Tribute to a Great Meta-Technologist
—from Centaur to The Meta-Environment—

Paul Klint
Software Engineering Department
of
Centrum voor Wiskunde en Informatica (CWI),
and
Informatics Institute, University of Amsterdam
www.cwi.nl/"paulk

March 6, 2008

Abstract

Gilles Kahn was a great colleague and good friend who hasigefiiuch too early. In this paper |
will sketch our joint research projects, the many discussiwe had, some personal recollections, and
the influence these have had on the current state-of-thie4aeta-level language technology.

1 Getting acquainted

Batiment 8. On a sunny day in the beginning of July 1983 | parked my beitedli
Dyane on the parking lot in front of&iment 8, INRIA Rocquencourt. At the time, th
buildings made the impression that the US military who hawstraicted the premises
in Rocquencourt were also the last that had ever used the pairsh. Inside, lived
an energetic research family and | was hosted by project GR®@aded by Gilles
Kahn. My roommates Veronique Donzeau-Gouge and Bertraglddd helped me find
a bureau in a corner in the cramped building and helped to ged Multics account
on the Honeywell-Bull mainframe.

After some flirtations with computer graphics, softwaretgbility and the Unix operating system, |
turned to the study of string processing languages on whigbte a PhD in 1982 [55]. The main topic was
the Summer programming language [52] that featured objeatsess/failure driven control flow, string
matching and composition, and a “try” mechanism that alkbtee execution of an arbitrary sequence of
statements and would undo all side effects in case this éreaesulted in failure.

As part of this work, | got attracted to the question of how feenantics of such languages could
be defined [53]. The approach | used was a meta-circular &geydefinition that covered both syntax
and semantics. However, this definition was written after dlotual implementation had already been
completed. Would it not be great if a language definition dda¢ used tgeneratean efficient language
implementation?

As described in more detail in [44], Jan Heering and | stattieddesign of a dedicated programming
environment for the Summer programming language. This ¢t the notion of anonolingual program-
ming environmenf43] in which the various modes of the environment such agmmming, command
line execution and debugging were all done in the same laggegud/e were aware of the formidable im-
plementation effort of such a system for a specific languagk & addition to this, Summer had never

been designed with that purpose in mind. As already destrive had some experience with language
definitions and this naturally led to the idea of a prograng@nvironment based on language definitions.
This is how Jan and | became aware of the INRIA work on synieseted editing [36, 60], the formal
definition of ADA [37], the language definition formalism Me{50], and the abstract syntax tree manip-
ulation system Mentor [39, 38, 40]. This work was motivatgddilles’s earlier work on semantic aspects
of programming languages [47, 48, 51]. The best way to sthidywiork was to pay a visit to the CROAP
(Conception et Réalisation d'Outils d’Aide a la Prograation) team at INRIA, which was headed by
Gilles. This is precisely what | did in July 1983. A lucky coidence was that Tim Teitelbaum and his two
PhD students Thomas Reps and Suzanne Horwitz were spehdingabbatical in Rocquencourt. This
gave me the opportunity to compare three systems: the Megtdem (Gilles and coworkers), an early
version of the synthesizer generator (Tim Teitelbaum anahTds Reps), and Ceyx (a Mentor-like system
built by Jean-Marie Hullot on top of Jerome Chailloux’ Lepisystem). This comparison appeared as [54].

2 The GIPE projects

Take the money and run! Phone call from Gilles early 1984: “Paul, did you hea
about this new ESPRIT program? Shouldn’t we submit a prd@oshtake the money

and run?”

2.1 GIPE Proposal

And indeed, by the end of 1984 we submitted a proposal for thgegt Generation of Interactive Pro-
gramming Environmenter GIPE for short. The prime contractor was SEMA METRA (France) and
the partners were BSO (a Dutch software house that is clyneatt of ATOS ORIGIN), Centrum voor
Wiskunde en Informatica (Netherlands) and INRIA (Frandd)e objectives and envisaged approach were
neatly summarized in the proposal:

The main objective of this project is to investigate the filities of automatically gener-
ating interactive programming environments from a langriagecification. An “interactive
programming environment” is here understood as a set ofjiratied tools for the incremen-
tal creation, manipulation, transformation and compitatiof structured formalized objects
such as programs in a programming language, specificatiores specification language, or
formalized technical documents. Such an interactive enwitent will be generated from a
complete syntactic and semantic characterization of thm#blanguage to be used. In the
proposed project, a prototype system will be designed apteimented that can manipulate
large formally described objects (these descriptions magnause combinations of different
formalisms), incrementally maintain their consistencydaompile these descriptions into
executable programs.

The following steps are required to achieve this goal:

e Construction of a shared software environment as a poinepgdture for experimenting
with and making comparisons between language specific iggobs. The necessary ele-
ments of this — Unix-based — software environment are: effieind mutually compatible
implementations of Lisp and Prolog, a parser generatorggahpurpose algorithms for
syntax-directed editing and prettyprinting, software kages for window management
and graphics, etc. Most of these elements are already edlailar can be obtained; the
main initial effort will be to integrate these componentwione reliable, shared software
environment.

1We never settled on a proper pronunciation of this acronym.

e A series of experiments that amount to developing samplefgations-based on dif-
ferent language specification formalisms, but initiallysbd on inference rules and uni-
versal algebra—for a set of selected examples in the donfgirogramming languages,
software engineering and man-machine interaction. The@sed formalisms have well-
understood mathematical properties and can accommodaterimental and even re-
versible computing.

e Construction of a set of tools of the shared environment toycaut the above exper-
iments. It will be necessary to create, manipulate and clipakts of) language spec-
ifications and to compile them into executable programs. tdbés draw heavily upon
techniques used in object-oriented programming (for malaifion of abstract syntax
trees), automatic theorem proving (for inferring propegifrom given specifications to
check their consistency and select potential compilatiethiwds), expert systems (to or-
ganize the increasing number of facts that become knowntabgiven specification)
and Advanced Information Processing in general (man-mechiterfaces, general in-
ference techniques, maintenance and propagation of cainst; etc.)

e The above experiments will indicate which of the chosendbsms is most appropriate
for characterizing various aspects of programming langesmgnd interactive program-
ming environments. These insights will be used in constg& prototype system for
deriving programming environments from language speditioa. The envisioned “pro-
gramming environment generator” consists of an integragetof tools and an adequate
man-machine interface for the incremental creation, cstesicy checking, manipulation
and compilation of language specifications.

By performing some hype-aware substitutions (syntamodel, generatior- model-driven, elements
— components) this vision is still relevant today. As in eaobppsal we had to oversell our ideas and we
indeed needed GIPE (1985-1989), and its sequel project GIRE89-1993) to create a proof-of-concept
of this vision. In the GIPE Il project, the companies GIPSakce), Bull (France), Planet (Greece), PTT
Research (Netherlands), and the research partners TH Raltni&ermany), University of Amsterdam
(Netherlands) and PELAB (Linkoping Sweden) joined the team

2.2 The importance of GUIs

Disoriented mice. Demonstration sessions are a must for any subsidized relse
program and ESPRIT was no exception. As part of the yearlyREBRonference
we gathered—with many colleagues from all over Europe whtigizated in other
ESPRIT projects—in an underground parking lot of the Berlawt building in Brus-
sels. The parking garage had been turned into an expositgntec but the smell of
cars was still clearly present. Our two Sun workstationstedeup well but at the
stage that the window system was up and running and interaetith the mouse was
needed, everything messed up. Incompatible mouse dridensPdware error? After
two hours of hectic discussions and experiments we dised\ibe cause of the prob-
lem. At that time of early optical mice, the specific grid oa thouse pad was used t
determine the mouse’s coordinates and simply switchingwbemouse pads solve
the problem. Or was this a case of overexposure to exhaussfaifter all?

Gilles had from early on recognized the importance of a praper-interface. His preoccupation with
the user-interface was based on an earlier disappointipgrezence when the Mentor system was being
demonstrated to a high-ranking official from a US governnageincy. The nifty thing to be demonstrated
was that the knowledge of the abstract syntax of a progrard dmuused to skip complete subtrees during
a search operation. However, it turned out to be impossibiget this nice idea across because the official
kept asking “where’s the user-interface?”.

Definition

Concrete syntax

Parser

Syntactic

Semantic

g Specifications Specifications
Abstract syntax N Tree manager . .
E Specification Level
Prettyprint rules R Prettyprinter
. . A
Static Semantics T Type checker .
: Virtual Communication :
Programming Dynamic semantics o Int 1 e o
. nterpreter i
Environment R o Processor / Transformation Machine
for L
5
-programs
User

Interface

(a) (b) (c)

Figure 1: Early architectural designs of the GIPE systda): End-user view of an.-environment for
an arbitrary languagg; (b) Relation between language definition and generated emaieaty(c) Global
architecture.

In fact, during the GIPE project we had the same experiendle wbmonstrating an early prototype of
our syntax-directed editor to the board of directors of B&@,Dutch commercial partner at the time. From
our perspective everything was present in the demo: a pgeserator, a parser, a syntax-tree manager,
and a prettyprinter. All these tools were based on a welleustdod theory and implemented with a lot of
hard work. However, we learned the hard way that the most itapbpart was still missing: a colorful
user-interface that could attract the attention of the @oar

It will come as no surprise, that user-interfaces have glayeimportant role during and after the GIPE
projects.

2.3 GIPE results

The initial architecture of the environment generator wascdibed in [28]. Figure 1 gives some snapshots
of that design. Clearly visible are the generator-basedmgg and the internal representation of programs
as trees.

It is amazing how much effort is often required to achievelgoascribed in innocently looking sen-
tences in a project proposal, like “Most of these elememsbieady available or can be obtained; the main
initial effort will be to integrate these components inteaeliable, shared software environment”. Recall,
that the project started in the pre-X-windows era and we leaperimented with a lot of now long forgot-
ten systems: Brown Workstation Environment, LucasFilrm,ikp Virtual Window System, and Graphical
Objects.

Another fundamental choice that we made early on in the pteyas to use LeLisp [23] as the imple-
mentation language. LeLisp was a nice and flexible langudga ifor prototyping and code generation.
However, this decision turned out to be a major problem tda#re end of GIPE Il. LeLisp was transferred
to the INRIA spinoff ILOG and we were stuck with a LeLisp vensithat was no longer maintained.

There have always been two different approaches in the GiBfeqts: a “Dutch” approach and a
“French” approach. As a Francophile, | liked Gilles’ laigdaire style that today would be called “just-
in-time”. Several of the younger members in the Dutch teaefgored to have things organized weeks in
advance. Not surprisingly this led to occasional excitetmérether things would be ready for the review,
the annual report, the demonstration or whatever. | caifytdsre, that things were always ready—just-
in-time. The other differences in approach will be discddselow.

Initial results of the project were reported in [42] and sevether ESPRIT-related conferences. The
main outcome of the GIPE projects was tBentaur systerthat was the promised proof-of-concept envi-
ronment generator [29, 14]. It consisted of:

e The Virtual Tree Processor (VTP): a database for storingrattssyntax trees [61].

e Specification formalisms: Metal (syntax), PPML (prettyping) [65], TYPOL (static and dynamic
semantics) [33, 26, 49], SDF (syntax) [41], ASF (static apainic semantics) [6], and ASF+SDF
(the integrated version of the latter two) [6, 34].

e Various editors.
e A user-interface.

In addition to the design and implementation of the systaeeifivarious case studies such as for Mini-
ML[27, 24], Pico [6], LOTOS [58], Eiffel [1], Esterel [9], Sal [2], POOL [6] and others were carried
out.

After so many years, | should confess that the system wasaeataur: half human and half horse.
On top of the common infrastructure (LeLisp, VTP, Graphidh|ects) actually two subsystems were built:
a French system using Metal, PPML and TYPOL versus a Dutdesysonsisting of ASF+SDF and the
Generic Syntax-directed Editor (GSE). SDF was also uselagfrtench subsystem for some experiments.

I always found that the French subsystem was ahead of usrits tef inspiring examples and user-
interface integration, while we were struggling with issuike incremental parser generation, efficient
execution of rewrite rules and understanding how modwdéinn should work. In hindsight, the major
results of the project as a whole were:

e The use of natural semantics to specify language semantics.
e The use of user-defined syntax and rewriting techniquesdoifydanguage semantics.
e A wide range of implementation techniques that showed tasilbdity of these approaches.

At the end of GIPE Il the interests of the partners startedierde further and further. Gilles’ team
was moving in the direction of the interactive editing of @i®[69, 12] and converting proofs to text [31].
See [22] for an annotated bibliography. On the Dutch sideyes® more interested in pursuing the original
vision of a programming environment generator; this is adoented in [42, 56, 34].

3 An Ongoing Scientific Debate

A soldering job. In the same parking-lot-turned-into-exposition-centgethe year
before we encountered communication problems. How to abrme two worksta-
tions in order to exchange relevant software needed for #raahstrations? Gilles
and | ended up lying on the floor soldering a null-modem in otdemake the con-
nection. It did work, but we were without any doubt the mosjuatified electricians
in the exposition centre.

One of the major benefits of the cooperation between the grarin the GIPE projects were the dis-
cussions on topics of common interest and the differentviamd arguments that were exchanged. Gilles
was a passionate researcher and had outspoken opinioriswattalrs relevant to the project. | will briefly
describe them belo®.This scientific debate was the corner stone of the succebe @irbjects European
cooperative research would be better off if this kind of idescientific debate would be more cherished
by the European policy makers.

2Disclaimer: this paper focuses on work resulting from th@Bprojects and mostly ignores other related work.

3.1 Monolingual versus domain-specific languages

As mentioned earlier in Section 1, Jan Heering and | were ggritom a “monolingual” background and
we wanted to unify as much as possible. Looking at the Mempraach, we observed that different
languages were used for partially overlapping purposes:

e Metal defined concrete syntax, abstract syntax and a majnoimgthe former to the latter.
e PPML defined a mapping from abstract syntax to a languagexado

e Mentol, Mentor's command language, contained constructenfitching and control flow that were
also present in Metal and PPML.

This approach has the advantage that each step is explidihanhthere is more opportunity for manual
tweaking in order to handle complex situations. The disathge is, however, that the specification writer
has to be aware of several representations and mappingedretivem. We opted for a more integrated
approach in SDF [41] and made the following assumptions:

e There exists a “natural” context-free grammar for the laagguwe want to define. In this way the
grammar does not contain idiosyncrasies caused by the @geoffic parsing technologies.

e There is a fixed mapping between concrete and abstract syntax
e Grammars are modules that can be composed.

e A default prettyprinter can be derived from the contexefgeammar but can be overridden by user-
defined preferences.

Of course, this approach places a tremendous load on thermepitation but it leads—in my opinion—
to a higher-level specification. So in the case of SDF, theatiogual approach worked well. However, the
evolutionary pressures are such that opportunities, eesind needs to introduce specialized formalisms
are abundant. Today, we have—in addition to ASF+SDF—déelicimrmalisms for component intercon-
nection, relational calculus, prettyprinting, and modudafiguration. From time to time | wonder if some
of them can be eliminated Gilles’ view that specialifednalisms are unavoidable was certainly the
more realistic one.

3.2 Strings versus Trees

With a background in string processing languages, it is ngbrssing that we had a certain bias in fa-
vor of a textual (re)presentation of programs, while Gikdsays took the abstract syntax tree as central
representation. This resulted in the following differemgepoint of view:

¢ In the parsing model, we opted to stay as close to the pamsasrpossible, see Section 3.2.1.

o At the specification level, we wanted to have user-definetbsyand give the user complete textual
freedom in the concrete textual notation of functions andtypes. See Section 3.2.2.

¢ In the editing model, we took the user’s text as the primatyre® of information. This is opposed
to the view that the actual text entered is parsed, convéotesh internal tree structure, and then
presented to the user as the result of prettyprinting tkest. trThis is explained in more detail in
Section 3.2.3.

@p ||\ Godp
@ap ||\ GnD

while(n > 5)
{

(@) (b)

[white] ()] [] 5] (5] (30 1] o)) S

= exact text (layout, comments) between tokens

Figure 2: Structured representation of source téa}:Source text(b) Full parse tree(c) Conventional
parse tree{d) Abstract syntax tree.

3.2.1 Parse Trees versus Abstract Syntax Trees

What is the right abstraction for representing and mantmgdaorograms? Syntax trees are the structures
that are the result of syntax analysis (also known as pgrsingpme program text. However, syntax trees
exist in various flavors.

Parse treesare a faithful description of the manner in which a text hasrbbeen derived from its
grammar. Afull parse tree contains all the textual details of the text hiolg whitespace, comments and
the like. See Figure 2(b). Since there is no information,lii$s possible to literally reconstruct the original
text from the parse tree. gonventionaparse tree is a full parse tree with all the layout symbolsonesd,
see Figure 2(c). In this case, the source text can be mostiynseructed but all layout symbols have to be
guessed by a prettyprinter.

Abstract syntax treesmit the textual representation but focus on structure. Hesve in Figure 2(d),
the abstract syntax tree for a while-statement is a tree tadmded “while-statement” with two children:
an expression and the body of the while-statement. From agblallowabstract syntax tree, the source
text can only be recreated by means of prettyprinting (sexid®e3.2.3). However the original layout
(indentation, spacing, comments) is lost. The global athgmof abstract syntax trees is that they require
less memory space.

The debate about the proper program representation waysabemtered around the question how
“deep” the abstract syntax tree should be, in other words, lhig could the distance between a parse tree
and the corresponding “deep” abstract syntax tree be. Sepipat a language contains various iteration
constructs, like a for-loop, a while-do-loop, do-until meetc. A “deep” abstract syntax tree could map all
loop variants on a single, general, loop node. This has tharddge that a single semantic rule can handle
all the different cases at once. The disadvantage is thahi ionger possible to know the construct in the
original program or to reconstruct the original source textny way.

Centaur mostly used shallow abstract syntax but had thdituradity to build deep syntax trees when
desired. In the developments after GIPE, we have focusedttantion more and more on software reno-
vation projects where it is mandatory to reconstruct thginal source code even after source code trans-
formations. So we moved closer to the source text and nowuligegfrse trees as structured representation
of programs.

3.2.2 User-defined syntax

Not surprisingly, our string bias led us to believe that tlserushould be free to write specifications in a
domain-specific notation. In a way, this was our answer tptfenomenon of domain-specific languages.
Why write and(true, or(false, true)) while true and (false or true) looks more
natural? Writing a compilation rule for an if-statement as

compile(if $Test then $Seriesl else $Series2 endif) = ...

looks more appealing than using a strict prefix notation ppasent program fragments. Note tBaest ,
$Seriesl and$Series2 are meta-variables that represent program fragments. l&exeaple—that
has already transformed millions of lines of COBOL code-h&sfiollowing [20]:

addEndIf(IF $Expr $OptThen $Stats) =
IF $Expr $OptThen $Stats END-IF

In COBOL, theTHENandEND-IF keywords are optional in if-statements. The above ruleta&ND-IF
keywords in if-statements in order to increase readaldity maintainability. Using abstract syntax, a
dozen prefix functions would be needed to describe this rhigevihe version that uses concrete syntax
is (almost) readable by the average COBOL programmer. Staadther argument in favour of full parse
trees.

We decided to aim for an approach where every function ortgla¢ain a specification is in fact a
mini-language which defines its own concrete syntax. Of ssuthese mini-languages should be com-
posable into larger languages and so on. This is a very fexpproach that treats a simple datatype
like the Booleans or a complete programming language lika da COBOL in a uniform manner. The
consequences of this decision, however, were staggering:

e Since language grammars had to be composed, we neededray@piroach that permits grammar
composition. Since none of the standard approaches sepipihit® we started a journey, that has
still not ended, in the area of Generalized LR parsing [5913045].

e Since specification rules contain applications of usemaefigrammar rules, it is impossible to de-
fine one, fixed, grammar for our specification formalism. Aasequence, we need a two-stage
approach: first collect all user-defined grammar rules, ggaa parser for them, and then parse the
rules in the specification.

In addition to the conceptual challenges, it was also a n@jaslem to implement this in a fashion that
scales to really large cases. At several points in time | kiameght that the decision to provide user-defined
syntax in this way was fatal to our part of the project. Gilless intrigued by this approach, started a brief
study to add it to TYPOL but after a short while concluded thatas not practical and moved ahead to
new interesting problems. Since he was not interested itagyat all, this was probably a wise decision
and avoided a lot of complications.

For us, the balance is different. Today we are one of the engystems that provide fully general
user-defined syntax and the major benefit is that prograrsfwemation rules can be written in a way that
is as close as possible to ordinary source text. This helfiseiracceptance of program transformations.
However, we have still not solved all problems related te #proach. For instance, since we are working
in the domain of full context-free grammars, it remains aleimge how to handle ambiguous grammars.

3General context-free grammars are compositional in thees#hat they can be combined and form again a context-frem-gra
mar. Such a composition can be affected by interferencestalname clashes. Popular subclasses like LL(k) or LR(k) ate n
compositional at all: the combined grammar may requirersite restructuring in order to satisfy the requirementthefspecific
subclass.

while(n > 5)

®- -

} 4
further
while (n > 5) {
S
while(n > 5)
b { further
} 4

Figure 3: Two editing modelga) User types in source text and sees prettyprinted {(bxtJser only sees
source text as typed in.

3.2.3 From PPML to Pandora

Don't touch that link! In the early days of the World Wide Web we were all excit
about the new information infrastructure that was emergit@jlles showed us the
latest version of the Mosaic browser. “Don’t touch that liskce it connects all the
way to Australia!” he said with concern in his voice when kdiit. At that time of

expensive dial-in connections, today’s cheap broadbameeotivity was impossible
to foresee. Later, Gilles played a key role in the transfethefW3C consortium from
CERN to INRIA.

As mentioned above, during the editing of programs we toektéxt as entered by the user as the
primary source of information. After a textual modificatjdhe text was reparsed and the internal tree
structure was updated. The textual image as presented tséngemained exactly as the user had typed
it in. This is shown in Figure 3(b). In the standard editingdebused by Centaur, the text was parsed,
converted to a tree structure, and then presented to thesisiee result of prettyprinting that tree. This is
shown in Figure 3(a).

A prettyprintertakes an abstract syntax tree and transforms it into textrdow to user-defined rules;
the subject had been pioneered by Oppen [67]. At INRIA thess ®lready extensive experience with
the subject in the form of the Prettyprinting Meta-LanguB@ML [65]. PPML used a notion of “boxes”
that originates from [32] and provides operators for thazwmtal and vertical composition of text blocks.
PPML provides matching constructs to identify languagestrets in the abstract syntax tree, case dis-
tinctions, and construction recipes to build box expressfor specific language construction.

Due to our text-oriented view on editing we had no need foredtyprinter and have lived without one
for many years.

PPML was a typical case where our monolingual view clashet @illes’ view on the use of spe-
cialized languages. The PPML constructs mentioned (nag¢lease distinction, term construction) were
also present in the formalisms that performed semanticgasing on the syntax tree (be it TYPOL or
ASF+SDF) and this duplication of concepts was not appedtings. Many years later, we gave up ignor-
ing prettyprinting and built several prettyprinters basadhe Box language [21, 19]. In our most recent
prettyprinter, Pandora, all matching, case distinctioth@nstruction of boxes is done in ... ASF+SDF. So
here is at least one exceptional case, where monolinguplievailed.

3.3 From Virtual Tree Processor to ATerms

The Virtual Tree Processor (VTP) [61] was a database systembistract syntax trees. Given a signature
describing the names of the constructor functions, as wet@ir number and type of arguments, the VTP
allowed the construction of arbitrary, type-correct, sreger the defined signature.

In addition to functions for the creation, access and madgtific of trees, the VTP also provided func-
tionality for creating, maintaining and mergirggirsors (or “paths” in VTP terminology) in each tree.
Regarding internal data representation and functionaliey VTP was not unlike a present-day XML pro-
cessor. The main difference was that the VTP only providefiRIn(Application Programmer’s Interface)
for manipulating trees. As a result, programs manipulatiegs were restricted to LeLisp although later a
C++ version was completed. A serialized form of the treesdbald easily be shared by programs written
in other languages was missing.

In today’s Meta-Environment there is a similar need for rpafating and storing trees. We have taken
a textual (and also a binary) representation for trees asngtgooint and they can be used and exchanged
by programs written in arbitrary languages. The resultorgiat (ATerms and ATerm library [17, 18]) is,
in many ways, simpler than the original VTP functionalitynédistinctive feature is that it provides (and
maintains) maximal subterm sharing, thus considerablycieg) the size of large syntax trees.

3.4 Component architecture

Over the years Centaur had evolved into quite a large code #a200.000-300.000 lines of (mostly
LeLisp) code. There were three forces that made us awaredéth that we needed to reflect on a more
component-based approach:

e The French team was more and more interested in connecttegnek parsers (for instance, for
parsing proof traces) and tools (for instance, provers aadfgheckers).

e The Dutch team became more and more concerned about theamnibodahd maintainability of the
code base.

e We were all aware of the need to write components in otherraroming languages than LeLisp;
this was partly driven by the availability and support peshb with LeLisp that we all were expecting
(see Section 2.3).

And, as usual in this cooperation, both teams identified &mesproblem but ended-up with com-
pletely different solutions. Dominique Clément propoaatbtion of “software IC”, a software component
that could be connected with other components via commtioicahannels, not unlike hardware ICs.
This approach evolved into Sophtalk [25, 30, 46], a basissaging-based, infrastructure for distributed
programming. Quoting the Sophtalk website [68]:

Sophtalk is a set of tools that enable one to program the aatérn between objects following
an event model of communication. Sophtalk is an autonomelish system that provides
facilities for programming communication between objeetd processes. The system is com-
posed of three packagestnode a multicast communication mechanisstip an extension of
the standard LeLisp asynchronous and synchronous i/o nrméiing; andstservice a mecha-
nism offering interprocess communication at the shell aalditp levels.

The Dutch team had, at the same time, been experimentinghetpartitioning of the system in inde-
pendently executing parts. The primary objective was toeiase modularization and to start experiments
with writing components in different languages. The idipaoject to build a new editor from existing
components was a disaster [57]. All parts were implementeldtested individually and worked well in
isolation. But, when put together, deadlock after deadtnekifested itself. This was a strong incentive to
take concurrency seriously and has resulted in the ToolBasdination architecture [7, 8] that is still in
use today. The basic idea of the ToolBus is to have a centy@mmable, “software bus” that is used to
connect components that may be written in different prognarg languages, but adhere to a fixed protocol
and exchange data in a fixed format (i.e., ATerms, see Se@t®)n

10

Mimevconrs A
e Fdf Displsy Wiew Wisdor Fesources Exp
ERE R e
MUk R |
" - 1 * il
s ol S I Cmme wsre ool Y Reopte | 04 | o1 Sarall (8 ben !i:!,‘,'::,:“
s — Salected pperatr
b o sluel- = g
e =2 _ ‘ ¢)
i of e </hooleanDec/> =
gt <intDecl> =
n isInfinite = true’ <intDecl ;
int B <var >res </varz|:
while (i1sInfinite) { <none/>
res = i*t; <fintDecl> :
rintt & "™ &1 & "s" & res;i| </decls>
= = T
| = | THntay
Fwmgme | T H Sl
% = Trreperisatien 0] ¢ Shopon Braokgsnts
. =
— it : =t [i || e || Mot |
ol o
— i L = =
achitDb] — Villslsries | Troak | Yass
- bt
Lr
= [Llr
—inined ===l :
L et |
L = VR o]
E klirite [.{ : | Ty Ve O 1ok R ALV T 6 -

Figure 4: User interface of SmartTools

3.5 Other topics

In addition to the topics already discussed above, the qatipa in the GIPE projects has also been a
catalyst for research in a wide range of other areas that @fer@mmon interest:

e Origin tracking [11, 35].
e Incremental evaluation [64, 3].
e Generic debugging [10, 66].

| refer the interested reader to the references for furttseudsions on each of these topics.

4 The post-GIPE Era
4.1 The French Side

The many roads to Route des LuciolesLiving in a country where winters can b
long and dark, | liked the occasional meetings in Sophiaighatis where Gilles was
working since the mid-eighties. On one of the occasionsttaaticked me up from a
hotel in Antibes he confessed that he was participating iocallcompetition to find
as many new routes towards the INRIA premises as possibkvermecognized the
route we took or how we managed to reach Route des Luciolesyeny successive
visit.

4.1.1 CROAP and OASIS

The CROAP project at INRIA was stopped in 1998 and researafjenieric programming environments
was continued in the Oasis project under direction of Idab&ttali who had, along with others, earlier

11

Document 1 View 1/ Doc 1
Document 2 ; View 2/ Doc 1
Graphical

Interface

(View/DocIG) View 1/ Doc 2

‘ Message Controller ‘

‘ Document manager ‘ ‘ Parser manager ‘ Base

Key D = component = interacts with l:| = message controller

Figure 5: Architecture of SmartTools

worked on the incremental evaluation of TYPOL specificaiom this project, Didier Parigot developed
the SmartTools system [5, 4] that can be seen as a secondtjené&entaur system with a strong emphasis
on the use of XML as its tree representation mechanism. Téeinterface is shown in Figure 4. It can
provide several, simultaneous, views on the same docurfstarchitecture is shown in Figure 5. Note
that the user-interface itself is defined in a separate deatiiocument GI) and that the communication
between components is achieved via an asynchronous mesfagé&ucture.

Today, the SmartTools system focuses on domain-specifitileges and software factories. Since the
interests of the Oasis project gradually moved towardsriga@nalysis and smart cards, the SmartTools
system has never become a primary focus of the project.

Tragically, Isabelle and her two children died in the 20Q+htsmi, while on holiday with her family in
Sri Lanka.

4.2 Other impact of the Centaur legacy at INRIA

Many ideas from Centaur still survive in subsequent reseactvities at Inria. | will briefly mention some
clear examples.

421 AXIS

The AXIS* is concerned with verification of information systems andwges. They are applying Nat-
ural Semantics to help specify, check and maintain statitas¢ics of Web sites and more generally of
Web documents. Former GIPE team members Thierry DespeyojukY POL fame) and Anne-Marie
Vercoustre are working in this project.

4.2.2 MARELLE

The MARELLE is developing an environment for the computer-supportefiisation of mathematical
proofs. The overall goal is to ensure the correctness ofvaoft. Examples are a graphical user-interface
for the Coq prover (as already experimented with in GIPE) #redcertified implementation of various
algorithms. MARELLE is headed by Yves Bertot who was alsolfen®IPE team.

4User-Centered Design, Analysis and Improvement of InfdioneSystems, selettp://www-sop.inria.fr/axis/
5Computer aided verification of proofs and software, lsige://www-sop.inria.fr/marelle/index_eng.html

12

. ASF+SDF Meta-Environment =

File Views Themes Module Structure

| Navigator & - x

e-0x|

Edit

Expressions sdf a — x || MethodDecl sdf || JayaTypes sdf s_DOx |

o [hasic
% [languages
¢ Siava
¢ 3 symax

[) classDec!
[cormment
[constructorDec!
[} Expressions
[FieldDec!

module languages/java/syntax/Expressions

imports languages/java/syntac/JavaTypes
imports languages/Java/syntac/FieldDec
imports languages/Java/symtax/C]assDec]

exports sorts Expression MethodInvocation StatementExpression Assignment Dim
AssignmentOperator LeftHandSide ArrayAccess FieldAccess Prinary
PrinaryNoNewArray DinExpr DinExprInitialized ArrayCreationExpression
ClassInstanceCreationExpression

[3 interfaces |

[Java | context-free syntax

[JavaTypes | PrinaryNoNewArray => Prinary {cons("Priy

D Lexical ArrayCreationExpression -> Prinary {cons("Arra |
| Literal -> PrinaryNoNewArray {=|

) Main \m T 51

[) MethodDed — — ——

[Madifiers || impart-graphsar 2 =% 2.0/

[Names = —

[statements

r—ox/

| Modulederails & = % |
= ClassDecl WethodDect f Statements B FleidDec] H ConsiructorDec || Comment

| [Namespace Ke Value e

Fasf' EE unavailzhle | '/ ‘
'ast" [path” path¢’/hame... P

g "name" . T - |

rgraph’ i e filegrelati Interfaces { Exprassions [~ javaTypes [Modifiers

Faraph” Flabel" |labelfStatem...| =

Faraph” Fbgcolor” [f-colorfrgb(..| |}

s 'status” |opened

"sdf Fpath’ [patht’/home @ Lexical

oo — L =

e s ~l|

m | | | Production |

Figure 6: User interface of the Meta-Environment

4.2.3 PARSIFAL

The PARSIFALS project works on proofs of programs and protocols and enipesishe underlying prin-
ciples of proof search. Typical applications are in ardesfiroof-carrying code and model checkers. The
vice-head of PARSIFAL Joélle Despeyroux was on the GIPmtea

4.2.4 TROPICS

The TROPICS team works on an environment for analysis and transformatfoscientific programs,
and aims at applying techniques from software engineedngitneric software for Computational Fluid
Dynamics. Their Tapenaflesystem applies Automatic Differentiation to Fortran pams in order to
derive optimized versions of the original program. TROPI€&eaded by Laurent Hascoét, who was a
member of the GIPE team.

4.3 ArianeV

On June 4, 1996 the first test flight of the Ariane 5 (flight 5@bkt place and was a dramatic failure. After
37 seconds the rocket exploded.

According to the report of the Inquiry Board [62] the Arianecaised software from Ariane 4 beyond
its specifications and this caused a floating point convetsidail. For reasons of efficiency the Ada error
handler had been disabled. This has become known as onerabtteeexpensive software bugs.

Gilles, being an expert on programming language semaumtigsrieral and on Ada semantics in partic-
ular, was a member of the Inquiry Board. Is there a better gkaof theory meeting practice?

8Preuves Automatiques et Raisonnement sur des SpéclBitAtiogiques, sebttp://www.lix.polytechnique.fr/
parsifal/

“Program transformations for scientific computing, bap://www.inria.fr/recherche/equipes/tropics.en.
html .

8See ftp://itp-sop.inria.fritropics/tapenade/READMiEh

13

4.4 Evaluation Committees and Scientific Council

In 1998 | participated in the evaluation committee for INRRRogramme 2A, in 1999 for the project OASIS
and in the period 1998-2002 | served as member of INRIAS r8ifie Council. All these occasions
gave me ample opportunity to watch Gilles at work: friendigspitable and seemingly bored that yet
another evaluation had to take place. At the same time he &rgkeen that the politically most desirable
conclusions ended up in the final reports of these committees

In the Scientific Council, Gilles acted as an excellent egit with a keen eye for new scientific
developments and for opportunities for INRIA to make a siifieror societal contribution. We shared an
interest in the phenomenon gihinoff companiesattempts to bring scientific results to the market.

4.5 The Dutch side
On the Dutch side, we have seen slow progress in three generaf software:
1992 The initial LeLisp-based version of the ASF+SDF MetadEbnment.

2000 The first generation of a completely component-basdd{davironment based on the ToolBus. The
main implementation languages used were C, ASF+SDF an@R ¢ibr the user-interface).

2007 The second generation, released in 2007, that corstghgyin architecture for the user-interface,
visualization tools, and more, see Section 4.5.1 below 46d 15, 63]. In this edition, Java has
become one of the prominent implementation languages.

In the remainder of this section, | will give more details abthis second generation system (The
Meta-Environment version 2.0) as we present it today.

45.1 The Meta-Environment, Version 2.0

The Meta-Environmefis an open framework for language development, source amalgsis and source
code transformation. It consists of syntax analysis t@asjantic analysis and transformation tools, and an
interactive development environment (see Figure 6). ltigpsrted by a growing open source community,
and can easily be modified or extended with third party corepts

The Meta-Environment is a generalization of the ASF+SDFavietvironment that has been success-
fully used in many analysis, transformation and renovapiajects. The Meta-Environment has been used
for applications such as:

Parsing (new and old) programming languages, for furthecgssing the parse trees.

Analysis of source code (fact extraction, type analysid,documentation generation).

Transformation, refactoring, and source code generation.

Design and implementation of Domain-specific languages.

4.5.2 Features of The Meta-Environment
From the background given in this paper, the features of Te&NEnvironment can be easily recognized:
e Modular grammar definitions—a consequence of our genexhparsers.

e Declarative disambiguation filters used to resolve manyraomambiguities in programming lan-
guages.

e Conditional term rewriting used to perform software tramsfations.

9This section is based on a tool demonstration presented]n $eewww.meta-environment.org for further details.

14

ToolBus

T our Text | [Structure] SDF SDF . [UASE ASF |[ASF¥SDF |
editor editor |8 o ere‘ltions checker i | operations || checker |L checker

! |Configuration| | Term || Module
i __manager store || manager

Kernel layer

ASF ASF
interpreter compiler

ASF layer

Key D = component Q = component with multiple instances

l:l = ToolBus —— =interacts with

Figure 7: Run-time architecture of the Meta-Environment

e Seamless integration of user-defined syntax in rewritesr@ieabling the definition of transformation
rules in concrete syntax, as opposed to using abstracbsgnthgetting much more obscure rules.
This also guarantees fully syntax-safe source code geéoerat

¢ A highly modular and extensible architecture based on tbedination of language processing tools.
e ATerms as a language-independent intermediate data exeliamat between tools.

¢ An Integrated Development Environment (IDE) that provithsractive support and on demand tool
execution.

Version 2.0 of The Meta-Environment includes various neaffees:

e A grammar library containing grammars for C, Java, Cobolather programming languages.

e Rewriting with layout. This enables fine-grained analysid #ansformations such as high-fidelity
source-to-source transformations that preserve comraedts/hitespace.

e Automatically generated syntax highlighting based ona&yutefinitions for arbitrary languages.
e Automatically generated prettyprinters that can be refinethe user.

e Rscript—a relational calculus engine that enables easyating with facts extracted from source
code.

e Advanced information visualization tools for the inteiaetdisplay of relations, parse trees and
dependencies.

¢ A fully customizable, plugin-based user-interface witltkiable panes, and user-defined menus and
buttons. Plugins can run user-defined scripts to interatt @ther tools.

A major architectural improvement in version 2.0 is the siivh of the system into several separate lay-
ers that enable the creation of a family of related applicetithat share common facilities such as user-
interface, parsing infrastructure, and error reportitg (ternel layer). The facilities for syntax analysis
(SDF layer) and transformation (ASF layer) are implememtedop of this kernel. See Figure 7 for an

overview of this layered architecture. Observe that théesgaises the ToolBus as coordination infras-
tructure and compare this with the Sophtalk approach (@@@&i4) and the architecture of SmartTools
(Figure 5). All three systems achieve component decoujplyngay of messaging middleware.

15

4.5.3 Applications of The Meta-Environment

In the area of software evolution, The Meta-Environmentlgen successfully applied to the transforma-
tion of database schemas, analysis of embedded SQL, Calitgminting and restructuring, PL/I parsing,
analysis and restructuring of C++, dead-code detectioava,Jand aspect mining in C.

Due to the many extension points (rules for defining synteattyprinting, analysis and transformation;
extensible user-interface; connection of third-party poments; extensible architecture) the system can be
easily adapted to the requirements of a specific softwareigen or renovation problem.

In the area of domain-specific languages, the system hasdpgdied to domains as disparate as finan-
cial systems and machine tooling.

4.6 Synthesis: the ATEAMS project

As in every classical story there are three parts: thesisttaesis and synthesis. The GIPE story also seems
to follow this structure: the GIPE projects (see Stcion 2) tre post-GIPE era (see Section 4) form thesis
and anti-thesis. The synthesis suddenly enters the stagaypyf a joint CWI/INRIA project team that

is in preparation at the time of writing: ATEAM&that will do research ofact extraction refactoring

and transformatiopandreliable middlewarawith as overall aims to enable the evolution of large sofewar
systems to service-oriented systems and to use the seariadigm to scale up analysis and transformation
tools.

5 Concluding remarks

Gilles the Meta-technologist.Gilles would often exclaim: “This is so meta” with a

strong emphasis on the second syllable of the word “meta”.

Meta-approaches were, are and will remain crucial: metdeting, model-driven development, and
domain-specific engineering are the current labels for diities that played a prominent role in the
objectives and results of the GIPE projects.

It comes as no surprise that generic language technologyiicieasing demand for the design and
implementation of domain-specific languages; for the asislgnd transformation of software and software
models; and for numerous forms of code generation. Theasang popularity of the Meta-Environment
is one illustration of this.

As this brief historical overview shows, many of the idealigSiworked on are still in daily use today.
This is mostly due to his conceptual approach to many profldte liked to view things from a higher
level of abstraction. First in studying meta-level destoips of programming languages, later as scientific
director of INRIA where he could supervise and steer teabgiobl developments and research directions.
A true “meta-technologist” with a vision. As president ofRIN\ he could apply his meta-skills and vision
to alarge, bureaucratic but highly successful researciimizgtion. Gilles was the opposite of a bureaucrat,
but he knew as no other that conquering the bureaucracy algevay to realize one’s vision.

References

[1] I. Attali. A natural semantics for Eiffel dynamic bindin ACM Transactions on Programming Lan-
guages and Systems (TOPLAR)(5), 1996.

[2] I. Attali, D. Caromel, and A. L. Wendelborn. From a forntnamic semantics of Sisal to a Sisal
environment. IrHICSS (2) pages 266—-267, 1995.

10Analysis and transformation of EvolvAble Modules and Seesi

16

[3] I. Attali, J. Chazarain, and S. Gilette. Incrementallaation of natural semantics specification. In
M. Bruynooghe and M. Wirsing, editorBLILP, volume 631 of_ecture Notes in Computer Science
pages 87-99. Springer, 1992.

[4] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, CHeld, D. Parigot, and C. Pasquie. Aspect
and XML-oriented semantic framework generator: Smarttooh Second Workshop on Language
Descriptions, Tools and Applications, LDTA'O®lume 65 ofElectronic Notes in Theoretical Com-
puter Science (ENTC)ages 1-20. Springer, 2002.

[5] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, &ddPasquier. Smarttools: a generator of
interactive environment tool€klectr. Notes Theor. Comput. Set4(2), 2001.

[6] J. A. Bergstra, J. Heering, and P. Klint, editoAdgebraic SpecificatioPACM Press/Addison-Wesley,
1989.

[7] J.A. Bergstra and P. Klint. The ToolBus: a componentici@nection architecture. Technical Report
P9408, University of Amsterdam, Programming Research @rb994.

[8] J.A. Bergstra and P. Klint. The discrete time ToolBus -etiwgare coordination architectur8cience
of Computer Programming1(2-3):205-229, July 1998.

[9] V. Bertot. Implementation of an interpreter for a paghlanguage in Centaur. Buropean Symposium
on Programmingpages 57-69, 1990.

[10] Y. Bertot. Occurrences in debugger specificationsP Il '91: Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and impitetien, pages 327-337, New York,
NY, USA, 1991. ACM Press.

[11] Y. Bertot. Origin functions in lambda-calculus andrterewriting systems. In J.-C. Raoult, editor,
CAAP, volume 581 ol_ecture Notes in Computer Scienpages 49—-65. Springer, 1992.

[12] V. Bertot, G. Kahn, and L. Théry. Proof by pointing. In.Magiya and J. C. Mitchell, editor§ACS
volume 789 ofLecture Notes in Computer Scienpages 141-160. Springer, 1994.

[13] S. Billot and B. Lang. The structure of shared forestanmbiguous parsing. IACL, pages 143-151,
1989.

[14] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, @hK, B. Lang, and V. Pascual. CENTAUR:
The system. Irsoftware Development Environments (SQigges 14—24, 1988.

[15] M.G.J. van den Brand, M. Bruntink, G.R. EconomopoulbsiA. de Jong, P. Klint, T. Kooiker,
T.van der Storm, and J.J. Vinju. Using the meta-environifaembaintenance and renovation.mPno-
ceedings of the 11th European Conference on Software Meinte and Reengineering (CSMR’07)
pages 331-332. IEEE Computer Society, March 21-23 2007.

[16] M.G.J. van den Brand, A. van Deursen, J. Heering, H.AJaleg, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Vissand J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Developmentdmaent. In R. Wilhelm, editor,
Compiler Construction (CC '01)volume 2027 of_ecture Notes in Computer Sciengages 365—
370. Springer-Verlag, 2001.

[17] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. @liviEfficient Annotated TermsSoftware,
Practice & Experiencg30:259-291, 2000.

[18] M.G.J. van den Brand and P. Klint. ATerms for manipuatand exchange of structured data: It's all
about sharinglnformation and Software Technolgg9(1):55-64, 2007.

[19] M.G.J. van den Brand, A.T. Kooiker, J.J. Vinju, and N\vBerman. A Language Independent Frame-
work for Context-sensitive Formatting. t0th Conference on Software Maintenance and Reengi-
neering (CSMR 2006pages 631-634. IEEE Computer Society Press, 2006.

17

[20] M.G.J. van den Brand, A. Sellink, and C. Verhoef. Cohflmv normalization for COBOL/CICS
legacy system. IESMR pages 11-20. IEEE Computer Society, 1998.

[21] M.G.J. van den Brand and E. Visser. Generation of fotenatfor context-free languagesACM
Transactions on Programming Languages and SystB(i3:1-41, 1996.

[22] Centaur web pages, Last visit December 200http://www-sop.inria.fr/croap/
centaur/centaur.html

[23] J. Chailloux, M. Devin, F. Dupont, J.-M. Hullot, B. Seipe, and J. Vuillemin. L& isp version 15.2,
le manuel de réf’erence. Technical report, INRIA, 1986.

[24] D. Clément. The natural dynamic semantics of Miniftard ML. In H. Ehrig, R. A. Kowalski,
G. Levi, and U. Montanari, editorfAPSOFT, Vol.2volume 250 ofLecture Notes in Computer
Sciencepages 67-81. Springer, 1987.

[25] D. Clement. A distributed architecture for programgnenvironments. In R.N. Taylor, editd?yo-
ceedings of the Fourth ACM SIGSOFT Symposium on Softwarel@m@waent Environmentpages
11-21, 1990.

[26] D. Clément, J. Despeyroux, Th. Despeyroux, L. Hascaetl G. Kahn. Natural semantics on the
computer. Technical Report RR416, I.N.R.I.A., june 1985.

[27] D. Clément, J. Despeyroux, Th. Despeyroux, and G. Kéhsimple applicative language: Mini-ML.
In LISP and Functional Programmingages 13—-27, 1986.

[28] D. Clément, J. Heering, J. Incerpi, G. Kahn, P. Klint,lang, and V. Pascual. Preliminary design
of an environment generator. Second annual review rep&tAPE, ESPRIT Project 348, January
1987.

[29] D. Clement, J. Incerpi, and G. Kahn. CENTAUR: Towardsaftware tool box” for programming
environments. In F. Long, edito§EE volume 467 ofLecture Notes in Computer Sciengages
287-304. Springer, 1989.

[30] D. Clement, V. Prunet, and F. Montagnac. Integratdth&re components: A paradigm for control
integration. In A. Endres and H. Weber, editoBnftware Development Environments and CASE
Technologyvolume 509 of_ecture Notes in Computer Scienpages 167-177. Springer, 1991.

[31] VY. Coscoy, G. Kahn, and L. Théry. Extracting text fromopfs. In M. Dezani-Ciancaglini and G. D.
Plotkin, editors,TLCA volume 902 oL ecture Notes in Computer Scienpages 109-123. Springer,
1995.

[32] J. Coutaz. The box, a layout abstraction for user iateftoolkits. Technical Report CMU-CS-84-
167, Carnegie Mellon University, 1984.

[33] Th. Despeyroux. Executable specification of static aetics. In G. Kahn, D. B. MacQueen, and
G. D. Plotkin, editorsSemantics of Data Typegolume 173 of_ecture Notes in Computer Science
pages 215-233. Springer, 1984.

[34] A.van Deursen, J. Heering, and P. Klint, editdtanguage Prototyping: An Algebraic Specification
Approach volume 5 ofAMAST Series in ComputingVorld Scientific, 1996.

[35] A.van Deursen, P. Klint, and F. Tip. Origin trackingl.Symb. Compytl15(5-6):523-545, 1993.

[36] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, and J.9yL& structure oriented program editor:
a first step towards computer assisted programmingnternational Computing Symposiuidorth
Holland, 1975.

18

[37] V. Donzeau-Gouge, G. Kahn, and B. Lang. On the formahitédn of ADA. In N. D. Jones, editor,
Semantics-Directed Compiler Generatjorolume 94 ofLecture Notes in Computer Sciengages
475-489. Springer, 1980.

[38] V. Donzeau-Gouge, G. Kahn, B. Lang, and B. Mélese.uboents structure and modularity in mentor.
In Software Development Environments (SPigges 141-148, 1984.

[39] V. Donzeau-Gouge, G. Kahn, B. Lang, B. Mélése, and Brdds. Outline of a tool for document
manipulation. INFIP Congresspages 615-620, 1983.

[40] V. Donzeau-Gouge, B. Lang, and B. Mélése. Practiggiligations of a syntax directed program
manipulation environment. IICSE, pages 346—357, 1984.

[41] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekerse $$intax definition formalism SDF - reference
manual.SIGPLAN Notices24(11):43-75, 1989.

[42] J. Heering, G. Kahn, P. Klint, and B. Lang. Generatioindéractive programming environments. In
ESPRIT '85, Status Report of Continuing Work, Parpgges 467—-477. North-Holland, 1986.

[43] J. Heering and P. Klint. Towards monolingual programgéenvironments ACM Transactions on
Programming Languages and Syste(®):183-213, April 1985.

[44] J. Heering and P. Klint. Prehistory of the ASF+SDF sygs{@980-1984). In M.G.J. van den Brand,
A. van Deursen, T.B. Dinesh, J. Kamperman, and E. VissemmiProceedings of ASF+SDF95 A
workshop on Generating Tools from Algebraic Specificationsnber P9504 in Technical Report.
Programming Research Group, University of Amsterdam, 1995

[45] J. Heering, P. Klint, and J. Rekers. Incremental getiwraf parserslEEE Transactions on Software
Engineering 16(12):1344-1350, 1990.

[46] 1. Jacobs, F. Montignac, J. Bertot, D. Clément, andidriét. The Sophtalk reference manual. Tech-
nical Report 149, INRIA, February 1993.

[47] G. Kahn. An approach to system correctnessS@SR pages 86-94, 1971.

[48] G. Kahn, editorSemantics of Concurrent Computation, Proceedings of tteeriational Sympoisum,
Evian, France, July 2-4, 197%olume 70 ofLecture Notes in Computer Scien&pringer, 1979.

[49] G. Kahn. Natural semantics. In F.-J. Brandenburg, @aW¥Naquet, and M. Wirsing, editorSTACS
volume 247 of_ecture Notes in Computer Scienpages 22—-39. Springer, 1987.

[50] G. Kahn, B. Lang, B. Mélése, and E. Morcos. Metal: Arf@lism to specify formalismsScience of
Computer Programming(2):151-188, 1983.

[51] G. Kahn and D. B. MacQueen. Coroutines and networks odlfed processes. [fFIP Congress
pages 993-998, 1977.

[52] P. Klint. An overview of the summer programming langaagn Conference Record of the 7th ACM
Symposium on Principles of Programming Languages (PORIp80es 47-55, 1980.

[53] P. Klint. Formal language definitions can be made peadti In Algorithmic Languagepages 115—
132, 1981.

[54] P.Klint. A survey of three language-independent pangming environments. RR 257, INRIA, 1983.

[55] P. Klint. A Study in String Processing Languageslume 205 ofLNCS Springer-Verlag, 1985.
Based on the dissertatidfiom Spring to Summedefended at the Technical University Eindhoven,
1982.

[56] P. Klint. A meta-environment for generating programmienvironments.ACM Transactions on
Software Engineering and Methodolo@y2):176—201, April 1993.

19

[57] J.W.C. Koorn and H.C.N. Bakker. Building an editor frawisting components: an exercise in
software re-use. Technical Report P9312, ProgrammingaRes&roup, University of Amsterdam,
1993.

[58] H. Korte, H. Joosten, V. Tijsse, A. Wammes, J. Wester, Kithne, and Chr. Thies. Design of a
LOTOS simulator: Centaur from a user’'s perspective. Fiftnual review report: D5, GIPE II,
ESPRIT project 2177, 1993.

[59] B.Lang. Deterministic techniques for efficient norteteninistic parsers. In J. Loeckx, edittCALP,
volume 14 ofLecture Notes in Computer Scienpages 255—-269. Springer, 1974.

[60] B. Lang. On the usefulness of syntax directed editor&.IConradi, T. Didriksen, and D. H. Wanvik,
editors,Advanced Programming Environmeniwlume 244 ofLecture Notes in Computer Science
pages 47-51. Springer, 1986.

[61] B. Lang. The virtual tree processor. In J. Heering Ji 8l A. Verhoog, editorgzeneration of In-
teractive Programming Environments, Intermediate Reparmber CS-R8620 in Technical Report.
Centrum voor Wiskunde en Informatica, 1986.

[62] J.L. Lions. ARIANE 5: Flight 501 Failure, Report by theduiry Board. http://homepages.
inf.ed.ac.uk/perdita/Book/ariane5rep.html ,1996. Last visit January 2007.

[63] Meta-Environment web pages, Last visit March 2008ttp://www.meta-environment.
org .

[64] E. van der Meulen. Deriving incremental implementatidrom algebraic specifications. In M. Ni-
vat, Ch. Rattray, T. Rus, and G. Scollo, editdk8JAST Workshops in Computing, pages 277-286.
Springer, 1991.

[65] E. Morcos-Chounet and A. Conchon. PPML.: a general psggormalism to specify prettyprinting.
In H.-J. Kugler, editorlnformation Processing 8ages 583-590. Elsevier, 1986.

[66] P.A. Olivier. Debugging distributed applications ngia coordination architecture. In D. Garlan and
D. Le Métayer, editorsCOORDINATIONvolume 1282 of ecture Notes in Computer Scienpages
98-114. Springer, 1997.

[67] D.C. Oppen. PrettyprintingACM Transactions on Programming Languages and Syst2(s465—
483, 1980.

[68] Sophtalk web pages, Last visit December 2006ttp://www-sop.inria.fr/croap/
sophtalk/sophtalk.html

[69] L. Théry, Y. Bertot, and G. Kahn. Real theorem proveesatve real user-interfaces. 8DE 5:
Proceedings of the fifth ACM SIGSOFT symposium on Softwareafement environmentpages
120-129, New York, NY, USA, 1992. ACM Press.

[70] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm feractical SystemsKluwer
Academic Publishers, Norwell, MA, USA, 1985.

20

