
Enabling the Creation of Knowledge about

Software Assets

Paul Klint
Centrum voor Wiskunde en Informatica and University of Amsterdam

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands,
e-mail: Paul.Klint@cwi.nl

and

Chris Verhoef
Free University

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,
e-mail: x@cs.vu.nl

December 4, 2001

Abstract

In most companies two factors play a crucial role: managing the knowl-
edge that is necessary for doing business and managing the hardware
and software infrastructure that supports the business processes. Usually,
business processes and infrastructure are not optimally aligned.

We investigate how principles from knowledge management can be
applied to enable the creation, consolidation, conservation and continuous
actualization of knowledge about valuable software systems (“software
assets”) that are part of the infrastructure.

Our point of departure is a generic framework for knowledge creation
proposed by Von Krogh, Ichijo and Nonaka. We investigate the explicit
and tacit knowledge about software assets that may exist in an organiza-
tion and specialize the framework to obtain a strategy for creating new
knowledge about these software assets. By applying this strategy, one
can optimize the quality and the flexibility of the software assets while
reducing costs.

KEY WORDS: Knowledge management, knowledge creation, software as-
set management, software engineering, software maintenance, software
renovation.

1



1 Managing Knowledge versus Managing Knowl-
edge Creation

It is widely believed that knowledge management should be a key factor in
the strategy of every modern company. Knowledge management has manage-
rial as well as technical aspects. From the management perspective, it should
contribute to the company’s global strategy and be included in the standard op-
erating procedures [19, 20]. Of particular importance are measures to promote
knowledge management such as incentives to share knowledge and procedures
to use shared knowledge. From a technical perspective, information systems or
knowledge bases are used to store the shared knowledge.

In practice, knowledge management does not always live up to its promises.
There are a variety of reasons for this (also see [10]):

• Much knowledge in an organization is “tacit”, i.e., unformalized knowledge
that is only known to a small community inside a company. Knowledge
management relies too much on easily detectable, quantifiable, informa-
tion.

• Technical solutions dominate managerial solutions and knowledge man-
agement reduces to “filling a database”.

• A “knowledge officer” is responsible for the knowledge management pro-
cess. From a managerial perspective this is a reasonable approach, but in
most cases the knowledge officer is a staff member and is too far away from
the organizational units where actual knowledge is being generated (man-
ufacturing departments, marketeers, and the like). In addition, knowledge
creation is a serendipitous process that can only be enabled but it cannot
be controlled as many knowledge officers have found out the hard way.

• Knowledge is not static but dynamic: it is created, it is used and it
becomes obsolete. These dynamics are not well supported by standard
knowledge management practices.

Knowledge management is an economically rational theory stating that shar-
ing knowledge leads to better (organizational) intelligence than without sharing.
The consequence is that using this shared knowledge, organizations can compete
much better than would otherwise be possible. As the saying goes: Knowledge
is power. Knowledge management is indeed strongly connected to power of ex-
pertise. This truism not only applies to competing organizations but also to the
social systems within a single organization.

A well-known phenomenon inside organizations is the “knowledge czar”: an
individual who has large informal power based on the unique knowledge that he
or she possesses (power of expertise). The strong relation between power and
knowledge thus effectively blocks knowledge sharing and dissemination through-
out the organization. Without proper power management, successful knowledge
management may easily fail. However, it is hard to manage power [13, p. 7]:

2



The greater the recourse to power, the stronger the desire for it, just
as the use of ‘hard drugs’ will result in a stronger craving for drugs.

Power is not explained in economically rational terms, but in terms of addiction.
Therefore, the quantity of power is a more decisive factor than the quality of
it [13, p. 16]. This is the clarification for another truism: Power Corrupts. So
without proper power management, one could say that Knowledge Corrupts.
This may be one of the reasons that knowledge management does not live up
to its promises.

The general observation is therefore that knowledge cannot be controlled or
managed in a rational, top-down fashion like other assets of an organization as is
assumed by knowledge management. As a response to this observation, current
literature is focusing on the question how the process of knowledge creation can
be enabled in such a way that the special properties of knowledge are taken into
account.

In this paper, we address the question how general strategies for enabling
knowledge creation can be used to increase the knowledge about an organiza-
tion’s software assets: all software systems that support the realization of its
goals. These software systems provide functions like information management,
billing, telecommunications, e-commerce and the like. In this case, there is first
business knowledge that leads to requirements for software systems and these
requirements are used to build the desired systems. Successful systems generate
new requirements thus further obfuscating the knowledge about old and new
requirements. As a consequence, business knowledge gets concealed in the pro-
gram code. Unfortunately, this step cannot easily be reversed: having the code
does not mean that one can understand it and can recover the original require-
ments. To use an analogy: knowing the human genome does not automatically
lead to understanding humans.

To complicate matters even further, the software assets are continually evolv-
ing over time due to changed business insights (leading to changing require-
ments) and technical evolution of the platforms on which the software depends.
In the case of software assets there are also ample opportunities for knowledge
czars having expertise about some subsystems, but in the end no one under-
stands the software assets to their full extent. This is largely due to mainte-
nance. Or more precisely, this is due to the lack of knowledge management
during the evolution of software assets which becomes manifest during main-
tenance. Weinberger calls this the “maintenance masking dynamic”. In [22,
p. 243], he describes the problems that occur when an organization fails to
manage the tacit knowledge of maintenance teams.

There is another essential component to maintainability: the com-
petence of the crew, which is affected by turnover, training, and
management attitude toward maintenance. Because people are nat-
urally learners, the competence of the crew to maintain a particular
system will tend to grow over time, possibly masking the deterio-
ration of the code itself. But the crew’s competence must also be

3



maintained, largely by providing them with tools, training, and re-
sources for the job. If there should be a sudden exodus from the
maintenance crew, management will quickly discover how ugly a sit-
uation has been allowed to fester in the code, masked by the growing
competence of the people.

The central problem addressed in this paper is therefore how to obtain cir-
cumstances that enable the creation, consolidation, conservation and continuous
actualization of knowledge about software assets. We proceed as follows. In Sec-
tion 2 we summarize a state-of-the-art framework for knowledge creation and
knowledge enabling. A central notion in this framework is the distinction be-
tween tacit and explicit knowledge. In Section 3 we give an overview of implicit
and explicit knowledge about software assets. In Section 4 we show how the gen-
eral framework helps to understand the mechanisms to increase the knowledge
about software assets. Our conclusions are presented in Section 5.

2 Managing Knowledge Creation

Knowledge creation is an inherently bottom-up process while standard man-
agement practices are of a top-down nature. Managing knowledge creation is
therefore a balancing act to reconcile bottom-up and top-down processes: the
chaos of knowledge creation and the order of management.

2.1 Knowledge Creation Steps

In [15] the following five knowledge creation steps are distinguished:

Sharing Tacit Knowledge. As already pointed out above, the basis of orga-
nizational knowledge creation is the tacit knowledge held by individuals. This
knowledge cannot easily be communicated directly to others since it is implicit,
has not yet been verbalized, and depends on the physical and mental circum-
stances in which it has emerged. Instead, indirect mechanisms are needed such
as joint problem solving in small knowledge communities and teacher/apprentice
relationships. The result of this is a shared mental model of the tacit knowledge.
Knowledge communities are in most cases completely unrelated to the actual
organizational structure.

Creating a Concept. Based on the shared mental model, a verbalization of
the tacit knowledge is made. Metaphors and figurative speech are useful tools
to achieve this.

Justifying a Concept. The concepts that are created in the previous step
are screened for relevance and worth for the organization. Note that other parts
of the organization will be involved in the justification process.

4



Building a Prototype. The justified concept is turned into a tangible pro-
totype: either a working prototype of a product or a model of a service. Note
that other parts of the organization (e.g., manufacturing, marketing) will be
involved in the building of a prototype.

Cross-Leveling Knowledge. The previous two steps already involved other
parts of the organization, but once the prototype is completed it is used to
propagate the knowledge that it embodies throughout the whole organization.

2.2 Knowledge Enablers

Using the above five knowledge creation steps as point of departure, the question
arises what circumstances can be created that enable this knowledge creation
process. As already pointed out, hierarchical and technological solutions are
not sufficient. Rather mechanisms must be found that increase the awareness
of knowledge creation in all “veins” of the organization.

In [10], the following knowledge enablers are identified, that support the
knowledge creation steps in various ways:

Instill a Vision. Rather than a top-down managerial approach to knowledge
creation, a knowledge vision should succinctly describe the relevance of knowl-
edge creation for the organization. It should create awareness for knowledge
creation at all levels and it should identify knowledge sharing as a company
value. It should create trust, care and cooperation rather than suspicion, indif-
ference and internal competition.

Manage Conversations. Conversations over a cup of coffee form the so-
cial fabric of each organization [12]. They also form the primary mechanism
for sharing tacit knowledge. Personal dialogues are one of the most effective
mechanisms for information and knowledge exchange. Managing conversations
amounts to creating an environment in which everyone can participate in (semi-
formal) conversations and make valuable contributions. A conversation manager
may define explicit rules for conversational etiquette, intervene and direct con-
versations, and introduce innovative language to describe concepts and ideas.
Form of and rules for conversation differ for each knowledge creation step.

Mobilize Activists. Knowledge activists are persons that facilitate the knowl-
edge creation process. They may act as catalyst and start a new initiative by
bringing together the right people. They may act as coordinator by creating
the right context and by making connections with the global knowledge vision
as well as with related local initiatives in the organization. They may act as
merchant by attracting attention for an initiative in other parts of the organi-
zation. As opposed to the traditional knowledge officer who tries to control the
knowledge creation process, the knowledge activist aims at enabling it [21].

5



It is known from sociology that many people find jobs via personal contacts.
The majority of the personal connections are not close friends but so-called
“weak ties”. Weak ties are outside the person’s inner circle and have knowledge
that differs from the knowledge of the people closer by. Granovetter who dis-
covered this in the 1970s called this: the strength of weak ties [6]. The more
acquaintances a person has, the more powerful he or she becomes. Knowledge
activists have the professional goal to connect the right people and by doing so
they can become socially very powerful. Proper power management should be
applied to avoid that this unintended potential power concentration compro-
mises the long term goal of knowledge sharing.

Create Right Context. How can one create the right context for knowledge
creation? When answering this question several paradoxes become manifest.
How to combine central managerial control with flexibility? How to reconcile
the top-down formal structure of an organization with spontaneous structures
that have emerged in a bottom-up fashion among knowledge workers working
in different departments of the same company or even of other companies (e.g.,
customers)? How to moderate between the need for technological advancement
and the need to survive as a company? There is no one-size-fits-all solution for
this. It is important to understand that a proper context should support the
cycle of sharing individual tacit knowledge, documenting it, and again internal-
izing it at the group level. From an organization perspective various solutions
exist ranging from task forces and empowered divisions to cross-divisional units.

Globalize Local Knowledge. The final enabler aims at transferring locally
created knowledge throughout the perhaps globally distributed company. All
phenomena known from diffusion theory [21, 8] apply here: this theory explains
how innovations diffuse into society and organizations. The knowledge has to
be transferred between a creator and a receiver and psychological, sociological
as well technological barriers have to taken. In [10] this is formulated as a three-
staged process: triggering the process of recognizing a business opportunity and
relating it to knowledge available in some part of the company (using knowledge
activists, workshops, bulletin boards, and the like), packaging and dispatching
this knowledge, and re-creating it at the site of the receiver. The underlying
idea is that knowledge transfer is not a verbatim copying operation from sender
to receiver but that it has to consider the implicit and explicit knowledge of
sender and receiver as well as the local circumstances in which the knowledge
has to be re-created and applied.

In Table 1 the relation between knowledge creation steps and knowledge enablers
is sketched. An empty field denotes no correlation, a + indicates a moderate
correlation, and ++ indicates a strong correlation. We refer again to [10] for an
extensive motivation of this table.

6



Knowledge Creation Steps
Sharing
tacit
knowledge

Creating a
concept

Justifying
a concept

Building a
prototype

Cross-
Leveling
Knowl-
edge

K
n
o
w

le
d
g
e

E
n
a
b
le

rs

Instill a Vi-
sion

+ ++ + ++

Manage Con-
versations

++ ++ ++ ++ ++

Mobilize Ac-
tivists

+ + + ++

Create Right
Context

+ + ++ + ++

Globalize
Local Knowl-
edge

++

Table 1: Relation between knowledge creation steps and knowledge enablers.

3 Tacit and explicit knowledge about software
assets

The software assets of an organization are formed by all software systems that
support the realization of the organization’s goals. In principle, software as-
sets are like other tangible assets of an organization: they can be captured by
standards and technical procedures can be used to control their development.
However, software is also unlike many tangible assets, e.g., a new automobile
runs, but new software usually not (cf. [11]). The older an automobile gets, the
more chance it stops running, but the older software gets, the more chance it
starts doing what it should have done in the first place. Another difference is
that software congeals valuable business knowledge as time goes by, while this
is not the case for a tangible asset like an automobile.

In practice, however, the ideal situation that software assets are being man-
aged like ordinary tangible assets is far from being achieved and the creation
and management of software assets is either non-existent or is done in an ad hoc
fashion. It certainly does not resemble an engineering discipline. This makes it
even more urgent to consider the question how knowledge about software assets
is being created, managed and used. As we have seen above, knowledge as such
behaves differently from ordinary assets and the same is true for knowledge
about software assets.

Knowledge about software assets is clearly important and the question arises
what the implicit and explicit knowledge about software assets amounts to.
To answer this question, we must first understand that there are differences
between organizations in the way they deal with their software assets. The
various dimensions in this space are:

7



• Application software is developed in-house or by third parties (insourcing).

• Applications are operated in a corporate computer center or by a third
party (application services provider).

• Maintenance is done in-house or by third parties (outsourcing).

In practice, mixtures of these extremes are quite common. In order to sim-
plify the presentation, we discuss the knowledge about software assets from the
perspective: in-house software development, corporate computer center, and
in-house maintenance. It is however, straightforward, to adapt the following
overview to other perspectives.

In the following paragraphs we summarize the knowledge areas architecture,
application area, construction, implementation, operations, maintenance, per-
formance, quality and costs. In each case we list relevant knowledge items and
the frequently occurring forms of explicit and implicit knowledge. By default,
the implicit knowledge consists of all instances where the explicit knowledge is
incomplete, erroneous or out of date. It also covers all undocumented aspects or
features. Also note that the division between explicit and tacit knowledge de-
pends on the maturity of the organization as we will further discuss in Section 4.
The division we present below, applies to the vast majority of organizations.

3.1 Architecture

Architecture concerns the global structure and functionality of the software
assets, such as:

• Overall Architecture of all systems and applications.

• Operating systems, databases, networking, user-interfaces.

• Local as well (inter)national standards.

• Software engineering methods and tools (including design, construction,
implementation, and maintenance).

• Global inventory of all software assets.

Explicit knowledge. White papers describing architecture, and design prin-
ciples; architecture diagrams; standards.

Tacit knowledge. Quality, performance and cost aspects of the architecture
as a whole as well as of individual applications, engineering techniques and tools.

8



Illustration. The need for knowledge management for architecture is illus-
trated by the following example. The United States General Accounting Office
(GAO) reviewed the Defense Logistics Agency (DLA). This review comprised
the efficiency and effectiveness of meeting customer requirements, application
of best practices, and opportunities for improving DLA operations. The impor-
tance of architecture is made explicit in this review [16]:

DLA does not have an enterprise architecture to guide its investment
[...] even though Department of Defense policy requires their use.
Rather, DLA plans for creating an architecture as a by-product [...]
Moreover, DLA’s architecture development plans address only one,
albeit the largest, of its six primary business areas [...] According
to DLA’s plans, its architectural products will not be extended to
its other business areas until 5 years from now. This nonagencywide
approach to developing and implementing an enterprise architecture
is not consistent with federal guidance, and it increases the risk that
DLA will modernize in a way that optimizes an individual business
area but does not optimize agencywide logistics management per-
formance and accountability.

So, the GAO makes clear that enterprisewide knowledge sharing is crucial in
order to achieve the desired results.

3.2 Application area

The application area covers the overall goals and techniques relevant in a certain
application area, such as:

• Business goals, application concepts, and standard operating procedures.

• Technical concepts, standards and procedures.

• Markets and products.

Explicit knowledge. Handbooks describing the application area; market and
tool surveys.

Tacit knowledge. Knowledge about new, immature, application areas that
is not available in handbooks; up-to-date knowledge of the market; experience
with state-of-the-art tools.

Illustration. It is well-known that software can become so complex that re-
pairing one error leads to another error. In that case, the fault injection rate
has approached 100% and the project has entered the so-called complexity catas-
trophe [3]. In reaction to this, organizations tend to discard the past, plan to
build a completely new software system, and by doing so they destroy valuable

9



knowledge. This will lead to so many errors in the new system that the new
system will not be acceptable.

Implementation of Enterprise Resource Planning (ERP) packages is a form
of discarding the past. Seen from the knowledge perspective, it should not
come as a surprise that The Standish Group has estimated that over 90% of
ERP projects end up behind schedule or over budget. Discarding the past,
leads to the so-called error catastrophe [3]. The solution is to exploit the old,
while exploring the new, which is in fact using knowledge management of the
application effectively.

3.3 Construction

Using software engineering methods and tools as well as knowledge about an
application area, software for that application area can be constructed. Relevant
topics are:

• Software engineering methods and tools (design, construction, testing,
documentation).

• The software development environment (including programming languages,
compilers and other construction tools).

• New and existing libraries and utilities.

• Procedures and tools for unit testing.

• Detailed inventory and analysis of the application software (including all
programs, databases, and user-interfaces and their interrelationships and
relevant metrics.)

Explicit knowledge. Software engineering handbooks; vendor reference man-
uals (for programming languages, tools, procedures); in-house developed doc-
umentation (for existing applications, libraries and utilities); maintenance and
testing history of all programs.

Tacit knowledge. Quality, performance and cost aspects of the application;
qualitative and quantitative assessment of maintenance and testing history (i.e.,
which are good and bad programs); quality of individual programmers; up-
to-date knowledge about the application that extends or replaces the explicit
knowledge (e.g., changes in program interfaces, performance problems in certain
library functions, changed algorithms, new program dependencies, the effects of
foreseen changes in other applications or libraries).

Illustration. The Weinberg-Schulman experiment [23] is a clear illustration
of the role of explicit knowledge during construction. Making the goals for
construction explicit has the effect that you get what you asked for. However,
without explicit goals, you also get what you asked for. In this case construction

10



Achievements
Minimize
effort to
complete

Minimize
number of
statements

Minimize
memory
required

Optimize
program
clarity

Optimize
program
output

G
o
a
ls

Minimize effort to
complete

1 4 4 5 3

Minimize number
of statements

2-3 1 2 3 5

Minimize mem-
ory required

5 2 1 4 4

Optimize pro-
gram clarity

4 3 3 2 2

Optimize pro-
gram output

2-3 5 5 1 1

Table 2: Results of the Weinberg-Schulman experiment

is optimized according to the goal that has been communicated implicitly, e.g.,
deliver as quickly as possible. In this experiment, 5 programming teams were
given the same job, but each team got a specific explicit goal to do the work.
The findings are summarized in Table 2. Each team optimized indeed according
to the explicit goal, and none of them performed consistently on the other goals.

Knowledge management helps to make such goals explicit, to recognize that
some of them conflict, and to achieve the desired goals.

3.4 Implementation

The word “implementation” is ambiguous. In the computer science literature
it means “building software”. In the parlance of software development for busi-
ness applications it usually means “introducing software in a production en-
vironment”, e.g., an enterprise resource planning system from some vendor is
implemented in a specific organization. In this paper, we will use the latter
meaning. Relevant knowledge topics are:

• The production environment.

• Procedures and tools for testing the integration of a new application in
the production environment.

Explicit knowledge. In-house developed documentation (testing procedures);
vendor reference manuals (operating systems, databases, networking, user-interfaces);
test histories.

Tacit knowledge Quality, performance and cost aspects of transferring the
application to the production environment; qualitative and quantitative assess-
ment of test histories.

11



Illustration. Traditionally, development tools may be replaced from time to
time, but the production environment tends to be immutable. This implies that
vendor’ tools or products that are part of the production environment will be
in use over a very long period of time.

It turns out that not all vendors can guarantee this. Some are taken over by
competitors who have the explicit goal to kill the competing product, others just
go out of business due to lack of profitability. From this perspective, it is not
surprising that many organizations have started projects to eliminate “exotic”
4GLs and GUI generators and replace them by main stream solutions. The
lesson here is that implicit knowledge about the software and tool market may
be crucial for the long term implementation and operations strategy.

3.5 Operations

Operations entail the day-to-day production usage of all software assets. This
is typically done in a corporate computer center. Knowledge topics include:

• Scheduling and optimization of jobs in the production environment.

• Monitoring of the production environment.

• Backup procedures.

• Trouble shooting.

Explicit knowledge. In-house developed documentation (operating proce-
dures for the production environment); vendor reference manuals; operations
history.

Tacit knowledge. Quality, performance and cost aspects of running appli-
cations in the production environment; qualitative and quantitative assessment
of operations history (e.g., which applications cause problems, how quickly can
problems be resolved).

Illustration. It is known from accident analysis that 60 to 80% of all errors
are attributed to operator errors [18, p. 9]. This research has been done on com-
plex systems ranging from nuclear plants and dams, to tankers and airplanes.
These so-called operator errors, are more a blame of the victim (the operator)
than that the cause of the error can be attributed to the operator. Opera-
tors are confronted with ultra complex systems, have to deal with incomplete
information, or even contradictory data. Simultaneously, they have to decide
sometimes rather fast to prevent disaster. Such complex systems are all very
software intensive, and the lack of knowledge and knowledge sharing increases
the chances that operators make errors.

12



3.6 Maintenance

Maintenance occurs when an application program fails to perform as required
during operations. This may be discovered during operations (program crashes
or does not terminate) or after wards (program computes wrong answers).
Knowledge topics include:

• The application area.

• The application program.

• Software engineering methods and tools (testing, debugging).

• The software development environment (debugging and testing).

Explicit knowledge. In-house developed documentation (application pro-
grams, debugging and testing procedures); vendor reference manuals (tools);
maintenance history; test history.

Tacit knowledge. Qualitative and quantitative assessment of maintenance
and test history.

Illustration. Lack of knowledge sharing hinders optimal deployment of exist-
ing software assets. The maintenance masking dynamic (already explained in
Section 1) is a prime example of the relevance of knowledge management for
maintenance.

3.7 Performance, quality and costs

For each of the above areas knowledge about the required and achievable per-
formance, quality and costs. More precisely, for each application, knowledge is
required about:

• Detailed inventory of the application software.

• Development costs.

• Quality of service during operations.

• Costs during operations (response time, resource usage, trouble shooting,
human resources, software, hardware).

• Maintenance costs.

• Economic value from a business perspective.

• Qualitative and quantitative assessment of all cost factors.

The inventory of all software applications combined with the detailed knowledge
about each application makes it possible to obtain knowledge bout performance,
quality and costs of the complete software portfolio.

13



Explicit knowledge. Databases with history information gathered during
construction, implementation, operations and maintenance; qualitative and quan-
titative assessment of the information in these databases.

Tacit knowledge. In many cases history and performance information is not
gathered in a systematic fashion and the assessment of performance, quality
and costs has to be judged by individuals based on incomplete and subjective
insights.

Illustration. The Y2K problem has demonstrated the need to share knowl-
edge. In many companies there was no detailed knowledge about the software
portfolio: which systems were in use, which systems were no longer functioning,
etc. A complete lack of such information effectively blocks a solution to system
wide problems like the Y2K problem, the Euro conversion, and others.

At the beginning of most Y2K projects this information had to be collected
at high costs in order to start the actual Y2K conversion. It is sobering to
observe that this same knowledge had to be collected at the start of many
Euro projects as well. Clearly, in some companies there has been no knowledge
sharing between these projects.

The lack of inventory information prohibits organizations to have insight in
their total IT spending. Proper knowledge management can potentially solve
some problems related to IT-spending, and more important to IT-wasting.

4 Increasing the knowledge about software as-
sets

From the analysis in the previous section, it becomes clear that knowledge about
software assets can be subdivided in three areas:

• The software development process.

• Operations.

• Maintenance.

The maturity of the software development process can be judged by the
Capability Maturity Model (CMM) as developed by the Software Engineering
Institute of Carnegie Mellon University [17]. CMM distinguishes the following
five levels:

1. Initial level. Ad hoc, informal management practices are used. Charac-
teristics of the software (quality, performance) and the software process
(budget, schedule) are unpredictable.

2. Repeatable level. Formal management, quality assurance and version con-
trol are in place. The outcome of similar projects becomes predictable.

14



However, there is still a major dependence on the management quality of
individuals.

3. Defined level. A formal software development process is in place and there
is a basis for qualitative process improvement.

4. Managed level. The formal development process is complemented with a
formal programme for quantitative data collection. Quantitative process
improvement is enabled.

5. Optimizing level. Continuous process improvement is budgeted and planned
and is an integral part op the organization’s process.

As one can see, going from level 1 to level 5, the knowledge about the soft-
ware process is first made explicit, then it is used for qualitative improvements,
then data collection about the process starts and finally these data are used to
optimize the process.

From a knowledge engineering perspective, CMM judges the amount of ex-
plicit knowledge about the software development process. It does not cover
operations and maintenance, but proposals to extend the model in those direc-
tions exist [14]. It does not cover people management either, but an extension
for this is described in [4]. It is clear that CMM takes a top-down managerial
view which is at odds with knowledge creation as we have seen in Section 1.

What we need for a better governance of software assets is knowledge about
the software development process, about operations and about maintenance. It
goes without saying that detailed technical knowledge about the software itself
as well as about its history (development, operations, testing, maintenance) is
essential to achieve this. However, as we have seen in the previous section, there
is usually a lot of missing or tacit knowledge about software assets. To make
things worse, this knowledge may change rapidly.

In order to explore how we can increase this knowledge we follow the model
for managing knowledge creation developed in [10] and summarized in Section 2.
We specialize the model here for creating knowledge about software assets. The
creation of knowledge about software assets should be part of the overall knowl-
edge creation strategy of an organization.

Instill a Vision. In many organizations there is only a limited awareness of
the crucial role that software assets play to achieve the organization’s goals. As
we have seen, much of this knowledge is tacit. A software asset knowledge vision
should therefore succinctly describe the relevance of creating knowledge about
software assets for the organization. It should generate awareness for knowledge
creation at all levels and it should identify sharing knowledge about software
assets as a company value. It should lead to trust, care and cooperation rather
than suspicion, indifference and internal competition. Typically, the knowledge
vision should stress that

• Software assets are crucial for achieving the organization’s goals.

15



• Creating knowledge about software assets is essential to

– monitor their business value;

– enable their continuous evolution;

– optimize their quality and performance.

• Knowledge about software assets should be made explicit and measurable.

• Everybody wins in the long run by sharing knowledge about software
assets. The individual wins, since its expertise becomes valued company-
wide rather than only locally. The department and business unit win,
since sharing knowledge prevents re-inventing the wheel and potentially
improves operational performance.

Software assets are essential production factors for virtually all businesses and
company values should strongly encourage creating and sharing knowledge about
them. This should also be made clear by making managers at the highest level
in the organization responsible for software assets.

Manage Conversations. In the case of software assets there are several
sources of tacit knowledge that can be tapped:

• The tacit knowledge of system architects, system designers, development
programmers, testers, operators and maintenance programmers. This is
mostly technical and operational knowledge about software systems.

• The tacit knowledge of experts from marketing, customer relations, and
other business departments. This is knowledge how well the software
assets behave from a business perspective.

• The source code itself. This includes the text of all programs, test code,
test data, database schema’s (meta-data), data (database contents), job
control scripts, in-house developed tools, compilation and testing scripts
as well as history information about revisions, testing, operations, and
maintenance. The source code itself is explicit, but the understanding of
it is tacit.

In many organizations there are impenetrable walls between the various cat-
egories of professionals mentioned in the above summary. Usually, software
people don’t communicate with business people. But the same is true for de-
velopment programmers and operators, development programmers and mainte-
nance programmers, or system architects and operators. It is, for instance, not
uncommon that development programmers and maintenance programmers only
share code but no other knowledge. They may even use different tools suites.

Regarding the source code itself, organizations largely differ in how well
they manage the knowledge about their software. In CMM level 1 organizations
everything is done in an ad hoc fashion: they use no version management,

16



CMM level Meaning Frequency of Occurrence (%)
1 = Initial Chaotic 75.0
2 = Repeatable Marginal 15.0
3 = Defined Adequate 8.0
4 = Managed Good to Excellent 1.5
5 = Optimizing State of the art 0.5

Table 3: Distribution of organizations over CMM levels.

configuration control, build management, bug tracking, or test management. In
this case, most knowledge is completely implicit. In a CMM level 5 organization,
all these aspects are taken care of and in addition detailed performance data
is being collected about costs of software development and maintenance and
operations.

The amount of implicit knowledge about software assets is staggering: about
75% of all the organizations are still at CMM level 1 [9, p. 30]. Only in a few
cases, the explicit knowledge is adequate, see Table 3 for a recent distribution
of organizations over CMM levels.

For organizations at levels 1 and 2 a useful knowledge creation scenario is
as follows:

• Use automatic tools to extract knowledge from the source code.

• Confront human experts with these results and extend the automatically
generated knowledge with expert opinions.

• Create informal groups consisting of software professionals from different
disciplines to discuss and extend this knowledge.

• Create informal groups consisting of software professionals as well as pro-
fessionals from business units to discuss and further extend this knowledge.

• Introduce techniques such as version management, configuration control,
build management, bug tracking, or test management.

• Start collecting performance data.

Once the above steps have been implemented, another problem can be ad-
dressed: it is very common that decisions about software assets are made by
the wrong people at the wrong organizational level. Once managerial support
for software asset management exists and the knowledge creation process has
been initiated by the above steps, well-informed decisions are enabled at the
corporate level.

17



Mobilize Activists. Knowledge activists are important for all knowledge cre-
ation enablers. For managing conversations, they act as catalysts by starting
new initiatives and by coordinating and facilitating meetings and workshops.
They are also important for creating the right context: finding a compromise
between bottom-up knowledge creation versus top-down knowledge manage-
ment. Finally, they promote globalizing local knowledge by acting as merchant
that attracts attention to local initiatives. In the area of software assets, an
activist is facing many challenges:

• Disbelief that automatic analysis tools can extract useful information from
the source code.

• An even bigger disbelief that automatic tools can transform and improve
the source code.

• Resistance to adopt new practices, for instance, for collecting history in-
formation.

• Resistance to adopt new tools, for instance, for version management, test-
ing or measuring.

• Reluctance to share locally developed practices or tools with other depart-
ments.

• Reluctance to give up the power of expertise (Section 1).

• Disbelief that “the guys from the other department” have something useful
to say about the software you are working on.

• Lack of interest in considering the merits of practices and tools used in
other departments.

To address these issues, knowledge activists can be appointed according to
various strategies. Process activists can focus on the overall software develop-
ment process and its improvement. Typical actions are initiatives to share tacit
knowledge, “selling” best practices and appropriate tools to the various depart-
ments [2], and initiating measuring and improvement processes. Architecture
activists aim at collecting knowledge about the global architecture in relation
to all applications and using this knowledge for architectural improvement. Ap-
plication activists aim at creating all relevant technical and business knowledge
regarding one application and using that for further improvement.

Create Right Context. As already mentioned in Section 2.2, the paradox
of knowledge creation is how to reconcile top-down managerial control with
bottom-up knowledge creation. We have already seen that there is a strong
separation between the various departments involved in software assets, ranging
from architecture, development, operations, maintenance, marketing and other
business units. We have also seen that this separation is very detrimental to
knowledge sharing.

18



There are various approaches to this problem. A first, lightweight, approach
is to create task forces for process improvement, architecture improvement and
application improvement, one for each application. A second, heavyweight, ap-
proach, is to create cross-divisional units with similar charters. A third approach
is to create empowered divisions that are responsible for all aspects of a part
of the software assets. Typically, one division per application and a central
division for architecture.

Globalize Local Knowledge. Relevant knowledge created locally, has the
biggest impact if it used globally. Recall from Section 2.2 that this knowledge
transfer can be seen as a three-staged process consisting of triggering, packaging
and dispatching, and re-creating knowledge. For software assets the following
triggers can be identified:

• A changed business strategy or new commercial opportunities impose new
requirements on the existing software assets.

• Costs for development, operations or maintenance exceed the averages in
industry benchmarks.

• Long development times result in a too long time-to-market to profit from
new commercial opportunities.

• Reliability or performance problems during operations frustrate the busi-
ness strategy.

• New technological standards or developments require changes to the soft-
ware assets.

• The vendor-support for a certain tool stops.

For each trigger, the need arises to find or create relevant knowledge. Packaging
and dispatching this knowledge implies the following:

• Package in-house developed tools as well as documentation and course
material. Install the tools at the appropriate site.

• For software asset knowledge: package the knowledge in appropriate form
(e.g., HTML pages, content-management system, database).

In order to re-create the knowledge at the receiving side the following steps are
relevant:

• Give tailored courses about tools. Use feedback to adjust course material
and tools.

• Create an interdisciplinary working group that applies the software asset
knowledge to a particular problem. This may lead to solutions of the
problem as well as to the identification of omissions in the software asset
knowledge.

19



5 Conclusions

As we have shown in this paper, the abstract concepts from the field of knowl-
edge management can easily be instantiated for software asset management.
The main results from this study are:

• An attempt to construct an inventory of explicit and tacit knowledge about
software assets (Section 3).

• An explicit strategy for increasing the knowledge about software assets in
an organization (Section 4).

These insights are partly theoretical and they are partly based on our expe-
rience in software maintenance and renovation. For instance, the Dutch bank
ABN AMRO has taken several steps described in Section 4. As part of their
“software logistics” programme they have implemented fully automatic docu-
mentation generation (using DocGen [5, 7]) for all their circa 50 Million lines of
Cobol code [1]. As a result, the knowledge buried in their software becomes ex-
plicitly available and can be accessed with an ordinary web browser. Standard
search engines can be used to further query this knowledge. Software is clearly
used as a source of knowledge. Other companies are following this example.

However, to further validate our insights and increase their applicability we
foresee the following steps:

• Application and qualitative validation of our knowledge creation strategy
in other organizations.

• Design of metrics that can be used to measure the impact of knowledge
creation strategies for software asset management.

• Quantitative case studies.

Software maintenance and renovation can easily be seen as knowledge cre-
ation processes where tacit knowledge is made explicit. The more encompassing
view is to consider software and all the tacit knowledge it embodies as a company
asset and to properly manage that asset. The knowledge creation perspective
described in this paper may help to understand how proper software asset man-
agement can be achieved.

References

[1] J. Boef, A. van Deursen, and P. Klint. Goede softwarelogistiek basis voor
snelle aanpassingen (in Dutch: Good software logistics basis for fast ad-
justments). Automatisering Gids, page 19, September 7 2001.

[2] M.T. Bosworth. Solution Selling – Creating Buyers in Difficult Selling
Markets. McGraw-Hill, 1994.

20



[3] S.L. Brown and K.M. Eisenhardt. Competing on the Edge – Strategy as
Structured Chaos. Harvard Business School Press, 1998.

[4] B. Curtis, W.E. Hefley, and S. Miller. Overview of the People Capability
Maturity Model. Technical Report CMU/SEI-95-MM-002, Software Engi-
neering Institute, 1995.

[5] A. van Deursen and T. Kuipers. Building documentation generators. In
H. Yang and L. White, editors, Proceedings of the International Confer-
ence on Software Maintenance, pages 40–49. IEEE Computer Society Press,
1999.

[6] M. Granovetter. Getting a Job – A Study of Contacts and Careers. Uni-
versity of Chicago Press, 2nd edition, 1995.

[7] Software Improvement Group. Automatic Documentation Genera-
tion. Software Improvement Group, May 2001. URL: http://www.
software-improvers.com/PDF/DocGenWhitePaper.pdf.

[8] V.K. Jolly. Commercializing New Technologies. Harvard Business School
Press, 1997.

[9] C. Jones. Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley, 2000.

[10] G. Von Kroch, K. Ichijo, and I Nonaka. Enabling Knowledge Creation.
Oxford University Press, 2000.

[11] L. Lamport. How to Tell a Program from an Automobile. In J. Tromp,
editor, A Dynamic and Quick Intellect – Liber Amicorum in honor of
Paul Vitanyi’s 25-year jubilee, pages 77–79. CWI, 1996. URL: http:
//research.microsoft.com/users/lamport/pubs/automobile.pdf.

[12] C. Locke, R. Levine, D. Searls, and D. Weinberger. The Cluetrain Manifesto
– The End of Business as Usual. Perseus Books, 2001.

[13] M. Mulder. The Daily Power Game, volume 6. Martinus Nijhoff Social Sci-
ences Division, Leiden, 1977. International series on the quality of working
life.

[14] F. Niessink and H. van Vliet. Software maintenance from a service perspec-
tive. Journal of Software Maintenance: Research and Practice, 12(2):103–
120, March/April 2000.

[15] I. Nonaka and H. Takeuchi. The Knowledge-Creating Company. Oxford
University Press, 1995.

[16] General Accounting Office. DLA Should Strengthen Business Systems
Modernization Architecture and Investment Activities, 2001. URL: http:
//www.gao.gov/new.items/d01631.pdf.

21



[17] M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis. The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison-
Wesley Publishing Company, Reading, MA, 1995.

[18] C. Perrow. Normal Accidents – Living with High Risk Technologies. Prince-
ton University Press, 1984.

[19] M.E. Porter. Competitive Strategy – Techniques for Analyzing Industries
and Competitors. The Free Press, New York, 1980.

[20] M.E. Porter. Competitive Advantage – Creating and Sustaining Superior
Performance. The Free Press, New York, 1985.

[21] E.M. Rogers. Diffusion of Innovations. The Free Press, Simon & Schuster
Inc., 1995. Fourth Edition.

[22] G.M. Weinberg. Quality Software Management: Volume 1 Systems Think-
ing. Dorset House, 1992.

[23] G.M. Weinberg and E.L. Schulman. Goals and performance in computer
programming. Human Factors, 16(1):70–77, 1974.

22



About the authors

Paul Klint is head of the software engineering department at Centrum voor
Wiskunde en Informatica (CWI, the Dutch national research center for com-
puter science and mathematics) and professor in computer science at the Uni-
versity of Amsterdam. He is also president of the European Association for
Programming Languages and Systems (EAPLS) and co-founder of the Software
Improvement Group (SIG), a CWI spinoff company. He holds a MSc in Math-
ematics from the University of Amsterdam and a PhD in Computer Science
from the Technical University Eindhoven. He (co)authored three books and has
published over hundred scientific articles. He has consulted for companies and
governments worldwide. His research interests include generic language tech-
nology, domain-specific languages, software renovation, and technology transfer.
Contact him at Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098
SJ Amsterdam, The Netherlands; Paul.Klint@cwi.nl; www.cwi.nl/~paulk.

Chris Verhoef is a computer science professor at the Free University of Ams-
terdam and principal external scientific advisor of the Deutsche Bank AG, New
York. He is also affiliated with Carnegie Mellon University’s Software Engineer-
ing Institute and has consulted for hardware companies, telecommunications
companies, financial enterprises, software renovation companies, and large ser-
vice providers. He is an elected Executive Board member and vice chair of
conferences of the IEEE Computer Society Technical Council on Software En-
gineering and a distinguished speaker of the IEEE Computer Society. Contact
him at the Free University of Amsterdam , Department of Mathematics and
Computer Science, De Boelelaan 1081-A, 1081 HV Amsterdam, Netherlands;
x@cs.vu.nl; www.cs.vu.nl/~x.

23


