The ToolBus:
Inter Tool Communication

Arnold Lankamp

08-14-2006
One Year Master Program Software Engineering
Thesis Supervisor: Paul Klint
Internship Supervisor: Paul Klint
Company or Institute: CWI
Availability: Public domain

University of Amsterdam

Content

SUMMARY 3
PREFACE 4
INTRODUCTION 4
WORD FROM THE AUTHOR 4
INTENDED AUDIENCE 4
ACKNOWLEDGEMENT 4
PROBLEM DESCRIPTION 5
BACKGROUND AND CONTEXT 6
THE TooLBus 6
GARBAGE COLLECTION 7
Java 9
RESEARCH PLAN 10
INITIAL IDEA 10
WHEN THERE IS TIME 11
IMPLEMENTATION 11
EXPECTED RESULTS 11
REQUIRED EXPERTISE 12
Risks 12
PLAN EXECUTION 13
INTRODUCTION 13
THE PROBLEM 13
THE SOLUTION 13
THE PROTOCOL 16
COMMUNICATION SCENARIOS 17
ADDITIONAL IMPROVEMENTS 20
THE DESIGN 22
RESULTS 25
MEMORY BENCHMARKS 26
THROUGHPUT BENCHMARKS 27
SERIALIZATION BENCHMARKS 28
FUTURE WORK 30
BIBLIOGRAPHY 31
APPENDIX A: IMPLEMENTATION PROBLEMS 32
MULTIPLEXER 32
CONCURRENCY 33
NIO BUFFERS 36
APPENDIX B: ATERM SERIALIZATION IMPROVEMENT 37
THE PROBLEM 37
THE SOLUTION 37
THE FORMAT 38
CONCLUSION 39

Summary

This project is about improving the scalability of the ToolBus. The ToolBus is a coordination
architecture that enables components (also referred to as tools), to communicate in a platform
and programming language independent way.

One of the main problems with the current implementation of this architecture is that all the
communication is routed through the ToolBus. Normally this is not a problem, but when large
objects are being transmitted it will lead to problems, since these objects need to be stored in
memory. Due to the 2 GigaByte memory limit of 32-bit applications, this is a scalability issue.
Additionally, every object needs to be sent twice; once to the ToolBus and once to the tool that
needs it. This could be handled more efficiently.

To solve these two problems we propose to enable tools to intercommunicate with as goal to
decrease transportation times and conserve memory at the ToolBus. In the new situation tools will
only send a ‘reference’ to the ToolBus, stating where to find the associated value and what the
value ‘looks like’. Whenever the ToolBus sends a reference to a tool, the receiving tool will retrieve
the value and acknowledge its reception to the ToolBus. Since we are now only sending references
to the ToolBus, its memory usage will decrease considerably. Furthermore, objects can now be
directly exchanged between tools, resulting in an overall decrease of network traffic and offloading
the connection of the ToolBus. The ToolBus will only be in charge of the coordination between
tools; this is what it was designed for. Because we are introducing references, we will need to
take garbage collection into account. Reference counts will be added to the ‘variables’ that are
present at the ToolBus. Whenever a variable becomes unreachable, the tool in possession of its
value will be notified that it can be reclaimed.

During this project a prototype was implemented to prove the viability of the solution for
implementation in the ToolBus and for executing benchmarks on. The results of the benchmarks
are impressive. The memory usage of the ToolBus did not exceed 5 MegaBytes in any of the tests.
Transportation times were also cut considerably.

Besides this additional improvements were also implemented. Most notable are:

e Improved concurrency. We are now able to utilize the available resources more efficiently.
This goes for both processing power as network bandwidth. The increase in performance
will be most noticeable on multi-core / processor systems.

e More advanced serialization support. The prototype uses custom made serializable objects,
instead of ATerms. The current Java implementation of the ATerm library lacked
performance and did not offer the functionality required for usage in a high performance
coordination architecture. These serializable objects are several times as fast as ATerms
and a lot more memory efficient.

During this project we proved that the proposed solution is viable for usage in the Next
Generation ToolBus. Its benefits are clear and will increase the scalability of the ToolBus
considerably. Changes to the ATerm library are however required to make the implementation of
the solution, which is proposed in this thesis, possible.

Preface

Introduction

In this thesis we will take a look at the project I did at the CWI (Centrum voor Wiskunde en
Informatica / Center for Mathematics and Computer science). This project was about finding a
solution for scalability problems associated with transferring large objects between programs. We
will elaborate on this problem further in the next chapter. In the second chapter we will place this
problem in context and discuss the relation it has with existing techniques. After which we will
take a look at how we decided to handle this project and how this plan was executed. This will
result in an explanation about the solution that was developed and its associated benefits in
relation to the current implementation; this will be shown by means of a series of benchmarks. To
conclude this thesis an evaluation will be given at the end, highlighting the most important things
discussed in previous chapters.

Word from the author

It might be interesting to know why I chose to do this project. First of all, I had already worked at
a small and a large company during previous internships. So I decided to try a different setting
once again, to better orient myself. An additional advantage is that I was ensured of proper
guidance and would not be interrupted by anything, which is very much the case in small
companies. The project itself appealed to me, because it seemed challenging. I did not have an
idea about how to solve it exactly before I started. Which was refreshing for a change. Besides
that I wanted to do a complicated technical project. This project fitted that description perfectly.

Intended audience

This thesis is aimed at everyone who is interrested in reading about how to optimize the
performance of a bus architecture, students of the Software Engineering course on the university
of Amsterdam and the people that have contributed to the developement of the ToolBus.

Acknowledgement

I would like to thank everyone that supported me and contributed to the project’s success. (Now I
can be sure I did not forget anyone).

Problem description

At the CWI a coordination architecture, called the ToolBus, was developed. This ToolBus enables
applications, also referred to as tools, to communicate without requiring them to know each
other’s interface. There is however a problem with this architecture; sending large objects
between tools is highly inefficient, as discussed in [3]. There are a several of reasons for this:

First the object needs to be transmitted to the ToolBus, which stores it in memory, potentially
causing resource problems. Furthermore, this seriously limits the scalability of the system. Storing
one object of 1GB in memory should not be a problem (assuming we have full access to the
systems resources). But if another similarly large object arrives, we have got a problem since the
maximum heap size of a 32-bit application is around 1.6 GigaBytes (2 GigaBytes minus thread
stacks). Another problem is related to performance, the object needs to be sent two times. Once
to the ToolBus and from the ToolBus to the tool that needs it. With small objects this does not
pose a problem, but sending reasonably large objects could be handled more efficiently.

The proposed solution for this problem is to enable tools to intercommunicate (figure 1), with the
sole purpose of exchanging large objects. Effectively cutting the time to transport objects in half
and decreasing the strain on the ToolBus and its resources (memory as well as bandwidth). If
data can be exchanged between tools directly, it will reduce the amount of data that is send
overall; we will only need to send it once instead of twice (under the condition that there is one
sending and one receiving tool). Additionally, if the values of the objects no longer need to be
send to the ToolBus, it will reduce the memory usage of the ToolBus considerably, since the
ToolBus no longer needs to store the value of the objects in memory.

Cutrent Froposed

9 6o

I Feference
B Vihe

Figure 1: The current and the proposed situation.

There are, however, some complications. First of all, the garbage collection of objects. Since tools
need to maintain objects that can potentially be requested by other tools they will need to be
informed when these objects are no longer required. The question is how to check which objects
are still reachable or not? This information should be maintained by the ToolBus, since it is
providing the coordination between tools. Although it could happen that an object can become
unreachable at the ToolBus level, but has not been (completely) received by the tool that
requested it. In this case deleting the ‘unreachable’ object will cause a failure. Another
complication is that a tool can also crash, become disconnected or unreachable for any other
reason; further complicating the solution.

To summarize the above, the memory and bandwidth usage of the ToolBus must be reduced, with
as ultimate goal: achieving an improvement in scalability.

Background and context

The ToolBus

Because this project is related to the ToolBus [1][2] it is important that we give a global sketch
what it is and what it was designed for.

The ToolBus is a component inter connection architecture. It handles the coordination between
different applications, also referred to as tools. This architecture formalizes the interaction
between tools by means of ToolBus scripts. These ToolBus scripts contain ‘process logic’ that
describes the actions that need to be performed when a certain event is triggered. The main goal
of the ToolBus is to achieve a language independent platform, which enables tools to co-operate
without exposing their interface.

TooLBus:
snd |n
i A
eval value Representation
do

ack-event event
Adapters:

Tools: Computation

Figure 2: The ToolBus architecture.

Because tools that are written in different languages have to be able to communicate through this
bus architecture, ATerms where used as data type. ATerms are designed to exchange data
structures in distributed applications in a platform and language independent way [4].

Garbage collection

Performing distributed garbage collection is going to be one of the main issues in this project.
Here we will take a look at the main garbage collection techniques [5], their advantages and
disadvantages.

Reference counting

Reference counting algorithms come in different variations but the underlying idea is the same.
Every object maintains a counter, indicating how many other objects have a reference to it. When
that counter reaches zero the object is no longer reachable and can be destroyed.

The main advantage of garbage collection by means of reference counting algorithms is that
unreferenced objects will be reclaimed directly. Additionally this type of garbage collection can be
done concurrently with the execution of the application.

There is however a major problem, because of the nature of reference counts, reference cycles
cannot be reclaimed. Even if the objects that form the cycle have become unreachable from the
‘root’ of the application, their reference counts will never reach zero since they are referencing
each other. Either forbidding reference cycles or running a periodic trace to collect them can
prevent this. Another downside is that the counter that they need to hold will bloat objects
slightly. The impact this has on memory usage is dependent on the number and the size of the
objects. Furthermore the constant increasing and decreasing of the counters also brings a
computational overhead along.

There are different variations on the reference counting algorithm. Examples of this are:

e Weighted reference counting [6].

e Generational reference counting [7].

e Indirect reference counting [8].
All of these algorithms strive to improve the performance of reference counting algorithms in a
distributed environment, mainly by reducing the necessary communication between nodes. The
general idea is to have a local reference count for remotely referenced objects and only send a
notification when the object is no longer referenced internally. This is opposed to sending a
message every time the reference count is incremented or decremented. Limiting control
messages to two per node (obtain and release). This makes this kind of algorithms particularly
attractive to use for distributed garbage collection.

Tracing collectors

Tracing algorithms are most common nowadays. Modern languages like Java and C# use them to
perform garbage collection. As the name indicates, tracing collectors ‘trace’ through the hierarchy
of objects to determine reachability. First of all they identify the ‘root set’. Usually the root set
consists of the objects that are referenced by a pointer on the thread stack(s) or by any global or
statically accessible variable. From this root set the collector will walk through the object hierarchy
marking or copying all reachable objects. After the collector has completed the trace, all the
objects that are un-marked / not copied can be reclaimed.

Compared to the reference counting algorithm there are several advantages and disadvantages.
The up side is that tracing collectors are complete, meaning that they will always properly detect
unreachable objects and thus can reclaim objects containing circular references. The main
disadvantage of tracing collectors is that, because they need to trace through the entire object
hierarchy and they need to suspend the execution of the application to ensure correctness,
performance can become a problem; especially when dealing with applications that use a lot of
memory. Besides this, objects will not be reclaimed as soon as they become unreachable since the
collection is usually triggered by an event, for example when available memory runs low. This
causes unreachable objects to persist in memory for an undetermined amount of time. Note that
due to the amount of required communication to determine reachability, the inability to run

7

concurrently with the execution of an application and the lack of promptness, tracing collectors
are not suitable for usage in a distributed environment.

However there are different strategies tracing collectors can use to improve their performance.
These include:

e Moving versus non-moving collectors.

e Dividing the memory into ‘generations’.

e Stop-the-world (including incremental) versus concurrent collection.

Moving versus non-moving

There are two different strategies regarding memory allocation. Moving and non-moving. Moving
collectors copy all the reachable objects from one part of the memory to another. This seems
inefficient at first, but it does have its advantages. Namely after moving all the reachable objects
to a new part of memory everything left in the old part can be reclaimed since it is no longer
reachable; this simplifies the reclamation process. Additionally the heap will not become
fragmented since all the objects are allocated contiguously. This also greatly simplifies the
allocation of new objects; it can just be stored after the previously allocated object, this way the
system does not need to maintain a list of free memory blocks. Because of the order in which the
objects are copied, related objects will be close together in memory, possibly speeding up access
times. This strategy does however have one problem, you will heed about twice as must memory
for your application, since it needs to copy all the objects from one part of the memory to
another. Non-moving collectors, as you might expect, do the exact opposite. They leave all the
objects where they are, possibly causing heap fragmentation over time. An example of an
algorithm that uses the non-moving strategy is mark-sweep. Although non-moving algorithms can
be augmented with peridoc heap compaction, offering a bit of both.

Generations

Another strategy to improve performance is generational garbage collection. Here the heap is
divided into different regions, for example a part containing newly allocated objects and a part
that contains objects that have been reachable for a longer period of time. The idea is based on
the fact that newly created objects will most likely become unreachable quickly. After surviving a
number of garbage collection cycles these ‘new’ objects will be promoted to the next generation.
This way the number of objects that needs to be checked on reachability during a collection can
be minimized, thus improving performance. A negative influence of this is that it will take longer
before unreachable ‘long lived objects’ are detected.

Pause times

Another main disadvantage that needs to be adressed is the fact that the garbage collector needs
to stop the execution of an application if it wants to perform a collection. If it would be possible to
allocate new objects and alter pointers during a collection cycle, correctness could not be
guaranteed. Especially in (soft) real-time systems it is unacceptable that the execution of an
application is paused for an undetermined amount of time. Incremental collectors try to solve this
problem, minimizing pause times in exchange for more overhead. They divide the collection into
parts, executing it bit by bit. If objects are allocated at a higher rate than they can be reclaimed
they will however fall back on the stop-the-world algorithm, preventing out of memory exceptions.
Concurrent collectors try something similar and are mainly used on multi-processor systems. They
only stop the application when necessary and try to execute as many garbage collection
operations as possible concurrently with the execution of the application. They will however
introduce some overhead, because they are more complex than the basic algorithm.

Hybrid algorithms

Besides reference counting and tracing collectors there are also certain hybrid algoritms which
combine the two. These are mostly experimental and aim to offer the best of both worlds. Most
notable is the ‘garbage collecting the world” algorithm [9][10], which tries to improve distributed
garbage collection based on reference counting by augmenting it with a tracing collector.

Java

The next generation ToolBus is being implemented in Java. The main advantage of Java is that it
is platform independent, thus it will increase the applicability of the ToolBus considerably. Besides
this, it currently offers some interesting features, which we will take a look at below.

NIO

The communication in the next generation ToolBus implementation is based on NIO (which stands
for New I/0) [11]. NIO provides non-blocking, buffered I/O with the ability to multiplex. This
enables the construction of highly scalable network applications, since we do not need a separate
thread to listen at every socket, but only one to monitor all of them. The down side is that it will
make your application more complicated and harder to understand.

References

Java has another interesting feature, related to garbage collection that we might make use of in
the implementation of the prototype. Since JDK 1.4, Java supports soft- and weak-references
[12]. These references have a different behavior compared to ‘normal’ ones; the object they point
to can be reclaimed at the garbage collectors discretion, provided that the object has become
unreachable by traditional means. This can be very useful for implementing (memory sensitive)
caches for example. Currently there are four different kinds of references:

e Strong: A regular pointer.

e Soft: Will be reclaimed at the garbage collector’s discretion / when memory runs low.

e Weak: Will only remain reachable as long as there are strong references to the object.

¢ Phantom: Has become unreachable and is awaiting finalization.
This feature might be useful to further improve performance by implementing a constant pool that
caches frequently sent objects.

Research plan

Initial idea

As discussed the proposed solution to the given problem is to enable tools to inter communicate
with the purpose to exchange large objects directly instead of through the ToolBus.

The idea is to stick to the pure value based transmission of objects between Tools, because this is
the case in the current ToolBus implementation. Introducing objects that are reachable by
reference would (unnecessarily) increase complexity. On the level of the ToolBus we will,
however, introduce references. These references will contain information about where to find the
associated value. When the ToolBus wants to send the object to a Tool, it will transmit the
reference to that Tool, which will in turn retrieve the value from the tool that has the associated
value in its possession. The references in the ToolBus will be given a reference count. When the
reference count reaches zero, the tool that is in possession of the original value will be notified, so
it can take appropriate measures to make it subject to collection.

Sounds easy enough, but there are still some problems that need to be addressed.

First of all, it suffers from the same problem as all other reference counting solutions do; when a
tool crashes, gets disconnected or becomes unreachable for any other reason, the reference count
will never be decremented, preventing the value object to become subject to collection. Adding
leases to the references, as an intermediate solution, could solve this. When the lease expires, we
assume that the associated object is no longer required, since it has not been accessed for a long
period of time. All the outstanding references will be invalidated so the object can be collected and
its associated resources released. This way we can ensure that there will be no memory leaks due
to reference counts that are not properly decremented; No matter what the cause. We should,
however, be cautious with leases, because they might also cause reachable objects to be
destroyed if they have not been accessed for a long period of time.

An even bigger problem is the fact that we do not know when an object has arrived at the
intended destination. This can cause a problem, because it is possible that an object becomes
unreachable at the ToolBus level, while (or even before) its value has been transferred between
the tools. This may cause the value to be deleted even though it is still needed. This matter is
further complicated, because a tool could request the value multiple times. As off yet, there is no
suitable solution for this problem.

Besides the problems related to garbage collection, sending a value between tools through tool
inter communication introduces some overhead and will not be the fastest way to transmit an
object in all situations. This is especially the case with small objects. Therefore it would be best if
we let the way of transmission depend on the size of the object that needs to be sent. When it is
small enough we will incorporate the value in the message and in any other case a reference will
be passed to the ToolBus. The optimal threshold for the object size will be determined by a series
of benchmarks. It will however be adjustable at the users discretion, because the performance will
vary depending on the available bandwidth.

10

When there is time

Apart from the main problem that needs to be solved, there are some other (somewhat related)
things that might be interesting to take a look at.

Streams might be interesting to experiment with, since it would reduce the amount of memory
that is required to send an object. Especially for BLOBs', which are currently causing problems. If
we use streams to send objects across it will be done byte-by-byte, which only requires a buffer
that contains the received bytes that have not been sent yet. This is more memory efficient than
having to contain the entire object in memory before being able to send it to its intended
destination.

Security is also an issue at the moment, because there is none. Java supports SSL sockets, so
why not use them?

Implementation

The solution will be implemented in a separate system (a.k.a. Prototype). This system will
emulate the ToolBus behavior as closely as possible, to ensure the solution is realistic and can be
implemented in the ‘real’ ToolBus. The decision to implement it in a separate system was made,
because there is only a limited amount of time available. It will reduce dependencies and thus
complications, making the project go more smoothly. No time is ‘wasted’ on understanding an
existing implementation. We can also reasonably expect that the existing system will have some
design incompatibilities, which would cause a serious delay, because parts of is will heed to be
redesigned and re-implemented. An additional benefit is that it will be easier to compare
performance, since the benchmarks will be run on the same system. The only thing that is
different is the way of transmission. Removing any external factors that could have an influence
on the results.

Expected results

This project will have the following deliverables:

The architecture and the design

It would be handy to have some kind of documentation about the solution. Which decisions were
made, how they were implemented and, if applicable, what limitations there are. All these points
will be discussed in this thesis.

A proof of concept

A prototype will be made in which the solution is implemented, to prove that it is viable for usage
in the ‘real’ ToolBus. This prototype will also be used for benchmarking purposes and could serve
as a base for testing future optimizations related to the solution.

A number of benchmarks

The results of the benchmarks between the current and the ‘new and improved’ way of
transportation will be presented. These benchmarks will at least consist of:
¢ A memory usage comparison, including the ToolBus and the connected Tools.
e A throughput comparison, showing the relative gain in performance.
e A 'turning point’ analysis, discussing how to determine what the optimal threshold is for
determining how to send data (by value or through tool inter communication).

' Binary Large OBject
11

Required expertise

To successfully complete this project I will need to gain insight in the following subjects:

The ToolBus

First of all I will need to get familiar with the technical details of the ToolBus and specifically about
how it is implemented. This knowledge is required because you cannot develop a solution for
something you do not fully understand. Apart from that, I will need to implement a prototype that
resembles the current ToolBus implementation.

Inter process communication

Secondly, knowledge about how process intercommunication works and what problems are
associated with it, is important. I need to know what the technical possibilities and limitations are.

Distributed garbage collection

The same goes for distributed garbage collection; if you do not know the limitations that are
associated with the different algorithms, you will never be able to get a correctly working solution
that adheres to the requirements.

Strong knowledge of Java programming

The prototype will be implemented in Java, like the next version of the ToolBus. Because the
ToolBus is not just some everyday system and the solution will be relatively complex as well,
strong knowledge about Java programming is mandatory.

Risks

Every project is unique and you never know what to expect. Risks are associated with these
uncertainties. The trick is to identify and manage those risks, so you do not run in to any
unpleasant surprises. I identified the following risks:

At the moment of writing this plan I have only limited insight in the current implementation of the
ToolBus. The ToolBus is what this project is about, so this is quite a fundamental problem. I will
however be given the source code of the current Java implementation of the ToolBus; it should
not take long to figure out how it works.

Another limitation is related to time constraints. There are only twelve weeks available to
complete the project, which is a fairly short amount of time. I am trying to make things go
smoother by limiting the amount of dependencies; for example by deciding to implement the
solution in a separate system, as discussed above. Dependencies are directly related to the
amount of problems you will run in to and have no influence on.

Lastly, another risk is: the inability to find a perfect solution within the given time. Good is not
good enough for me, I would like to do it the best possible way imaginable. This will be though
within the limited time available. For example, the leases that where discussed previously are a
weakness; I am not too happy about those for obvious reasons, but I have not been able to find a
better solution as of yet.

12

Plan execution

Introduction

In this chapter we will take a look at how the project developed. Which problems we ran into and
how these were solved. We will also take a look at the solution we ultimately ended up with and
discuss its implementation in detail. Finally, some propositions about additional improvements will
be made, both related and unrelated, to the central research question.

The problem

Before this project started I had more or less worked out a solution, as stated previously. The
problem was however that I did not have any insights into the current implementation. This was
the first thing that I needed to work on. What I discovered was that the solution I had in mind
was, unfortunately, not going to work without some changes. It already had some holes and
weaknesses, so I had to think of something better.

The solution

Surprisingly it did not take long to figure out how to solve all of these problems. Basically the
original idea more or less formed the base of the solution. Here we will take a look at:

e The maodifications that where made in relation to the original idea.

e The problems that still needed to be addressed.

e The solutions for the given problems.

Variables

First of all I wanted to achieve complete transparency; semantically it should not matter if
something is a value or a reference, the behavior should be exactly the same. Both for the
ToolBus as for the tools. To achieve this, the notion of variables was introduced. These variables
can be exchanged between tools and the ToolBus; there purpose is to provide access to there
associated (remote) value. When a variable is present on the ToolBus level it can be directly
linked to an ‘ordinary variable’ used inside a ToolBus script. They contain either the ‘value’ of
there associated term or a reference containing information about where to find that value. In
case the content of the variable is requested one of two things can happen:

e The value is present and is returned directly.

e In case the variable contains a reference, the value is retrieved from the remote location,

cached internally, and then returned.

This way, the caller does not need to know whether the variable contains a reference to a remote
value or the value itself. An additional advantage that the caching of values brings along is that
we can ensure that it will be retrieved only once. This provides a serious performance gain when a
tool requests the value multiple times, although this is not expected to happen often. The main
advantage is that it simplifies things, because it ensures consistent behavior, independent of the
number of times the value is requested.

However, the process logic present in ToolBus scripts relies on the types and composition of
terms. Since the value of the terms is not always present in the new situation, we will need to
represent this information in a different way and store this in the variable, regardless of whether
the variable contains a value or not. These ‘signatures’ should be provided by terms themselves;
including a facility to enable the matching of signatures, as required by the process logic in the
ToolBus scripts. The current ATerm implementation already provides some matching facilities, but
these require the values of the terms to be present and thus will need to be extended. These
matching facilities are required, because currently the statements in the ToolBus processes rely on
the matching of terms.

13

We will explain how this matching works by means of an example. Below a very simple ToolBus
script is shown. The is a tool called control, which can only do one thing and that is save a file
when a ‘save’ event is triggered. Besides this process another one is running that is able to
retrieve a text when the get-text ‘function’ is called.

tool control is {command = "wish-adapter -script control.tcl"}

process Control is
let
Control : control,
Text : str,
File : str

in
execute(control, Control?)
(
rec-event (Control, save(File?))
snd-msg (get-text)
rec-msg(get-text(Text?))
snd-ack-event (Control, save(File))
snd-do(Control, writeFile(File, Text))
+
rec-disconnect(Control) . shutdown("")
) * rec-note(killed) . shutdown("")
endlet

We will walk through what this script does here. To initiate the save event the associated ‘control
tool’ needs to send a term to this process that could for example look like this: save (
“/home/myname/filename.txt”). This term will match with the following statement in the script:
rec-event (Control, save(File?)). The stated term is an event, generated by the
associated control tool and it's signature matches the save function, which accepts a string. The
question mark behind File indicates that the instance variable will be set to the received value if
an event arrives that matches this signature. After receiving this event the get-text function of
another process is called, which returns a term that could look like this: get-text(“This is a text”
). This matches the statement: rec-msg(get-text(Text?)), since it is a message that is
received from another process and the signature matches. After acknowledging the completion of
the event, a request is sent to the associated control tool to write the text to a file. The term
contained in this request might look like this: writeFile(*/home/myname/filename.txt” , “This is a
text”).

This is basically how matching works. Since matching only relies on the types and the composition

of the terms, signatures that, for example, look like ‘get-text(<str>)" are sufficient. Keep in mind
that this is just an example, the exact representation is up to the developers of the ATerm library.

14

Reachability

The biggest problem that needs to be solved is that there is no way to know for sure when a value
can be ‘released’, as discussed in the previous chapter. A tool could be in possession of a
reference to an object, but have not received the value yet. In case this object becomes
unreachable at the ToolBus level, the tool that is in possession of the value will be notified
enabling the value to be reclaimed. If the tool that is in possession of the reference tries to
retrieve the object after it has been deleted, an error would occur, because it is not longer
present. This is, of course, unacceptable. The solution for this problem is relatively easy. When a
process instance requests a variable to be sent to a tool, it will block the execution of the next
statement in that specific process instance until the tool responds with an acknowledgment,
confirming that is has completely received the value. Semantically this is conformant to the
current ToolBus implementation. This way we can be positive that when a variable becomes
unavailable on the ToolBus level, it will no longer be requested by any tool, since it will not be
possible to gain possession of a reference to an object from that point on. There is, however, one
precondition that needs to be fulfilled, namely that a value will only be retrieved once per
variable. Fortunately we have that insurance, because retrieved values are cached, as discussed
previously.

Now that we have this insurance, we have to think of a way to identify unreachable objects on the
ToolBus level. The first idea is to rely on the garbage collector that is running on the ToolBus, to
determine whether an object has become unreachable. If the finalizer on a variable present at the
ToolBus level is invoked steps will be taken to inform the tool that is in possession of the value, so
it knows that it is no longer required. Although this works it is not prompt enough. There is a
variable delay between the time that the object becomes unreachable and the time it is
discovered that the object is unreachable. The time of these delays is dependent on the speed
that new objects are allocated and the type of garbage collection algorithm that is used. It is
possible to send a request to the garbage collector to do a collection. If this is done at regular
intervals we should get some insurance about the maximum time it takes to discover an
unreachable variable. The problem is however that the garbage collector is free to ignore these
requests; manual invocation of the garbage collector could even be disabled completely.
Additionally, running a full garbage collection is quite a costly operation. Because we cannot
ensure timely collection of unreachable variables, which could result in memory problems for the
tools that are in possession of large values, this solution is not good enough to be used. What is
done instead is adding reference counts to the variables that are present at the ToolBus level.
When a variable is made available to a process instance as an ‘instance variable’ the reference
count is increased, when it is removed it is decreased. The same goes for variables that are
transferred to Tools, when it is send the count is increased and as soon as the acknowledgement
from the receiving tool arrives the count is decreased. This way, even when an ‘instance variable’
on a process instance is concurrently modified while the value of the variable is being transferred
between tools, it will remain reachable until we are notified that the receiving tool has completely
received the value. Because of the nature of reference counts, we are able to tell when a variable
becomes unreachable without any delays. An additional advantage of this solution is the fact that,
semantically, it behaves in exactly the same way as the current ToolBus implementation. The
statements in a process instance are executed sequentially and the next statement in a process
instance will not be executed until the value that is being transferred has completely arrived.

15

The protocol

To facilitate the tool intercommunication and the transferring of variables the current ToolBus
protocol needed to be extended. Here we will describe when and in what order certain messages
will be sent, what exactly will be transferred. First we will discuss what kinds of messages there
are and what their purpose is. Afterwards we will walk through the different scenarios that require
communication. Keep in mind that the protocol described in this chapter is the one that is
implemented in the prototype and does not completely correspond with the protocol as it is
currently implemented in the Toolbus. It will however give an indication about the changes that
need to be made to the ToolBus protocol to enable tool intercommunication.

There are six kinds of messages:

Operation |REG
Summary |This is a message that the ToolBus sends to a tool that has just connected. It enables
a tool to be uniquely identified.
Content Field Size
Tool identification 8 bytes (long)
Operation PUT
Summary |This is a message that contains information about where to find the value of a
variable. Optionally the value may be present in this message as well.
Content Field Size
Transaction identification |8 bytes (long)
Variable identification 8 bytes (long)
Source tool identification |8 bytes (long)
Source tool host IP 4 bytes (IPv4)
Source tool port humber |4 bytes (integer)
Term signature 4 bytes for size specification, 2732 limit for the signature
(integer + 2732 bytes)
Term value (optional) 4 bytes for size specification, 2732 limit for the data
(integer + 2732 bytes)
Operation |GET
Summary |This is a message that can be sent as a request for retrieving the value of a variable.
Content Field Size
Variable identification 8 bytes (long)
Source tool identification | 8 bytes (long)
Target tool host IP 4 bytes (IPv4)
Target tool port number 4 bytes (integer)
Operation |ACK
Summary | This message is sent to acknowledge the reception of a variable, including its value.
Content Field Size
Transaction identification |8 bytes (long)
Operation FIN
Summary |This message is sent to a tool to notify it that all the references to the value it was
holding have become unreachable.
Content Field Size

Variable identification 8 bytes (long)

16

Operation END

Summary |This message is sent to notify the ‘communication partner’, that the connection
should be closed. This ‘communication partner’ can be either the ToolBus or a Tool.

Content No content, this is an empty message.

All of these operations will be contained in a package that is conformant to the following format:

Content Size Description

Length 4 bytes (integer) Specifies the length of the data that is coming
Operation |3 bytes (3 characters) Specifies the operation

identifier

Data 2732 bytes limit Contains the serialized representation of the operation

Communication scenarios

Here we will take a look at all the different scenarios related to communication.

Connect

After a connection with a tool is established, it will need to be uniquely identifiable. After
generating a unique identifier at the ToolBus level a REG message will be sent to the tool that just
connected, so the tool can incorporate it in every message it sends. This is necessary, because we
want to be able to tell where a message originated. The combination of the tool identifier and
variable identifier is always unique.

Sending a value

Sending a value will go relatively similar to the way it is done currently. A completely constructed
PUT message is created, meaning that the data is present as well. This PUT message will be
serialized and sent to a tool or the ToolBus. This way of communication will still be possible and
will mainly be used for sending small values, since the overhead associated with inter tool
communication will yield a bigger penalty than just sending the value directly.

Sending a value through inter tool communication

Sending a value through inter tool communication can be done in three separate ways, depending
on connectivity limitations due to firewalls and routers:
e The requesting tool can retrieve the value directly (active® -> active or passive® -> active)
e The requesting tool can issue the request throught the ToolBus (active <- passive).
e The requesting tool can access it through the ToolBus (passive - passive).
The sequence diagrams are shown below in the order stated above.

The underlying idea is the same in all cases. A reference to a variable is sent to a tool by means of
a PUT message, which will retrieve the data upon reception. To do so it will send a GET request to
the tool that is in possesion of the value of this variable. All the information required for issuing
this request is present in the put message. The response to the get request will be another PUT
message, containing the value of the variable. After the reception of the value a ACK message will
be sent to the ToolBus, confirming the completion of the transmission.

2 Active: means that the ‘node’ is reachable and a connection can be established with this node.

3 passive: means that the ‘node’ is unreachable (because it is behind a firewall or router for example) and no connection
can be established with this node. Passive nodes are only able to establish a connection with active nodes. Passive to
passive connections are not possible.

17

Active -> active or passive -> active.

When the tool that is in possesion of the value we wish to retrieve is reachable we can retrieve the
value directly.

A ctive ot Passive Antive

Tool Bus Tool

get
put(val)
ark
Svnchroneous call
A eynchroneous call

Figure 3: Sequence, active -> active or passive -> active.
Active <- passive.
If the tool that is in possesion of the value we wish to retrieve is not reachable, we need to issue
the request to the ToolBus, which will in turn relay it to the concerning Tool. The tool will then try
to establish a connection with the requesting tool, which is in this case reachable.

Active FPassive

Tool Bus Tool

et

putfval]

ack

Sytchroneous call
& aynchroneous call

Figure 4: Sequence, active <- passive.

18

Passive - passive.

If both the requesting tool and the tool that is in possesion of the value are unreachable, we do
have a problem. In this case we need to fall back to the regular method of communication. In
addition this will also introduce some overhead related to intertool communication. This situation

is very undesirable, since it will prevent any of the optimalizations to function for these requests.

Passive

Tool

Bus

Passive

Tool

Synchroneous call
A agynchroneous call

get
et
putiwal)
put(val)
ack

Figure 5: Sequence, passive - passive.

Finalization

Whenever a variable becomes unreachable on the ToolBus level a FIN message will be sent to the
tool that is in possesion of the value, to notify it that it can no longer be requested by other tools.

This way the tool knows it can collect the value at its own discretion.

Termination

To initiate the termination of a connection, an END message must be send. Upon reception of the
END message, the remote side of the connection will be closed.

19

Additional improvements

Besides the improvements that are related to solving the main problem, several additional
improvements were made. Three of them are worth noting in particular:

¢ A more advanced method of term serialization.

e A constant pool for received variables.

e Utilization of multi-processor / core systems.

Term serialization

During the implementation of the prototype we discovered that (de-) serialization was a major
issue. To send a message we needed to serialize the entire object, which resulted in a string, in
turn converting that into bytes that would be copied into a buffer. The result was that we needed
four to five times as much memory as the size of the object that we wanted to send. This is also,
more or less, the case in the current implementation that uses ATerms. This inefficiency is
absolutely unacceptable.

Because one of the main objectives was to conserve memory, a more efficient way of serializing
and de-serializing objects was needed. To do so we needed to go back to raw bytes, instead of
using strings. This is also beneficial in terms of space. For example, to represent an integer you
only need four bytes instead of a string containing humbers, which could be several times as
large. Sending and receiving these kinds of objects would be easier and faster too, since we have
a byte representation of the object and can directly send / receive it; we do not have to perform
any conversions. Besides this we also wanted to be able to access any (up to the byte specific)
part of the objects byte representation, allowing us to send the object in chunks. This has the
additional advantage that it enables us to reuse the buffers for sending and receiving objects.

Ultimately this resulted in memory usage equal the size of the object we are serializing plus the
size of the buffer we are using for sending / receiving. In terms of performance it is a lot faster as
well. Compared to serializing and de-serializing a term, it is several times faster than an ATerm.
And it should scale linearly with respect to object and tree size too. The price we have to pay
however is complexity. Additionally, to improve serialization speed, the content of the objects is
internally stored as a byte array; this causes the access to the content of the constructed objects
to be mainly limited to by-value, this should be changed to improve runtime performance.

The constant pool

The constant pool is a minor improvement; it will however provide a noticeable improvement in
performance when there are several tools running on the same virtual machine. Due to the fact
that the value is cached inside a variable and thus only retrieved once. Sending the same variable
to more than one tool that is running on the same VM will thus be more efficient. Additionally
when the tool that is in possession of the value of the variable is running on the same virtual
machine it will retrieve it directly instead of through a socket. Especially for applications that are
running on the same machine, this will yield a more than fair performance increase.

Concurrency

The prototype is also able to utilize multi-processor and multi-core systems. Instead of handling
everything sequentially, like the current implementation, the sending and receiving of messages
can be done by a specifiable amount of concurrently running threads. Everything else, like the
process logic, is also running in a separate thread. This way we can distribute the load among
several processors / cores, ultimately improving performance. Because of the concurrency
associated with transportation we can now both use the up- and down-stream capacity to it's
fullest. Previously it was not possible to send and receive at the same time. Nor can we be limited
by one tool with a slow connection, which could cause a slowdown in the execution of the ToolBus.
The trade-off is added complexity, because more advanced locking mechanisms are required to
ensure thread-safety. In this case it is worth the effort, because there are numerous advantages,

20

as stated above.

21

The design

To be able to execute benchmarks and to prove the solution is viable for usage in the Next
Generation ToolBus a prototype was made. This prototype is similar to the current ToolBus
implementation and is fully functional apart from the fact that the process logic is hard coded for
demo purposes. Here we will take a look at the design, notable things about its implementation
and discuss how to merge the technology featured in the prototype with the current ToolBus
implementation.

The design

Figure 6 globally sketches the design of the prototype. As you may have noticed both the ‘client’
and the ‘server’ side look similar. They both have the same structure; a data handler is connected
with an IO handler, which is responsible for sending and receiving data. This standardization was
done, because it should not matter what you communicate with and how this communication is
handled, the only thing that is different is what needs to be done with the data.

AbstractOperation ITool ToolRegistry
| |
Variable ToolBridge [------------- Y IBusDataHandler
‘ A SocketlOHandler Multiplexer
Term i
HOHZH dler Netwark [DataHandler
- L
S— SocketlOHandler Multiplexer
Toollnstance ------------- 1 [ToolDataHandler
|
ToolManager ProcessManager
Bus

Figure 6: A global sketch of the design.

The communication (figure 7) can currently be done either through a socket or directly by means
of Java method calls. This is dependent on the type of IO handler that is used. Alternate methods
of communication can thus easily be added. The data that is exchanged is encapsulated in an
‘operation’. This operation supplies facilities for serializing data (term serialization is discussed in
the additional improvements section previously in this chapter). Each operation represents a
package. The content of these packages is discussed previously in this chapter, in the protocol
section. Usually the operation will contain a variable or a reference to a variable; the variable will
in turn hold a term or information about where to find that term.

22

Session

Transport

Inter tool communication

[DataHandler F-----—----1 [DataHandler
AbstractOperation f----- AbstractOperation
HOOHandler (------------ IOHandler

Comanunication
link

Figure 7: Communication layers.

Figure 8 shows the design of the inter tool communication part. Note that it looks very similar to
the design shown in figure 6. Another thing that can be noted is that the inter tool data handler
has a relation with the tool registry and not with the tool bridge. The reason for this is that we
only need one ‘entry point’ per virtual machine to enable the exchanging of objects between tools;
starting an ‘inter tool communication service’ for every running tool is not necessary.

AbstractOperation ToolRegistry
InterToolDataHandler | - - - — 4 [ToolDataHandler
. |
Variable poee SocketlOHandler Multiplexer
Term & II
OHandler @ [DataHandler
- !
S SocketlOHandler Multiplexer
|
InterToolDataHandler | - - - — - I IToolDataHandler
ToolRegistry

Figure 8: Inter tool communication design.

23

Implementation

For network communication NIO was used, which gave us the possibility of multiplexing. This
meant that we could use one thread to monitor all the connections. If there is data that is ready
to be received we are notified. But having only one thread running to handle all communication is
not very efficient, since that would limit us to reading from or writing to only one socket at a time.
That is why we decided to add two thread pools. This allows us to read and write to multiple
sockets simultaneously, utilizing the available resources more efficiently. Additionally it will
significantly improve performance on multi-processor and multi-core systems.

Another notable thing about the implementation is that all the tools that are running in the same
virtual machine are registered at the ToolRegistry. In certain cases this allows us to exchange
data directly between tools through Java method calls instead of transferring it across a socket.
Even if the tool is communicating with the ToolBus through a SocketIOHandler instead of a
DirectIOHandler. Copying a pointer is naturally more efficient than serializing and transmitting an
object.

Merging

If the technology presented in the prototype is to be incorporated in the current ToolBus
implementation certain changes will need to be made. I propose to replace the entire transport
part by that of the prototype, since it is almost fully functional. Entirely writing a new
implementation based on the proposal presented in this thesis should not be necessary. The most
problematic part will be related to the process logic. The prototype does not have fully functional
process logic, it is hard coded for demo / benchmark purposes. So there is a ‘conflict” around the
ProcessManager that will need to be resolved. This will be the main problem on the ToolBus side.
On the client side the ToolBridge will need to be replaced and probably the entire ToolBus adapter
with it, since fundamental changes are necessary to enable inter tool communication. The
interface that is generated for every individual tool must be derived from the ITool interface. So
this will also require changes to be made to the application that generates the interface for tools.

There is however one risk associated with the reusing of the prototype; the knowledge about its
implementation might no longer be available after the end of this project.
Metrics

And finally some numbers that will give some impression about the amount of work that was put
into the construction of the prototype.

Total Physical Source Lines of Code (SLOC) = 3,975
Development Effort Estimate, Person-Years (Person-Months) = 0.85 (10.22)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.50 (6.05)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 1.69

Total Estimated Cost to Develop =$ 115,066

(average salary = $56,286/year, overhead = 2.40).
The above statistics were generated by SLOCCount, Copyright (C) 2001-2004 David A. Wheeler.

16327

Lines of code (comments, JavaDoc and white space included)

1.598

McCabe cyclomatic complexity

24

Results

To determine the improvement compared to the current situation a series of tests were executed.
In these tests a series of objects of a certain size were consecutively sent from one tool to one of
more other tools. These tests were repeated with different object sizes to enable us to determine
how inter tool communication scales with object size. Each of these tests was run at least ten
times, to increase precision. However some deviations are always present, since there are factors
involved we cannot control, like:

e Interference with other processes, regarding available resources.

e The scheduling policy of the operating system and the virtual machine.

e Interference from the garbage collector, which can decide to suspend the application

briefly.

Especially in the tests concerning small values these factors had a noticeable influence.

The following tests where executed:
e Memory benchmarks.
e Throughput benchmarks.
o (De-) serialization speed benchmarks.

These tests when executed on a machine with the following configuration:

Processor AMD Athlon 64 3500+
Memory 1GB DDR400 dual channel
Operating system Linux: Fedora core 5

JDK version Sun JDK 1.5.0

Garbage collection algorithm | Concurrent low pause collector

As stated above, we used the concurrent low pause collector as garbage collection algorithm.
Even though we are using a single processor system to run the tests on we felt that due to the
soft-realtime nature of the ToolBus this was the better choice. This type of garbage collection
algorithm will most probably not increase performance on a single processor system, because of
its associated overhead; it does however decrease the garbage collection pause times and allows
the execution of the ToolBus to continue during a large part of the collection.

No other non-vital processes where running during the tests. Before every separate measurement
all the applications, including the ToolBus, were restarted to ensure similar benchmark conditions.
The memory measurements where done using the JConsole, which is shipped with Sun JDK 1.5
and up. The custom made test applications used for the throughput and serialization benchmarks
both printed the ‘used time’ in milliseconds in the console after completion of the test.

25

Memory benchmarks

The memory benchmarks will enable us to compare the relative gain in memory usage efficiency.
As will become evident from the results that are presented in the table shown below; the memory
usage of the ToolBus will remain constant, independent of the size of the object that is being sent
since only a reference is passed. Note that the memory usage of the sending tool increases, since
it will need to hold the value of an object until it has become unreachable at the ToolBus level.
This is a trade-off we are willing to make, since the values of the objects will no longer be
concentrated at the ToolBus, but are now distributed among the tools that are ‘sending’ these
objects. This is exactly what we wanted to achieve.

It is understandable that the memory usage of the sending tool is higher when inter tool
communication is used to transmit objects, as explained above. In the benchmark that we are
running it will need to hold both the value of previous object that was sent as the newly generated
one in memory. This is because the previously generated object will not become unreachable until
all the references to it (within the ToolBus) are gone. In this particular case this will not happen
until the next object is sent to the ToolBus.

Something unexpectedly did however happen; the memory usage of the receiving tool increased
when the data was sent through the ToolBus. The occurrence of this phenomenon is strange,
since only the method of communication is different. Instead we expected the memory usage to
be slightly less, since the receiving tool is not using the tool inter communication part and thus
less objects are being allocated. A possible explanation for this is, because in total more system
resources are used (both in terms of memory usage as processing power) the relative speed at
which objects are created is higher and the garbage collector will relatively receive less scheduling
time (note that the garbage collector is in this case partially running concurrently with the
execution of the application, as discussed previously in this chapter). In other words, the most
probably explanation is that it is caused by resource contention between different processes.

Another notable thing that is worth mentioning is the usage of soft references for the constant
pool. When soft references are used the application will use all the available memory for caching
objects before making them subject to collection. By default weak references are used, but the
option to use soft references is present, so it can be enabled if this type of caching behavior is
preferable. This can be very profitable in case the same objects are being sent over and over; if
an object is already present in the constant pool it does not have to be send again, thus it
conserves network bandwidth.

Inter tool communication Through the ToolBus (current default)

ToolBus Sending tool | Receiving tool | Total ToolBus Sending tool | Receiving tool | Total
Idle 450KB 600KB 600KB 1650KB 450KB 600KB 600KB 1650KB
5M 1-5MB 20-25MB 5-10MB 26-40MB 10-15MB 10-15MB 10-15MB 30-45MB
5M 1-5MB 20-25MB 5-MaxHeap 26- 10-15MB 10-15MB 10-MaxHeap | 30-
(soft) MaxHeap MaxHeap
10M 1-5MB 60-65MB 10-15MB 71-85MB 20-25MB 30-40MB 20-25MB 70-90MB
20M 1-5MB 80MB 20-25MB 101-110MB | 40-65MB 40-80MB 40-65MB 120-210MB
50MB | 1-5MB 150-200MB 55MB 206-256MB | 100MB 100-150MB 100MB 300-350MB

As we can see in the table above. The total amount of memory that is used will decrease.
Although the gain is not so significant when only small values are sent; it becomes clearly
noticeable when larger values are used. Additionally, because the object values are distributed
across the sending tools and are no longer concentrated at the ToolBus, the system becomes
much more scalable. This was our main goal.

26

Throughput benchmarks

We executed two types of throughput tests. One test with one sending tool and one receiving tool
and another with one sending and two receiving tools. This will give us some idea about how it
would scale when sending to multiple Tools. We executed the tests with values of different sizes
and made a comparison between the regular method of communication and inter tool
communication.

We are expecting to see a significant increase in performance in both tests. Since the data has to
be sent one time less in total, the performance gain should become less noticeable if we add more
receiving Tools. We expect inter tool communication to be twice as fast in the first test and yield
an increase of about fifty percent in the second case.

Using inter tool communication to transport an object will however introduce some overhead,
because extra control messages have to be sent. This makes it interesting to find out at what
message size it would be faster to send the message directly through the ToolBus. Unfortunately
when executing the benchmarks with very small messages, the results seemed to become more
unreliable, even taking an average from a large number of runs did not completely solve this. The
same goes for the ‘dips’ of 31.5% and 24.7% in the first test, which could not be explained and
are most probably caused by external influences. Besides that, the optimal value of the ‘threshold’
will be dependent on the available bandwidth and latency of the connected tools as well. For this
reason we decided to leave it up to the user to make decisions about the threshold.

1 sending tool Inter tool communication | Through the ToolBus Gain in terms of percent
1 receiving tool (current default)

128KB 68.6 ms 66.8 ms -2.6%

512KB 90.8 ms 148.3 ms 63.3%

1MB 122.9 ms 222.9 ms 81.4%

5MB 302.8 ms 398.3 ms 31.5%

10MB 442.9 ms 705.6 ms 59.3%

20MB 670.7 ms 1051.5 ms 56.8%

50MB 1854.5 ms 2312 ms 24.7%

When we look at the second test, the results match our expectations nearly perfectly. In contrast
to the first test, in which we expected to see a greater increase. While the gain certainly is
noticeable, it does not come close to the hundred percent increase we expected to achieve.
Additionally, the tests seemed to be noticeably influenced by external factors, because the gain
does not scale in any particular way. Even repeating these test several times and drawing an
average from the results did not stabilize these numbers.

1 sending tool Inter tool communication | Through the ToolBus Gain in terms of percent
2 receiving tools (current default)

128KB 119.1 ms 103.65 ms -13%

512KB 145.95 ms 182.6 ms 25.1%

1iMB 213.15 ms 233.95 ms 9.6%

5MB 383.85 ms 525.55 ms 36.9%

10MB 603 ms 886.45 ms 47%

20MB 915.5 ms 1313.55 ms 43.5%

50MB 2026.5 ms 2864.1 ms 41.4%

In any case, the performance gain is clear. The only exceptions are the tests with small values.
But as already stated above, the results of the tests with relatively small values are not
completely reliable, since they are more prone to deviations caused by external influences. We
expect that the performance gain will be even more significant if we would run the same test in a

27

distributed environment. The reason for this is that the measurements in this case will suffer from
a greater influence from the connection speed and less from the overhead associated with inter
tool communication. This should also make the results scale more linearly with the amount of data
that is being sent.

Serialization benchmarks

Besides the benchmarks related to the ToolBus it might also be interesting to look at the
performance improvement that was made with regards to the serialization of Terms. The current
implementation of the ToolBus works with ATerms. Because these were insufficient for usage in
the prototype we made a new kind of ‘term’. This is discussed in more detail in the previous
chapter. Both the tests serialized and de-serialized a term (or tree of terms) one hundred times in
a row. The results are impressive; the serializable object is much faster in both cases. This gain is
mainly caused by the fact that no conversions need to be executed, preventing any garbage from
being created and improving memory efficiency considerably.

Serializing and de-serializing Serializable object ATerm (current default)
A single term of 5 MB 2482 ms 107851 ms
A list containing 3 terms of 1 MB |2134 ms 58031 ms

28

Evaluation

The main goal of this project was to improve the scalability of the ToolBus by conserving memory
and bandwidth. As became evident in the previous chapter both memory usage and transportation
times where cut considerably. The memory usage of the ToolBus stayed between one and five
megabytes, even when a large number of tools would be connected this will not increase much.
Only small objects and references are present at the ToolBus that will usually not exceed more
then a couple of kilobytes, depending on the threshold.

Concerning garbage collection, every remotely accessible object will be instantly notified when it
has become unreachable at the ToolBus level. We can be sure all objects will be collected in a
timely manner and only when they have become truly unreachable. How this is handled is
discussed in the ‘project execution’ chapter.

Even after implementing these fundamental changes to the ToolBus, semantically it should still
behave the same.

Naturally we ran into some problems during this project, as is to be expected. Fortunately these
problems did not take long to solve. The decision to implement the prototype as a separate
application proved to be a good one. We would have run into serious problems with the ATerm
implementation if we had done so, since it did not supply the required functionality. It was lacking
in terms of memory efficiency with regards to serialization and it did not support the traversing
over signatures. It saved us a lot of valuable time. The down side of this choice was however that
we now have two different ToolBus and ‘term’ implementations, which will have to be merged.

To summarize, we proved that the presented solution is indeed working and is applicable for
usage in the current ToolBus implementation. The major accomplishments of this project are:

e Drastically lowering the memory usage of the ToolBus.

e Increasing the throughput significantly.

e Improving (de-) serialization speed by a multiple.

e Adding multi-processor / core support.
Ultimately this will lead to a faster and more scalable system as is proven in the prototype.

However some changes have to be made to the ATerm library to make these improvements
possible. In particular:
e Traversing signatures, since we do not have (and do not want) the value at the ToolBus
level, but still need to be able to access a certain node in a tree.
e More advanced serialization; we want to be able to serialize particular parts of a tree /
term, not just get one big BLOB. A suggestion about how to incorporate this in the current
ATerm implementation is done in Appendix B.

29

Future work

Due to the short amount of time that was available for this project, not everything could be
implemented. Besides that, there are also some additional improvements that could be made. We
will walk through these here.

Retrieving sub terms

Something, rather important, that has not been implemented yet is the ability to retrieve a sub
term. What is meant by this is that on the ToolBus level a sub term could be extracted from a
larger tree and sent to a Tool. When this tool wants to retrieve this value it will need to send a
request including the variable identifier of the root term of the tree and the identifier of the sub
term we want to retrieve. Because we are only matching and traversing signatures and not values
on the ToolBus level we will need to relate the different ‘nodes’ in these signatures to the
identifiers of the terms associated with them. Additionally we will need to retain the entire tree
until it, including all of its sub terms, has become unreachable. Some optimizations, concerning
this, might be implemented later.

Firewall support

As discussed previously in this chapter, support for firewalls and routers is required to increase
the amount of situations in which inter tool communication can function. The idea is ready, but
unimplemented. Detecting reachability can be done by checking whether or not a connection has
been refused. If it is, we can assume we are dealing with a passive Tool. Although this will work, a
more advanced way of detecting and ‘remembering’ passiveness would be beneficial, because we
can then better adjust the method of communication to the situation, limiting communication
overhead. For example, why would you keep trying to connect to a tool if you already know it is
unreachable and you need to issue the request through the ToolBus?

Streams

Streams would be beneficial in case we need to send large objects through the ToolBus, in case
inter tool communication is unavailable, due to firewall restrictions for example. When we need to
send a large value across the ToolBus, opening a stream to tunnel the data through would be
better than sending the entire BLOB at once. Multicast mechanisms could also be constructed
based on this, functioning similar to the currently implemented subscribe function. The specifics
about what an implementation would look like are unknown at this time.

Security

Currently there is no security whatsoever. Everyone can connect with the ToolBus. Using SSL
sockets instead of the regular ones would be an improvement. The performance penalies this will
introduce will most probably not be a concern.

Reconnecting Tools

Restoring a connection with an unexpectedly disconnected tool is currently not possible. In the
implemented prototype it is however detectable, it just is not being handled as of yet. One option
would be, queueing all the messages that should be sent to the tool and sent them as soon as it
reconnects. Reconnecting is the tool’s responsibility, since tools can not accept connections.
Another option would be to stall the processes associated with the disconnected tool and re-
register them as soon as it reconnects. This can only be done when the functions the tool offers
are completely re-entrant. In both cases it would be wise to use leases, we do not want to hold
everything indefinitely. The prototype currently handles it in the following way; it destroys the tool
instance and the processes associated with it in an attempt to minimize the damage, hopefully
localizing the impact to the disconnected tool only.

30

Bibliography

1. J.A.Bergstra, Paul Klint. The Discrete Time ToolBus. Technical Report P9502, Programming
Research Group, University of Amsterdam, 1994.

2. J.A.Bergstra, Paul Klint. The Discrete Time ToolBus: A Software Coordination Architecture.
Science of Computer Programming 31:205-229, 1998.

3. Hayco de Jong, Paul Klint. ToolBus: The Next Generation. Formal Methods for Components and
Objects, LNCS 2852, 2003.

4. M.G.]J. van den Brand. H.A. de Jong, P. Klint. P.A. Olivier. Efficient Annotated Terms. Software -
- Practice & Experience 30:259-291.

5. Richard Jones, Rafael Lins. Garbage Collection: Algorithms For Automatic Dynamic Memory
management. John Wiley & Sons Ltd. 1996.

6. Paul Watson, Ian Watson. An Efficient Garbage Collection Scheme For Parallel Computer
Architectures. Volume II: Parallel Languages on PARLE: Parallel Architectures and Languages
Europe, pages 432 - 443, 1987.

7. Benjamin Goldberg. Generational Reference Counting: A Reduced Communication Distributed
Storage Reclamation Scheme. Conference on Programming Language Design and Implementation,
pages 313 - 321, 1989.

8. José M. Piquer. Indirect Reference Counting: A Distributed Garbage Collection Algorithm.
Proceedings on Parallel Architectures and Languages Europe: Volume I: Parallel Architectures and
Algorithms, pages 150 - 165, 1991.

9. Bernard Lang, Christian Queinnect, José Piquer. Garbage Collecting The World. Symposium on
Principles of Programming Languages, pages 39 - 50, 1992.

10. José Piquer. Indirect Distributed Garbage Collection: Handling Object Migration. Transactions
on Programming Languages and Systems, Volume 18, pages 615 - 647, 1996.

11. New I/O Apis. 2002. http://java.sun.com/j2se/1.4.2/docs/guide/nio/.

12. Monica Pawlan. Reference Objects and Garbage Collection, August 1998.
http://java.sun.com/developer/technicalArticles/ALT/RefObj/.

13. Doug Lea. Synchronization and the Java Memory model, July 2000.
http://gee.cs.oswego.edu/dl/cpj/jmm.html.

14. Bill Pugh. The “"Double-Checked Locking is Broken” Declaration.
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

31

Appendix A: Implementation problems

During the implementation of the prototype we ran into a couple of rather annoying problems.
These problems where mainly related to design issues and shortcomings of the virtual machine. In
this chapter we will discuss these problems, hopefully preventing other people from running in to
them.

Multiplexer

The non-blocking IO supplied by the NIO framework enables the construction of highly scalable
network applications. The idea is to use a selection mechanism to detect whether channels are
ready to read from or write to. This prevents you from having to start a separate thread to service
every socket.

However, when you register a socket for the write operation with a selector you will probably end
up with 100% CPU cycle consumption. The reason for this is that the select () call will return
immediately, because the channel is ready to be written to, since the network output buffer is not
filled completely. This will happen even if you do not have anything to write. The problem with
this behavior is that system administrator probably will not like you very much when you are
needlessly consuming the maximum amount of resources available (and we do not want that to
happen, now do we).

The solution is to only register for writing when you actually have something to write and
deregister when you are done. Sounds easy enough, but it is not. Simply because the design for
the selector is flawed. Consider the following piece of code:

while (running) {
selector.select () ;

Set keys = selector.selectedKeys() ;
Iterator keyIterator = keys.iterator();

while (keyIterator.hasNext ()) {
SelectionKey key = (SelectionKey)keysIterator.next () ;
keyIterator.remove () ;

if (key.isReadable()) {
read (key) ;

}

if (key.isWritable()) {
write (key) ;

}

}

Registering for the write operation can be done by calling the
SelectableChannel.register (selector, int, Object) method. This method synchronizes on
the selector. There is however a ‘minor issue’; the monitor on the selector is being held by the
thread that is blocked on the select() call. Calling wakeup () on the selector, which causes the
select () call to return immediately and release the monitor, will not work either due to the
simple fact that if there is nothing to do and the thread will almost instantly be blocked in the
select () call again. The chance that the thread requesting the registration for the channel will be
scheduled within this limited time frame is close to zero.

The solution for this problem is to introduce a ‘barrier’, which will prevent the select () call from
being executed after the wakeup () call. This could, for example, look like this:

32

while (running) {
selector.select () ;

Set keys = selector.selectedKeys() ;
Iterator keyIterator = keys.iterator();

while (keyIterator.hasNext ()) {
SelectionKey key = (SelectionKey)keysIterator.next () ;
keyIterator.remove () ;

if (key.isReadable()) {
read (key) ;
}
if(key.isWritable()) {
write (key) ;
}
}

synchronize (selectionPreventionLock) {
// This is the barrier
}
}

If we synchronize on the lock used for the barrier before calling wakeup () the select() can not
be executed before we release it, giving us the ability to register the channel, like this:

synchronize (selectionPreventionLock) {

selector.wakup () ;

socketChannel .register (selector, SelectionKeys.OP_READ | SelectionKeys.OP_WRITE,
null);
}

Registering from inside the same thread will not be a problem of course. The selector was
obviously not designed with concurrency in mind.

Concurrency

Programming a multi threaded application can become very complicated and mistakes are easily
made if you do not fully understand what you are doing. The most annoying thing about bugs that
are the result of a concurrency problem is that they are extremely hard to find and debug. For one
they occur very rarely (if at all) and secondly adding debug statements might in some cases
introduce a slight delay preventing the bug to be reproduced. Adding System.out statements will
not work either because they cause a monitor release after writing to it (it's synchronized) and
thus influence the semantics of your program, complication things even more.

Additionally Sun did not make it easier for programmers either, since the Java Memory Model in
JDK 1.4 and earlier is fundamentally broken. It should however be better in JDK 1.5.

One of the major problems is that the compiler can move the statements in your code around as
long as the as-if-serial semantics are maintained. Under this condition the following re-orderings
are valid:
e Move around statements inside a method.
e Move around statements within a synchronized block.
¢ Move a statement from outside, into a synchronized block (but not the other way around).
e Move around a statement involving a variable declared as being volatile (up to JDK 1.4, but
not in JDK 1.5).

33

The compiler can also do additional re-orderings after one or more calls to other methods have
been inline expanded. This can sometimes lead to unexpected behavior, like in the example

below. Consider the following code:

int i = 0;

int j = 0;

int x = 0;

int y = 0;

Object a = new Object () ;

Object b = new Object () ;

Thread 1 Thread 2

synchronized(a) { synchronized (b) {
x = 1; i =y

} }

y =1; i=x;

The compiler can validly transform this code into this:

int i = 0;

int j = 0;

int x = 0;

int y = 0;

Object a = new Object () ;

Object b = new Object () ;

Thread 1 Thread 2

synchronized(a) { synchronized (b) {
y = 1; i=x
x = 1; i =y

} }

Which can cause i to become 0 and j to become 1, since thread 1 and 2 are synchronizing on
different objects and the compiler can freely reorder the content of both methods. Although they
still do exactly the same as before, the outcome can be different.

A more detailed description about compiler based reordering can be found here [13].

Besides the compiler ‘optimizations’, the processor can influence the order in which statements
are executed and the memory system the order in which there results are written into the main
memory. This is mainly a problem on multi processor / core systems, provided that every
processing unit has its own cache.

Processors can for example execute an atomic operation in between a non-atomic one. For
example a assignment to a long and an integer; the first half of the long might be written first,
then the entire 32 bits of the integer and afterwards the second half of the long (possibly causing
strange behavior by itself, since it can cause a half updated value to be read). This will cause the
second assignment to be done before the first, being a kind of reordering as well.

The order in which the processor synchronizes updated values with the main memory is also
undefined. So another thread could see an updated value of one variable, but not for a variable
that was modified previously by that same thread. But the other way around is possible too; a
processor could still have a value of a certain variable in its cache, even if the value in the main
memory is updated it may not be reloaded, causing the stale value to be used.

This is also the case with variables that are declared to be volatile. For these variables are no

guaranties with respect to the reordering of reads and writes to the main memory, nor on
compiler optimalizations. It will only guarantee that the reads and writes will be done directly in

34

main memory, preventing it from being cached in a register so every thread will see the most up-
to-date value. Under these conditions volatile was practically useless, so they ‘fixed’ them in JDK
1.5. Reads to volatile fields will now behave as a monitor acquire and writes as a monitor release.
Additionally statements involving variables declared as volatile will restrict any compiler
optimalization with respect to reordering. This way we can ensure that we always read the most
up-to-date value, including that of the variables modified by previously executed statements.

Most of the above stated problems could be solved by means of synchronization, but not all.

An example of this is that it can appear that immutable objects change their state. This is caused
if a reference is passed and used by a different thread right after (or during) the object’s
construction. The String class is one of the objects that suffers from this ‘syndrome’. It can occur
that certain fields have not been synchronized with the main memory yet when a different thread
accesses it. This causes the newly created String to appear to be incorrect at first (only contain
default values for example) and change its state to the correct value a moment later. All
immutable objects suffer from this problem. This should be fixed in JDK 1.5 as well. In this JDK
final variables should behave similar to volatile variables inside the body of the constructor;
before the constructor is executed all final fields that are used should be reloaded (weak acquire)
and when it completes all the updated final variables should be synchronized with the main
memory (weak release), insuring that all threads see the properly initialized object. An additional
benefit associated with these semantics is that the value of the final field never has to be
synchronized with the main memory again from that point on, since it is properly initialized and
will not change its value. Note that this only works for immutable objects, regular objects will still
suffer from this problem. You will need to supply proper synchronization, if you want to pass these
objects between different threads.

The most infamous example of a concurrency problem is Double-Checked Locking [14]. It is
impossible to get it working in Java, even under the semantics in JDK 1.5.

So there are enough things that can go wrong, that you need to take into account.

Bit shifts

One other rather annoying thing I ran into is that bit shifts do not always behave as expected.
Although they are working correctly and are documented. The following thing does not ‘work’:
byte aByte = 1;

long along = aByte << 33;

This will result in 2. The cause of this is that the variable we are shifting will be promoted from a
byte to an integer. So shifting a byte more than 31 bits does not result in a long as you might
expect, but in an integer with 2 as value, since we caused an overflow. Casting the byte to a long

before shifting solves this problem. Like this:
byte aByte = 1;

long alLong = ((long)aByte) << 33;

It can be very frustrating if you do not know this.

35

NIO buffers

There is one bug related to NIO that Sun, seemingly, does not want to acknowledge (Sun bug:
4879883). Its state was set to: Closed, fixed at 08-23-2003. Yeah right, it is not!

The problem is the following: when reading from an external source (like a socket or file) the VM
allocates a buffer in ‘direct’ (native) memory. This buffer is filled with the data that is being
received and which is, in turn, copied over to a ‘java NIO buffer’ in the heap of your application.
The problem is that the buffers in direct memory are not reclaimed in a timely matter, if you are
reading a lot of data (50MB or more) it will throw an out of memory exception.

Sun’s ‘solution’ was to increase the amount of memory the VM is allowed to allocate direct buffers
in. I even tried setting it to high values (256MB instead of the default 64MB), but even then
receiving 50MB was impossible. The only way to get it working is to manually allocate direct
buffers and reuse them. This way it will never have to be reclaimed. I/O operations will be done
directly on these buffers, instead of copying them over to ‘java NIO buffers’. This will prevent the
VM from allocating direct buffers itself; ultimately solving the problem.

And additional gain was improved and more stable performance. There are several reasons for
this:
e I/0 operations on direct buffers consume less CPU cycles then operations on ‘java NIO
buffers’.
e The content of the buffer now only needs to be copied once instead of twice (direct ->
target instead of direct -> java NIO buffer -> target).
e Allocating a (fitting) block of contiguous native memory can be quite costly.

36

Appendix B: ATerm serialization improvement

As discussed before, the performance on the Java implementation of the ATerm library is pretty
poor and can be improved considerably. Here we will do a (global) proposal about how to achieve
this increase in performance.

The problem

There are two main problems. The first is memory usage and the second serialization and de-
serialization speed. Currently, if you want to serialize an ATerm you will need more than four
times the amount of memory as the size of the term. This will even increase more when we use
the tostring() method on a term to obtain a serialized representation, since that does not
support sub-term sharing. The cause of this absurd amount of memory usage is because
temporary data is constantly being copied back and forth. This ‘copying’ is one of the sources of
the poor performance. Additionally this causes a lot of garbage to be created, meaning the
garbage collector will be making overtime trying to reclaim all of it. Although these temporary
objects are all ‘short lived’ and thus can be collected in a ‘minor collection’, it causes an
unnecessary slowdown. The second performance problem is caused by the fact that every
character is checked to see if it needs to be escaped. This is needed because the serialized
representation of an ATerm contains certain ‘control characters’.

Apart from this the ATerm library is not able to return a serialized representation in a format that
is ready to be transmitted, for example across a socket. You will need to do an additional
conversion (from String to byte[]). Because the Next Generation ToolBus is using NIO, it might be
better to return byte arrays or ByteBuffers instead.

The solution

First of all there is one limitation, we do not want to make any fundamental changes to the ATerm
library that would endanger backwards compatibility. Thus we need to make an augmentation that
supplies a more efficient method of (de-) serialization. What we propose to do to increase
memory efficiency, (de-) serialization speed and ensure a seamless connection with the Next
Generation ToolBus is the following:

First a few facts:

e We are hardly ever able to send / write an entire term at once.

e Buffers are usually reused.

e Terms are serialized sequentially.
With these things in mind, it might be best to create an interface that is able to fill a ByteBuffer
with the serialized representation of a term. The amount of bytes written into it depends on the
size of the buffer and it’s ‘limit’. The next time a buffer is passed to this interface it will continue
serializing where it was left. This can be continued until the entire term has been serialized. In
case the buffer that was passed cannot be filled completely, the limit should be set to indicate
how many bytes where written into it. Keep in mind that data must be written into the buffers
directly without creating any temporary objects (or if it can not be avoided, as little as possible).
De-serializing will go in much the same way. One change in the design is however required to
enable support for de-serialization; either the constructors of the terms must be given package
access, or every term should be able to (de-) serialize itself. This is because terms can be solely
constructed by parsing a string in the current implementation.

37

The format

Of course a new format is needed as well. This is shown in the table below (related fields are
colored similarly).

Field Size Description

Is shared 1 byte Specifies if a term is coming or a value

Term index 4 bytes In case of a shared sub term this contains a ‘pointer’ to
the value of the term

Name length 1 byte Specifies the length of the name

Name 278 bytes limit | The name of the term

Content count 4 bytes Specifies the number of content nodes

Sub-term count 4 bytes Specifies the number of sub-terms

Annotation count 4 bytes Specifies the number of annotations

Content node length | 4 bytes Specifies the length of the content node

Content node 2732 bytes limit | One of pieces of content of the term. A term can contain
multiple content nodes

Note that all of the ‘counts’ are currently four bytes (because integers are 32 bits values), if less is
acceptable this should be changed. Sub-term sharing should be incorporated as well. We propose
to do this by setting a flag in front of every term to indicate what is coming, a term or a ‘pointer’
to a term. This ‘pointer’ can be either a hash code, as it the case currently, or a number indicating
the ‘index’ of the term it points to (a sort of LZW-like idea), which might be faster. It may seem
that the serialized representation of terms will be slightly larger then it is currently because of the
header. However, because we will no longer need ‘control characters’ (like: #(){}[1,), taking away
the need to escape characters and adding sub-term sharing, we expect them (in most cases) to
be smaller then they are now.

This is an example of what a term with two equal sub terms and an annotation would look like
(similar terms have the same color):

Is shared

@ O

Name length

Name nd-data

[}

Content count

Sub-term count

Annotation count

Is shared

Name length

Q)
—
Q

Name

Content count

Sub-term count

Annotation count

Content node length

Content node estData

Is shared

Term index

Is shared

H|ONRFR| doo|lo—|la|lhorINO

(6]

Name length

Name test-annotation

Content count 1

Sub-term count 0

Annotation count 0

Content node length 21

Content node TestAnnotationContent

38

Conclusion

By implementing the discussed solution, the performance of the Java ATerm implementation will
increase significantly. It will also allow for a seamless connection with the Next Generation
ToolBus. Memory usage will be cut by at least a factor of three to four. Serialization speed
increases of two- to three thousand percent are to be expected.

39

