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Abstract

Syntactic and semantic analysis are established topics in
the area of compiler construction. Their application to the
understanding and restructuring of large software systems
reveals, however, that they have various shortcomings that
need to be addressed. In this paper, we study these short-
comings and propose several solutions. First, grammar
recovery and grammar composition are discussed as well
as the symbiosis of lexical syntax and context-free syntax.
Next, it is shown how a relational calculus can be defined
by way of term rewriting and how a fusion of term rewrit-
ing and this relational calculus can be obtained to provide
semantics-directed querying and restructuring. Finally, we
discuss how the distance between concrete syntax and ab-
stract syntax can be minimized for the benefit of restruc-
turing. In particular, we pay attention to origin tracking,
a systematic technique to maintain a mapping between the
output and the input of the rewriting process. Along the
way, opportunities for further research will be indicated.

1. Introduction

Any text book on compiler construction (e.g., [2, 45]) tells
us that a compiler consists of three phases: (i) syntax analy-
sis; (ii ) semantic analysis; and (iii ) code generation. Today,
most compiler research has shifted to just-in-time compi-
lation, profile-driven code optimization and energy-aware
code generation. Although there are still open issues in ar-
eas like inter-procedural pointer analysis and aliasing, and
code generation for specialized chip sets and parallel archi-
tectures, it is fair to say that many aspects of compilation
can be considered a closed topic. This is particularly true
for syntax analysis and major parts of semantic analysis. Of
course, this does not imply that all these techniques are al-
ready applied in practice.

Since the understanding and restructuring of software
systems are tasks that resemble compilation, it is a widely

held belief that the understanding and restructuring of soft-
ware systems can be achieved by simply applying standard
compilation techniques. In this paper I will discuss the
mismatch between standard compiler techniques and the
requirements imposed by software system understanding
and restructuring. Semantic issues are approached from a
rewriting perspective and opportunities for further research
will be indicated along the way.

1.1. Compilation

Compilation is a well-defined process for the construction
of new software with well-defined input, output and con-
straints. This can be detailed as follows:

• Input is a source program in a fixed language with a
fixed syntax definition and semantics.

• Output is code in a fixed target machine language with
well-defined syntax definition and semantics.

• The constraints imposed on the compilation process
are known in advance. First and foremost, the gener-
ated machine code should be semantically equivalent
to the source program. In addition to this, certain pa-
rameters may steer the compilation process, e.g., ef-
ficiency of the compilation process itself, or perfor-
mance parameters of the generated code (efficiency,
memory footprint, power consumption, etc.).

• Compilation is a batch-like process without human in-
tervention.

• Compilers are used forforward engineering, i.e., the
construction of new software.

1.2. Understanding and Restructuring

System understandingis an exploration process that may
have two forms of input: (i) all explicit artifacts related to
a software system such as, for example, design documents,
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source code, revision histories, build files, test cases, and
documentation; (ii ) implicit knowledge about the system
that its designers, builders or maintainers may still have.
There is no clear target language for system understanding.
The extracted facts can be produced as a textual listing, as
database records or as a graphical display.

System understanding is an interactive, iterative, process
that follows the Extract-Abstract-View scenario:

Extract: Parse source text and extract elementary facts
Note that the extraction phase depends on the source
language.

Abstract: Perform operations on these elementary facts to
obtain derived facts that are tailored towards the anal-
ysis problem at hand.

View: Use the derived facts for textual reporting or visual-
ization.

System restructuringis a transformation process that
takes the source code (and possibly other artifacts) of a
given software system as input and generates new source
code that is “better” according to given criteria. Improve-
ments may amount to removal of obsolete language con-
structs, restructuring of the control flow, or even complete
regrouping and rearranging of code in order to get a better
overall system architecture. The resulting code may be in
the same language (source-to-source transformation) or in
another language (language conversion).

The goals of understanding and restructuring are more
diffuse and varied than is the case for compilation. There
is no a priori target for representing basic facts, and the
desired queries and inferences may vary widely. Under-
standing and restructuring are applied to existing software.
They have therefore the following properties that differenti-
ate them from compiling:

• Systems consist of several sources languages; for some
of these no proper syntax definition is available and
this may have to be recovered. Semantics maybe un-
clear.

• Analysis has to be performed over these multiple
source languages. This implies a need for language-
independent analysis frameworks.

Not only traditional compiled languages like COBOL,
PL/I, FORTRAN, C, C++ and Java have to be consid-
ered, but also scripting language like Tcl, Perl, PHP
and others that are largely interpreter-based and defeat
many techniques for static analysis.

• A compiler abstracts away from the source text as soon
as possible. Understanding and restructuring require
closer links to the source text due to textual/syntactic

queries and the need to literally reconstruct the source
during restructuring. This introduces additional re-
quirements such as the traceability from derived facts
or restructured code to the source code.

• The process of system understanding is highly inter-
active: initial findings may trigger new questions that
lead to new findings, and so on. In addition to this, the
results of understanding may be viewed and browsed
in various manners.

• Understanding and restructuring are used forreverse
engineering, i.e., the understanding and improvement
of existing software.

1.3. Why Rewriting?

Assuming some form of lexical or syntactic analysis (we
come back to this in Section 2), there are two main options
available for further analysis and restructuring.

The first option is to use a standard programming lan-
guage (C, C++, Java, C#) to explicitly program the desired
analysis and restructuring. Libraries may be available to
support these tasks. This is the dominant approach today,
but is has several drawbacks. It is not so easy to express the
pattern matching that is required to extract information and
to identify the starting points for restructuring. This code is
hard to maintain and not easy to modify when the require-
ments change.

The second option is to use some higher-level, rule-
based, formalism to express analysis and restructuring. The
major contenders here are attribute grammars and term
rewriting systems. Advantages are that pattern matching
can be expressed at a high level and that many high-level
features are provided: traversal primitives, construction
primitives, etc.

The focus in this paper is onterm rewriting systems. The
simplification of algebraic expressions or formal differen-
tiation form a good basis for understanding them. Rewrite
rules consist of a left-hand side (a pattern to be matched)
and a right-hand side (the replacement term). Term rewrit-
ing amounts to taking an initial termT0 and applying the
rules as long as possible. This leads to a number of inter-
mediate stepsT1, ...,Tn−1 and when no more replacements
are possible the answer (in jargon: the normal form)Tn is
found.

Term rewriting systems are simpler than attribute gram-
mars and give more possibilities for mixing computations
on syntax trees and on semantic values. Term rewriting
scales well to huge applications. The ASF+SDF Meta-
Environment [26, 5, 16, 8, 7] serves as a conceptual back-
ground and long-term perspective for the topics discussed
in this paper, but we do not assume any knowledge of this
technology and will explain details as needed. Many of



the considerations also apply to other systems supporting
term rewriting. There are, in particular, many commonali-
ties with TXL [13]. We refer to [21] for a reasonably com-
plete overview of term rewriting systems.

1.4. Plan for this Paper

First, we will address topics related to syntactic analysis
in Section 2: the recovery of lost grammars (Section 2.1),
the need to compose grammars from grammar modules
(Section 2.2), and the reconciliation of lexical syntax with
context-free syntax (Section 2.3).

Next, we move on to semantic issues in Section 3: after
a general discussion on dataflow analysis (Section 3.1) we
focus on the use of relations for representing program facts
and querying them. In Section 3.2 we develop a relational
calculus for this purpose and in Section 3.3 we sketch a per-
spective in which term rewriting and relational calculus are
fused into a powerful tool for both syntactic and semantics
queries and transformations.

In Section 4 we discuss restructuring and focus on tech-
niques that minimize the distance between the source of a
restructuring and its result. We discuss the need to bring
concrete syntax and abstract syntax closer together (Sec-
tion 4.1) and the need to preserve annotations during rewrit-
ing (Section 4.2). In Section 4.3 we describe origin track-
ing, a systematic technique to maintain a mapping between
the output and the input of the rewriting process. Section 5
gives some closing remarks.

2. Syntax Analysis

Context-free languages, parsing (syntax analysis) and
parser generation have been widely studied in the middle
of the previous century. A standard work summarizing the
field in the early seventies is [3]. It is not surprising that
many consider this topic as closed and that it is not so easy
these days to get a paper on this subject accepted for pub-
lication. These results are used today in many parsers and
parser generators.

There are, however, reasons to reconsider this subject
from the perspective of understanding and restructuring.

2.1. Grammar Recovery

The basic assumption of all work on context-free languages
is that a syntax definition is a given artifact that can be an-
alyzed and used. Analysis amounts to defining subclasses
of context-free languages with certain properties (e.g., un-
ambiguous, finitely ambiguous, inherently ambiguous, de-
terministically parseable) and to search for criteria to test
whether a given language or syntax definition falls in some

of these subclasses. Use of a syntax definition amounts to
the generation of parsers for some of these subclasses.

A topic that is never addressed in this work is how syntax
definitions come into existence. In fact, a complete engi-
neering process can be identified that deals with the design,
construction, testing, use, improvement and maintenance of
syntax definitions. Some initial results on this subject are
reported in [29, 14]. Major questions to be addressed are:

• The extraction of syntax definitions from manuals,
tools and online resources.

• The systematic transformation and improvement of
these extracted syntax definitions. This includes,
amongst others, the disambiguation of the type infor-
mation that is encoded in names of nonterminals (e.g.,
<IntegerExpression> ). It also has to bridge the
gap between the original purpose a grammar was writ-
ten for (e.g., standardization or documentation) and the
way we want to use it (e.g., tool generation).

2.2. Grammar Composition

Another topic that is only scarcely addressed in the work on
context-free languages is the issue ofmodularityof syntax
definitions. By this we mean the decomposition of a syn-
tax definition in a number of modules (e.g., separate mod-
ules containing syntax rules related to procedure declara-
tions, record definitions, database operations, or exception
handling.) and the composition of such modules to form
a complete syntax definition. The merit of this approach is
that a clear separation can be made between a base language
(e.g., COBOL) and its dialects or extensions (e.g., COBOL
VS II, extensions for CICS or SQL). A desired combination
of dialect features and extensions can be readily assembled
from syntax modules.

Unfortunately, the widely available parser generators
only accept syntax definitions that fall in subclasses of the
context-free grammars (LL(1), LALR(1), etc.) that are
not closed under composition. For instance, a syntax def-
inition for yacc should be LALR(1) and the combination
of two LALR(1) definitions is not guaranteed to be again
LALR(1). This becomes clear during parser generation
time when so-called shift/reduce conflicts or reduce/reduce
conflicts are discovered. Both indicate that the parser gener-
ator cannot make a unique choice how to generate a parser
that behaves correctly under all circumstances.

One approach to solve this problem is to usegeneral-
ized parsing[30, 41, 22], a technique that takes the exis-
tence of conflicts for granted and tries to resolve them dur-
ing parse time (as opposed to parser generation time when
they are discovered). The net effect is that the complete
class of context-free languages can be parsed. The price to



be paid is that the parser has to pursue more than one possi-
ble parse simultaneously while parsing according to certain
syntax rules. Some of these parallel parses will lead to a
complete parse, others will be aborted half way since they
do not encounter the required input. This method has been
validated in practice but research questions remain:

• Since the complete class of context-free languages can
be recognized, also ambiguous sentences can be rec-
ognized. The filtering of undesired ambiguities is an
area of ongoing research [11].

• In the case of a syntactically incorrect input sentence,
more than one parse may have been tried. This makes
it hard to give precise error messages pointing at the
precise location of and reason for the error.

• The parameterization of modular grammars needs fur-
ther study.

2.3. Lexical versus Context-free Grammars

In the context of program understanding, there are two ma-
jor options for the textual analysis of programs: lexical anal-
ysis and context-free analysis.

Using lexical analysisboils down to using regular ex-
pressions as the basis for analysis and using tools (e.g., sed,
grep, awk, lex) or languages (e.g., Perl, Python, Java) with
support for them. The major advantage of this approach is
that only regular expressions are needed for the language
constructs we want to analyze (e.g., call statements) and
that the availability of a full syntax definition of the lan-
guage in question is not required and thus circumventing the
grammar recovery problem discussed above (Section 2.1).
Another advantage is that even syntactically incorrect or in-
complete programs can be analyzed. The disadvantage of
this approach is that it becomes harder and harder to main-
tain and control the set of regular expressions as the number
of language constructs under investigation increases.

Usingcontext-free analysisamounts to writing a context-
free syntax definition for the language(s) of interest and us-
ing a parser generator to generate a parser. The use of a
complete context-free grammar has as advantage that one
gets a coherent overview of all language constructs. The
disadvantage is that the creation of such a grammar may be
a substantial effort (see again Section 2.1).

An interesting intermediate approach areisland gram-
mars[33]. The basic idea is to distinguish betweenislands
(relevant constructs which are parsed in detail) andwater
(irrelevant constructs which are skipped). Islands grammars
can be implemented in a natural manner using generalized
parsing as discussed above (Section 2.2) and scanner-less
parsing ([36, 43]). The former is necessary since islands do

not fall easily in one of the standard subclasses of context-
free languages. The latter facilitates the seamless integra-
tion of lexical syntax and context-free syntax and is neces-
sary to achieve character-level parsing as is achieved with
regular expression based scanning.

In scanner-less parsing there is (surprise) no scanner and
only a parser: each individual character is considered as a
lexical token and all scanning decisions are made by the
parser.

The notion of island grammars is appealing but more ex-
perience is needed to determine their merits. Research ques-
tions are:

• The design of island grammars is not easy and requires
a lot of experimentation. Is it possible to develop a
systematic design method for island grammars?

• How can island grammars be validated, i.e., is it pos-
sible to determine that the island grammar recognizes
all relevant constructs?

• Is it possible to designmodularisland grammars? Cur-
rently, the definition of water in different definitions
easily interferes with the definition of islands in an-
other grammar. See also the discussion in Section 2.2.

3. Semantic Analysis

Semantic analysis is a major subject in both compiler con-
struction and system understanding and addresses topics
like dataflow analysis, pointer and alias analysis, type infer-
encing, slicing, run-time profiling, coverage analysis, and
much more.

We have seen above that the analysis of multiple lan-
guages is a big issue for system understanding and we will
approach semantic analysis from this perspective and take
dataflow analysis as an example.

3.1. Dataflow Analysis

Dataflow analysis is one of the techniques used to collect in-
formation about the use, definition and dependencies of data
in programs. In [20] a generic dataflow framework is devel-
oped that can be instantiated to solve problems like reach-
ing definitions, live variables, constant folding, dead code
elimination, and others. From the perspective of system
understanding (and its need to handle multiple languages)
it would make sense to use tools that implement such a
framework and instantiate them for the required languages
and dataflow problems. Several attempts have been made
to build such generic dataflow tools [25, 32, 4] but they
have never come into wide-spread use. In the case of com-
piler construction, dataflow analysis is implemented from
scratch for each new compiler. There are, of course, several



compiler frameworks that provide dataflow tools or libraries
with routines to support dataflow analysis, but the point is
that it is either not easy to adapt these tools to other lan-
guages than supported by the framework, or they are hard
to use in isolation or in combination with tools outside the
framework.

We can only speculate about the reasons for this state
of affairs. It may be that there is a mismatch between the
functionality provided by the generic tools and the needs
of potential applications. Recall, in the case of understand-
ing and restructuring, the need for analyzing multiple lan-
guages and the wide range of queries. It is also possible that
the savings by generic dataflow tools do not compensate the
additional effort of learning and using such tools.

3.2. Relations

Algorithms for dataflow analysis are usually presented as
graphalgorithms and this seems to be at odds with our em-
phasis onterm rewriting, the major difference being that
graphs can and terms cannot contain cycles. Fortunately,
every graph can be represented as a relation and it is there-
fore natural to have a look at the combination of relations
and term rewriting.

The idea to represent relational views of programs is al-
ready quite old. For instance, in [31] all syntactic as well
as semantic aspects of a program were represented by rela-
tions and SQL was used to query them. Due to the lack of
expressiveness of SQL (notably the lack of transitive clo-
sures) and the performance problems encountered, this ap-
proach has not seen wider use. In Rigi [34], a tuple format
(RSF) is introduced to represent relations and a language
(RCL) to manipulate them. In [35] asource code algebrais
described that can be used to express relational queries on
source text. In [10] aquery algebrais formulated to express
direct queries on the syntax tree. It also allows the querying
of information that is attached to the syntax tree via annota-
tions. Relational algebra is used in GROK [24] and Relation
Partition Algebra (RPA) [19] to represent basic facts about
software systems and to query them. In GUPRO [18] graphs
are used to represent programs and to query them. In F(p)–
` [12] a Prolog database and a special-purpose language are
used to represent and query program facts.

3.2.1. Relations and Term Rewriting

How can relations and term rewriting help answering
queries about syntactic and semantic aspects of software
systems? Due to the mathematical nature of relational alge-
bra it comes as no surprise that bags, relations and the op-
erations on them can be defined easily using term rewriting.
For instance, the difference of two bagsBag1 \ Bag2 is
defined by:

[df-1] {Es1, E, Es2} \ {Es3, E, Es4} =
{Es1, Es2} \ {Es3, Es4}

[default-df-2]
{Es1} \ {Es2} = {Es1}

We use the ASF+SDF notation, but this can be expressed
easily in any term rewriting formalism. Points to consider
are the following. We use the traditional notation for Bags:
lists of elements enclosed by{ and} . We use the conven-
tion that variablesE, E’ , E1, E2, ... stand for individual ele-
ments and that the variablesEs, Es1, Es2, ... stand for lists
of zero or more elements. In[df-1] the case is handled
that Bag1 andBag2 still have an elementE in common
that has to be removed. AlthoughBag1 and Bag2 may
have more than one element in common, we carefully re-
move one common element at a time in order to get the cor-
rect number of repetitions of elements in the resulting bag.
In [default-df-2] the complementary case is handled
thatBag1 andBag2 have no element in common.

In a similar spirit operations on relations can be defined.
For instance, the range operatorran that takes a relation (a
bag of tuples) and projects each tuple to its second element:

[ran-1] ran( {<E,E’>, Tuples} ) =
{E’} union ran( {Tuples} )

[ran-2] ran( {} ) = {}

The variableTuples stands for a list of zero or more tu-
ples. Along these lines it is straightforward to define a com-
plete menagerie of operators on bags and relations. An in-
teresting issue is that we have not yet committed to a par-
ticular kind of elementsfor these bags and relations. By
modeling this as a formal parameter of both datatypes we
can select the kind of elements as needed. In this way we
can even include (fragments of) syntax trees in relations.

3.2.2. A Relational Calculus

In relational algebra, queries are expressed by applying
specialized operators to relations. In relationalcalculus,
queries describe a desired set of tuples by specifying the
predicate the tuples must satisfy. See [42] for a complete
coverage of this distinction.

As an experiment, we define a little relational calculus
(let’s call it RSCRIPT) with the usual operators on bags and
sets such asunion , elem (is element of),== (equality)
and more. We also use bag and relation formers that resem-
ble list comprehensions in functional languages [44]. The
main difference is that we make a stricter distinction be-
tween value generators, predicates and constructing expres-
sion as we explain now.

Let ageneratorbe either (i) a variable ranging over the
elements of a bag:Var in Exp , whereExp is a bag-
valued expression; or (ii ) a tuple of two variables rang-
ing over the elements of a relation:<Var1, Var2> in



Exp, whereExp is a relation-valued expression. We can
now define two kinds of bag or relation formers:

• { Gen | Pred }: results in a new bag or relation
that contains all elements in the generatorGen that sat-
isfy the Boolean-valued expressionPred .

• { Gen1, ... | Pred | Exp }: results in a
new bag or set that is obtained by considering all com-
binations of elements from the various generators, de-
termining which combinations satisfyPred , and for
those construct a new element or tupleExp for the re-
sulting bag or relation.

Observe that most traditional primitives from relational
algebra can be defined using the bag and relation formers.
For instance, theran function we have seen earlier can be
defined as:

fun ran(R) = { <X, Y> in R | true | Y }

In a similar fashion, the inverseinv and the compositiono
can be defined:
fun inv(R) = { <X, Y> in R | true | <Y, X> }

fun o(R1, R2) =
{ <X, Y> in R1, <S, T> in R2
| Y == S | <X, T>}

Essential operators that cannot be defined in this man-
ner are (variants of) the transitive closure operator. We
provide the usual transitive closure operatorR+ defined by
R+ =

⋃N
i=1Ri . HereN is the cardinality ofRandRi denotes

i compositions of the relationR: R◦R◦ ...◦R. We also de-
fine R0 = Id whereId is the identity relation. The reflexive
transitive closureR∗ is defined byR∗ = Id∪R+.

As an experiment, we also provide built-in functions for
computing more sophisticated closures. For instance, ifU
is a relation representing uses of variables,D is a relation
representing definitions of variables, andP is the backward
control flow relation, thendominators(U,D,P) computes
which nodes can reach the use nodes without visiting a def-
inition node. This function is very similar to thedominates
relation used in dataflow analysis [2]. We define it by first
introducing the auxiliary functiond:

d0(U,D,P) = U
dn(U,D,P) = (dn−1(U,D,P)◦P)\D

In this definition,d0 hasU as initial value, and the subse-
quentdi represent the next composition with the relationP,
thus extending the closure one step further. In each step,
however, elements fromD are left out, so the closure oper-
ation stops for those elements. Now we can define

dominators(U,D,P) =
⋃N

i=0di(U,D,P)

whereN is the cardinality of the relationP. Observe that
R+ = dominators(R,{},R), sodominatorsis really a gen-

eralization ofR+. There are other ways to generalize the
transitive closure as described in [1].

This completes the definition ofdominators; an applica-
tion follows shortly. Experience has to show which general-
ized closure operations we really need. This also concludes
the sketch of RSCRIPT. The points to stress are:

• Bags and relations can easily be defined using rewrite
rules.

• The type of elements in bags and relations can be a
parameter of these datatypes; in this way also syntactic
information can be included in relations.

• An interpreter for RSCRIPT can also easily be ex-
pressed with rewrite rules (we do not discuss it here).

3.2.3. A Toy Example

To make the above sketch of RSCRIPTmore tangible con-
sider the following toy program:

declare x, y, z : integer;
[n1] x := 3;

if [n2] 3 then
[n3] z := y + x

else
[n4] x := 4

fi
[n5] y := z

It consists of the declaration of three integer variablesx , y
andz followed by three statements. Points of interest are la-
beled with[n1] , [n2] , and so on. It is straightforward to
extract the relationsDEFS(definitions of variables),USES
(uses of variables) andSUCC(the successor relation that
represents the control flow graph, including the start node
n0):

def DEFS = ’{<x, n1>, <z, n3>, <x, n4>,
<y, n5>}

def USES = ’{<y, n3>, <x, n3>, <z, n5>}
def SUCC = ’{<n0, n1>, <n1, n2>, <n2, n3>,

<n2, n4>, <n3, n5>, <n4, n5>}

We use a single quote (’ ) to denote literal bags or sets.
Uninitialized variables can now be found as follows:
def PRED = inv(SUCC)
fun rr(R) = elem(’n0, ran(R))
def UNDEF =

{ <V, N> in USES |
rr(dominators({<V,N>}, DEFS, PRED)) }

First, we determine the inverted control flow relationPRED.
Next, we define an auxiliary functionrr (for “reaches
root”) that checks whether the start noden0 is in the range
of a given relationR. Finally, UNDEFdetermines for each
tuple in theUSESrelation, whether it can be reached from



the start noden0 . This is done by way of thedominators
function explained earlier. If so, it represents a possible
uninitialized usage of the variable. In this example, the re-
sult will be {<z,n5>, <y,n3> } and this is as expected:
the use of variabley at [n3] is not preceeded byany ini-
tialization. For the use of variablez at [n5] the problem is
that notall preceeding execution path contain a definition.

3.3. Perspective and Research Issues

Relations form a language-independent representation of
facts extracted from programs and this approach is well-
suited for the analysis of multiple-language systems. The
original source text contains all the details about primary
syntactic aspects of the programs and the relations contain
secondary extracted information.

An intriguing perspective starts to emerge here in which
term rewriting and relational calculus can be fused. In the
described set-up nothing prevents us from combining the
derived relations with rewrite rules that perform either syn-
tactic queries or restructuring of the original source pro-
gram. This makes it possible to perform queries that use
both syntactic information and derived semantic informa-
tion, e.g., “give all procedure calls that can modify vari-
able X”. This makes it also possible to perform restructuring
based on both syntactic and semantic information.

In addition to the Extract-Abstract-View scenario
sketched earlier (Section 1.2), we get two further scenar-
ios: Extract-Abstract-Semantic Queries-View and Extract-
Abstract-Semantic Transformations. The two new steps are

Semantic Queries: Perform queries on the syntax tree us-
ing derived semantic information obtained in the ab-
straction step. This allows, for instance, to formulate
syntactic queries that also need dataflow information.

Semantic Transformations: Transform the original syn-
tax tree using derived semantic information obtained
in the abstraction step. This allows the formulation of
transformations that need semantic information.

The contribution here is to create a simple, rewriting
based, language-independent framework that supports both
analysis and transformation using syntactic and semantic
information. The latter can be obtained using relational cal-
culus. However, many questions remain:

• The evaluation of the relation-based approach versus
the graph-based approach is a matter of ongoing de-
bate [23]. There are at least two distinctions to be
made: algebravs. calculus and relationsvs. graphs.
Our (current) position in this matter is that a calculus
that includes certain reachability primitives is simpler
for the user and that relationsvs.graphs is a matter of

implementation. Clearly more research and evaluation
are needed.

• Although the algorithms to implement relational cal-
culus are mostly known, the integration with rewriting
poses an implementation challenge.

• How to deal with the need for incremental updates of
the derived relations after a restructuring step?

4. Restructuring

Restructuring and translation are the areas where term
rewriting really shines. Nothing is more natural than to say:
“replace constructA by constructB provided that conditions
C1, ...,Cn are satisfied”. This is precisely what a conditional
rewrite rule is about. We will neither explain this in detail
(but see [5, 16, 38]) nor elaborate on the successes of term
rewriting in this area (but see [8]). Instead, we will focus
on three very specific topics that manifest themselves when
applying term rewriting to understanding and restructuring.
All three topics aim at minimizing the distance between the
source of a restructuring and its result.

4.1. Concrete versus Abstract Syntax

In compiler construction it is usual to abstract from the
source text as soon a possible: from source text to parse tree
to abstract syntax tree to some form of intermediate repre-
sentation that is suitable for optimization and code genera-
tion.

Since restructuring frequently deals with source-to-
source transformations in which the result has to stay as
close as possible to the original, it is important to minimize
the distance between the rewriting rules and the concrete
syntax of the language. It is also well-known that for a re-
alistic language the abstract syntax is defined by hundreds
of operators and that the writing of transformation rules be-
comes harder and harder.

The solution as adopted in ASF+SDF is to allow arbitrary
concrete syntax in the rewrite rules. Consider as a trivial
case, theand function in Boolean expressions. Rather than
using the prefix notationand(B,false) one can also al-
low the infix notationB & false , whereB is a Boolean
variable. Instead of the rewrite rule

[and-1] and(B, false) = false

one can now write

[and-2] B & false = false

This seems nice, but not spectacular. The benefits become,
however, clear if we consider the effect on restructuring
rules for programming languages: we can write the rules us-
ing the usual concrete syntax for the constructs to be trans-
formed with variables occurring at appropriate places. This



simplifies the understanding of these rules. For instance, the
following rule comes from a commercial system that adds,
amongst many other things,END-IF keywords to if state-
ments in COBOL:

[ai-1] addEndIf(IF Expr OptThen Stats)
= IF Expr OptThen Stats END-IF

Concrete syntax in rewrite rules has many advantages, but
it may occasionally hinder abstraction. The best approach
is probably to limit the use of concrete syntax to those
applications where the above advantages can be obtained.
See [37, 14] for a further discussion of this topic.

4.2. Preserving Annotations

A second topic to be discussed is the role of annotations in
the rewriting process. Given a set of rewrite rules, rewrit-
ing is based on the idea that some initial term is traversed
and that wherever a left-hand side of a rewrite rule matches,
it is replaced by the corresponding right-hand side. Now
it happens frequently that tools want to transparently add
additional information to a term for later usage. Examples
are coordinates in the source code, the focus of an editor,
pointer to documentation node, etc.

Two steps are needed to achieve rewriting with anno-
tations. First, the term representation has to be extended
with annotations [9]. Second, the rewriting process has
to be extended to transparently handle annotations. The
idea of rewriting with annotation was first proposed in [28]
where annotations are called labels. Application of rewrit-
ing with annotations to the origin tracking problem (to be
discussed shortly in Section 4.3) were proposed indepen-
dently in [27] and [6]. The latest version of the ASF+SDF

Meta-Environment supports rewriting with annotations.

4.3. Origin Tracking

Compilers are only concerned with the original source text
when they have to produce warnings or error messages: co-
ordinates in the original source text and a message that ap-
plies to the program text at that location. Computing correct
coordinates is not easy, in particular when highly optimized
code has been generated. Usually, ad hoc techniques are
used to maintain these coordinates, but see [39].

In system understanding and restructuring the need for
good coordinates in the source text is evident when answer-
ing questions like: “where does this variable occur in the
text?” or “what is the original of this restructured code?”.

In [17] we have proposed a technique calledorigin track-
ing to maintain such dependencies in a completely general
way. It crucially depends on term rewriting. Suppose that
the ordinary term rewriting process proceeds in the steps
T0 → T1 → ... → Tn. Here T0 is the initial term (proba-
bly a function like an interpreter or compiler applied to the

syntax tree of a program) andTn is the normal form (the
value computed by the program or the code generated by
the compiler). The key idea of origin tracking is to com-
pute a reverse mapping7→ between the steps in the deriva-
tion: Tn 7→ Tn−1 7→ ... 7→ T0. Various methods can be used
to compute this information. For instance, one can anno-
tateT0 with source text coordinates and apply rewriting with
annotations. The annotations that are preserved inTn then
point to origins inT0. For instance, given rewrite rules
for the reversal of a list,reverse([one,two,two])
will yield in a few steps[two,two,one] . The ques-
tion now arises where eachtwo comes from. We an-
swer this in two steps. First annotate the initial term; this
leads to reverse([a:one,b:two,c:two]) . The
next step is to rewrite it with annotations and this yields
[c:two,b:two,a:one] . We can now immediately an-
swer the question about thetwo s.

This approach is ideal when the normal formTn still con-
tains fragments of the original termT0. This is typically the
case for fact extraction, static analysis and source-to-source
transformation. In [40] it is shown how this works for error
reporting. In the case of language conversion (translation
to another language) this information may be insufficient
and additional origin relations have to be established, but
see [15]. Research questions are:

• It is unlikely that a fixed set of propagation rules for
origin information can be defined that are suitable for
all applications. A more “programmable” method is to
be preferred.

• The algorithms needed for the efficient calculation of
origin relations are largely unexplored.

• The relation between origin tracking and traversal
strategies for terms needs further study.

5. Concluding Remarks

Understanding and restructuring of software systems im-
pose other requirements on syntactic and semantic analy-
sis than compiling. In this paper we have only briefly dis-
cussed syntactic issues: recovery and composition of gram-
mars and integration of lexical and context-free syntax. For
semantic issues we have used term rewriting: a simple, uni-
fying, framework that is very well understood from a theo-
retical perspective and scales well to industrial applications.
We have briefly explored the fusion of term rewriting and
relational calculus as well as techniques to minimize the
distance between the source of a restructuring and its re-
sult. Although an in-depth treatment of these topics is out
of the scope of this paper, we hope that this overview gives
a useful impression of the ongoing research efforts in this
area and acts as an invitation to join them.
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