
Tribute to a Great Meta-Technologist
—from Centaur to The Meta-Environment—

Paul Klint
Software Engineering Department

of
Centrum voor Wiskunde en Informatica (CWI),

and
Informatics Institute, University of Amsterdam

www.cwi.nl/˜paulk

March 6, 2008

Abstract

Gilles Kahn was a great colleague and good friend who has leftus much too early. In this paper I
will sketch our joint research projects, the many discussions we had, some personal recollections, and
the influence these have had on the current state-of-the-artin meta-level language technology.

1 Getting acquainted

Bâtiment 8. On a sunny day in the beginning of July 1983 I parked my beige Citroen
Dyane on the parking lot in front of B̂atiment 8, INRIA Rocquencourt. At the time, the
buildings made the impression that the US military who had constructed the premises
in Rocquencourt were also the last that had ever used the paint brush. Inside, lived
an energetic research family and I was hosted by project CROAP headed by Gilles
Kahn. My roommates Veronique Donzeau-Gouge and Bertrand Mélèse helped me find
a bureau in a corner in the cramped building and helped to set up a Multics account
on the Honeywell-Bull mainframe.

After some flirtations with computer graphics, software portability and the Unix operating system, I
turned to the study of string processing languages on which Iwrote a PhD in 1982 [55]. The main topic was
the Summer programming language [52] that featured objects, success/failure driven control flow, string
matching and composition, and a “try” mechanism that allowed the execution of an arbitrary sequence of
statements and would undo all side effects in case this execution resulted in failure.

As part of this work, I got attracted to the question of how thesemantics of such languages could
be defined [53]. The approach I used was a meta-circular language definition that covered both syntax
and semantics. However, this definition was written after the actual implementation had already been
completed. Would it not be great if a language definition could be used togeneratean efficient language
implementation?

As described in more detail in [44], Jan Heering and I startedthe design of a dedicated programming
environment for the Summer programming language. This led us to the notion of amonolingual program-
ming environment[43] in which the various modes of the environment such as programming, command
line execution and debugging were all done in the same language. We were aware of the formidable im-
plementation effort of such a system for a specific language and, in addition to this, Summer had never

1

been designed with that purpose in mind. As already described, we had some experience with language
definitions and this naturally led to the idea of a programming environment based on language definitions.

This is how Jan and I became aware of the INRIA work on syntax-directed editing [36, 60], the formal
definition of ADA [37], the language definition formalism Metal [50], and the abstract syntax tree manip-
ulation system Mentor [39, 38, 40]. This work was motivated by Gilles’s earlier work on semantic aspects
of programming languages [47, 48, 51]. The best way to study this work was to pay a visit to the CROAP
(Conception et Réalisation d’Outils d’Aide à la Programmation) team at INRIA, which was headed by
Gilles. This is precisely what I did in July 1983. A lucky coincidence was that Tim Teitelbaum and his two
PhD students Thomas Reps and Suzanne Horwitz were spending their sabbatical in Rocquencourt. This
gave me the opportunity to compare three systems: the Mentorsystem (Gilles and coworkers), an early
version of the synthesizer generator (Tim Teitelbaum and Thomas Reps), and Ceyx (a Mentor-like system
built by Jean-Marie Hullot on top of Jerome Chailloux’ LeLisp system). This comparison appeared as [54].

2 The GIPE projects

Take the money and run! Phone call from Gilles early 1984: “Paul, did you hear
about this new ESPRIT program? Shouldn’t we submit a proposal and take the money
and run?”

2.1 GIPE Proposal

And indeed, by the end of 1984 we submitted a proposal for the project Generation of Interactive Pro-
gramming Environmentsor GIPE1 for short. The prime contractor was SEMA METRA (France) and
the partners were BSO (a Dutch software house that is currently part of ATOS ORIGIN), Centrum voor
Wiskunde en Informatica (Netherlands) and INRIA (France).The objectives and envisaged approach were
neatly summarized in the proposal:

The main objective of this project is to investigate the possibilities of automatically gener-
ating interactive programming environments from a language specification. An “interactive
programming environment” is here understood as a set of integrated tools for the incremen-
tal creation, manipulation, transformation and compilation of structured formalized objects
such as programs in a programming language, specifications in a specification language, or
formalized technical documents. Such an interactive environment will be generated from a
complete syntactic and semantic characterization of the formal language to be used. In the
proposed project, a prototype system will be designed and implemented that can manipulate
large formally described objects (these descriptions may even use combinations of different
formalisms), incrementally maintain their consistency, and compile these descriptions into
executable programs.

The following steps are required to achieve this goal:

• Construction of a shared software environment as a point of departure for experimenting
with and making comparisons between language specific techniques. The necessary ele-
ments of this – Unix-based – software environment are: efficient and mutually compatible
implementations of Lisp and Prolog, a parser generator, general purpose algorithms for
syntax-directed editing and prettyprinting, software packages for window management
and graphics, etc. Most of these elements are already available or can be obtained; the
main initial effort will be to integrate these components into one reliable, shared software
environment.

1We never settled on a proper pronunciation of this acronym.

2

• A series of experiments that amount to developing sample specifications-based on dif-
ferent language specification formalisms, but initially based on inference rules and uni-
versal algebra–for a set of selected examples in the domain of programming languages,
software engineering and man-machine interaction. The proposed formalisms have well-
understood mathematical properties and can accommodate incremental and even re-
versible computing.

• Construction of a set of tools of the shared environment to carry out the above exper-
iments. It will be necessary to create, manipulate and check(parts of) language spec-
ifications and to compile them into executable programs. Thetools draw heavily upon
techniques used in object-oriented programming (for manipulation of abstract syntax
trees), automatic theorem proving (for inferring properties from given specifications to
check their consistency and select potential compilation methods), expert systems (to or-
ganize the increasing number of facts that become known about a given specification)
and Advanced Information Processing in general (man-machine interfaces, general in-
ference techniques, maintenance and propagation of constraints, etc.)

• The above experiments will indicate which of the chosen formalisms is most appropriate
for characterizing various aspects of programming languages and interactive program-
ming environments. These insights will be used in constructing a prototype system for
deriving programming environments from language specifications. The envisioned “pro-
gramming environment generator” consists of an integratedset of tools and an adequate
man-machine interface for the incremental creation, consistency checking, manipulation
and compilation of language specifications.

By performing some hype-aware substitutions (syntax7→ model, generation7→ model-driven, elements
7→ components) this vision is still relevant today. As in each proposal we had to oversell our ideas and we
indeed needed GIPE (1985-1989), and its sequel project GIPEII (1989-1993) to create a proof-of-concept
of this vision. In the GIPE II project, the companies GIPSI (France), Bull (France), Planet (Greece), PTT
Research (Netherlands), and the research partners TH Darmstadt (Germany), University of Amsterdam
(Netherlands) and PELAB (Linkoping Sweden) joined the team.

2.2 The importance of GUIs

Disoriented mice. Demonstration sessions are a must for any subsidized research
program and ESPRIT was no exception. As part of the yearly ESPRIT conference
we gathered—with many colleagues from all over Europe who participated in other
ESPRIT projects—in an underground parking lot of the Berlaymont building in Brus-
sels. The parking garage had been turned into an exposition center but the smell of
cars was still clearly present. Our two Sun workstations booted-up well but at the
stage that the window system was up and running and interaction with the mouse was
needed, everything messed up. Incompatible mouse drivers?A hardware error? After
two hours of hectic discussions and experiments we discovered the cause of the prob-
lem. At that time of early optical mice, the specific grid on the mouse pad was used to
determine the mouse’s coordinates and simply switching thetwo mouse pads solved
the problem. Or was this a case of overexposure to exhaust fumes after all?

Gilles had from early on recognized the importance of a proper user-interface. His preoccupation with
the user-interface was based on an earlier disappointing experience when the Mentor system was being
demonstrated to a high-ranking official from a US governmentagency. The nifty thing to be demonstrated
was that the knowledge of the abstract syntax of a program could be used to skip complete subtrees during
a search operation. However, it turned out to be impossible to get this nice idea across because the official
kept asking “where’s the user-interface?”.

3

Figure 1: Early architectural designs of the GIPE system:(a) End-user view of anL-environment for
an arbitrary languageL; (b) Relation between language definition and generated environment;(c) Global
architecture.

In fact, during the GIPE project we had the same experience while demonstrating an early prototype of
our syntax-directed editor to the board of directors of BSO,our Dutch commercial partner at the time. From
our perspective everything was present in the demo: a parsergenerator, a parser, a syntax-tree manager,
and a prettyprinter. All these tools were based on a well-understood theory and implemented with a lot of
hard work. However, we learned the hard way that the most important part was still missing: a colorful
user-interface that could attract the attention of the board.

It will come as no surprise, that user-interfaces have played an important role during and after the GIPE
projects.

2.3 GIPE results

The initial architecture of the environment generator was described in [28]. Figure 1 gives some snapshots
of that design. Clearly visible are the generator-based approach and the internal representation of programs
as trees.

It is amazing how much effort is often required to achieve goals described in innocently looking sen-
tences in a project proposal, like “Most of these elements are already available or can be obtained; the main
initial effort will be to integrate these components into one reliable, shared software environment”. Recall,
that the project started in the pre-X-windows era and we haveexperimented with a lot of now long forgot-
ten systems: Brown Workstation Environment, LucasFilm, LeLisp Virtual Window System, and Graphical
Objects.

Another fundamental choice that we made early on in the project was to use LeLisp [23] as the imple-
mentation language. LeLisp was a nice and flexible language ideal for prototyping and code generation.
However, this decision turned out to be a major problem towards the end of GIPE II. LeLisp was transferred
to the INRIA spinoff ILOG and we were stuck with a LeLisp version that was no longer maintained.

There have always been two different approaches in the GIPE projects: a “Dutch” approach and a
“French” approach. As a Francophile, I liked Gilles’ laissez-faire style that today would be called “just-
in-time”. Several of the younger members in the Dutch team preferred to have things organized weeks in
advance. Not surprisingly this led to occasional excitement whether things would be ready for the review,
the annual report, the demonstration or whatever. I can testify here, that things were always ready—just-
in-time. The other differences in approach will be discussed below.

Initial results of the project were reported in [42] and several other ESPRIT-related conferences. The
main outcome of the GIPE projects was theCentaur systemthat was the promised proof-of-concept envi-
ronment generator [29, 14]. It consisted of:

4

• The Virtual Tree Processor (VTP): a database for storing abstract syntax trees [61].

• Specification formalisms: Metal (syntax), PPML (prettyprinting) [65], TYPOL (static and dynamic
semantics) [33, 26, 49], SDF (syntax) [41], ASF (static and dynamic semantics) [6], and ASF+SDF
(the integrated version of the latter two) [6, 34].

• Various editors.

• A user-interface.

In addition to the design and implementation of the system itself various case studies such as for Mini-
ML[27, 24], Pico [6], LOTOS [58], Eiffel [1], Esterel [9], Sisal [2], POOL [6] and others were carried
out.

After so many years, I should confess that the system was a true Centaur: half human and half horse.
On top of the common infrastructure (LeLisp, VTP, GraphicalObjects) actually two subsystems were built:
a French system using Metal, PPML and TYPOL versus a Dutch system consisting of ASF+SDF and the
Generic Syntax-directed Editor (GSE). SDF was also used in the French subsystem for some experiments.

I always found that the French subsystem was ahead of us in terms of inspiring examples and user-
interface integration, while we were struggling with issues like incremental parser generation, efficient
execution of rewrite rules and understanding how modularization should work. In hindsight, the major
results of the project as a whole were:

• The use of natural semantics to specify language semantics.

• The use of user-defined syntax and rewriting techniques to specify language semantics.

• A wide range of implementation techniques that showed the feasibility of these approaches.

At the end of GIPE II the interests of the partners started to diverge further and further. Gilles’ team
was moving in the direction of the interactive editing of proofs [69, 12] and converting proofs to text [31].
See [22] for an annotated bibliography. On the Dutch side, wewere more interested in pursuing the original
vision of a programming environment generator; this is documented in [42, 56, 34].

3 An Ongoing Scientific Debate

A soldering job. In the same parking-lot-turned-into-exposition-centre as the year
before we encountered communication problems. How to connect our two worksta-
tions in order to exchange relevant software needed for the demonstrations? Gilles
and I ended up lying on the floor soldering a null-modem in order to make the con-
nection. It did work, but we were without any doubt the most unqualified electricians
in the exposition centre.

One of the major benefits of the cooperation between the partners in the GIPE projects were the dis-
cussions on topics of common interest and the different views and arguments that were exchanged. Gilles
was a passionate researcher and had outspoken opinions on all matters relevant to the project. I will briefly
describe them below.2 This scientific debate was the corner stone of the success of the projects.European
cooperative research would be better off if this kind of liberal, scientific debate would be more cherished
by the European policy makers.

2Disclaimer: this paper focuses on work resulting from the GIPE projects and mostly ignores other related work.

5

3.1 Monolingual versus domain-specific languages

As mentioned earlier in Section 1, Jan Heering and I were coming from a “monolingual” background and
we wanted to unify as much as possible. Looking at the Mentor approach, we observed that different
languages were used for partially overlapping purposes:

• Metal defined concrete syntax, abstract syntax and a mappingfrom the former to the latter.

• PPML defined a mapping from abstract syntax to a language of boxes.

• Mentol, Mentor’s command language, contained constructs for matching and control flow that were
also present in Metal and PPML.

This approach has the advantage that each step is explicit and that there is more opportunity for manual
tweaking in order to handle complex situations. The disadvantage is, however, that the specification writer
has to be aware of several representations and mappings between them. We opted for a more integrated
approach in SDF [41] and made the following assumptions:

• There exists a “natural” context-free grammar for the language we want to define. In this way the
grammar does not contain idiosyncrasies caused by the use ofspecific parsing technologies.

• There is a fixed mapping between concrete and abstract syntax.

• Grammars are modules that can be composed.

• A default prettyprinter can be derived from the context-free grammar but can be overridden by user-
defined preferences.

Of course, this approach places a tremendous load on the implementation but it leads—in my opinion—
to a higher-level specification. So in the case of SDF, the monolingual approach worked well. However, the
evolutionary pressures are such that opportunities, desires and needs to introduce specialized formalisms
are abundant. Today, we have—in addition to ASF+SDF—dedicated formalisms for component intercon-
nection, relational calculus, prettyprinting, and moduleconfiguration. From time to time I wonder if some
of them can be eliminated Gilles’ view that specializedformalisms are unavoidable was certainly the
more realistic one.

3.2 Strings versus Trees

With a background in string processing languages, it is not surprising that we had a certain bias in fa-
vor of a textual (re)presentation of programs, while Gillesalways took the abstract syntax tree as central
representation. This resulted in the following differences in point of view:

• In the parsing model, we opted to stay as close to the parse tree as possible, see Section 3.2.1.

• At the specification level, we wanted to have user-defined syntax and give the user complete textual
freedom in the concrete textual notation of functions and datatypes. See Section 3.2.2.

• In the editing model, we took the user’s text as the primary source of information. This is opposed
to the view that the actual text entered is parsed, convertedto an internal tree structure, and then
presented to the user as the result of prettyprinting that tree. This is explained in more detail in
Section 3.2.3.

6

Figure 2: Structured representation of source text:(a) Source text;(b) Full parse tree;(c) Conventional
parse tree;(d) Abstract syntax tree.

3.2.1 Parse Trees versus Abstract Syntax Trees

What is the right abstraction for representing and manipulating programs? Syntax trees are the structures
that are the result of syntax analysis (also known as parsing) of some program text. However, syntax trees
exist in various flavors.

Parse treesare a faithful description of the manner in which a text has been been derived from its
grammar. Afull parse tree contains all the textual details of the text including whitespace, comments and
the like. See Figure 2(b). Since there is no information loss, it is possible to literally reconstruct the original
text from the parse tree. Aconventionalparse tree is a full parse tree with all the layout symbols removed,
see Figure 2(c). In this case, the source text can be mostly reconstructed but all layout symbols have to be
guessed by a prettyprinter.

Abstract syntax treesomit the textual representation but focus on structure. As shown in Figure 2(d),
the abstract syntax tree for a while-statement is a tree nodelabeled “while-statement” with two children:
an expression and the body of the while-statement. From sucha shallowabstract syntax tree, the source
text can only be recreated by means of prettyprinting (see Section 3.2.3). However the original layout
(indentation, spacing, comments) is lost. The global advantage of abstract syntax trees is that they require
less memory space.

The debate about the proper program representation was always centered around the question how
“deep” the abstract syntax tree should be, in other words, how big could the distance between a parse tree
and the corresponding “deep” abstract syntax tree be. Suppose that a language contains various iteration
constructs, like a for-loop, a while-do-loop, do-until loop, etc. A “deep” abstract syntax tree could map all
loop variants on a single, general, loop node. This has the advantage that a single semantic rule can handle
all the different cases at once. The disadvantage is that it is no longer possible to know the construct in the
original program or to reconstruct the original source textin any way.

Centaur mostly used shallow abstract syntax but had the functionality to build deep syntax trees when
desired. In the developments after GIPE, we have focused ourattention more and more on software reno-
vation projects where it is mandatory to reconstruct the original source code even after source code trans-
formations. So we moved closer to the source text and now use full parse trees as structured representation
of programs.

7

3.2.2 User-defined syntax

Not surprisingly, our string bias led us to believe that the user should be free to write specifications in a
domain-specific notation. In a way, this was our answer to thephenomenon of domain-specific languages.
Why write and(true, or(false, true)) while true and (false or true) looks more
natural? Writing a compilation rule for an if-statement as

compile(if $Test then $Series1 else $Series2 endif) = ...

looks more appealing than using a strict prefix notation to represent program fragments. Note that$Test ,
$Series1 and$Series2 are meta-variables that represent program fragments. A real example—that
has already transformed millions of lines of COBOL code—is the following [20]:

addEndIf(IF $Expr $OptThen $Stats) =
IF $Expr $OptThen $Stats END-IF

In COBOL, theTHENandEND-IF keywords are optional in if-statements. The above rule insertsEND-IF
keywords in if-statements in order to increase readabilityand maintainability. Using abstract syntax, a
dozen prefix functions would be needed to describe this rule while the version that uses concrete syntax
is (almost) readable by the average COBOL programmer. This is another argument in favour of full parse
trees.

We decided to aim for an approach where every function or datatype in a specification is in fact a
mini-language which defines its own concrete syntax. Of course, these mini-languages should be com-
posable into larger languages and so on. This is a very flexible approach that treats a simple datatype
like the Booleans or a complete programming language like Java or COBOL in a uniform manner. The
consequences of this decision, however, were staggering:

• Since language grammars had to be composed, we needed a parsing approach that permits grammar
composition. Since none of the standard approaches supported this,3 we started a journey, that has
still not ended, in the area of Generalized LR parsing [59, 70, 13, 45].

• Since specification rules contain applications of user-defined grammar rules, it is impossible to de-
fine one, fixed, grammar for our specification formalism. As a consequence, we need a two-stage
approach: first collect all user-defined grammar rules, generate a parser for them, and then parse the
rules in the specification.

In addition to the conceptual challenges, it was also a majorproblem to implement this in a fashion that
scales to really large cases. At several points in time I havethought that the decision to provide user-defined
syntax in this way was fatal to our part of the project. Gilleswas intrigued by this approach, started a brief
study to add it to TYPOL but after a short while concluded thatit was not practical and moved ahead to
new interesting problems. Since he was not interested in syntax at all, this was probably a wise decision
and avoided a lot of complications.

For us, the balance is different. Today we are one of the unique systems that provide fully general
user-defined syntax and the major benefit is that program transformation rules can be written in a way that
is as close as possible to ordinary source text. This helps inthe acceptance of program transformations.
However, we have still not solved all problems related to this approach. For instance, since we are working
in the domain of full context-free grammars, it remains a challenge how to handle ambiguous grammars.

3General context-free grammars are compositional in the sense that they can be combined and form again a context-free gram-
mar. Such a composition can be affected by interferences dueto name clashes. Popular subclasses like LL(k) or LR(k) are not
compositional at all: the combined grammar may require extensive restructuring in order to satisfy the requirements ofthe specific
subclass.

8

Figure 3: Two editing models:(a) User types in source text and sees prettyprinted text;(b) User only sees
source text as typed in.

3.2.3 From PPML to Pandora

Don’t touch that link! In the early days of the World Wide Web we were all excited
about the new information infrastructure that was emerging. Gilles showed us the
latest version of the Mosaic browser. “Don’t touch that linksince it connects all the
way to Australia!” he said with concern in his voice when I tried it. At that time of
expensive dial-in connections, today’s cheap broadband connectivity was impossible
to foresee. Later, Gilles played a key role in the transfer ofthe W3C consortium from
CERN to INRIA.

As mentioned above, during the editing of programs we took the text as entered by the user as the
primary source of information. After a textual modification, the text was reparsed and the internal tree
structure was updated. The textual image as presented to theuser remained exactly as the user had typed
it in. This is shown in Figure 3(b). In the standard editing model used by Centaur, the text was parsed,
converted to a tree structure, and then presented to the useras the result of prettyprinting that tree. This is
shown in Figure 3(a).

A prettyprintertakes an abstract syntax tree and transforms it into text according to user-defined rules;
the subject had been pioneered by Oppen [67]. At INRIA there was already extensive experience with
the subject in the form of the Prettyprinting Meta-LanguagePPML [65]. PPML used a notion of “boxes”
that originates from [32] and provides operators for the horizontal and vertical composition of text blocks.
PPML provides matching constructs to identify language constructs in the abstract syntax tree, case dis-
tinctions, and construction recipes to build box expressions for specific language construction.

Due to our text-oriented view on editing we had no need for a prettyprinter and have lived without one
for many years.

PPML was a typical case where our monolingual view clashed with Gilles’ view on the use of spe-
cialized languages. The PPML constructs mentioned (matching, case distinction, term construction) were
also present in the formalisms that performed semantic processing on the syntax tree (be it TYPOL or
ASF+SDF) and this duplication of concepts was not appealingfor us. Many years later, we gave up ignor-
ing prettyprinting and built several prettyprinters basedon the Box language [21, 19]. In our most recent
prettyprinter, Pandora, all matching, case distinction and construction of boxes is done in ... ASF+SDF. So
here is at least one exceptional case, where monolingualismprevailed.

9

3.3 From Virtual Tree Processor to ATerms

The Virtual Tree Processor (VTP) [61] was a database system for abstract syntax trees. Given a signature
describing the names of the constructor functions, as well as their number and type of arguments, the VTP
allowed the construction of arbitrary, type-correct, trees over the defined signature.

In addition to functions for the creation, access and modification of trees, the VTP also provided func-
tionality for creating, maintaining and mergingcursors (or “paths” in VTP terminology) in each tree.
Regarding internal data representation and functionality, the VTP was not unlike a present-day XML pro-
cessor. The main difference was that the VTP only provided anAPI (Application Programmer’s Interface)
for manipulating trees. As a result, programs manipulatingtrees were restricted to LeLisp although later a
C++ version was completed. A serialized form of the trees that could easily be shared by programs written
in other languages was missing.

In today’s Meta-Environment there is a similar need for manipulating and storing trees. We have taken
a textual (and also a binary) representation for trees as starting point and they can be used and exchanged
by programs written in arbitrary languages. The resulting format (ATerms and ATerm library [17, 18]) is,
in many ways, simpler than the original VTP functionality. One distinctive feature is that it provides (and
maintains) maximal subterm sharing, thus considerably reducing the size of large syntax trees.

3.4 Component architecture

Over the years Centaur had evolved into quite a large code base of 200.000–300.000 lines of (mostly
LeLisp) code. There were three forces that made us aware of the fact that we needed to reflect on a more
component-based approach:

• The French team was more and more interested in connecting external parsers (for instance, for
parsing proof traces) and tools (for instance, provers and proof checkers).

• The Dutch team became more and more concerned about the modularity and maintainability of the
code base.

• We were all aware of the need to write components in other programming languages than LeLisp;
this was partly driven by the availability and support problems with LeLisp that we all were expecting
(see Section 2.3).

And, as usual in this cooperation, both teams identified the same problem but ended-up with com-
pletely different solutions. Dominique Clément proposeda notion of “software IC”, a software component
that could be connected with other components via communication channels, not unlike hardware ICs.
This approach evolved into Sophtalk [25, 30, 46], a basic, messaging-based, infrastructure for distributed
programming. Quoting the Sophtalk website [68]:

Sophtalk is a set of tools that enable one to program the interaction between objects following
an event model of communication. Sophtalk is an autonomous LeLisp system that provides
facilities for programming communication between objectsand processes. The system is com-
posed of three packages:stnode, a multicast communication mechanism;stio an extension of
the standard LeLisp asynchronous and synchronous i/o mechanisms; andstservice, a mecha-
nism offering interprocess communication at the shell and LeLisp levels.

The Dutch team had, at the same time, been experimenting withthe partitioning of the system in inde-
pendently executing parts. The primary objective was to increase modularization and to start experiments
with writing components in different languages. The initial project to build a new editor from existing
components was a disaster [57]. All parts were implemented and tested individually and worked well in
isolation. But, when put together, deadlock after deadlockmanifested itself. This was a strong incentive to
take concurrency seriously and has resulted in the ToolBus coordination architecture [7, 8] that is still in
use today. The basic idea of the ToolBus is to have a central, programmable, “software bus” that is used to
connect components that may be written in different programming languages, but adhere to a fixed protocol
and exchange data in a fixed format (i.e., ATerms, see Section3.3).

10

Figure 4: User interface of SmartTools

3.5 Other topics

In addition to the topics already discussed above, the cooperation in the GIPE projects has also been a
catalyst for research in a wide range of other areas that wereof common interest:

• Origin tracking [11, 35].

• Incremental evaluation [64, 3].

• Generic debugging [10, 66].

I refer the interested reader to the references for further discussions on each of these topics.

4 The post-GIPE Era

4.1 The French Side

The many roads to Route des Lucioles.Living in a country where winters can be
long and dark, I liked the occasional meetings in Sophia-Antipolis where Gilles was
working since the mid-eighties. On one of the occasions thathe picked me up from a
hotel in Antibes he confessed that he was participating in a local competition to find
as many new routes towards the INRIA premises as possible. I never recognized the
route we took or how we managed to reach Route des Lucioles, onevery successive
visit.

4.1.1 CROAP and OASIS

The CROAP project at INRIA was stopped in 1998 and research ongeneric programming environments
was continued in the Oasis project under direction of Isabelle Attali who had, along with others, earlier

11

Figure 5: Architecture of SmartTools

worked on the incremental evaluation of TYPOL specifications. In this project, Didier Parigot developed
the SmartTools system [5, 4] that can be seen as a second generation Centaur system with a strong emphasis
on the use of XML as its tree representation mechanism. The user-interface is shown in Figure 4. It can
provide several, simultaneous, views on the same document.The architecture is shown in Figure 5. Note
that the user-interface itself is defined in a separate document (Document GI) and that the communication
between components is achieved via an asynchronous messageinfrastructure.

Today, the SmartTools system focuses on domain-specific languages and software factories. Since the
interests of the Oasis project gradually moved towards security analysis and smart cards, the SmartTools
system has never become a primary focus of the project.

Tragically, Isabelle and her two children died in the 2004 tsunami, while on holiday with her family in
Sri Lanka.

4.2 Other impact of the Centaur legacy at INRIA

Many ideas from Centaur still survive in subsequent research activities at Inria. I will briefly mention some
clear examples.

4.2.1 AXIS

The AXIS4 is concerned with verification of information systems and web sites. They are applying Nat-
ural Semantics to help specify, check and maintain static semantics of Web sites and more generally of
Web documents. Former GIPE team members Thierry Despeyroux(of TYPOL fame) and Anne-Marie
Vercoustre are working in this project.

4.2.2 MARELLE

The MARELLE5 is developing an environment for the computer-supported verification of mathematical
proofs. The overall goal is to ensure the correctness of software. Examples are a graphical user-interface
for the Coq prover (as already experimented with in GIPE) andthe certified implementation of various
algorithms. MARELLE is headed by Yves Bertot who was also on the GIPE team.

4User-Centered Design, Analysis and Improvement of Information Systems, seehttp://www-sop.inria.fr/axis/ .
5Computer aided verification of proofs and software, seehttp://www-sop.inria.fr/marelle/index_eng.html .

12

Figure 6: User interface of the Meta-Environment

4.2.3 PARSIFAL

The PARSIFAL6 project works on proofs of programs and protocols and emphasizes the underlying prin-
ciples of proof search. Typical applications are in areas like proof-carrying code and model checkers. The
vice-head of PARSIFAL Joëlle Despeyroux was on the GIPE team.

4.2.4 TROPICS

The TROPICS7 team works on an environment for analysis and transformation of scientific programs,
and aims at applying techniques from software engineering to numeric software for Computational Fluid
Dynamics. Their Tapenade8 system applies Automatic Differentiation to Fortran programs in order to
derive optimized versions of the original program. TROPICSis headed by Laurent Hascoët, who was a
member of the GIPE team.

4.3 Ariane V

On June 4, 1996 the first test flight of the Ariane 5 (flight 501) took place and was a dramatic failure. After
37 seconds the rocket exploded.

According to the report of the Inquiry Board [62] the Ariane 5reused software from Ariane 4 beyond
its specifications and this caused a floating point conversion to fail. For reasons of efficiency the Ada error
handler had been disabled. This has become known as one of themore expensive software bugs.

Gilles, being an expert on programming language semantics in general and on Ada semantics in partic-
ular, was a member of the Inquiry Board. Is there a better example of theory meeting practice?

6Preuves Automatiques et Raisonnement sur des SpécIFicAtions Logiques, seehttp://www.lix.polytechnique.fr/
parsifal/ .

7Program transformations for scientific computing, seehttp://www.inria.fr/recherche/equipes/tropics.en.
html .

8See ftp://ftp-sop.inria.fr/tropics/tapenade/README.html.

13

4.4 Evaluation Committees and Scientific Council

In 1998 I participated in the evaluation committee for INRIAProgramme 2A, in 1999 for the project OASIS
and in the period 1998–2002 I served as member of INRIA’s Scientific Council. All these occasions
gave me ample opportunity to watch Gilles at work: friendly,hospitable and seemingly bored that yet
another evaluation had to take place. At the same time he was very keen that the politically most desirable
conclusions ended up in the final reports of these committees.

In the Scientific Council, Gilles acted as an excellent strategist with a keen eye for new scientific
developments and for opportunities for INRIA to make a scientific or societal contribution. We shared an
interest in the phenomenon ofspinoff companies: attempts to bring scientific results to the market.

4.5 The Dutch side

On the Dutch side, we have seen slow progress in three generations of software:

1992 The initial LeLisp-based version of the ASF+SDF Meta-Environment.

2000 The first generation of a completely component-based Meta-Environment based on the ToolBus. The
main implementation languages used were C, ASF+SDF and Tcl/TK (for the user-interface).

2007 The second generation, released in 2007, that containsa plugin architecture for the user-interface,
visualization tools, and more, see Section 4.5.1 below and [16, 15, 63]. In this edition, Java has
become one of the prominent implementation languages.

In the remainder of this section, I will give more details about this second generation system (The
Meta-Environment version 2.0) as we present it today.

4.5.1 The Meta-Environment, Version 2.0

The Meta-Environment9 is an open framework for language development, source code analysis and source
code transformation. It consists of syntax analysis tools,semantic analysis and transformation tools, and an
interactive development environment (see Figure 6). It is supported by a growing open source community,
and can easily be modified or extended with third party components.

The Meta-Environment is a generalization of the ASF+SDF Meta-Environment that has been success-
fully used in many analysis, transformation and renovationprojects. The Meta-Environment has been used
for applications such as:

• Parsing (new and old) programming languages, for further processing the parse trees.

• Analysis of source code (fact extraction, type analysis, and documentation generation).

• Transformation, refactoring, and source code generation.

• Design and implementation of Domain-specific languages.

4.5.2 Features of The Meta-Environment

From the background given in this paper, the features of The Meta-Environment can be easily recognized:

• Modular grammar definitions—a consequence of our generalized parsers.

• Declarative disambiguation filters used to resolve many common ambiguities in programming lan-
guages.

• Conditional term rewriting used to perform software transformations.

9This section is based on a tool demonstration presented in [15]. Seewww.meta-environment.org for further details.

14

Figure 7: Run-time architecture of the Meta-Environment

• Seamless integration of user-defined syntax in rewrite rules, enabling the definition of transformation
rules in concrete syntax, as opposed to using abstract syntax and getting much more obscure rules.
This also guarantees fully syntax-safe source code generation.

• A highly modular and extensible architecture based on the coordination of language processing tools.

• ATerms as a language-independent intermediate data exchange format between tools.

• An Integrated Development Environment (IDE) that providesinteractive support and on demand tool
execution.

Version 2.0 of The Meta-Environment includes various new features:

• A grammar library containing grammars for C, Java, Cobol andother programming languages.

• Rewriting with layout. This enables fine-grained analysis and transformations such as high-fidelity
source-to-source transformations that preserve commentsand whitespace.

• Automatically generated syntax highlighting based on syntax definitions for arbitrary languages.

• Automatically generated prettyprinters that can be refinedby the user.

• Rscript—a relational calculus engine that enables easy computing with facts extracted from source
code.

• Advanced information visualization tools for the interactive display of relations, parse trees and
dependencies.

• A fully customizable, plugin-based user-interface with dockable panes, and user-defined menus and
buttons. Plugins can run user-defined scripts to interact with other tools.

A major architectural improvement in version 2.0 is the division of the system into several separate lay-
ers that enable the creation of a family of related applications that share common facilities such as user-
interface, parsing infrastructure, and error reporting (the kernel layer). The facilities for syntax analysis
(SDF layer) and transformation (ASF layer) are implementedon top of this kernel. See Figure 7 for an
overview of this layered architecture. Observe that the system uses the ToolBus as coordination infras-
tructure and compare this with the Sophtalk approach (Section 3.4) and the architecture of SmartTools
(Figure 5). All three systems achieve component decouplingby way of messaging middleware.

15

4.5.3 Applications of The Meta-Environment

In the area of software evolution, The Meta-Environment hasbeen successfully applied to the transforma-
tion of database schemas, analysis of embedded SQL, Cobol prettyprinting and restructuring, PL/I parsing,
analysis and restructuring of C++, dead-code detection in Java, and aspect mining in C.

Due to the many extension points (rules for defining syntax, prettyprinting, analysis and transformation;
extensible user-interface; connection of third-party components; extensible architecture) the system can be
easily adapted to the requirements of a specific software evolution or renovation problem.

In the area of domain-specific languages, the system has beenapplied to domains as disparate as finan-
cial systems and machine tooling.

4.6 Synthesis: the ATEAMS project

As in every classical story there are three parts: thesis, anti-thesis and synthesis. The GIPE story also seems
to follow this structure: the GIPE projects (see Stcion 2) and the post-GIPE era (see Section 4) form thesis
and anti-thesis. The synthesis suddenly enters the stage byway of a joint CWI/INRIA project team that
is in preparation at the time of writing: ATEAMS10 that will do research onfact extraction, refactoring
and transformation, andreliable middlewarewith as overall aims to enable the evolution of large software
systems to service-oriented systems and to use the service paradigm to scale up analysis and transformation
tools.

5 Concluding remarks

Gilles the Meta-technologist.Gilles would often exclaim: “This is so meta” with a
strong emphasis on the second syllable of the word “meta”.

Meta-approaches were, are and will remain crucial: meta-modeling, model-driven development, and
domain-specific engineering are the current labels for the activities that played a prominent role in the
objectives and results of the GIPE projects.

It comes as no surprise that generic language technology is in increasing demand for the design and
implementation of domain-specific languages; for the analysis and transformation of software and software
models; and for numerous forms of code generation. The increasing popularity of the Meta-Environment
is one illustration of this.

As this brief historical overview shows, many of the ideas Gilles worked on are still in daily use today.
This is mostly due to his conceptual approach to many problems. He liked to view things from a higher
level of abstraction. First in studying meta-level descriptions of programming languages, later as scientific
director of INRIA where he could supervise and steer technological developments and research directions.
A true “meta-technologist” with a vision. As president of INRIA he could apply his meta-skills and vision
to a large, bureaucratic but highly successful research organization. Gilles was the opposite of a bureaucrat,
but he knew as no other that conquering the bureaucracy is theonly way to realize one’s vision.

References

[1] I. Attali. A natural semantics for Eiffel dynamic binding. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 18(5), 1996.

[2] I. Attali, D. Caromel, and A. L. Wendelborn. From a formaldynamic semantics of Sisal to a Sisal
environment. InHICSS (2), pages 266–267, 1995.

10Analysis and transformation of EvolvAble Modules and Services.

16

[3] I. Attali, J. Chazarain, and S. Gilette. Incremental evaluation of natural semantics specification. In
M. Bruynooghe and M. Wirsing, editors,PLILP, volume 631 ofLecture Notes in Computer Science,
pages 87–99. Springer, 1992.

[4] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, Chr.Held, D. Parigot, and C. Pasquie. Aspect
and XML-oriented semantic framework generator: Smarttools. In Second Workshop on Language
Descriptions, Tools and Applications, LDTA’02, volume 65 ofElectronic Notes in Theoretical Com-
puter Science (ENTCS), pages 1–20. Springer, 2002.

[5] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, andC. Pasquier. Smarttools: a generator of
interactive environment tools.Electr. Notes Theor. Comput. Sci., 44(2), 2001.

[6] J. A. Bergstra, J. Heering, and P. Klint, editors.Algebraic Specification. ACM Press/Addison-Wesley,
1989.

[7] J.A. Bergstra and P. Klint. The ToolBus: a component interconnection architecture. Technical Report
P9408, University of Amsterdam, Programming Research Group, 1994.

[8] J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordination architecture.Science
of Computer Programming, 31(2-3):205–229, July 1998.

[9] Y. Bertot. Implementation of an interpreter for a parallel language in Centaur. InEuropean Symposium
on Programming, pages 57–69, 1990.

[10] Y. Bertot. Occurrences in debugger specifications. InPLDI ’91: Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation, pages 327–337, New York,
NY, USA, 1991. ACM Press.

[11] Y. Bertot. Origin functions in lambda-calculus and term rewriting systems. In J.-C. Raoult, editor,
CAAP, volume 581 ofLecture Notes in Computer Science, pages 49–65. Springer, 1992.

[12] Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In M. Hagiya and J. C. Mitchell, editors,TACS,
volume 789 ofLecture Notes in Computer Science, pages 141–160. Springer, 1994.

[13] S. Billot and B. Lang. The structure of shared forests inambiguous parsing. InACL, pages 143–151,
1989.

[14] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. CENTAUR:
The system. InSoftware Development Environments (SDE), pages 14–24, 1988.

[15] M.G.J. van den Brand, M. Bruntink, G.R. Economopoulos,H.A. de Jong, P. Klint, T. Kooiker,
T. van der Storm, and J.J. Vinju. Using the meta-environmentfor maintenance and renovation. InPro-
ceedings of the 11th European Conference on Software Maintenance and Reengineering (CSMR’07),
pages 331–332. IEEE Computer Society, March 21-23 2007.

[16] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. deJong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In R. Wilhelm, editor,
Compiler Construction (CC ’01), volume 2027 ofLecture Notes in Computer Science, pages 365–
370. Springer-Verlag, 2001.

[17] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient Annotated Terms.Software,
Practice & Experience, 30:259–291, 2000.

[18] M.G.J. van den Brand and P. Klint. ATerms for manipulation and exchange of structured data: It’s all
about sharing.Information and Software Technology, 49(1):55–64, 2007.

[19] M.G.J. van den Brand, A.T. Kooiker, J.J. Vinju, and N.P.Veerman. A Language Independent Frame-
work for Context-sensitive Formatting. In10th Conference on Software Maintenance and Reengi-
neering (CSMR 2006), pages 631–634. IEEE Computer Society Press, 2006.

17

[20] M.G.J. van den Brand, A. Sellink, and C. Verhoef. Control flow normalization for COBOL/CICS
legacy system. InCSMR, pages 11–20. IEEE Computer Society, 1998.

[21] M.G.J. van den Brand and E. Visser. Generation of formatters for context-free languages.ACM
Transactions on Programming Languages and Systems, 5(1):1–41, 1996.

[22] Centaur web pages, Last visit December 2006.http://www-sop.inria.fr/croap/
centaur/centaur.html .

[23] J. Chailloux, M. Devin, F. Dupont, J.-M. Hullot, B. Serpette, and J. Vuillemin. LeLisp version 15.2,
le manuel de réf’erence. Technical report, INRIA, 1986.

[24] D. Clément. The natural dynamic semantics of Mini-Standard ML. In H. Ehrig, R. A. Kowalski,
G. Levi, and U. Montanari, editors,TAPSOFT, Vol.2, volume 250 ofLecture Notes in Computer
Science, pages 67–81. Springer, 1987.

[25] D. Clément. A distributed architecture for programming environments. In R.N. Taylor, editor,Pro-
ceedings of the Fourth ACM SIGSOFT Symposium on Software Development Environments, pages
11–21, 1990.

[26] D. Clément, J. Despeyroux, Th. Despeyroux, L. Hascoet, and G. Kahn. Natural semantics on the
computer. Technical Report RR416, I.N.R.I.A., june 1985.

[27] D. Clément, J. Despeyroux, Th. Despeyroux, and G. Kahn. A simple applicative language: Mini-ML.
In LISP and Functional Programming, pages 13–27, 1986.

[28] D. Clément, J. Heering, J. Incerpi, G. Kahn, P. Klint, B. Lang, and V. Pascual. Preliminary design
of an environment generator. Second annual review report: D9, GIPE, ESPRIT Project 348, January
1987.

[29] D. Clément, J. Incerpi, and G. Kahn. CENTAUR: Towards a”software tool box” for programming
environments. In F. Long, editor,SEE, volume 467 ofLecture Notes in Computer Science, pages
287–304. Springer, 1989.

[30] D. Clément, V. Prunet, and F. Montagnac. Integrated software components: A paradigm for control
integration. In A. Endres and H. Weber, editors,Software Development Environments and CASE
Technology, volume 509 ofLecture Notes in Computer Science, pages 167–177. Springer, 1991.

[31] Y. Coscoy, G. Kahn, and L. Théry. Extracting text from proofs. In M. Dezani-Ciancaglini and G. D.
Plotkin, editors,TLCA, volume 902 ofLecture Notes in Computer Science, pages 109–123. Springer,
1995.

[32] J. Coutaz. The box, a layout abstraction for user interface toolkits. Technical Report CMU-CS-84-
167, Carnegie Mellon University, 1984.

[33] Th. Despeyroux. Executable specification of static semantics. In G. Kahn, D. B. MacQueen, and
G. D. Plotkin, editors,Semantics of Data Types, volume 173 ofLecture Notes in Computer Science,
pages 215–233. Springer, 1984.

[34] A. van Deursen, J. Heering, and P. Klint, editors.Language Prototyping: An Algebraic Specification
Approach, volume 5 ofAMAST Series in Computing. World Scientific, 1996.

[35] A. van Deursen, P. Klint, and F. Tip. Origin tracking.J. Symb. Comput., 15(5-6):523–545, 1993.

[36] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, and J.J. Lévy. A structure oriented program editor:
a first step towards computer assisted programming. InInternational Computing Symposium. North
Holland, 1975.

18

[37] V. Donzeau-Gouge, G. Kahn, and B. Lang. On the formal definition of ADA. In N. D. Jones, editor,
Semantics-Directed Compiler Generation, volume 94 ofLecture Notes in Computer Science, pages
475–489. Springer, 1980.

[38] V. Donzeau-Gouge, G. Kahn, B. Lang, and B. Mélèse. Documents structure and modularity in mentor.
In Software Development Environments (SDE), pages 141–148, 1984.

[39] V. Donzeau-Gouge, G. Kahn, B. Lang, B. Mélèse, and E. Morcos. Outline of a tool for document
manipulation. InIFIP Congress, pages 615–620, 1983.

[40] V. Donzeau-Gouge, B. Lang, and B. Mélèse. Practical applications of a syntax directed program
manipulation environment. InICSE, pages 346–357, 1984.

[41] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF - reference
manual.SIGPLAN Notices, 24(11):43–75, 1989.

[42] J. Heering, G. Kahn, P. Klint, and B. Lang. Generation ofinteractive programming environments. In
ESPRIT ’85, Status Report of Continuing Work, Part I,, pages 467–477. North-Holland, 1986.

[43] J. Heering and P. Klint. Towards monolingual programming environments.ACM Transactions on
Programming Languages and Systems, 7(2):183–213, April 1985.

[44] J. Heering and P. Klint. Prehistory of the ASF+SDF system (1980–1984). In M.G.J. van den Brand,
A. van Deursen, T.B. Dinesh, J. Kamperman, and E. Visser, editors,Proceedings of ASF+SDF95 A
workshop on Generating Tools from Algebraic Specifications, number P9504 in Technical Report.
Programming Research Group, University of Amsterdam, 1995.

[45] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.IEEE Transactions on Software
Engineering, 16(12):1344–1350, 1990.

[46] I. Jacobs, F. Montignac, J. Bertot, D. Clément, and V. Prunet. The Sophtalk reference manual. Tech-
nical Report 149, INRIA, February 1993.

[47] G. Kahn. An approach to system correctness. InSOSP, pages 86–94, 1971.

[48] G. Kahn, editor.Semantics of Concurrent Computation, Proceedings of the International Sympoisum,
Evian, France, July 2-4, 1979, volume 70 ofLecture Notes in Computer Science. Springer, 1979.

[49] G. Kahn. Natural semantics. In F.-J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors,STACS,
volume 247 ofLecture Notes in Computer Science, pages 22–39. Springer, 1987.

[50] G. Kahn, B. Lang, B. Mélèse, and E. Morcos. Metal: A formalism to specify formalisms.Science of
Computer Programming, 3(2):151–188, 1983.

[51] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. InIFIP Congress,
pages 993–998, 1977.

[52] P. Klint. An overview of the summer programming language. InConference Record of the 7th ACM
Symposium on Principles of Programming Languages (POPL’80, pages 47–55, 1980.

[53] P. Klint. Formal language definitions can be made practical,. InAlgorithmic Languages, pages 115–
132, 1981.

[54] P. Klint. A survey of three language-independent programming environments. RR 257, INRIA, 1983.

[55] P. Klint. A Study in String Processing Languages, volume 205 ofLNCS. Springer-Verlag, 1985.
Based on the dissertationFrom Spring to Summer, defended at the Technical University Eindhoven,
1982.

[56] P. Klint. A meta-environment for generating programming environments.ACM Transactions on
Software Engineering and Methodology, 2(2):176–201, April 1993.

19

[57] J.W.C. Koorn and H.C.N. Bakker. Building an editor fromexisting components: an exercise in
software re-use. Technical Report P9312, Programming Research Group, University of Amsterdam,
1993.

[58] H. Korte, H. Joosten, V. Tijsse, A. Wammes, J. Wester, Th. Kuhne, and Chr. Thies. Design of a
LOTOS simulator: Centaur from a user’s perspective. Fifth annual review report: D5, GIPE II,
ESPRIT project 2177, 1993.

[59] B. Lang. Deterministic techniques for efficient non-deterministic parsers. In J. Loeckx, editor,ICALP,
volume 14 ofLecture Notes in Computer Science, pages 255–269. Springer, 1974.

[60] B. Lang. On the usefulness of syntax directed editors. In R. Conradi, T. Didriksen, and D. H. Wanvik,
editors,Advanced Programming Environments, volume 244 ofLecture Notes in Computer Science,
pages 47–51. Springer, 1986.

[61] B. Lang. The virtual tree processor. In J. Heering J. Sidi and A. Verhoog, editors,Generation of In-
teractive Programming Environments, Intermediate Report, number CS-R8620 in Technical Report.
Centrum voor Wiskunde en Informatica, 1986.

[62] J.L. Lions. ARIANE 5: Flight 501 Failure, Report by the Inquiry Board.http://homepages.
inf.ed.ac.uk/perdita/Book/ariane5rep.html , 1996. Last visit January 2007.

[63] Meta-Environment web pages, Last visit March 2008.http://www.meta-environment.
org .

[64] E. van der Meulen. Deriving incremental implementations from algebraic specifications. In M. Ni-
vat, Ch. Rattray, T. Rus, and G. Scollo, editors,AMAST, Workshops in Computing, pages 277–286.
Springer, 1991.

[65] E. Morcos-Chounet and A. Conchon. PPML: a general purpose formalism to specify prettyprinting.
In H.-J. Kugler, editor,Information Processing 86, pages 583–590. Elsevier, 1986.

[66] P.A. Olivier. Debugging distributed applications using a coordination architecture. In D. Garlan and
D. Le Métayer, editors,COORDINATION, volume 1282 ofLecture Notes in Computer Science, pages
98–114. Springer, 1997.

[67] D.C. Oppen. Prettyprinting.ACM Transactions on Programming Languages and Systems, 2(4):465–
483, 1980.

[68] Sophtalk web pages, Last visit December 2006.http://www-sop.inria.fr/croap/
sophtalk/sophtalk.html .

[69] L. Théry, Y. Bertot, and G. Kahn. Real theorem provers deserve real user-interfaces. InSDE 5:
Proceedings of the fifth ACM SIGSOFT symposium on Software development environments, pages
120–129, New York, NY, USA, 1992. ACM Press.

[70] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm forPractical Systems. Kluwer
Academic Publishers, Norwell, MA, USA, 1985.

20

