be obtained from other
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grammar forms. Customisation is concerned here with the derivation of an object-
oriented class hierarchy for the chosen object-oriented language. Extra customisation
effort could be needed to serve a certain application scenario, e.g., the representation of
annotations such as use/def relations. The resulting class hierarchy can now be ‘imple-
mented’, which means for the chosen scenario that a visitor framework for traversing
object structures is derived. This can be served by generative programming [32] as
pursued in [110].

Recovery of base-line grammars We cannot simply assume that a suitable base-line
grammar is always readily available. However, it is fair to assume that there is some
grammar knowledge available, which can serve as a starting point for building a base-
line grammar. The grammar knowledge might reside in data, e.g., one can attempt
to recover an XML schema from given XML documents. The knowledge might also
reside in some piece of grammarware, e.g., in a hand-crafted recursive-descent parser
or in a reference manual. Hence, the life cycle can be enabled by recovering the base-
line grammar first. For an illustration of the recovery phase in the life cycle, we refer
back to the recovery showcase from Sec. 5. Recovery is an issue for grammars in the
widest sense, not just for syntax definitions of mainstream programming languages. 1T
companies normally use DSLs, inhouse code generators, import/export functionality,
preprocessors, and others, which all involve some grammars. It is a common scenario
in software maintenance that such grammars need to be recovered — be it to replace
proprietary languages, or to develop new grammar-based tools, or just for documenta-
tion purposes. Here are two examples. A kind of recovery project for the proprietary
language PLEX used at Ericsson is described in [101, 16]. The project delivered a
documentation of PLEX and a new parser for PLEX. In [54], life-cycle enabling was
performed for the proprietary SDL dialect used at Lucent Technologies. The recov-
ered grammar was used then to develop a number of SDL tools using generic language
technology.

7 Therole of automated transfor mations

The treatment of grammarware as an engineering artifact crucially relies on automated
transformations to make all steps in the grammarware life cycle more traceable and
scalable than in the present-day approach, which is ad-hoc and manual. Several kinds
of transformations can be distinguished:

e Grammar transformations to refactor or to revise the described format, syntax,
API, and so on in the course of grammar recovery, evolution, and customisation.

e Program transformations for grammar-dependent software, which must co-evolve
with the underlying grammar structure.

e Data transformations to adapt data structures so that they are in compliance with
the adapted format (i.e., grammar) assumed by the co-evolved programs.

e Customising transformations to derive grammarware that deals with specific
grammar uses and specific technology.
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The customising transformations involve elements of aspect-oriented programming [59].
For example, the derivation of a proper parser (say, frontend) from a plain grammar can
be seen as a weaving process to add several aspects to the basic grammar structure, e.g.:

e Parse-tree construction.

e Parse-tree annotation, e.g., for line and position information.

e Attribute computation, e.g., for types or use/def relations.

e Symbol-table management, maybe also used for semantics-directed parsing.
e Technology-biased tweaking, e.g., for disambiguation.

One can also view some, if not all, customising transformations as ordinary grammar
transformations defined on a designated grammar notation. The implementation of
grammars according to the grammarware life cycle can often be supported by genera-
tive programming [32].

Grammar transformations From the list above it becomes obvious that the trans-
formation of grammars is a key concept. (It should be noted however that grammar
transformations are far from constituting a common practice!) To give a typical ex-
ample, we consider a transformation for the completion of the Cobol grammar as it
occurred during the recovery project in [75]. To this end, we quote an informal rule
from IBM’s VS Cobol Il reference [46]:

A series of imperative statements can be specified
whenever an imperative statement is allowed.

To implement this rule, we can apply a transformation operator generalise as follows:

generalise i nper ati ve- st at enent
toi nperative-statenent +

The grammarware engineer writes this grammar transformation down in a transfor-
mation script, or (s)he operates in a designated console for transformations, but in-
teractive support is also conceivable. The semantics of the operator generalise are
such that it replaces the EBNF phrase i nper ati ve- st at enent by the phrase
i mper ati ve- st at ement + as suggested by the informal rule. We call this a gener-
alisation because the new phrase is more general than the original phrase in the formal
sense of the generated language.

Categorisation of grammar transformations In Fig. 5, we compile an open-ended
list of different kinds of grammar transformations. We refer to [71, 77, 24] for first
results on the definition, the implementation and the deployment of some of these cat-
egories in the specific context of correcting, completing, or customising definitions of
concrete syntax. In all phases of the grammarware life cycle, grammar refactoring
makes sense. That is, the grammar is restructured without affecting its generated lan-
guage, which is formally defined for any kind of grammar notation. Here is an example
of refactoring a Cobol grammar:
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Figure 5: Grammar transformations as a paradigm.

extract "ON'? "SI ZE" "ERROR' inperative-statenent+
as Oon-si ze-error
from add- st atenent-format-i

That is, we extract some part of a production for add- st at enent - format -i to
constitute a new nonterminal on- si ze- err or. Going beyond pure refactoring is
frequently necessary. For example, grammar evolution tends to include new produc-
tions, exclude obsolete productions, and revise existing productions. This is called
construction and destruction in the figure. Another mode of evolution is normalisa-
tion, e.g., the systematic elimination of regular operators by using recursive definitions
instead, or vice versa. Normalisation preserves the generated language as refactoring
does, but it is an exhaustive operation as opposed to a point-wise operation. All kinds
of transformations for evolution are immediately useful during grammar recovery and
customisation as well. The figure also lists several kinds of transformations that specif-
ically deal with recovery and customisation. These transformations either fix plain
grammar structure as in the case of evolution, or they operate on an enriched grammar
notation. Disambiguation is a good example for both options. Some amount of dis-
ambiguation can be performed by means of plain grammar refactoring. Some issues
could remain, which require technology-biased customisation, e.g., adding actions for
semantics-directed parsing [95, 18].

Multi-level transformations We switch to the XML setting to briefly illustrate how
the primary grammar transformations tend to imply transformations at other levels.
In Fig. 6, the middle layer is about XML schema transformation. The top and the
bottom layers complete this schema transformation to also be meaningful for depen-
dent document-processing functionality as well as corresponding XML streams. The
arrows “1” and “|” are meant to indicate that the transformations at the top and the
bottom layers are (to some extent) implied by the schema transformation at the middle
layer. The arrow “|” is discussed in some detail in [73]. At IBM Research, related
work is underway [47]. The overall problem is similar to database schema evolution
coupled with instance mapping as studied by Hainaut and others [40, 42]. The arrow
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Figure 6: Multi-level transformations in the XML setting with a primary schema trans-
formation and co-evolving document processors as well as migrated XML streams.

“1” has not been studied in the narrow XML or grammar context. However, the over-
all problem is similar to Opdyke’s refactoring of class hierarchies in object-oriented
programming [92]. (Recall class dictionaries are essentially grammars.)

8 An emerging discipline

The essence, the omnipresence, the promises and the ingredients of a comprehensive
engineering discipline for grammarware have not been identified before, but relevant
ideas and concepts are found in previous work, which is already clear from the many
pointers given throughout the paper. The following related work discussion substanti-
ates that we have identified an emerging discipline. All the referenced techniques are
versatile, but we contend that a proper research effort is needed to study foundations in
a systematic manner, and to deliver well-founded and well-engineered practices.

Grammar transformations They play an established role in implementing parsers,
e.g., for the elimination of chain productions; see any text on compilation [2, 1], or
Pepper’s unification of LL and LR parsing [97]. By contrast, the proposed engi-
neering discipline relies on grammar transformations in the sense of a programming
tool. A grammarware engineer programs grammar transformations to perform refac-
toring, disambiguation, and others. Wile’s transformations for deriving an abstract
from a concrete syntax [113] and Cordy’s et al. transformations to enable ‘agile pars-
ing’ based on problem-specific grammars [24] are instances of this concept. More
generally, the paradigm of grammar transformations can be expected to adopt ideas
from refactoring [39, 92, 66], schema evolution [40, 42], and transformational pro-
gramming [96, 100].
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Grammar customisation This concept is related to the notion of generic language
technology [60, 12, 55, 9], where one generates software components from language
definitions, e.g., interpreters and compilers [78], APIs for processing source code [102,
52], or visitor frameworks for traversal [110]. Customisation poses two challenges:

1. The links between different grammar-like artifacts have to preserved.
2. Support for a separation of concerns that jointly occur in grammarware is needed.

An example for (1.) is the Maptool in the system Eli for language implementa-
tion, which addresses the link between concrete and abstract syntax [56]. There are
many examples for (2.), especially in the context of technology for program trans-
formation [25, 82, 22, 67]. One can distinguish separation of structural concerns,
e.g., concrete syntax, comments, layout, preprocessing statements vs. behavioural con-
cerns, e.g., the primary transformation as opposed to change logging or error handling.
We contend that a comprehensive, well-engineered approach to customisation has to
combine ideas from generative programming [32], aspect-oriented programming [59],
generic programming on datatypes [44], and modular attribute grammars [34, 58, 70].

Grammar assessment Some form of grammar assessment has been previously ex-
ercised for the purpose of measuring the quality of grammars in the context of reverse-
engineering language syntaxes [101, 72]. A uniform approach for analysing gram-
mars and grammar-dependent software could be based on grammar-flow analysis by
Wilhelm and others [87, 49]. The validation of grammar-dependent software can be
based on manually developed conformance suites [89], or stochastic test-set genera-
tion; see [19, 86] for compiler testing, and [85, 104] for other settings. Test set genera-
tion necessitates a whole string of techniques to deal with the standard oracle problem,
to minimise test cases that act as symptoms, to enforce semantic constraints as opposed
to purely structural generation [20, 57], and to accomplish negative test cases. Valida-
tion can also be based on formal coverage criteria, e.g., Purdom’s rule coverage for
context-free grammars, or vital extensions thereof [99, 72].

Standard formats There has been a recent flurry on standard formats in a re- and
reverse engineering context [69, 83, 45, 103, 114]. The overall idea of standard for-
mats has already proved to be useful in the context of compilation and static program
analysis for long; think of widely adopted formats such as PDG or SSA [43, 35, 23].
Standard formats complement our notion of a base-line grammar since they are nor-
mally less language-specific than base-line grammars. Recent work has focused on
formats that support interoperability of tools operating on source code models, e.g., the
XML-based format GXL [45] as well as layers defined on top of it. A current topic is
improved reuse for language-specific schemas (say, base-line grammars) on the basis
of their modular composition from library fragments [114]. Another active research
topic is the provision of API generation for standard formats, parse trees, and other
intermediate representations [111, 55, 102, 52, 76]. This is an improvement over the
more basic approach to use generic data representations such as plain ATerms [11] in
generic language technology or the Document Object Model [30] (DOM) for accessing
XML content.
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Parsing This is an active research field, and the open problems are of relevance for
the proposed engineering discipline. There is a body of work that demonstrates how
paradigm shifts (regarding parsing technology) attack grammarware hacking [95, 18,
15, 8, 13, 81]. It is widely acknowledged that the common development process for
industrial parser development is far from being optimal. An improvement of common
practices is showcased in [80], where a C# parser is designed while focusing on the
adoption of software engineering techniques. A current topic is tolerant parsing, which
is meant to address the dialect problem and other problems that are in conflict with
insistence on precise grammars [5, 65, 88, 63]. Not even the basic battle about the
ultimate parsing regime is decided: is it generalised LR-parsing with powerful forms
of disambiguation [62, 13]; is it top-down parsing but then with idioms for semantics
direction [95, 18]; it is simple LARL(1) parsing with token decoration [81]; is it plain
recursive descent parsing but then with provisions for limiting backtracking [18, 68],
or what else? This multitude of options supports our separation of pure grammars vs.
technology-biased grammar customisation.

9 Research challenges

The effort for arriving at general and well-founded and automated engineering prac-
tices for grammarware should not be underestimated. To give an example, so far there
is no somewhat universal operator suite for grammar transformations despite all efforts
in the last few years; recall the related work discussion. Developing a universal suite,
which will be meaningful to software engineering as a whole, appears to be challeng-
ing. Such indications for the complexity of the needed research effort makes us think
in terms of a public research agenda as opposed to a short-term project.

The following list entails research issues on foundations, methodology, tool support
and empirical matters. The items are listed in no particular order. Each item is self-
contained, and could serve as a skeleton of a PhD project.

1. A framework for grammar transformations. This effort culminates in a domain-
specific language based on appropriate basic operators. The faced challenges are
about orthogonality of the basic operators, full coverage of all transformation
scenarios (recall refactoring, construction, etc.), simplicity of use, and a suitable
theory for formal reasoning. Initial results can be found in [113, 75, 71, 24].

2. An approach for co-evolution of grammar-dependent software. The approach
should be largely parametric in the language for which co-evolution is supported.
A prototypical example is the evolution of an XSLT program in the view of
changes of the underlying XML schema. Another example is the co-evolution of
an aspect for parser tweaking or parse-tree construction in the view of changes
of the underlying concrete syntax.
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3. A comprehensive theory of grammarware testing. This includes coverage cri-
teria for both grammars and grammar-dependent software as well as means for
test-case characterisation. A non-trivial issue is here to go beyond structural
properties. Also, making coverage analysis and test-set generation both versatile
and scalable is challenging. Initial results can be found in [85, 19, 86, 104, 72].

4. A collection of formal grammarware properties. This includes notions of cor-
rectness and completeness for grammars, e.g., relative to a testsuite, or a testing
oracle. This further includes metrics and slicing criteria for grammar-dependent
software. Ultimately, this includes distance metrics and preservation proper-
ties for grammar transformations. The development of a uniform framework for
properties of grammars, grammar-dependent software and transformations can
be based on grammar-flow analysis [87, 49].

5. Aspect-oriented grammarware development. A prototypical example is parser
development, which starts from a pure grammar to be elaborated by aspects
for pre-processing, error recovery, parse-tree construction, attribute computa-
tions, technology-biased disambiguation, annotation of parse trees with posi-
tion information or comments, and others. The challenge is indeed to sepa-
rate these aspects as to constitute proper modules, and then to derive the com-
plete artifact by advanced modular composition. Initial results can be found
in [34, 58, 70, 82, 107, 22, 67].

6. A model for debugging grammarware. This includes static analyses, e.g., an
analysis to give indications of sources of ambiguity on the basis of an LR(%) con-
flict analysis for smaller ks. This also includes debugging of grammar-dependent
software while paying attention to the involved grammars. For example, struc-
tural patterns such as nests of some construct could be integrated into the de-
bugging model. The generic debugging model in [91] could be useful in this
context.

7. A detailed life cycle for grammarware. Processes for typical life-cycle scenar-
ios of recovery, evolution, and customisation need to be defined in detail, e.g.,
processes for the alternation of technology vs. the evolution of grammarware
functionality. This development differentiates the kinds of grammarware, e.g.,
document processors vs. APIs vs. parsers. The defined processes highlight the
potential for automation and quality assessment in the various phases.

8. Tolerant grammarware. Entirely precise grammars are often not the preferred
option from an engineering point of view. Firstly, this is the case when semi-
structured data or input with loose structure has to be handled, e.g., when user in-
put is processed real-time in an IDE editing session. Secondly, problem-specific
grammars can also be more efficient in terms of effort and costs whenever the
problem at hand does not inherently require an entirely precise grammar, e.g.,
analysis or transformation problems that are only concerned with few language
constructs. However, the consideration of tolerant grammarware triggers addi-
tional correctness problems as discussed for language parsers in [63]. A general
methodology for tolerant grammarware has to be delivered.
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9.

10.

11.

12.

13.

Grammar inference. In several settings, suitable base-line grammars are not
readily available, e.g., in software re-engineering. There is previous work on
grammar recovery on the basis of grammar knowledge such as a semi-formal
language reference [75, 74]. By contrast, little is known about grammar infer-
ence from sample data. In fact, inference of XML schemas from XML streams is
relatively simple because the markup text mentions element and attribute names.
However, other forms of grammars are not easily inferred. The inference of
interaction protocols requires non-trivial program analyses and heuristics. The
inference of concrete syntax definitions requires learning a language in an Al
sense as it has been studied for natural languages [94].

Conception of an IDE plug-in supporting the life cycle of grammarware. An
interactive development environment (IDE) for a given language would be ex-
tended to facilitate the development of grammarware. The underlying technol-
ogy needs to be very flexible and open, e.g., the combination Eclipse (ht t p:
/I ww. ecl i pse. org/) and the ASF+SDF Meta-Environment [60, 9] ap-
pears to be suitable. The plug-in would integrate tooling for interactive and
batch-mode grammar transformations, co-evolution of grammar-dependent pro-
grams, test-set generation, coverage visualisation, calculation of grammar met-
rics, indication of bad smells, customisation of grammars, and others.

CASE meets CAGE. The automation aspect of the engineering discipline can
be termed as CAGE — computer-aided grammarware engineering. This raises
the issue of how to integrate CAGE with established CASE — computer-aided
software engineering. This would clarify the role of the new engineering disci-
pline for the analysis and the design of complex, long-living software systems
as opposed to studying grammarware solely at the code level. For example, one
should investigate the necessary refinement of CASE approaches such as Ratio-
nal’s Unified Process and corresponding CASE tools.

Grammar-aware asset management. In many software projects and organisa-
tions the knowledge about software assets is largely missing and a form of knowl-
edge management helps to increase the understanding of the software portfo-
lio [61]. Given the special nature of grammarware, specialised knowledge man-
agement techniques may exist for grammarware. Also, the overall approach for
understanding and assessing software assets may need adjustment once grammar-
awareness is increased.

Reconcilable application generation. Implementations of domain-specific lan-
guages [26] (DSLs) fall completely within the scope of grammarware. An ap-
plication generator for the implementation of a DSL depends on grammars for
the high-level, domain-specific input notation as well as the target language(s).
Co-evolution is very meaningful in the DSL context. That is, modifications to
the high-level notation imply that the DSL implementation needs to be revised,
but also that existing DSL programs have to be upgraded. A particularly hard
problem is that generated code could have been customised by the programmer.
Hence, a scheme is needed to reconcile the newly generated code with the previ-
ously customised code.
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14. Empirical research on grammarware. What are measurable losses implied by
grammarware hacking? What are success stories, and what are the key factors for
success? What are further insights in the grammarware dilemma, and how does
this compare to other dilemmas in software engineering? What is the mid- and
long-term perspective for the distribution of different kinds of grammarware?
Will it be useful to broaden the scope of the engineering discipline for grammar-
ware, e.g., by providing a uniform paradigm for grammarware, databases, the
semantic web [29], and model-driven architecture?

10 Concluding remarks

We have argued that current software engineering is insufficiently aware of grammars,
which is manifested by an ad-hoc treatment of grammarware. We layed out an agenda
that is meant to contribute to a trend towards research on grammarware from an en-
gineering point of view. We justified the envisaged research effort on the basis of the
omnipresence of grammarware in software systems and development processes. We
provided a substantial list of challenges, which can be viewed as skeletons for PhD
projects. Such challenges need to be addressed in order to make progress with the
emerging discipline for engineering of grammarware.

Research is needed that focuses on modularity, robustness, and evolvability of grammar-
ware and also on the automation of grammarware development. To this end, we team
up with current trends in software engineering. Firstly, grammarware is a form of
aspect-oriented software, where grammars can be seen as the all-dominant concern.
Secondly, generative programming is the essential concept to customise grammars.
Thirdly, automated transformations are employed to manage evolution of grammars
and co-evolution of grammar-dependent software. Finally, there are several provisions
to measure quality. Putting all this together, the ultimate outcome of an engineering
discipline for grammarware is a more automated, more predictable, and more agile
information technology.
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