
DESIGNING A MEASUREMENT PROGRAMME
FOR SOFTWARE DEVELOPMENT PROJECTS

Master’s Thesis
Richard Kettelerij

Disclaimer: Due to confidentiality reasons, the real name of the company involved in this thesis
project is replaced by the fictitious name of “Daniro”. Other information is left intact.

c© 2006 Richard Kettelerij, Daniro System Integration and Development B.V.

This work, excluding cover picture and images shown in chapters 1 and 2, is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/2.5/nl/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Cover picture: M.C. Escher’s “Spher Spirals” (1958) c© 2006 The M.C. Escher Company B.V. -
the Netherlands. All rights reserved. Used by permission. http://www.mcescher.com

Document typeset with LATEX in Bitstream Charter font. Bibliography formatted with BIBTEX
in Alpha/AMS style. Adobe PDF file generated with MIKTEX PDFTEX on 2006-08-14 20:41

http://creativecommons.org/licenses/by-nc-nd/2.5/nl/
http://www.mcescher.com

DESIGNING A MEASUREMENT PROGRAMME
FOR SOFTWARE DEVELOPMENT PROJECTS

THESIS

submitted in fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

SOFTWARE ENGINEERING

by

ing. Richard Kettelerij
born in Zutphen, the Netherlands

Committee in charge:

Prof. Dr. P. Klint, Chair
Prof. Dr. J. van Eijck, Vice-Chair

Drs. H. Dekkers, University supervisor
Ing. D. Koopman, Company supervisor

Dr. J. Vinju, Committee member

Institution:
University of Amsterdam
Faculty of Science
1098 SM Amsterdam
The Netherlands
www.science.uva.nl

Company:
Daniro J-Technologies

Plotterweg 1
3821 BB Amersfoort

The Netherlands
(url removed)

www.science.uva.nl

DESIGNING A MEASUREMENT PROGRAMME
FOR SOFTWARE DEVELOPMENT PROJECTS

Abstract

Software measurement is generally recognized as an effective means to understand, control,
predict and improve software development projects. However, despite the attention given by the
academic community, measurement is far from common practice in certain sectors of the software
engineering industry. In the case of Daniro J-Technologies, measurement was found to be used for
two purposes; monitoring source code quality and monitoring finances. A measurement programme
was, however, not in place. Therefore, this research project seeks to design a process-centric
measurement programme that suits the specific needs of stakeholders in development projects.

In order to do so, the present author initiated a thorough literature survey. This led amongst
others to the discovery of the Goal/Question/Metric method (GQM), which formed the basis of the
research approach followed during the thesis project. In light of GQM, a series of interviews were
held with stakeholders at different organizational levels. This led to identify five viewpoints and
four measurement goals. These goals involved respectively; understanding productivity, defects
and scope. In response to these goals, questions were formulated that captured the information
needs of stakeholders. In turn these questions led to the definition of a balanced set of (ap-
proximately) thirty software measures. These measures, together with questions and goals, were
validated during an interactive presentation session and prioritized by means of a survey. Yield-
ing an initial set of thirteen productivity and defect-related measures (scope measurement was
excluded). Furthermore, a prototype Measurement Support System (MSS) was constructed to give
stakeholders a more concise and visual representation of the information they could expect from
the programme. The indicators (chart and tables) of high priority measures in this MSS were val-
idated during personal walkthroughs. Subsequently feedback from stakeholders expressed during
walkthroughs, and during the presentation was incorporated in the current programme.

The above process resulted in the initial definition of a strategic measurement programme,
specifically tailored toward Daniro’s Java division. Secondly, the project produced a prototype
MSS for use in (future) pilot projects. The research also contributed to more subjective matters,
such as increased awareness of stakeholders with respect to software process measurement.

Based on the results obtained and the literature consulted, the present author concludes that
software measurement in an outsourcing organization is in some ways different from measurement
programmes discussed in literature. This is mainly due to the service oriented or customer-intimate
nature of outsourcing projects. As a result it is difficult to mandate a fixed set of measures. Nev-
ertheless by concentrating on a number of core improvement areas applicable in any project, a
measurement programme can still be defined. Hereby it was found that productivity is a major
driver behind measurement information needs. This involves not only productivity in the sense of
size vs. effort, but also measures related to schedule adherence and rework time. Although these
types of process measures mainly concern managerial stakeholders, the present author believes
that engineers can also benefit from this intelligence. Provided that timely feedback sessions are
organized. Whether or not the measurement programme is effective in the long run, can only be
determined after or during organizational implementation. The latter is, however, recommended
as future work. As a result, it is currently not possible to verify whether the proposed measures
satisfy the goals and questions stated. Nevertheless, the initial design of the programme brought
a number of important prerequisites in place for Daniro to archive a higher level of measurement
and improvement capability.

Keywords: software engineering, measurement, goal/question/metric, process improvement

I don’t see how we can have software engineering in the 21st century
without measurement

David N. Card1

1 Fellow of the Software Productivity Consortium and Editor-In-Chief of the Journal of Systems and
Software. Quote from “The Best Influences on Software Engineering” by Steve McConnell [McC00].

Preface

T HIS thesis is the result of the master project carried out between January 9 - April 4 (part
time) and April 10 - July 15 (full time) at Daniro J-Technologies. In short, the objective of this

master project is to design a measurement programme for use in software development projects.
More specific, attention is given to process-related measures that suit the specific needs of Daniro
and that provide value to the stakeholders involved.

Originally, my interest in this project was attracted by the strong focus on the concept of soft-
ware development processes. As such, this project allowed me to cover a wide range of software
engineering aspects that I’ve learned during the past year. From a personal perspective however,
this project has been a challenge since it was the first time I did an internship on a less technical
subject like “software process measurement”. Addressing this subject on a conceptual level (pure
thought stuff) while working toward a practical solution wasn’t easy. Nevertheless it was exciting
and it helped me to expand my horizon.

This thesis would not have been possible without the help of a number of people. First I
would like to thank my supervisors Dirk Koopman (Daniro) and Hans Dekkers (UvA) for their
valuable feedback and guidance during the project. In addition, I would like to thank dr. ir. Rini
van Solingen (LogicaCMG/Drenthe University) for his willingness to cooperate in an interview,
which led to some important insights during the project. Furthermore I would like to thank all
interviewees; E. Fokker, M. Willemsen, E. Dieleman, H. Jansen, R. Ligtmans, D. Koopman, M.
Loggere, K. Grosskop and A. Willemse, as well as all other colleagues at Daniro for their help
and support during this project. Above all I want to express my gratitude to my parents for their
everlasting care and support. Finally I wish to dedicate this thesis to my younger brother Robert,
whose fight for cancer over the last five years strengthened me in this accomplishment. The way
you live your life is without doubt admirable.

Richard Kettelerij
Maurik, the Netherlands

August 14, 2006

v

Contents

Preface v

Contents vii

List of Figures ix

1 Introduction and Motivation 1
1.1 Context . 1
1.2 Problem definition . 1

1.2.1 Scope . 2
1.2.2 Research question . 3

1.3 Outline . 3

2 Background and Context 5
2.1 Software Process . 5

2.1.1 Software Process Improvement . 5
2.1.2 Software Engineering Management . 6

2.2 Software Measurement . 7
2.2.1 Measurement Theory . 7
2.2.2 Functional Size Measurement . 8

2.3 Measurement Methods . 9
2.3.1 Goal Oriented Measurement . 9
2.3.2 Practical Software and Systems Measurement 11

2.4 Success Factors . 12

3 Research Method and Approach 15
3.1 Methodology . 15
3.2 Approach . 15
3.3 Contribution . 16

4 Characterization and Goal Identification 17
4.1 Project environment . 17

4.1.1 Progress reporting . 17
4.2 Knowledge acquisition . 18
4.3 Goals . 18

4.3.1 Viewpoints . 19
4.3.2 Measurement goals . 20

4.4 Concluding remarks . 21

vii

CONTENTS

5 Information needs and Constraints 23
5.1 Terminology . 23
5.2 Strategy . 24
5.3 Information needs . 25

5.3.1 Productivity questions . 25
5.3.2 Defect questions . 27

5.4 Concluding remarks . 28

6 Measurement Definition 29
6.1 Granularity . 29
6.2 Measures . 30

6.2.1 Productivity measures . 30
6.2.2 Defect measures . 33

6.3 Prioritization . 35
6.4 Concluding remarks . 35

7 Implementation Aspects 37
7.1 Measurement Support System . 37

7.1.1 Construction . 37
7.1.2 Usage and Validation . 38

7.2 Measurement Specifications . 38
7.2.1 Formalizing measures . 39
7.2.2 Data Collection and Reporting . 40

7.3 Concluding remarks . 40

8 Conclusions and Future Work 41
8.1 Conclusions . 41

8.1.1 Information; strategic measurement for understanding purposes 41
8.1.2 Measurement; project measures to address multiple stakeholders 42
8.1.3 Organization; measures in outsourcing projects 42
8.1.4 Final conclusion . 42

8.2 Evaluation . 43
8.2.1 Information gathering . 43
8.2.2 Goal/Question/Metric method . 43
8.2.3 Validation and implementation . 44

8.3 Future Work . 44
8.3.1 Recommendation . 44
8.3.2 Remaining Work . 45

Bibliography 47

A Interview questions 51

B Scope Measurement 53

C Measurement Specification 57

D Measurement Support System 59

E Overview of Measurement-CMM 69

F “Basic level” measurement 71

viii

List of Figures

1.1 Daniro’s software factory concept . 2

2.1 Software Process Improvement focus areas [Sol99] . 6
2.2 The Goal/Question/Metric (working both top-down and bottom-up) [Bas94] 10
2.3 Four phases of the PSM measurement process [Jon03c] 11

3.1 Funnel approach; overview of thesis phases and activities 16

4.1 Organization of projects (visualized in concordance with Business Unit Manager) . . . 17
4.2 Process viewpoints . 19
4.3 GQM measurement goals . 20

5.1 Effort terminology . 23
5.2 Defect terminology . 24

6.1 Levels of granularity . 29

8.1 Conceptual model of the proposed introduction plan 45

B.1 From change request to requirements . 53

C.1 Example measurement specification (M6) . 57
C.2 Example measurement specification (M15) . 58

D.1 Project level view of the Measurement Support System 59
D.2 Iteration planning with effort, duration and size data 60
D.3 Iteration planning with effort, duration and size data (cont.) 60
D.4 Activity planning with effort, duration and type data 61
D.5 Activity planning with effort, duration and type data (cont.) 61
D.6 Periodic progress registration at the activity level . 62
D.7 Defect tracking sheet with time, impact and effort data 63
D.8 Productivity reporting based on progress and costs (showing M19 & M13) 64
D.9 Productivity reporting based on progress and costs (showing M5 & M6) 65
D.10 Productivity reporting based on progress and costs (showing M4, M9 & M15) 66
D.11 Quality reporting based on defect information (showing M17, M21 & M22) 67

ix

Chapter 1

Introduction and Motivation

D ANIRO J-Technologies is a recently formed organization unit, founded through the acquisition
of Solidium B.V by the former Daniro Development Centre Java. The unit is part of Daniro

System Integration and Development (SI&D), a division of Daniro that focuses on the develop-
ment, integration and consolidation of enterprise information systems. In general Daniro SI&D
is concerned with two types of activities; outsourcing (project implementation) and consultancy.
Especially outsourcing receives a lot of attention lately, since Daniro SI&D aims to become the
“national champion in software projects” by expanding its share in this market.

1.1 Context

To distinguish itself from other IT service companies on the market, Daniro SI&D is working to-
wards the establishment of a software factory known as “SMART Op Maat”1 (figure 1.1). In this
context the term “software factory” refers to the establishment of a generic project approach in the
broadest sense of the word. The idea is that everything from tooling to training to methods and
procedures is organized in a uniform way, and applied consistently throughout the various soft-
ware projects. One should not confuse this concept with the (recent) interpretation of Microsoft
that “software factories are the convergence of key ideas in software product lines, component-
based development and model-driven development” [Gre03]. Although these technologies can
(and will) be utilized in, especially .NET related software factory projects, it is not the primary
focus of “SMART Op Maat”. The latter is more “a combination of suitable infrastructures, process
features, and managerial guidelines” as described in the research of [Aae97].

A central role in the factory concept of Daniro is the use of a development line. This is an
integrated set of platform specific tools that support project teams in their software development
process. Since Daniro J-Technologies is concerned with Java/J2EE development its development
line, SMART-Java, is constructed around a set of (open source) Java tools. Currently the SMART-
Java development line offers services such as issue tracking, version management, automated
builds and shared storage.

Another key aspect of Daniro’s software factory concept is the adoption of the Rational Unified
Process (RUP) as a standard project methodology. Since RUP is not meant to be used as an out-of-
the-box software process, Daniro decided to tailor the process to its specific needs. This process of
RUP tailoring resulted in the publication of a book called “RUP Op Maat”2.

1.2 Problem definition

Although it is not presented that way, the software factory initiative of Daniro can be seen as a form
of software process improvement (SPI). In essence Daniro aims to increase the maturity and quality
of its software development process through the implementation of a uniform project approach. An
important concept in the field of software process improvement is software measurement. However,

1http://www.smartopmaat.nl
2http://www.rupopmaat.nl

1

http://www.smartopmaat.nl
http://www.rupopmaat.nl

1.2 Problem definition Introduction and Motivation

Figure 1.1: Daniro’s software factory concept

in the case of Daniro J-Technologies this concept has not yet received explicit attention. There
have been attempts to introduce software measurement in the development organization, but these
measures focused only on the quality of source code. The current development line for example is
mainly concerned with measures of source code quality through the use of static code analyzers.
Furthermore measurement is used in the bidding process (i.e. Function Point Analysis), and on
more managerial sides for the purpose of financial monitoring (i.e. hour-logs). Until now, however,
little effort is put in a rigorously defined set of measures that focus on the entire software process,
and provide value to different stakeholders involved in software development projects.

Since measurement is generally recognized [Abr04] as a key factor in the understanding, man-
agement and improvement of software related activities, it is worthwhile to devote more attention
to this subject. Therefore the idea was raised to investigate the possibilities of establishing a mea-
surement programme at Daniro J-Technologies for use in software development projects.

1.2.1 Scope

Establishing a measurement programme is, like most other software process improvement initia-
tives, a cost and resource intensive operation. Therefore the scope of this research is limited in a
number of ways. Most notably, the primary concern of this research is the definition of a measure-
ment programme. Although some form of implementation is required to demonstrate the validity
of the programme, there are important reasons to initially focus on definition activities. For ex-
ample without proper definition the purpose of a measurement programme is unclear, and one
could well be measuring the wrong things. Consequently the information gathered may not satisfy
the needs of stakeholders, which could result in deceased buy-in. Furthermore without a defined
programme, data collection is unstructured and more error prone. Also it is often not clear how
to analyze and interpret measurement results. Overall, definition and planning is considered to be
an important prerequisite for successful measurement. Since it provides the programme with a a
clear focus and avoid unnecessary costs.

Furthermore this research is limited to process-related measures, since these measures haven’t
been explicitly addressed yet (at Daniro). In addition the research focuses on software development
projects, since these type of projects account for the largest portion of all software-related projects
and are therefore critical to the business. Altogether the objective of this research is to design a
measurement programme that suits the specific needs of Daniro J-Technologies.

2

Introduction and Motivation 1.3 Outline

1.2.2 Research question

The central research question of this thesis is formulated as follows:

What process-related measures, with respect to organizational goals, can be defined to sat-
isfy the information needs of stakeholders in the context of software development projects?

In order to answer this central research question, a number of subquestions have been defined.
These questions are listed below and grouped by three research topics, respectively: Information
which concerns organizational goals and the information needs of stakeholders. Measurement,
which deals with process-related measures that fit within the context of software development
projects. Organization, which roughly concentrates on the context of the programme, and the
costs/benefits associated with implementation.

Information
1. What purpose(s) does the measurement programme serve?
2. What goals does the organization tries to archive?
3. What stakeholders are involved in software development projects?
4. What stakeholders have an interest in the measurement programme?
5. What information do stakeholders require from the measurement programme?

Measurement
6. What kind of methods or techniques exist for defining a measurement programme?
7. What process-related measures are available in literature and at Daniro?
8. What process-related measures satisfy the information needs of stakeholders?
9. What process-related measures are feasible in the context of development projects?

10. What information about process-related measures should be specified in the programme?

Organization
11. To what extend do environmental factors influence the measurement programme?
12. What are the critical success factors in the establishment of a measurement programme?
13. What guidelines are important for measurement programme implementation?
14. What benefits are to be expected from the measurement programme?
15. Does software measurement fit within the context of Daniro’s development projects?

1.3 Outline

Subsequent chapters elaborate various aspects of the research questions listed above. To start, the
next chapter addresses the background and context of this research by a discussion of relevant
literature. Thereafter chapter 3 discusses the approach and methodology of the research, as well
as the scientific and practical relevance. Chapter 4 summarizes the process of environment char-
acterization and goal identification. Chapter 5 describes stakeholder information needs and the
constraints of the measurement programme. Chapter 6 discusses the process of measurement de-
finition in response to these information needs. Chapter 7 describes the work on implementation
aspects, such as data collection and measurement support tools. Finally, chapter 8 concludes and
provides directions for future work.

3

Chapter 2

Background and Context

B EFORE addressing the research question of this thesis a review of existing literature is re-
quired. This contributes to a basic understanding of the process measurement field and the

related concepts. Moreover, the literature study performed throughout this project resulted in a
subdivision of existing work in several categories. These categories are discussed in subsequent
sections of this chapter.

2.1 Software Process

ISO standard 155041 describes the term software process as “the process or set of processes used
by an organization or project to plan, manage, execute, monitor, control and improve its software
related activities”. This definition illustrates that the process field in software engineering includes
a wide range of activities. From a measurement perspective these activities can be grouped in
two areas; software process improvement and software engineering management. The paragraphs
below discuss the two research areas in detail.

2.1.1 Software Process Improvement

Software Process Improvement (SPI) is an extensive research area. There are many models, stan-
dards, and methods that can be used to improve the state of software engineering practice within
an organization. An interesting classification of SPI related methods is given by Cannegieter in
[Can03]. Cannegieter distinguishes three types of methods: system development methods, quality
models and project management methods.

System development methods such as eXtreme Programming (XP), SCRUM, Rational Unified
Process (RUP) and the Dynamic Systems Development Method (DSDM) define activities, artifacts
and roles that are necessary to develop software products. If the scope of a SPI initiative is “sys-
tem or application development”, then organizations can use these methods to create or tailor
their software development process accordingly. On the other end of spectrum there are methods
such as; Software Process Improvement and Capability dEtermination (SPICE/ISO 15504), TickIT,
BOOTSTRAP, the Capability Maturity Model (CMM) and its successor CMMI [Can06]. These meth-
ods serve as reference models and define requirements that an organization should meet in order
to reach a particular maturity level. However, these methods do not specify how to implement the
software process. If an organization wants to attain a certain CMM(I) level, it should implement its
software process in a way that complies with the requirements of the desired maturity level. Finally
an assessment can be performed to identify (and possibly certify) the maturity of the organization,
as well as to propose relevant improvements. The last type of methods, identified by Cannegieter,
focus on the managerial side of process improvement. These methods, such as PRINCE2, are sup-
plementary to SPI, and not discussed in further detail. Management in the context of software
engineering, however, is not a trivial matter and therefore elaborated in §2.1.2.

Apart from the classification of Cannegieter, Solingen et al [Sol99] divide the SPI area in two
streams: top-down and bottom-up. The quality models of Cannegieter; CMM, SPICE and BOOT-

1http://www.sei.cmu.edu/iso-15504/

5

http://www.sei.cmu.edu/iso-15504/

2.1 Software Process Background and Context

Risk

Quality

Cost Time

Figure 2.1: Software Process Improvement focus areas [Sol99]

STRAP all classify as top-down approaches, since these methods are based on assessment and
benchmarking. On the contrary, bottom-up approaches such as the Goal/Question/ Metric (GQM)
§2.3.1 and the Quality Improvement Paradigm (QIP) are based on the application of measurement
as the basic guide for process improvement.

The focus of this master research will be on the measurement-based (bottom-up) stream of soft-
ware process improvement. However, the actual focus of improvement is unknown at this time. In
[Sol99] four main areas of software process improvement focus are identified. As illustrated in fig-
ure 2.1 these areas are: quality, cost, risk and time. Quality improvement usually starts with some
kind of defect detection and defect measurement, often via inspections. Also subjective measure-
ment such as customer satisfaction or documentation quality can be defined as improvement goals.
Cost improvement is mainly concerned with a more efficient development process. Measurement
in this context is often related to size, such as costs per line of code or costs per function point
(§2.2.2). Improvement goals concerning risk are mainly targeted toward managing risk factors, by
applying measurement to risky areas in the development process (e.g. requirements engineering).
Finally, time related measurement and improvement is concerned with aspects such as productivity
and time-to-market.

2.1.2 Software Engineering Management

A research area closely related to SPI, and especially important from a measurement point of view,
is Software Engineering Management (SEM). The Software Engineering Body of Knowledge (SWE-
BOK) defines this area as “the application of management activities - planning, coordinating, mea-
suring, monitoring, controlling, and reporting - to ensure that the development and maintenance
of software is systematic, disciplined and quantified” [Abr04]. The notion of project management
plays an important role in this area. In general, project management is an umbrella for many activ-
ities in software engineering (as well as other engineering disciplines). Typical activities include,
amongst others; task planning, risk management, cost and resource estimation, process control
and contract management. Together these activities evolve around five primary attributes namely:
time, money, quality, information and organization [Gri00]. During a project it is the responsibility
of the project manager to control (and possibly improve) the application of these attributes. One
way to accomplish this is by taking decisions based upon quantitative data. Measurement is hereby
of important [Abr04].

However it should be noted that measurement is a means to and end, not and end itself
[Bas95]. The insight and experience of the project manager and his staff (particularly their under-
standing of social issues) are at least as important in successful project management. This relates,
amongst others, to awareness of possible risks associated with measurement (mis)use. Such as;
dysfunction (i.e. forcing people to make measures look better) and distortion (i.e measurement
results distort people’s behavior, causing them to provide less value to the organization) [Kan04].

6

Background and Context 2.2 Software Measurement

2.2 Software Measurement

Software measurement can be loosely defined as “the process of defining, collecting and analyzing
data on the software development process and its products in order to understand and control the
process and its products, and to supply meaningful information to improve that process and its
products”. [Sol99]. As the definition indicates there are several reasons for conducting software
measurement. The first reason is to understand the product, process or resource in question. This
may lead to the establishment of a baseline for future comparisons. Once basic understanding is
reached, measurement information can be used to control a particular product, process or resource.
This involves performing corrective and perfective actions. Thereafter an analysis of measurement
data, can help to identify opportunities and inefficiencies in products, processes and resources in
order facilitate improvement actions. Finally as part of improvement, measurement information
can be applied to predict the development of products, processes and resources over time [Par96].

The (widely accepted) classification in product-, process- and resource-oriented measures is sug-
gested by Fenton and Neil [Fen00]. In general, product measures describe the (quality) charac-
teristics of the product under development. Example measures are: size, complexity, performance
and the level of test coverage. Process measures on the other hand are used to characterize soft-
ware development and maintenance processes. Typical process measures include: development
time, effort, cost and the number of requirement changes. Finally, resource measures describe the
characteristics of the project or organization under consideration. Resource measures relate to:
productivity, cost, schedule and maturity. The classification of Fenton and Neil provides valuable
insight in the measures research field, and gives a handful reference to focus on a particular type
of measures (process in this case). Nevertheless, the three types cannot be considered in isola-
tion. There’s a large overlap, which is illustrated by use of the Metrel (Metric Relationship) rules
[Woo01]. The Metrel rules state that: For any valid product measure, its derivative with respect
to time is a valid process measure. Subsequently, for any valid process measure, its derivative with
respect to time is a valid measure for the organization2. In example:

The number of defects in a system is a useful and valid product measure. Then the rate
of insertion of defects into code per phase (the error proneness of the methodology)
is a valid process measures. The rate of removal of defects per inspection (the test
efficiency) is also a valid measure of the process. And the rate of improvement in test
efficiency, over a series of projects, is a valid organization measure [Woo01].

In the field of software measurement there are a number of important (research) areas that
need additional explanation. An introduction to two of these areas, measurement theory and func-
tional size measurement, is provided in the remaining sections of this paragraph.

2.2.1 Measurement Theory

In general measurement is defined as “the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according to clearly de-
fined rules” [Fen94]. In this context an attribute is seen as a measurable property of an entity. For
example, “size”, “complexity” and “testability” are attributes of entity “source code”. Underlying
these basic definitions is a principle known as the representational theory of measurement. This
is an extensive subject concerned with the mapping of relations between entities and attributes.
A fundamental concept in this theory is the notion of an empirical relational system. This system
represents the entities in the real world and the empirical knowledge of the entities’ attributes.
Intuitive understanding of attributes gives rise to relations between entities. For instance, if one
is interested in “document length” the relations “is longer than” (document A is longer than docu-
ment B) can be formulated. In order to measure an attribute represented by an empirical relation
system, one needs to map the entities and relations from the empirical system to a numerical
relational system (formal world), with respect to the representational condition. This condition im-
plies that for every relation defined in the empirical system, there is a equivalent relation defined

2In this context the term organization is similar to resource

7

2.2 Software Measurement Background and Context

on the measures of those entities in the numerical system. The link between both worlds is ex-
pressed through measures and scales. Hereby distinction is made in two types of measures; direct
and indirect. A direct measure, i.e. “document length”, is not dependent upon a measure of any
other attribute. However, indirect measures such as “productivity” do involve measures of other
attributes. Note that the term measure3 is explicitly used in this thesis to differentiate from the de-
finition of measurement. Use of the term metric is avoided since there is no general/unambiguous
definition known in the context of software engineering [Gar06; Off97; Par96].

In measurement theory, scale types determine the kind of statements that can be made about
measurement data. A scale type of a particular measure is determined by the admissible transfor-
mations that can be made to the scale of that measure. That is, meaningful statements about a
value in one scale should also apply to values of the same measure in another scale. Scale types
commonly used in software measurement are [Par96]:

• Nominal: Objects with the same scale value are equal on some attribute. For example;
programming languages (Java, C#, Cobol, Pascal).

• Ordinal: Objects with a higher scale value have more of some attribute. For example; a
quality rating (+, ++, +++).

• Interval: A certain distance along the scale means the same thing, regardless of position. For
example; the difference between 5 and 7 is the same as the difference between 10 and 12.

• Ratio: Equal to interval scales, except that there is a true zero point. For example; a building
with a height of 100 meters is twice as large as a building of 50 meters.

• Absolute: Used when there is only one possible way to measure an attribute.

Principles from measurement theory, such as the representation of scale types, are controver-
sial in software engineering research (see the debate between [Kit95], [Mor97] and [Kit97]). For
example, some scientists argue that properties that imply or exclude measurement scales in the
definition of a measure cannot be used since scales change, depending on the questions ask during
data analysis [Kit95]. Others disagree, and claim that without such properties one abstracts away
all relevant measurement structure and limits the ability to say anything of interest [Mor97]. How-
ever, overall most scientist agree that attributes in software engineering, e.g. “correctness”, are not
yet sufficiently understood to be certain about a particular type of measurement scale [Fen94].

2.2.2 Functional Size Measurement

Quantifying size is one of the most basic activities in software measurement [Gra94]. A frequently
used size measure is “lines of code” (LOC). Although LOC can be useful in many, especially coding
related, situations it has a number of drawbacks [Low90]. First of all the number of LOC depends
on the implementation language and coding style used. Secondly, LOC cannot be estimated a priori
to implementation. Only when software construction is (partially) finished it becomes possible to
faithfully count the number of lines in a software product. In response to these issues many
organizations rely on functional size measurement for their products/projects. In short, functional
size measurement is aimed at measuring the size of the software product from the perspective of
what gets delivered to the (end)user.

Function Points
The idea of measuring software size in terms of functionality as opposed to physical components
such as LOC, was first put forward by Albrecht in ’79. Albrecht introduced the concept of “function
points” and the accompanying Function Point Analysis (FPA) method [Low90]. FPA is a structured
technique to measure software size by quantifying functionality in the form of function points, based
on requirements and design. The technique breaks the system into smaller components in a way
that these can be analyzed and understood. Function point counts can be applied to development
projects, maintenance projects, and existing applications. There are five major components of

3The assignment of numbers or symbols to entities, in order to characterize a specific attribute (derived from [Gar06])

8

Background and Context 2.3 Measurement Methods

FPA which capture the functionality of the application. These are: External Inputs (EI), External
Outputs (EO), External Inquiries (EQ), Internal Logical Files (ILF) and External Interface Files
(EIF). The first three are treated as user transactions, and the last two are referred to as logical
data collections.

At first, FPA was only used to measure productivity after the completion of development and
maintenance activities. However, soon it became clear that FPA could also be used to support the
software process in its inception, since the required data can be available early in the project. This
aspect made FPA a widely adopted technique for software engineering tasks such as cost and re-
source estimation. This development puts heavy responsibility on the use of function points. Since
accurate cost estimation is vitally important in software process improvement [Miz98] and espe-
cially interesting in terms of process measurement. To conclude, a typical4 function point analysis
consists out of the following steps [Low90]:

• Determine the type of function point count (users, purpose, dependencies)
• Identify and rate user transaction- and logical data collection functions, to calculate their

contribution to the Unadjusted Function Point count (UFP)
• Determine the Value Adjustment Factor (VAF) by using general system characteristics
• Finally, calculate the adjusted function point count

Use Case Points
In addition to FPA, many modern development projects working on object oriented software apply
the concept of Use Case Point (UCP) analysis [Car05] to estimate project costs. UCP is in many
ways the same as FPA, since use cases consist of goals and scenarios that provide functionality to a
business domain. Therefore these specifications can be used to provide insight into an applications
complexity. To derive size and effort estimates, one needs to examine the actors and scenarios
of the use case. In a nutshell, use case points are determined by the complexity of the actor, the
number of transactions in the scenario, the estimated technical weight of the implementation and
the experience of the organization. UCP was originally invented at Rational Software in ’93, but
over the years multiple modifications were made to the original method. Unfortunately until now
no official standard on UCP analysis exists. This makes it hard to compare UCP results of different
projects (and organizations) with each other.

2.3 Measurement Methods

Over time various methods have been proposed to implement software measurement programmes
in development organizations. Well known are; the Goal/Question/Metric (GQM), Practical Sys-
tems and Software Measurement (PSM) and Statistical Process Control (SPC). A popular instance
of the latter method is Six Sigma. In general however, SPC based methods are dependent on a
well-defined and repeatable software processes (say CMM-4). This is in most organizations (in-
cluding Daniro) not the case. Therefore only the two most practical and promising methods (§3.2),
GQM and PSM are discussed in further detail.

2.3.1 Goal Oriented Measurement

Goal Oriented Measurement can be described as “the definition of a measurement programme
based on explicit and precisely defined goals that state how measurement will be used” [Bri96].
The most widely known method for applying goal-oriented measurement is the Goal/Question/
Metric (GQM) method [Sol99]. The principle behind GQM is that measurement should be goal-
oriented. Therefore organizations have to define their measurement goals based upon corporate
goals. Subsequently, in order to improve their process, organizations need to transform these goals
into activities that can be measured during the execution of projects. These actions take place
in a top-down fashion. As illustrated in figure 2.2; goals are refined into question that in turn
translate to measures. The opposite is true for the analysis and interpretation steps. By measuring

4There are (minor) differences between the available function point guidelines. However, the two largest function
point users groups, IFPUG and NESMA, are working together for almost sixteen years now to eliminate these differences.

9

2.3 Measurement Methods Background and Context

3

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to a
particular environment. Objects of measurement are

• Products: Artifacts, deliverables and documents that are produced during
the system life cycle; E.g., specifications, designs, programs, test suites.

• Processes: Software related activities normally associated with time; E.g.,
specifying, designing, testing, interviewing.

• Resources: Items used by processes in order to produce their outputs; E.g.,
personnel, hardware, software, office space.

2. Operational level (QUESTION): A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality issue
and to determine its quality from the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every question in
order to answer it in a quantitative way. The data can be

• Objective: If they depend only on the object that is being measured and not
on the viewpoint from which they are taken; E.g., number of versions of a
document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured and
the viewpoint from which they are taken; E.g., readability of a text, level of
user satisfaction.

Figure 1

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

Figure 2.2: The Goal/Question/Metric (working both top-down and bottom-up) [Bas94]

attributes, questions can be answered that in turn led to identify whether or not goals are reached.
To facilitate these actions, the GQM method contains four phases that are as listed below. These
phases can be executed sequentially, however it is also possible to incorporate the GQM in the
six step Quality Improvement Paradigm (QIP) [Sol99; Lat98; Bri96]; resulting in an integrated
software process improvement and measurement method.

1. Planning phase, in which a project for measurement is selected, defined, characterized and
planned. This phase results in a project plan.

2. Definition phase, in which the measurement programme is defined (goal, questions, mea-
sures, hypotheses, . . .) and documented (in GQM-, measurement- and analysis plans).

3. Data collection phase, where the actual gathering of (raw) measurement data takes place.

4. Interpretation phase, the collected data is processed into measurement results that provide
answers to the defined questions. After this phase goal attainment can be evaluated.

Goal/Question/Metric evolution
The GQM method described above reflects to a large extend the original GQM approach, invented
by Basili et al (summarized in [Bas94]). Originally, the GQM approach was developed to evaluate
defects in projects of NASA’ Software Engineering Laboratory (SEL) [Bas95]. Over time, however,
the method gained in popularity and since then numerous extensions have been made. A few
notable GQM extensions, relevant in the context of this research, are highlighted below.

In ’96 Park et al. [Par96] studied the GQM method at the Software Engineering Institute (SEI).
As part of their research, they extended the method with an extra aspect known as an indicator: a
visual representation (e.g. chart or table) of data which helps to answer specific questions. Park et
al. state “our experience is that sketches of pictures and displays helps significantly in identifying
and defining appropriate measures”. Furthermore, Park et al. paid explicit attention to the role of
mental models in the GQM definition process. In short the addition of, amongst others, indicators
and mental models resulted in the establishment of the Goal/Question/Indicator/Metric method.
This GQ(I)M method consists out of the following ten steps:

1. Identify your business goals.
2. Identify what you want to know or learn.
3. Identify your subgoals.
4. Identify the entities and attributes related to your subgoals.
5. Formalize your measurement goals.
6. Identify quantifiable questions and the related indicators that

you will use to help you achieve your measurement goals.
7. Identify the data elements that you will collect to construct

the indicators that help answer your questions.
8. Define the measures to be used, and make these definitions operational.
9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

10

Background and Context 2.3 Measurement Methods

In ’97 a European research initiative known as PERFECT [Bir97] was started. The goal of
this initiative directed by Fraunhofer IESE, was to assist in measurement-based improvement of
software processes. In this light a number of techniques, methods, and tools were developed.
Hereby, attention was also given to the GQM method. A notable extension resulting from this
project is the distinction between project-level and strategic-level measurement. Until then GQM
was mostly used for defining goals, questions and measure within a single project. The PERFECT
booklet, however, summarizes the process of applying GQM to organizational goals and issues in
multiple projects.

In ’99 Solingen and Berghout [Sol99] published the first book on GQM. This book was largely
based on master projects performed at Schlumberger RPS (involving various aspects of GQM),
and partially based on Solingen its Ph.D project [Sol00]. Apart from existing work on GQM, the
book emphases the importance of providing feedback to stakeholders with respect to measurement
data collected in software projects. The primary instrument used for this purpose are feedback
sessions. During these sessions measurement data is analyzed, presented and interpreted by project
members. The latter helps to increase the overall learning effect of measurement programmes.
Furthermore, the book discusses a few other extensions to GQM; such as process modeling [Bri96].

2.3.2 Practical Software and Systems Measurement

Practical Software and Systems Measurement [Jon03b; Jon03c] or PSM in short, is a measurement
methodology initiated and sponsored by the United States Department of Defense (DoD). PSM
served as the reference model for ISO measurement standard 15939, which in turn was used as the
basis for the Measurement and Analysis Key Process Area (KPA) of CMMI (§2.1.1). Important detail
of the method is that PSM is “information driven” instead of goal-driven, like GQM. Implementing a
measurement programme using PSM includes, defining organization and project information needs
and then selecting measures that supply information relative to those needs. These measures can
be selected from several categories: schedule and progress, resources and cost, product size and
stability, product quality, process performance, technology effectiveness and customer satisfaction.
In contrast to GQM, PSM is specifically designed to meet management information needs.

Although there are other (important) differences, the PSM and GQM method are in many ways
the same when viewed from a purely technical perspective. For instance PSM evolves like GQM
around four comparable phases, as illustrated in figure 2.3. Furthermore the success factors for
PSM are similar to those of GQM.

DoD Implementation Guidance

2

Pre-ACAT technology projects need to be managed correctly. The PSM process can be
applied to these efforts, just as it can to any other project. However, the range of
information needs may be narrower, since the objectives of these demonstrations are
limited. Moreover, the ideal technology project should not only demonstrate that
something can be done, but should also provide quantitative information about the likely
cost and resulting quality of a product from the demonstrated technology. Measurement
can support this requirement.

Measurement results from pre-ACAT technology projects can be useful in the early
stages of the acquisition life cycle, as explained below.

1.2 Measurement in the Acquisition Process

The acquisition life cycle contains two major activities related to a contract: acquisition
planning and acquisition management. A separate contract may be established to support
each phase.

During each phase of the acquisition life cycle, a measurement process as illustrated in
Figure 1-1 can be applied to support contract requirements.

Figure 1-1. Software and Systems Measurement Activities

Objectives and
Issues

Evaluate
Measurement

Improvement
Actions

Analysis
Results and
Performance
Measures

Scope of PSM

User Feedback
Analysis Results

Establish &
Sustain

Commitment

Technical and
Management

Processes

Perform
MeasurementNew

Issues

Measurement
Plan

Core Measurement Process

Plan
Measurement

Figure 2.3: Four phases of the PSM measurement process [Jon03c]

11

2.4 Success Factors Background and Context

2.4 Success Factors

Although software measurement has been a topic of research for many years, establishing a mea-
surement programme is still considered a challenging undertaking [Bri96]. Few organizations
completely succeed in their measurement attempts (some reports suggest a failure rate up to 80%
[Wie97; Das92]), which is disturbing since measurement programmes are often cost intensive.
Typically measurement accounts for 2% till 4% [Hal97; Bas95] percent of the total project costs.
However, these numbers should be taken with care since the context (organization culture, matu-
rity) and the size (number of measures, frequency of collection) greatly determines the overall costs
of a measurement programme. Furthermore the benefits gained from a measurement programme
are difficult (altough not impossible [Sol99]) to quantify.

Nevertheless, since software measurement is not a trivial matter, numerous publications ap-
peared to discuss the critical success factors in the establishment of measurement programmes.
The exact factors differ per publication, however there are a number of similarities to detect.
Therefore the present author decided to assemble a consensus list of success factors by means of a
literature survey. Sources reviewed are: Bassman et al [Bas95], Hall and Fenton [Hal97], Jones
[Jon03b; Jon03c], Niessink and Van Vliet [Nie01], Park et al [Par96], Solingen [Sol00, §7.2.3] and
Berghout [Sol99], Rifkin and Cox [Rif91], and Wiegers [Wie97; Wie99]. The list of success factors
is presented below. Note that phrases printed in bold are consensus factors, defined by the present
author. Related success factors found in literature are cited below the bold text.

1. Begin small and extend the programme as you go
- Start small (with common goals and issues) [Wie99; Rif91; Par96; Jon03b; Bas95]
- Incremental implementation [Nie01; Hal97]
- Focus initially on project level analysis [Jon03c]

2. Motivate managers and gain commitment
- Commitment from project managers secured [Nie01; Hal97]
- Motivate managers [Rif91]
- Demonstrate commitment [Jon03b]

3. Measurement must be goal-oriented5

- Goal-oriented approach [Hal97]
- Measurement should be goal-oriented to ensure a limited

but relevant set of measures [Sol99; Sol00]
- Well-planned metrics framework [Nie01]
- Design a consistent measurement process that is linked to

organizational goals and objectives [Par96]
- Use issues and objectives to drive the measurement requirements [Jon03c]
- Understand the goals [Bas95]

4. Provide training to people affected by the programme
- Educate and train [Rif91]
- Provision of training for practitioners [Nie01; Hal97]
- Provide adequate training [Jon03b]
- Create a short training class [Wie97]

5. Involve multiple stakeholders in programme definition and implementation
- Involve all stakeholder [Rif91]
- Involvement of developers during implementation [Nie01]
- Developer participation [Hal97]
- Acquire quality models of the people involved [Sol99; Sol00]

6. Define the measurement programme precisely
- Define data items and procedures [Wie99]
- Design a consistent measurement process that includes rigorous definitions [Par96]
- Use a rigorously defined set [Rif91]

5The U.S. DoD Data and Analysis Center for Software (DACS) assembled a list of success factors specifically relevant
to GQM-based measurement programmes. These factors have been derived from various sources, among others [Sol99;
Lat98]. The list is retrievable via http://www.goldpractices.com/practices/gqm/index.php#detail

12

http://www.goldpractices.com/practices/gqm/index.php#detail

Background and Context 2.4 Success Factors

- Define and collect measures based on the technical
and management processes [Jon03c]

7. Update and refine the measurement programme continuously
- Take an evolutionary approach (and plan to throw one away) [Rif91]
- Constantly improving the measurement program [Nie01]
- Design a consistent measurement process that continuously evolves [Par96]

8. Provide regular feedback to people involved in the programme
- Organize feedback sessions and let the data be interpreted by

the people involved [Sol99]
- Provide feedback to practitioners [Hal97]
- Feedback to developers [Nie01]
- Share the data [Wie99]
- Provide regular feedback to your teams about the data

they have collected [Wie99]
9. Automate where possible, but recognize limitations

- Automate collection and reporting [Rif91]
- Use automated data collection tools [Hal97; Nie01]
- Do not expect to fully automate data collection. [Bas95]
- Do not limit data collection to tools. [Sol99]

Obviously this is not a complete list, one can think of many more factors critical to a successful
measurement programme (to illustrate; the present author found a total of ± 85 success factors in
the reviewed literature). Nevertheless, the above list gives a comprehensive overview of success
factors considered to be important by multiple scientists. Subsequently the list provides an answer
to research question nr. 12; “what are the important success factors in establishing a measurement
programme”, as posed in paragraph 1.2.2.

13

Chapter 3

Research Method and Approach

B ASED on the problem definition stated in chapter 1, and the information gathered during
the literature survey (chapter 2), a suitable research method and approach was chosen. The

purpose hereof is to provide both practical as well as scientific value to the field of software process
measurement.

3.1 Methodology

The methodology used in this project makes up a combination of exploratory and constructive
research. Since it is currently unknown whether it is actually possible to establish an effective
measurement programme for use in (all) Daniro’ software development projects, an exploratory
approach is desirable. As a consequence no hypotheses are formulated in advance. On the other
hand this research is constructive in the sense that work is carried out toward the establishment
of a practical solution; a measurement programme “design”. However, since time and resources
are limited no empirical data of this construct can be gathered. Validation is therefore primarily
qualitative in nature.

3.2 Approach

The GQM method, as discussed in §2.3.1, is used as a basis for the design (i.e. planning/definition)
of the measurement programme. The reason for selecting GQM is threefold: First GQM is explicitly
focused on measurement-based process improvement, as opposed to SPI methods such as CMMI
(§2.1.1). Second GQM is specifically targeted at software development activities, unlike for exam-
ple Six Sigma (§2.3). Third GQM is not focused on a single type of stakeholder, like PSM (§2.3.2).

Since GQM is selected as the method of choice, the phasing of this research project is set-up
accordingly. Roughly speaking, the research starts with environment characterization and goal
definition by means of a series of interviews. Based on interview outcomes, goals are defined and
prioritized. Thereafter, questions are formulated and validated in an interactive presentation ses-
sion. In parallel, effort is put in studying and defining measures that provide value to the questions
specified. Subsequently measures are prioritized by means of a survey. After that, measurement
collection, analysis and interpretation activities are addressed. Therefore a prototype Measurement
Support System (MSS) [Sol99] is build and validated by means of personal walkthroughs. Finally,
near the end of the project, concrete recommendations are given and future work is discussed.

As can be seen from figure 3.1 this research project follows a type of funnel approach. That
is, the initial scope starts wide since it is unknown what interests the measurement programme
should serve. However, as the project progresses the scope narrows until eventually a balanced
set of measures is defined. After implementation aspects (introduction, data collection and inter-
pretation) and measurement validation have been addressed, the scope is widened again and a
conclusion is provided. Although a literature survey is performed at the beginning of this project,
literature research flows down through the entire research. That is, literature is used to gather
information as well as validate observations. Important detail of this approach is the level of at-
tention for measurement success factors (§2.4). By explicitly addressing a number of vital factors

15

3.3 Contribution Research Method and Approach

during programme definition, the present author aims to increase the likelihood of measurement
(implementation) success. This decision is in line with work of Offen et al. [Off97], who uses a set
of success factors to bootstrap their M3P measurement framework (which also incorporates GQM).

GQM step

Abstract

Concrete

Implementation
Aspects (ch. 7)

Characterization and
Goal identifaction (ch. 4)

Measurement
Definition (ch. 6)

Information needs
and Constraints (ch. 5)

Legend

Validation step Information step

Literature survey

Knowledge aquisition (interviews)

Goal definition & prioritization

Question definition

Study measures

Define measures

Prioritize measures

Iterate & review Goals/Questions/Measures

Formalize Measures

Construct prototype MSS

Walkthrough MSS

Plan implementation

 Conclude

Figure 3.1: Funnel approach; overview of thesis phases and activities

Note that figure 3.1 only illustrates the general sequence, scope and purpose of activities in the thesis
project. The amount of time invested in activities and the duration of phases isn’t displayed.

3.3 Contribution

The actual design of the measurement programme accounts for the most concrete practical contri-
bution of this research project. That is, the list of goals, questions and measures together with ra-
tionales, formal descriptions, and implementation directions. This also includes the prototype Mea-
surement Support System; constructed for the purpose of measurement programme validation and
use in (future) pilot projects. A less concrete but more social contribution, lies in the involvement
of stakeholders during the measurement definition process. This involvement creates goodwill and
can be seen as the first steps toward the establishment of a “measurement culture” [Wie99]. From
a more scientific point of view, the relevance of this research is demonstrated through the use of
GQM in an ICT service/outsourcing organization (Daniro). The literature research by the present
author found little to no experiences of GQM and/or measurement programme use in these types
of organizations.

16

Chapter 4

Characterization and Goal Identification

O NE of the first steps undertaken in the design of the measurement programme is environment
characterization and goal identification. This chapter elaborates the process followed and the

results obtained.

4.1 Project environment

In order to understand the goals and interests of stakeholders it’s helpful to know about the way
projects are organized at Daniro. In a nutshell, the project manager is responsible for controlling
resources and budget. The amount of budget and resources allocated to a specific project is, how-
ever, decided by organization management during internal steering group meetings. As illustrated
in figure 4.1 there are two steering groups. The internal steering group is headed by the Director
of Operations, while the external steering group is headed by customer representatives (project
owner, project leader, . . .). The contract manager forms the link between the two groups. Usually
a project group is divided in small teams that contribute various expertises (e.g. software construc-
tion, testing, functional design) to the project. These teams are often headed by a team leader; an
expert in the field with broad responsibilities. Note; even though the Project Office is placed above
projects, it is actually a staff department that assists project managers in controlling a project.

Project Manager

Project Controller

Project

Project Office

Internal steering group
- Director Of Operations

- Contract Manager
- Project Manager
- Project Controller

External steering group
- Customer representatives

- Contract Manager
……….

Construt-
ion team

Test
team

Function-
al team

O
rg

an
iz

at
io

n
m

an
ag

em
en

t
Pr

oj
ec

t
m

an
ag

em
en

t

Figure 4.1: Organization of projects (visualized in concordance with Business Unit Manager)

4.1.1 Progress reporting

Apart from all kinds of project specific documentation and reports (mandated by methodologies
such as “RUP Op Maat” or PRINCE2, §1.1), project managers are required to submit periodic
progress reports to Daniro’s Project Office. There are two types of progress reports: quantita-
tive reports containing financial data (including forecasts) and qualitative reports that explain the
(subjective) status of the project in terms of risks and milestones. The quantitative reports contain

17

4.2 Knowledge acquisition Characterization and Goal Identification

a list of project members with their respective hour rates. These rates are combined with logs from
the hour registration system to calculate cost expenditures and visualize financial trends. Based on
these reports, steering group meetings are organized and decisions with respect to project progress
and costs are made.

4.2 Knowledge acquisition

In order to define the focus of the measurement programma, knowledge needed to be acquired
with respect to the current state of practice, improvement opportunities and business goals under-
lying the project organization (figure 4.1). Therefore a series of interviews were held with people
at different organizational levels who play a key role (or represent a group that plays a key role)
in the successful establishment of a measurement programme. After conducting a number of in-
formal interviews, a series of semi-structured interviews was started. In total, nine semi-structured
interviews with different types of stakeholders were carried out. The interviewees included; the
Director of Operations, the Director of Innovation, two Project managers, one Project controller,
one Business Unit/Contract Manager, one Test leader, one Functional lead and a Senior Software
Engineer.

In order to cope with different stakeholder disciplines, the interview questions were split in
two sections; a generic part and a stakeholder specific part. This offered the advantage of ad-
dressing stakeholders with relevant questions while preserving the option to compare interview
outcomes. An overview of the interview questions is provided in appendix A. This list also includes
the standard “seven questions” [Lat98; Sol99] for goal identification. To allow interviewees to
prepare themselves, all question lists were sent in advance. Furthermore to avoid missing relevant
information the interview conversations were, if appropriate, registered on a memo-recorder.

4.3 Goals

An in-depth study into the (commercial) factors that drive software development projects is beyond
the scope of this thesis. Nevertheless, in order to define a measurement programme, a basic under-
standing of the business goals that Daniro aims to archive with respect to development projects is
required. The interview with, primarily, the Director of Operations helped to identify the following:

B1. Be competitive in the enterprise Java (J2EE) project market
B2. Deliver software systems of sufficiently high quality

Although these goals are fairly general, a number of (market) factors are of particular importance.
For instance costs, which is one of the primary factors when it comes to competing on the project
market. Moreover, an increase in productivity is seen as the most important factor in lowering
overall project costs. However, the relation with customers is also given a high priory. Especially
since Daniro tries to acquire the majority of its profit from a limited group of (approximately forty)
clients. As a result quality is a factor that requires attention in development projects. This refers
to both product quality (i.e. conformance to specification) as well as customer satisfaction (i.e.
possibility of gaining future contracts).

The (high-level) business goals above give a general indication about possible measurement
areas at Daniro. However, in order to define a starting point for the measurement programme, it
is important that the organization first selects an area in which it wants to improve. The interview
results indicated the following (informal) improvement goals:

I1. Baseline productivity
I2. Minimize defects
I3. Manage project scope

The improvement goals mentioned above are the foundation of the measurement programme.
However from a measurement perspective, the goals are too abstract. Therefore it is necessary
to translate these improvement goals into measurable goals with help of the GQM goal template
[Sol99]. This template helps to describe the purpose, perspective and context of goals in a clear and
understandable way. The present author concludes, however, that in this case the standard GQM

18

Characterization and Goal Identification 4.3 Goals

goal template (of [Sol99] or [Par96]) isn’t expressive enough to capture all necessary information.
Since GQM-style goals already represent a consensus between the goals of different stakeholders,
information about individual stakeholder concerns is lost. Explicitly documenting these concerns
and their origin is important, because one objective of this measurement programme is to provide
value to different kinds of stakeholders during a development project. Therefore an extension to
the goal template of GQM [Sol99] was added in line with work of Sommerville et al [Som99]. This
extension is elaborated in §4.3.1, after which measurement goals are discussed in §4.3.2.

4.3.1 Viewpoints

The research of Sommerville et al. [Som99] is focused on finding process inconsistencies in soft-
ware development organizations. Therefore an approach to process analysis is used that helps to
discover different perspectives on the software process. The latter is used to find inconsistencies
and stimulate process improvement. As part of the approach, Sommerville et al. introduced the
notion of “process viewpoints”. These viewpoints contain information about particular software
process areas, as expressed by different stakeholders.

Process Viewpoint: Organization management
Concerns: Productivity, Repeatability (learning capability), Customer satisfaction, Costs
Focus: - Improve cost and resource estimates for future projects

- Increase productivity in order to reduce costs (and to eventually win more bids)
- Promote a standard approach toward software project execution (factory idea)

Sources: Managing Director, Business Unit Manager, Project Planner/Controller

Process Viewpoint: Project management
Concerns: Productivity, Readiness, Costs
Focus: - Control project time and resources

- Understand the level of project readiness/completeness
- Understand fulfillment of non-functional requirements (ie. quality attributes)

Sources: Project Manager(s), Project Planner/Controller

Process Viewpoint: Functional design
Concerns: Customer expectations, Repeatability
Focus: - Understand customer requirements

- Understand (subjective) correctness of requirements throughout the project
Sources: Functional Leader

Process Viewpoint: Construction
Concerns: Quality, Productivity
Focus: - Monitor the quality of software development activities

- Understand the amount of time required to complete certain tasks
Sources: (Sr.) Software Developer

Process Viewpoint: Testing
Concerns: Customer validation, Defect analysis
Focus: - Improve customer involvement in test activities

- Improve communication with customer w.r.t the amount of test effort
- Understand artifact changes

Sources: Test Leader

 Figure 4.2: Process viewpoints

In the context of this measurement programme the viewpoints of Sommerville et al were used
to capture stakeholder perspectives on software process areas in need of measurement. Since this
slightly differs from the original approach a modification was made to the viewpoint templates
(of Sommerville et al). For example, the process descriptions (in the form of process models) are
excluded from the viewpoints, since these are to much of a burden at this stage of the research.
Actually software process modeling [Cur92] was not applied at all during goal identification and
environment characterization. Although the benefits of process models are well known [Cur92;
Bri96], the initial scope of the programme (at the very beginning) of this research was simply to
wide to effectively model all processes. Therefore it was suggested to postpone process modeling

19

4.3 Goals Characterization and Goal Identification

until more information about process areas, relevant to the measurement programme, are known.
Due to time constraints, however, process modeling falls outside the scope of this thesis project
and is thus recommended as future work (§8.3.2). So far the use of viewpoints, as illustrated in
figure 4.2, is assumed to provide enough insight in the organizational environment.

Interpretation
As can be seen from the first two viewpoints, stakeholders are mainly interested in progress and
cost information when it comes to measuring productivity. However, this information serves two
distinct purposes. On an organizational level (i.e. across projects) stakeholders will use this in-
formation to increase the learning capability of the organization. This includes more accurate
project estimates and support for the identification of improvement opportunities. On the indi-
vidual project level, productivity information will mainly be used for monitoring progress and
managing project members. Thus in terms of §2.2 the organization is focused on predict and im-
prove goals, while project management stakeholders are focused on control goals. However in both
cases a solid understanding of productivity is required before addressing the control, improve and
predict goals [Sol99]. As a result it is decided to concentrate the initial measurement programme
on understanding productivity at the project level. Nevertheless, considering the goal of baselining
productivity, attention will also be paid to project measures that facilitate (future) cross project
comparisons. That is, measures suitable for project portfolio benchmarking [Max01]. This deci-
sion, to focus initially on project level measurement, is in line with principles of [Jon03c, chap. 3].
The latter also applies to defect and scope measurement.

4.3.2 Measurement goals

Based on the improvement goals listed above and the concerns captured in viewpoints, a definitive
set of measurement goals was formulated. Questions and measures discussed in subsequent chap-
ters are derived from these goals. The goals are illustrated in figure 4.3, and formatted according
to the GQM template of [Sol99]. Furthermore references are made to relevant process viewpoints
(fig. 4.2).

Productivity
MG1. Analyze: software development process

For the purpose of: understanding project execution
With respect to: productivity
From the viewpoint of: project management
In the context of: enterprise Java development projects

MG2. Analyze: software development process

For the purpose of: baselining project execution
With respect to: productivity
From the viewpoint of: organization management
In the context of: enterprise Java development projects

Scope
MG3. Analyze: software development process

For the purpose of: understanding project scope
With respect to: requirements and change requests
From the viewpoint of: functional design, project management
In the context of: enterprise Java development projects

Defects
MG4. Analyze: software development process

For the purpose of: understanding
With respect to: defect reporting
From the viewpoint of: project management, construction, testing
In the context of: enterprise Java development projects

Figure 4.3: GQM measurement goals

20

Characterization and Goal Identification 4.4 Concluding remarks

As can be seen there are two goals concerned with productivity. This is done to differentiate
between the concerns of organization- (baseline/future benchmarking) and project (understand)
management stakeholders.

4.4 Concluding remarks

This chapter discussed the process of environment characterization and goal identification. The
primary instrument used for acquiring knowledge, about the organization and associated business
goals, was semi-structured interviews. These interviews resulted in the identification of three
improvement goals and five stakeholder viewpoints. In turn this led to the definition of four
(GQM) measurement goals. These goals address productivity, defects and scope management in
software development projects. Although stakeholders were eager about the improvement and
control aspects of measurement programmes, it was found that there is currently insufficient data
available to initiate measurement for these purposes. The measurement goals therefore aim at
understanding productivity, defects and scope.

Considering these goals, the conclusion can be drawn that the programme is focused on fairly
“traditional” areas in software engineering. For example, measuring productivity and defects are
already recommended practice in early measurement programmes, like [Gra94] (based on re-
search by Grady and Caswell at HP in ’87). However, this doesn’t make measurement in these
areas less important. Productivity measurement, for instance, is vital to almost any organiza-
tion and still considered a challenging undertaking [Max01]. So to speak, there are two levels
of (productivity) measurement usage to discern: Project (management) stakeholders aim to use
measurement data inside a specific project. While organization management stakeholders plan
on utilizing measurement data across projects. However, it is decided to focus initially on project
level measurement and analysis, while facilitating future organizational use (by careful definition
of measures).

Additionally, stakeholders confirmed that the measurement goals in this chapter apply to (nearly)
all software development projects. As a result this research targets the establishment of a strategic
measurement programme (§2.3.1).

21

Chapter 5

Information needs and Constraints

T HE previous chapter described the focus of the measurement programme through the process
of viewpoint discovery and measurement goal identification. This chapter elaborates the defi-

nition of questions in response to these goals.

However, it is important to note that formulating questions (chapter 5) and defining measures
(chapter 6) are not completely distinct activities. There is a strong relation between both tasks,
since it was noticed that stakeholders have very divergent ideas about information related to spe-
cific goals. For example, depending on the exact area of interest, stakeholders sometimes express
rather abstract and unstructured information needs. On the other hand stakeholder are also temped
to express concrete and detail measures, while reasoning about their needs. Therefore questions
and measures were, for a large part, formulated in parallel. Nevertheless, for the sake of readabil-
ity, the two activities are discussed in separate chapters and references are made where applicable.

5.1 Terminology

Before discussing the questions it is important to establish a common terminology. For instance
there are quite a number of different terms used in literature to express a measure of effort. To
avoid confusion between words like; budgeted, actual, estimated, expected, remaining and spent
effort the meaning of these terms are explained in figure 5.1. Note that the same terminology is
also applicable in the context of project “duration”1.

Actual effort (= spent so for)

 Total Effort (= spent in total)

 Budgeted effort (= estimate)

Remaining effort (= estimate)
Current date Original end date

Actual end date
Adjusted end date

Expected effort (= estimate)

Figure 5.1: Effort terminology

Apart from the terminology used for effort and duration measurement, there is often confusion
about the definition of a “defect”. To avoid such confusion in this thesis, the terminology of [Dia97]
is roughly followed. That is “a problem detected in the same phase it was introduced is defined as
an error, a problem that escapes detection in the phase it was introduced is defined as a defect”.
Figure 5.2 illustrates this terminology.

1In this thesis the term duration is equal to cycle time

23

5.2 Strategy Information needs and Constraints

 Page 7 of 13

2.2 TERMINOLOGY

There a quite a number of different terms used in literature to express a measure of effort. To avoid
confusion between terms like; budgeted, actual, estimated, expected and spent effort the meaning of
these measures are explained in figure 2. Note that the same terminology is also applicable in the
context of project duration.

Figure 2: Effort terminology

Apart from the terminology used for effort and duration measurements, there is often confusion about
the definition of a “defect”. To avoid such confusion the terminology of [Dia97] is followed. That is
“a problem detected in the same phase it was introduced is defined as an error, a problem that
escapes detection in the phase it was introduced is defined as a defect”. Figure 3 illustrates this
terminology.

Figure 3: Defect terminology

Actual effort (= spent so for)

Actual effort (= spent in total)

Budgeted effort (= estimate)

Expected effort (= estimate)
Current date Original end date

Actual end date
Adjusted end date

DeliveryTestingConstructionAnalysis & Design

Errors Errors Errors Errors

Defects Defects Defects

DiscoveryCause Discovery DiscoveryCause Cause

Defects

Figure 5.2: Defect terminology

5.2 Strategy

In addition to establishing a common terminology, a “strategy” for the definition of questions (and
associated measures) is required. Specifically because there are a number of constraints attached
to this measurement programme. For instance, in order to ensure its effectiveness and attainability,
the measurement programme should start small and follow and incremental approach (§2.4).

Goal prioritization
The first step undertaken in this direction is the prioritization of measurement goals. In concor-
dance with stakeholders priorities were assigned as followed2: First comes productivity or more
specific the understanding of productivity on the project level (MG1). Understanding/baselining
productivity on an organizational level is put second (MG2). This goal is directly followed by the
understanding of defect data (MG3). Finally, understanding of requirements scope (MG4) is as-
signed the lowest priority. Scoping is therefore excluded from initial programme implementation
and discussed in appendix B. Moreover, the process of questions and measures prioritization is
discussed in §6.3.

Measurement simplicity
In addition to goal prioritization, a constraint was put on the number of questions associated with
each goal. A “fixed limit” is however undesired. Therefore it was decided to include only questions
that relate to important entities of a specific goal. For example, a goal concerned with “productiv-
ity” mainly includes questions related to schedule and effort (of entity planning). Questions related
to other entities (such as tooling and project methodology) are not included. Since these are, by
belief of stakeholders and the present author, less prominent when reasoning about a factor such
as “productivity”. This approach is in line with work of Park et al. [Par96], who are using “Entity-
Question Lists” during their goal definition process. Although this specific method was not applied
during the research, the principle of Park et al, (i.e. framing questions in response to entities) was
roughly followed.

Limiting the number of questions also affects the number of measures, because one should
derive appropriate measures (§2.4). So to speak, more measures are not necessarily better since
it results in extra data collection, analysis and interpretation work. Therefore only measures that
explicitly satisfy stakeholder questions are included [Bas95]. Furthermore in order to provide
a high level of information value, it was decided to combine measures where appropriate. For
example; a direct measure such as the budgeted duration of a certain iteration, doesn’t tell much
about whether or not the project is on schedule. Only in relation to the actual duration (past
calender time) and the expected duration (estimated calender time to completion), one can decide
if the project is running as anticipated. Nevertheless measures should always follow the KISS
principle3. That is, if simple measures suffice to satisfy certain questions then there is no need to
define more complex measures.

2Note that the goals in paragraph 4.3 are already placed in order of their priority
3Acronym for Keep It Simple, Stupid (SOURCE: FOLDOC)

24

http://www.foldoc.org

Information needs and Constraints 5.3 Information needs

Process changes
Another constraint to this measurement programme, is that the development process (in projects)
should not change solely for the sake of measurement implementation. That is, measures should
address the software process currently in place. Prematurely changing a specific part of the soft-
ware process (e.g. unit testing activities) in order to facilitate measurement (e.g. life span of
defects) is considered bad practice. Of course measurement will require additional effort and
(some) changes in the process, but this should be mainly supplemental to the existing work. This
constraint is put forward because it is believed that premature changes to the development process
will complicate (initial) measurement introduction. After all, it requires changes on two fronts;
the current work process and the measurement process. This constraint only applies to initial pro-
gramme implementation. Once measurement data is available (that is, understanding is reached
§2.2) the software process can be changed accordingly.

5.3 Information needs

Based on the information from the interviews, the concerns captured in viewpoints (§4.3) and the
strategy described above, a set of questions for each of the goal types was devised. The purpose
was to formulate questions that reflect the information needs of various stakeholders, with respect
to the measurement goals stated. As opposed to the information in viewpoints these questions
are a consensus between the specific information needs of the individual stakeholders. However,
formulating these questions isn’t straightforward [Sol99]. It took quite a number of iterations
before the questions were at the “right” level of abstraction. For example a question like “what
is the estimated versus actual calender time for this iteration?” is too detailed because it already
defines the measure, instead of the information required. Therefore this question cannot be used
to assess whether or not a specific goal is (being) attained. A question such as “is the project on
schedule?” does (even though it is somewhat general) a better job in representing a stakeholder
information need. The definitive set of questions are discussed in the remaining sections of this
paragraph. Associating measures are presented in chapter 6.

5.3.1 Productivity questions

From an economical perspective, productivity is often defined as “the amount of output produced
per unit of input”. In software development input might be the number of man-hours and output
might be a certain amount of code [Dia97]. Although this sounds a bit simplistic, productivity
is an aspect that is difficult to measure. Primarily because the level of productivity in a software
development project is determined by many factors. For example; personnel experience, project
size, tooling, methodology, reuse, application domain and technical complexity all affect the pro-
ductivity within a development organization. An extensive survey of more factors influencing
productivity is presented in [Sca95].

Considerations
As previously stated (in chapter 4), stakeholders are focused on cost and progress information
when it comes to productivity. The questions expressed by stakeholders are discussed below.

Duration
Considering costs and progress, the extend to which software projects adhere to schedule was one
of the first information needs expressed by stakeholders during interviews (Q1). This refers to
overall project duration (§5.1) and the duration of individual phases. This information is espe-
cially relevant to fixed-date projects, where schedule overruns may result in decreased customer
satisfaction. However, other types of projects also benefit from this information, since a proper
understanding of duration may aid in more accurate task planning. The latter is also interesting
on the organizational level for making better duration estimates on future projects. Thus, in short,
stakeholders are interested in the distribution of time in the project as well as the (in)accuracy of
duration estimates. Information on matters such as the influence of new techniques on cycle time,
or the origin of schedule overruns is currently not a top priority.

25

5.3 Information needs Information needs and Constraints

Effort
Apart from schedule, stakeholders are interesting in knowing whether or not the project is within
budget limits (Q2). The term budget refers in this instance to two separate attributes, namely: costs
(euro’s) and effort (man-hours). Although cost management is an important factor in commercial
environments (as indicate in chapter 4), stakeholder questions did not target this specific attribute.
This is mainly due to the (active) financial monitoring of Daniro’s Project Office (§4.1.1). However,
this doesn’t mean stakeholders don’t care about costs. Effort (in man-hours) is used for tracking
both costs and progress (i.e. how far are we? how much work is there left?). Costs refers in this
instance to the budgeted amount of effort assigned to the project in relation to the actual amount
of effort spent on the project. With help of this information project managers can track whether
they are within (labor) cost limits. Furthermore by tracking the expected amount of effort (§5.1),
project managers can look ahead and decide if the budget suffice for the time remaining. The
latter information can also be used to track project progress. Since it gives an indication about the
amount of tasks completed and the amount of work left to do.

Size
Even though progress can be measured by monitoring effort expenditures, the amount of effort
says little about the functionality implemented. Tasks can be completed on schedule (time) and
withing budget (effort) but still result in little functionality being realized. Considering the fact that
customers pay for functionality, it is important to keep track of functional size over time (Q3). The
problem with size, however, is that there is no single measurement method available (§2.2.2). At
Daniro, Function Points and Use Case Points are often used for estimating software projects. How-
ever, this isn’t always the case, projects are also measured using other (simple) counting methods
(# screens, # use cases, . . .) or by expert judgment. These different sizing methods make it
harder to compare progress (i.e. the functionality completed) across projects. Nevertheless, this
isn’t currently a top issue since the programme is mainly focused on project-level measurement
(§4.4). Therefore it is decided to maintain the current situation and determine the exact measure-
ment method individually, per project. A second difficulty in tracking functionality over time is the
demand for periodic data collection. When simple counting methods are used periodic size mea-
surement is easy. However, in projects depending on function point analysis, periodic measurement
is costly and cumbersome because an educated (i.e. certified) function point analyst is required.
An alternative might be the use of “backfiring” [Jon95] to convert Lines of Code in Function Points.
Unfortunately the backfiring technique only gives a rough indication at best. Despite these issues,
stakeholders were positive about periodic size measurement. Therefore, question (Q3) concerning
this information need is included in the programme. Nevertheless, the granularity (§6.2.1) of the
measure(s) formulated in response to this question must be considered carefully.

Overall performance
Until now three aspects of productivity have been considered, respectively: duration (schedule
adherence/calender time), effort (cost/progress) and size (progress). These aspects reflect stake-
holder information needs with respect to the productivity in a project, and need to be included in
the programme. However, the dependencies between these aspect haven’t been considered. There-
fore it is suggested to include one or more measures that focus on the relation between duration,
effort and size. This in order to determine the performance of the project as a whole (Q5). The
latter is particularly useful to organization management as indicated in §4.4.

Staffing
The staffing on the project (Q4) also relates to this question, since it is assumed to have a major in-
fluence on productivity. Especially at Daniro where the staffing on a project is heavily subjective to
change, because people get assigned to other projects or companies (consultancy). Therefore mon-
itoring how the project team is assembled over time, assists managers in making well-considered
decisions with respect to the amount of people working on a project. Since one logic response to
low productivity (assumed to be identified by the measures described above), is to increase the
number of people participating. However, Brooks’ Law [Bro95] shows this is most often not the
right decision to make. Brooks states that “adding people to a late software project only makes it

26

Information needs and Constraints 5.3 Information needs

later” because intercommunication increases and it takes people time to learn a new project. There-
fore, considering the goal of baselining productivity, it is decided to include staffing measures in
order to understand when an “optimal” number of people for a particular project is reached.

Decisions
With respect to the information needs discussed, the following set of questions was proposed:

Q1. Is the project on schedule?
Q2. Is the project within budget?
Q3. How much of the intended functionality is implemented?
Q4. How is the project team assembled?
Q5. What’s our overall performance?

5.3.2 Defect questions

Another wish of stakeholders was to gain more insight in the “quality” of software development
projects (B2). Quality however, is an even more wider and ambiguous term than “productivity”.
Therefore decisions had to be made with respect to quality areas in need of measurement. Fur-
thermore measurement of software quality is usually aimed at the product level (with measures of
source code complexity, coupling, . . .). Since these type of measures are outside the scope of this
research, effort is put in investigating measures of process quality. Hereby the notion of defects,
and the development of defects over time, is of particular importance. Although software quality
involves more then defects alone, tracking defects is considered a (cost) effective way of monitoring
process quality throughout a software project [Jon96].

Considerations
During interviews it became clear that defect-related information is currently not actively used
by stakeholders on levels of project or organization management. Nevertheless, most managerial
stakeholders expressed their interest in this kind of information. The stakeholder information
needs concerning defects are, however, diverse. This is understandable since defect data can be
used for a wide range of purposes. For example, defects are known to be used for measuring
[Kan04]; overall product quality, effectiveness and thoroughness of testing, product reliability,
readiness for release, customer satisfaction and project status.

However, it isn’t possible to address every single information need concerning defect detection.
Therefore decision have to be made with respect to the most frequently arising issues (discussed
above) while leaving out “nice to know” issues.

Quality perspective

Stakeholders indicated that thoroughness of testing and readiness for release are particularly impor-
tant. Understanding the thoroughness of testing relates to both system testing (e.g. performed
by a test team) as well as customer testing (e.g. acceptance and functional testing). Stakeholders
indicated that the latter is notorious for being overlooked. That is, customers do not always suffi-
ciently test a certain release. This results in a small number of initial defects that suddenly increase
near the end of the project, when defects are more costly to fix. In addition, the readiness for re-
lease is important to measure since it affects project planning. Which in turn influences schedule
performance (§5.3.1), thus productivity (§5.3.2). Furthermore, readiness for release is vital from
a financial point of view, since Daniro provides a guarantee period to customers. This is a fixed
period of time after project delivery, during which defects are repaired free of charge. Only defects
that by reasonable assumption couldn’t have been identified during acceptance tests are covered
by this guarantee period. Therefore, it is key to fix defect early on in the development process.

As one may already notice the two purposes thoroughness of testing and readiness for release
(as well as other defect measurement purposes) are very much intertwined. So to speak, both
depend on a measure of defect count. Thus a decrease in defect count could indicate the readiness
for release (since the product is becoming stable) but it could just as well indicate a fall in the
thoroughness of testing. In short, the purposes aren’t mutually exclusive.

27

5.4 Concluding remarks Information needs and Constraints

Productivity perspective
Even though defects are often used for quality purposes, understanding quality development
throughout the project as discussed above is not the only concern of stakeholders at Daniro. Pro-
ductivity appeared to be an important driver behind defect measurement. After all, effort invested
in defects is rework that (in an ideal situation) could have been discovered earlier or avoided
altogether [Boe01].

Decisions
To summarize, defect information serves both a productivity (B1) as well as quality (B2) goal.
Therefore, in the case of Daniro, it is decided to focus measurement on two objectives: 1) tracking
effort invested in rework and 2) tracking defect count. These two objectives are largely inter-
twined. However, the first objective is directly related to understanding effort expenditures over
time (Q8). The time at which defect are found (Q7) and the origin of defects (Q9) are also useful
in this matter. This allows stakeholder to analyze the possible causes of defect (and thus effort)
increases, and helps in making decisions with respect to risky phases that require extra attention.
The same holds true for the second objective of tracking defect count (Q6). Which is required for
understanding release readiness and thoroughness of testing. The impact on the project (Q10), in
terms of defect severity and priority, is vital for the correct interpretation of defect count. The last
question (Q11) is concerned with most of the aspects mentioned above, to facilitate organizational
measurement. Altogether, the following questions are formulated:

Q6. How many defects are found in this project?
Q7. When are defects being found?
Q8. What effort is required to fix defects?
Q9. What causes the defects in this project?

Q10. What is the impact of defects on the project?
Q11. How effective is the defect solving process?

5.4 Concluding remarks

Based on the questions discussed, the conclusion is drawn that productivity is the most important
driver behind stakeholder information needs. The productivity goal (defined in chapter 4) was
not only assigned the highest priority, it also appeared to be a major driver behind information
needs related to defects (and scope, see appendix B). However it should be noted that only a
small number of questions directly relate to productivity, in the economical sense of size/effort.
Factors depending on productivity (schedule adherence, costs) and factors influencing productivity
(readiness for release, staffing) account for the majority of productivity-related information needs.

Overall, one may conclude that the information needs discussed in this chapter, mainly reflect
the interests of managers. The reason behind this observation is that managerial stakeholders
are primarily focused on process measurement. Since they are responsible for guiding a project
(through the software process), in which effort, duration and readiness for release are important
matters (§2.1.2). In contrast functional-, software- and test engineers are more concentrated on
(detailed) product measurement. Because they are responsible for parts of the software system
under development. This doesn’t mean, however, that the research failed concerning the objective
of satisfying multiple stakeholder needs. For instance, the current programme directly addresses
the information needs of at least three different stakeholders (i.e. management-related roles).
Additionally, it is concluded that engineers also benefit from the current programme, since they are
more likely to work on projects where goals are clearly defined and the software (measurement)
process is established [Min00] (assuming the programme is well implemented). Moreover, the
measures specified in chapter 6 (which are defined in response to questions listed in this chapter)
reflect to a large extend the measures used in the Personal Software Process (PSP) [Hum96].
Which is a method for improving project planning and quality assurance for individual engineers by
collecting and analyzing software project data4. A prerequisite for satisfying multiple information
needs, however, is that measurement data is available to all project members (§2.4).

4The PSP is related to the Team Software Process (TSP), a method for organizing PSP engineers in cooperative teams.

28

Chapter 6

Measurement Definition

T HE previous chapter described the information needs of the stakeholders in the measurement
programme. This section elaborates the definition of measures with respect to these informa-

tion needs.

6.1 Granularity

As can be seen from the list in §6.2.1, measures are defined at different levels of granularity. This
is done in order to satisfy the information needs of the stakeholders involved in the measurement
programme. However, during the process of measurement definition it was found that one must
caution not to specify too many levels of granularity. Since each level of detail requires extra
effort with respect to data collection, analysis and interpretation work. Currently there are five
levels of granularity (illustrated in 6.1). The highest level is “organization”. Measures specified
at this level can be used for creating an organizational baseline and measuring project portfolio1.
From there improvement initiatives can be initiated. Eventually these measures can also be used
for benchmarking purposes between projects, development centers and possibly other companies.
Nevertheless as indicated before (§4.3.1), the current programme is not focused on this level. As
a result organization measurement is suggested as future work (§8.3.1). However, in order to
facilitate this work, explicit attention is paid to lower level measures (e.g. M1, M13, M24) that
provide value to organizational level measurement.

Project

Organization

Discipline

Iteration

Activity

Out-scope (facilitation only)

In-scope

Figure 6.1: Levels of granularity

The project level, situated below the organization level, is decomposed in one or more iterations.
The term iteration is used in this instance since it is an essential part of RUP, the de facto system
development methodology at Daniro J-Technologies (§1.1). Subsequently, iterations consist of
activities that belong to certain disciplines. For example an activity such as “test user login‘” belongs
to discipline “system testing”. The activity level is the lowest level defined in this measurement
programme. Measures at this level can be aggregated (i.e. ‘lifted’) to discipline, iteration and
project level. Measures on other levels, e.g. artifact, system or component, are not included in

1The whole of past and present projects, performed by Daniro (J-Technologies)

29

6.2 Measures Measurement Definition

this programme because stakeholder questions did not target these entities. Furthermore, it is
suggested to start on the activity level and expand to lower levels when necessary. In addition,
measurement on the activity level requires (depending on the exact measure in question) little
changes to the work process of stakeholders. Since a decomposition of work in activities is readily
available in projects: Often a so-called “Work Breakdown Structure” (WBS) is created by managers
and team leaders. This is a hierarchical tree structure of tasks that need to be performed in order
to complete a certain project. The bottom of the hierarchy contains activities that cannot be broken
down any further. Usually a WBS is created for planning purposes (resource allocation, assignment
of responsibilities), but it also facilitates measurement.

Staff level
Although one might expect to see measures per staff member (e.g. programmer, tester, manager),
this level of detail is explicitly not included in the programme because measuring individual mem-
bers is considered a risky undertaking [Wie97]. Chances are that managers will use (or “exploit”)
this information to judge, instead of motivate, staff members. Considering that measurement pro-
grammes involve the cooperation of multiple people, misuse of measurement data may results in
decreased participant buy-in as well as decreased data integrity. As a result the success rate of
the measurement programme is reduced (§2.4). In order to avoid this, measurement should not
concentrate on (individual) judgment or reward. Instead it should be used as a basis for providing
feedback to participants (§2.3.1).

Time level
Since this measurement programme is concerned with process measures, stakeholders are often
interested in the development of a certain attribute over time (i.e. throughout the process). The
granularity levels in figure 6.1 already imply a form of time ordering. For instance, measures on
the iteration level (which are sequential in time) can be aggregated to provide a measure of the
development of a certain attribute throughout the project. However, there’s a difference between
measures that yield results on a certain level of granularity and the time at which data collection
for a particular measure takes place. That is, collection and reporting moments are not necessarily
related. So even though the activity level is the lowest level possible, it doesn’t mean that measures
on that level are only collected once for each activity. When stakeholders require information about
the development of a certain activity over time, data collection can take place at arbitrary moments.
To conclude, the level of granularity for a certain measure is (in the first place) determined by the
information needs of stakeholders. This in turn determines the necessary aggregation of data.

6.2 Measures

This paragraph highlights the measures defined in relation to the productivity and defects goals.
The rationale behind important (and non-obvious) measures is explained. Furthermore the alter-
natives and possible drawbacks associated with those measures are discussed. Measures marked
with an asterisk (∗) are given high priority and included in the initial programme (§6.3).

6.2.1 Productivity measures

The information needs concerning productivity of the stakeholders at Daniro mainly evolve around
cost and progress. By taking stakeholder questions into account, the present author proposed a set
of measures related to these attributes. The measures are listed and discussed in this paragraph.

Overview
Q1. Is the project on schedule?

M1. Estimation inaccuracy
M2. Time till budgeted end date
M3. Budgeted iteration duration vs. actual and remaining iteration duration∗

Q2. Is the project within budget?
M4. Cumulative budgeted effort planned vs. expected effort spent∗

30

Measurement Definition 6.2 Measures

M5. Budgeted effort planned vs. actual- and remaining effort spent per iteration∗

M6. Budgeted effort planned vs. actual- and remaining effort spent per discipline∗

M7. Product size divided by the amount of effort planned vs.
Product size divided by the amount of effort spent∗

Q3. How much of the intended functionality is implemented?
M8. Estimated vs. actual product size∗

M9. Percentage of budgeted product size implemented vs. Expert effort estimate∗

M10. Percentage of specification implemented
Q4. How is the project team assembled?

M11. Number of participants
M12. Participant skill level (seniority)

Q5. What’s our overall performance?
M13. Actual duration vs. Actual effort spent in relation to the

Actual product size per iteration∗

M14. Process Productivity

Duration

The inaccuracy of duration estimates (M1) is the first measure defined in response to the question
concerning schedule adherence (Q1). This measure is defined for use by organization management
to facilitate future cross-project comparisons (§6.1). The estimation inaccuracy is computed once,
after project completion: by extracting the budgeted duration from the actual duration, divided by
the actual duration. This results in the relative (%) error of duration estimates and shows whether
the project was over- or underestimated. This information is useful in creating an organizational
baseline and for possible improvement of project planning and customer bids.

The duration or cycle time of the project is measured on the iteration level. Since iterations
are timeboxed (fixed in length) the budgeted duration of an iteration should not be exceeded.
However, in practice this is not uncommon. Therefore measurement on this level of granularity
is suggested. Measurement on lower levels is not (directly) included in the programme because
stakeholders are already aware of schedule overruns on these levels. This is mainly due to the fact
that stakeholders, particularly project managers, work with project schedules on an activity level.
Usually in the form of Gantt charts (based on Work Breakdown Structures). As a result the initial
focus lies on measuring the duration of iterations. However, in order to compute this measure,
information from the activity level needs to be aggregated. Naturally, this poses a demand on the
correct registration of activity durations.

Effort

As stated in chapter 5 stakeholder questions didn’t directly addresses the “money” aspect in soft-
ware projects. As a result (advanced) cost-related measures, based on method such as Earned-
Value Analysis, are not included in the programme. However, a number of effort-related measures
that address cost aspects are included. Most notably measure M4. This measure sets out the (cu-
mulative) development of the budgeted effort over time, against the expected (actual + remaining)
effort over time. The data needed for this measure is aggregated from the activity level. The lat-
ter allows stakeholders to analyze whether or not the project is within budget limits. However, it
doesn’t show the cause of a (sudden) effort fluctuation. Therefore two measures on lower levels of
granularity were proposed. The data for these measures is also collected on the activity level and
aggregated to respectively the discipline and the iteration level. On the iteration level the budgeted
effort is outlined against the actual and the remaining effort (together the expected effort). The
same holds true for the discipline level, together these two measures allow stakeholders to moni-
tor their budget within a project. Furthermore, it helps to determine what kind of activities (e.g.
architecture, requirement engineering, configuration management, . . .) require addition budget.
For additional explanation; prototype charts of effort measures are illustrated in appendix D.

Although tracking effort might look simple at first sight, the reality is different. One problem
that posed itself during this project was the (conflicting) purpose of effort data and terminology
used (§5.1). This terminology mismatch wasn’t solely limited to literature. Stakeholders on various
positions used different terms, based on their specific information needs. For instance, high level

31

6.2 Measures Measurement Definition

management is primarily interested in effort budgeted vs. actuals, whereas the Project Office
(controllers) are more interested in the remaining effort. Project managers on the other hand,
look specifically at the expected effort to see whether they are within budget limits.

Size
Finally, with respect to question Q3, a measure of the estimated and actual size of the product is
proposed. Furthermore, for projects that use (simple) counting methods to quantify size, a mea-
sure is proposed that represent the percentage of “specification(s)” implemented. Clearly this is
a subjective measure, since it is hard to tell whether or not a specification (i.e. use case) is im-
plemented either half, full not at all. Nevertheless, as opposed to Function Point Analysis, this
measure provides stakeholders with the most recent size information. After all it includes artifacts
that are still very much in development. Stakeholders expressed their interest in this informa-
tion, because it allows them to make better schedule and effort estimates. However, the most
interesting size-related measure is M9. This measure sets out the development in size (presum-
ably in FP) against the actual effort divided by the expected effort. Although size and effort are
two distinct variables in project management, the relative development of these factors over time
should follow a somewhat equal path. That is, if one assumes that the “completeness” of the
project (% of budgeted effort used) follows the same path as the “readiness” of the product (%
FP implemented). The calucation of project “completeness”, or percentage complete, is frequently
used among Daniro project managers as a means of expert judgement. In this light, measure M9
is considerd to represent the relation between two estimation techniques: function point analysis
and expert judgement. However, this measures will have to prove itself over time, since there are
a number of issues associated with its use. For instance, the relative amount of FP implemented
is based on the originally budgeted FP (i.e. at project inception) while the other factor, actual
effort/expected effort, is based on a regulary updated effort budget. To conclude, this measure is
included since the interests of stakeholders is strong. However, additional (fine-tuning) work is
expected during implementation.

Overall performance
Measure thirteen; process productivity [Put02] requires addition explanation. This measure is said
to cover productivity during the entire software life cycle. Therefore process productivity is build
on three other measures; size, effort and duration, as discussed in the previous paragraph. The
latter variable, duration or time, is remarkable since productivity is conventionally defined as size
divided by effort [Fen00; Max01]. However, Putnam et al. observed that productivity in a software
project is very much dependent on the schedule planned at the start of the project. Therefore time
is included as a variable. Nevertheless size, effort and time do no equally affect productivity. During
an empirical study of measurement data from a large number of software projects Putnam found
that there is a non-linear relation between the three measures. As a result two exponents were
added to balance process productivity. As a result, process productivity is calculated as follows:

Process productivity =
Size

((Effort× 12)/Skills)1/3 × (Time× 12)4/3

Where size is either lines of code (LOC) or function points (§2.2.2), effort and time is measured
in months and skills is a complexity factor. The skills factor dependents on the size of the product
and varies between 0.16 to 0.39. The number is used to adjust the process productivity value
because the need for skills such as testing, QA and management is expected to grow (significantly)
on larger projects [McC04]. The process productivity measure described above is usually not
calculated by hand, since it is part of the SLIM cost estimation model and supported by tools of
QSM Inc2. These tools facilitate project control, estimation and benchmarking. As a result process
productivity values are often converted into a position on the “productivity index” scale. One of
the QSM tools, SLIM Estimate, is currently in trial use at Daniro’s Project Office (§4.1).

Process productivity can be a useful measure in software development projects, but one should
be careful not to put too much weight on it. Solely using a number of process productivity to steer

2http://www.qsm.com

32

http://www.qsm.com

Measurement Definition 6.2 Measures

a project is a bad idea. Process productivity should, like any other measure, not be considered in
isolation. One objection is that process productivity depends on a measure of size (often LOC), and
because of the many issues associated with functional size measurement (§2.2.2) this could greatly
influence the outcome. Furthermore, the measure is particularly suited for long running projects
(lasting a least a couple of months). The reason for including this measure anyhow is to facili-
tate productivity comparisons across projects (§4.4). It is expected that process productivity suits
this purpose well, since it produces a single numerical value that captures multiple productivity
aspects. However, process productivity doesn’t show the (possible) cause of a certain productiv-
ity increase/decrease. Therefore a simple measure (M13) that shows a (possible) relationship
between iteration duration, size and effort is proposed to fill this gap.

6.2.2 Defect measures

Stakeholders are interested in tracking defects for both economical and quality reasons. In this
paragraph, measures related to defect tracking are proposed in response to stakeholder questions.

Overview
Q6. How many defects are found in this project?

M15. Number of defects found and fixed per iteration∗

M16. Defect density
Q7. When are defects being found?

M17. Defect detection time by discipline∗

M18. Defects by type (internal/external)
Q8. What effort is required to fix defects?

M19. Budgeted vs. actual effort spent on defect fixes per iteration∗

Q9. What causes the defects in this project?
M20. Defects by origin

Q10. What is the impact of defects on the project?
M21. Defects by severity∗

M22. Defects by priority∗

Q11. How effective is the defect solving process?
M23. Effort spent on re-opened defects (rework on fixes)
M24. Defect indices

Classification
The previous chapter showed that stakeholders are interested in defects from two perspectives
(both quality and productivity, or efficiency). This poses a demand on defect measures since dif-
ferent types of information needs will have to be satisfied. Obviously the more information one
collects about defects, the more (interesting) measures one can define. However the more infor-
mation one collects about defects, the more weight one puts on the people registering defects.
Therefore balance needs to be found between the measurement information required and the
amount of defect data collected. Consulting literature on this subject learned that there are several
ways of classifying defects during software development projects [Fre01]. A well-known defect
classification scheme, which is especially interesting from a measurement perspective, is Orthog-
onal Defect Classification (ODC) [Chi92]. This scheme, developed by Chillarege et al. at IBM, is
focused on finding the cause-effect relation of software defects on the development process. That
is, defects categorized by the type of fix can be related to activities in the development process.
Thus as Chillarege et al. state “ODC essentially means that we categorize defects into classes that
collectively point to the part of the process that needs attention”. To derive this information the
ODC scheme consists of eight attributes; activity, trigger, impact, target, source, age, type and qual-
ifier. These attributes can be used alongside the more conventional attributes such as severity and
priority to capture both defect cause and effect. In ODC the defect trigger and defect type attribute
are of particular importance. The purpose of the type attribute is to define the semantics of the
defect fix. For example when a developer solves a defect in the source code by properly initializing
a global variable, the fix is said to be of type “assignment”. Originally IBM defined a limited set

33

6.2 Measures Measurement Definition

of eight different defect types (among others; interface, documentation and algorithm). These
types were formulated to capture “orthogonal” information. Meaning that types are specified at
a level that is generic enough to apply throughout the development process, but specific enough
to be associated with a few number of phases. Thus assigning a defect type tells something about
the possible phase where the defect was inserted. Chillarege et al. state that, with help of this
information it is possible to determine how the product moves through the development process.
Another attribute that assists in this process is the defect trigger. This attribute is used to record
the condition or environment in which the defect (of a specific type) occurred. Examples are:
concurrency situations, specification errors and so on.

Conclusively it can be said that the ODC scheme is a powerful technique to extract measure-
ment information from defect data. Although it can be used to produce a variety of measures
it is mainly targeted at the cause or origin of defects. Nevertheless powerful as ODC may be,
the present author opted not to include measures related to defect types and triggers (or other
attributes of the scheme) in the programme. There are a number of reasons for this decision.
First, including ODC related measures in the programme would require (significant) changes in
the work process and tooling of developers, with respect to defect reporting and analysis. Also the
ODC scheme needs tailoring before it can be used in Daniro development projects. The original
defect types defined by IBM are mostly outdated and not applicable anymore within the context of
(web)application development. Although the scheme has been updated over time to include more
modern information, it is still necessary to reach agreement about certain issues within a specific
project context. Since process measurement is only in its initial stage at Daniro, the decision was
taken not to make these kind of (premature) changes to the development process prior to mea-
surement implementation (§5.2). A second reason for omitting including ODC measures is that
quality improvement isn’t the only motivation behind defect collection. As indicated in chapter 5
schedule and progress information, or productivity in general, is an important driver behind defect
information needs. This is mostly because the time and effort put in solving defects is classified as
work that, in an ideal situation, could have been prevented. Even though mistakes are human, it is
in the stakeholders’ interest to understand the development of defects over time in order to control
both process quality and productivity. From a productivity point of view ODC is not the scheme of
choice, since it doesn’t specifically address productivity. Although some attributes are useful in this
matter, the costs (process changes, tailoring) aren’t expected to line up with the benefits (semantic
classification, origin capture).

Productivity and impact

Thus even though ODC is superior in defect classification when viewed from a purely technical
perspective, the scheme is not adopted due to environmental factors. The initial list of defect mea-
sures proposed in this measurement programme (as presented above) contains a total of five defect
attributes. These attributes include; severity, priority, origin, effort and discipline (in which the de-
fect was found). Despite the fact that ODC was not adopted, a measure of defect origin is included
in the measurement programme. As stated before the rationale behind this is primarily economi-
cal; stakeholders wish to be aware of the risky phases in a development project. Information about
phases responsible for defect insertion allow (managerial) stakeholders to take preventive actions
(i.e. adjust schedule and effort planning). In small projects it is expected that information such
as the origin of defects can be determined informally by individual developers. However in larger
projects, stakeholders may choose to adopt a more formal process such as Defect Causal Analysis
[Car98]. Nevertheless, finding defect origin is often labor intensive and therefore excluded from
initial programme implementation (§6.3).

The last measure in need of explanation is defect indices (M24). This process measure is defined
by IEEE Std. 982 [Dob88] as “an indication of whether the defect removal process employed at
a given phase of development was employed in a sufficiently effective manner”. In addition, the
measure can also be used as a product measure by providing a “continuing, relative index of how
correct the software is as it proceeds through the development cycle”. However, in terms of this
research the process purpose (i.e. defect removal effectiveness) is of particular interest. Essentially
the defect index is calculated as the weighted sum of all minor, major and blocking defects per
iteration. Divided by the product size. More specific, the number of defects associated with each

34

Measurement Definition 6.3 Prioritization

severity level is weighted after being divided by the total number of defects found. This process
yields the so-called phase index, because it is applied on all defects found within a specific phase
(or in this case iteration). Thereafter, in order to calculate the overall defect index, every phase
index is assigned an incremental weight (one for the first iteration, two for the second and so-
forth). Finally the weighted phase indices are divided by the product size, producing a value of
defect index.

One reasons for including the defect index measure in this programme is to facilitate cross-
project comparisons, like process productivity (§6.2.1). This can be accomplished quite easily, since
the measure produces a value that captures the relation between multiple defect properties. A word
of warning however, is that the experience base of this measure is relatively small (as indicated by
literature research of the present author) [Dob88]. As a result it is difficult to determine whether a
certain value on the defect index is either “good” or “bad”. Therefore it is key to the success of this
measure to establish a (organizational) baseline. Once the defect index of a number of projects is
known it becomes possible to (more accurately) analyze the defect removal effectiveness of certain
projects.

6.3 Prioritization

A fairly large number of measures have been presented in the above paragraphs. These measures
cannot be implemented all at once, because the measurement programme should start small (§5.2).
Therefore, decisions needed to be made with respect to vital questions in need of measurement.

In order to do so, the measurement programme was presented to stakeholders in an interac-
tive presentation session. During this session stakeholders were encouraged to comment on the
proposed (goals), questions and measures. Furthermore rough priorities were assigned to the
questions and measures presented. Afterward, as a means of validation, stakeholders were sent
a survey and asked to assign detailed priorities to measures. The survey also included a column
with hypothetical priorities, reflecting the rough priorities assigned during the presentation. Even-
tually this process led to a number of changes in both questions and measures, which have been
incorporated in the programme. In total 13 measures have been selected for use in the initial mea-
surement programme. These measures are marked with an asterisk (∗) in the paragraphs above.
Obviously as the programme progresses, more measures can be selected (from this document)
and implemented in the organization. For the initial start however, a basic set of 13 measures is
suggested as listed in appendix F.

As can be seen, most measures included in the initial programme are concerned with produc-
tivity. Furthermore a number of defect-related measures are included. Based on goal prioritization
conducted earlier on (§5.2), the decision was taken not to include scope measures in the initial
programme. Therefore scope related measures are discussed separately in appendix B.

6.4 Concluding remarks

In this chapter, productivity and defect measures were defined in response to stakeholder infor-
mation needs. Hereby, productivity measures relate to duration, effort and size, whereas defect
measures focus on understanding impact and effort. As agreed most measures focus locally on
project measurement, at either one of four granularity levels. In addition, two measures for
organization-level measurement were proposed. These measures (M14 & M24), combine the
above productivity- and defect aspects in a single measure for (future) benchmarking purposes.

The previous chapters (4 and 5) concluded that the programme addresses the needs of multiple
stakeholders (although primarily management-related roles), and is focused on strategic-level mea-
surement. That is, the programme is applicable to multiple projects (§2.3.1). However, during the
process of measurement definition it was noticed that it is in some cases difficult to mandate a stan-
dard set of software measures. Specifically because projects are “unique” in nature. That is, there
are variations in techniques, methods and teams within each software development project to dis-
cern [Jon03a]. These variations are manifested through different ways of size measurement (FP,
UCP, . . .), varying ways of defect registration, different methods for requirements management,
and most importantly different customer demands.

35

6.4 Concluding remarks Measurement Definition

The precise impact and extend of variation is unknown3. The assumed rationale behind the ob-
served variation, however, is that Daniro is a service-oriented organization. This makes measure-
ment somewhat harder since outsourcing projects are in certain ways customer imitated [Rif01]. In
other words Daniro has to comply to the demands of customers concerning technical and process
characteristics [Jon03a]. This is different from most measurement programmes discussed in lit-
erature. Which are established in formal organizations, concerned with product development.
Examples are NASA/SEL, US DoD, IBM, HP, Motorola, Nokia and Schlumberger RPS.

Nevertheless, since the current programme focuses on strategic measurement, the case is made
that a standard set of software measures [Kil01] can still be established. Especially since the orga-
nization is increasingly focused on operation excellence [Rif01]: fixed-price projects with a limited
but well-practiced set of tooling, techniques and people. The software factory and development line
initiative, discussed in chapter 1, are a good example of this movement.

3As stated before, process modeling wasn’t applied during this thesis project. Nevertheless it is expected to be useful in
the future, for gaining insight into software process variations (§8.3.2)

36

Chapter 7

Implementation Aspects

A S indicated before, programme implementation is outside the scope of this research. Neverthe-
less in preparation of implementation and in order to ensure an effective programme, some

implementation-related aspects need to be considered. This includes; measurement analysis and
interpretation, as well as the operational definition of measures and data collection procedures.

7.1 Measurement Support System

In the previous chapter, priorities were assigned to the measures proposed by the present author.
This led to some changes in both questions and measures. However the presentation of mea-
sures to stakeholders, and subsequent prioritization, only confirmed the focus of the programme.
Whether or not the measures suffice to provide the desired information is hard to determine. The
list of measures, as provided in chapter 6, is simply too abstract for stakeholders to get a clear
picture about the information that results from a particular measure. Therefore the decision was
taken to create a number of charts, tables and forms that provide stakeholders with a more visual
representation of the information they can expect from the programme. This decision is in line
with the indicator step described by Park et al. in §2.3.1. Furthermore it’s in line with work of
Solingen et al., who advices to create an “analysis plan” [Sol99] during GQM definition to facil-
itate data analysis and interpretation by stakeholders. It’s important to note that indicators in a
typical analysis plan contain hypothetical data, since no actual measurement data is available yet.

To give stakeholders a clear picture of the measurement programme, it is key to workout the
entire process from data registration to measurement presentation. In order to do so, the decision
was taken to create an analysis plan in the form of a prototype Measurement Support System (MSS).

7.1.1 Construction

A MSS is considered to be an essential part of every measurement programme [Sol99], since it sup-
ports stakeholders during various stages of the measurement process. The MSS constructed during
this thesis project facilitates registration of measurement data, storage of data and presentation of
measures in the form of charts and tables (appendix D). Since this MSS concerns a prototype, it
was important to archive rapid results. Therefore it was decided to build the system with help of a
spreadsheet tool (MS Excel). Other, more important, reasons for using spreadsheets were flexibility
and accessibility [Sol99]. Since a measurement programme is typically subjective to change, the
MSS should be easily adaptable to changing requirements. Furthermore, accessibility is important
to facilitate interpretation by stakeholders (during feedback sessions §2.3.1). A third reasons for
using spreadsheets, is that current status reports (§4.1) are also written in Excel. Which indicates
that stakeholder are already familiar with spreadsheet usage.

Results
The effort put into constructing the MSS resulted in a spreadsheet (appendix D), in which data is
registered and presented on three different levels of granularity (§6.1). Namely; project, iteration
and activity (the discipline level is incorporated in the activity level). Users of the MSS arn’t,

37

7.2 Measurement Specifications Implementation Aspects

however, required to actively register data on all levels of granularity. Most measurement data
can be periodically filled in on the “progress” level, and aggregated to higher granularity levels.
Which means that users only need to track a few basic attributes (i.e. effort, size and start/end
dates) to produce the majority of the measures proposed in chapter 6. The latter mainly applies to
productivity-related measures. Defect measurement comprises only one sheets, and registration of
defect data is fairly straightforward1. Apart from data registration, the MSS included indicators for
analysis and interpretation purposes. Specifically; bar charts (M5, M6, M15 & M19), line charts
(M4 & M9), pie charts (M17, M21 & M22) and a bubble chart (M13).

7.1.2 Usage and Validation

In order to validate the MSS, a series of personal walkthroughs [Lau02] with key stakeholders
were organized. These stakeholders were selected because they’re directly involved (responsible,
accountable or informed §7.2.2) in the registration and analysis of measurement data. During
the walkthroughs every sheet in the MSS was discussed, and stakeholders were encouraged to
comment on the charts and tables presented. As indicated the presented charts, tables and sheets
were filled with dummy data. Furthermore questions were asked such as “what does this chart tell
you?” or “what other information do you need in order to understand this chart?” and “who else
would benefit from this information?”. The walkthroughs were organized as follows:

• Stakeholders included a project manager, a controller, and a contract manager.
• The initial MSS used in walkthroughs included ± 10 measures.
• After walkthroughs 2 new measures were added, and 3 were refined.

Results
During the walkthroughs it was noticed that stakeholders got a better understanding of certain
measures just by looking at specific charts. Even though the data was fake, stakeholders were able
to provide feedback on the measures proposed. Examples of concrete changes incorporated in the
measurement programme as a result of this feedback are: progress registration of activities based
on effort and duration (fig. D.6), and the cumulative development of effort over time (fig. D.9).
Also, while discussing the MSS, numerous new questions and measures arose. It was decided, how-
ever, not to include every new idea since it would complicate initial programme implementation.
After all, the measurement programme should start small and extend over time (§2.4).

Apart from validation walkthroughs, the MSS is also suited for future use in pilot projects.
That is, the MSS is developed as an evolutionary prototype and can therefore be extend with new
functionality as the programme progresses.

Validity
Because the MSS lacks real measurement data, it was not possible to validate whether the measures
(in the MSS) actually satisfy the goals and questions stated (in chapters 4 and 5). However, the
walkthroughs provided enough insight to determine whether or not the measures can satisfy goals
and questions. That is, the walkthroughs aimed at validating the measurement programme, by
checking whether the measures have the potential and/or ability to satisfy stakeholder information
needs (i.e. questions⇒ goals). As a result, it isn’t possible to draw conclusions about validity of the
measures with respect to the satisfactory of questions and goals. Nevertheless, it is concluded that
the selected measures (appendix F) are useful to Daniro for future research and/or organizational
implementation.

7.2 Measurement Specifications

Thus far, attention has been given in this thesis to the identification of goals, the formulation
of questions, and the definition of measures. This has led to a comprehensive list of software
measures, which essentially forms the foundation of the measurement programme. However a
clear specification of these measures and associating working methods is missing. Measurement

1Especially since defect sheets in the MSS, as well as others, contain drop-down lists to simplify data entry.

38

Implementation Aspects 7.2 Measurement Specifications

specifications are important because stakeholders need to understand what the measured values
represent [Wie97]. Park et al. state “only then can we expect people to collect values consistently,
and only then can others interpret the results correctly and apply them to reach valid conclusions”
[Par96]. Therefore, with respect to research question nr. 10, the decision was taken to investigate:
what information should to be specified in the programme about software measures. The forth-
coming two paragraphs briefly highlight a few areas relevant to this research question. In addition,
measurement specifications can be found in appendix C. Due to time constraints, however, not all
thirteen measures which have been selected for initial implementation §6.3 have been (formally)
specified. Instead, two clearly different2 measures (M6 and M15) were selected which served as
input for the example specifications in appendix C.

7.2.1 Formalizing measures

As indicated before, the measures listed in chapter 6 are loosely defined. In order to make these
measure operational (i.e. repeatable and communicable to others [Par96]) a more formal specifica-
tion is required. There is, however, no general agreement about the contents of such specification.
This is presumably caused by contextual issues. For instance, it was noticed that measurement
specifications play a prominent role in “formal environments”, such as the US DoD. Here mea-
sures are specified in great detail (examples [Jon03c; Par96; Bas95]), while in other environments
less attention is devoted to this matter (examples; [Sol99; Bir97]). Nevertheless, most literature
on software measurement mandates a form of specification3. Therefore, the following (typical)
elements were included in the example specifications of appendix C:

• glossary of terms and/or abbreviations [Lis05; Jon03c]
• possible limitations and/or side-effects [Kan04; Sol99]
• formula required for measurement calculation [Lis05; Jon03c]
• measurement type (direct/indirect and objective/subjective) [Kan04; Jon03c]
• dependencies [Lis05]

The latter is an (optional) set of references to other measures that provide information relative
to the current measure, or that need to be used in conjunction with the current measure for the
sake of interpretation validity. Although most elements listed above are straightforward, the mea-
surement type was difficult to specify indisputably: whether or not a measure is direct/indirect
(and partially subjective/objective) depends one the interpretation of stakeholders [Kan04]. In
this case, however, the decision was made to classify a measure as “direct” if it includes a single
attribute, and “indirect” when it requires multiple attributes.

Measurement Theory

This reliance on measurement attributes emphasis the importance of measurement theory (§2.2.1).
Which concerns amongst others, the definition and validation of theories underlying software mea-
sures. There is, however, so much controversy about the use of measurement theory (and specif-
ically scales) in literature, that it is impossible to be certain about the validity of measures. A
study in this direction is also outside the scope of this research. Therefore it is decided to act
pragmatically on this matter and only specify the entities, attributes and unit(s) or range(s) of each
measure. The latter is in line with the case study of [Loc03], concerning the specification and
validation of requirements management measures. The advantage of specifying these elements is
twofold: first it can be seen as an initial step toward theoretical validation [Kit95]. Secondly, it in-
forms stakeholders about the properties of the software process that a certain measure is suppose
to quantify [Kan04; Fen94]. Considering measurement attributes, distinction is made between
internal and external attributes. An internal attribute of a certain entity depends only on the entity
itself (i.e. size). While an external attribute depends on the context of the entity in question (i.e.
maintainability). From a practitioners perspective, external attributes are the most interesting.

2 One measure is concerned with productivity, the other with defects
3 It goes, however, beyond the scope of this research to provide an exhaustive list of specification elements. So only

elements supported by literature, that are relevant in the context of this measurement programme are highlighted.

39

7.3 Concluding remarks Implementation Aspects

To conclude, there are many more things that one can specify about software measures. How-
ever, based on the literature consulted, the elements specified in appendix C are expected to suffice
for initial implementation.

7.2.2 Data Collection and Reporting

Besides a specification of the measure itself, it is (even more) important to specify related working
methods [Sol99]. Such as; procedures for data collection and reporting (e.g. analysis/interpretation).
Like the “formalization” of measures (§7.2.1), there are tons of properties that one can specify
about matters related to data collection and reporting. However, the advice here is also to “keep
things simple” (§5.2). Furthermore the availability of the MSS takes some of the tedious data reg-
istration/reporting work out of hands. Meaning that detailed descriptions of, for instance “data
elements” [Par96], can be omitted from specification.

Referring literature, it becomes clear that responsibilities and time make up the primary ele-
ments of most data collection and reporting procedures. That is, people involved in measurement
activities need to be appointed, and their responsibilities should be defined. In order to do so the
present author adopted the simple but well-known RACI4 responsibility model. In addition, the
time (e.g. activity or phase) at which data collection takes place needs to be specified. This is
organized according to the granularity levels discussed in §6.1 (e.g. collect after iteration X). Fur-
thermore the instrument(s) used for data collection and reporting are specified [Sol99; Jon03c].
Since the programme is only in its initial stage, no extensive procedures for (statistical) analysis are
specified. Optional interpretation hints [Lis05] are, however, included to aid in feedback sessions
(§2.3.1).

7.3 Concluding remarks

In this chapter a MSS was constructed, for the purpose of supporting (future) pilot projects. Addi-
tionally the MSS served as a means of programme validation, which in this case refers to a number
of walkthroughs performed with key stakeholders. During these walkthroughs measurement indi-
cators were presented and discussed. The latter appeared to give stakeholders a (more) concise
mental picture of the measurement programme. Nevertheless, more validation work is needed in
this area. Furthermore in this chapter, a first attempt was made to investigate what aspects about
software measures need to be specified in the measurement programme. This led to the real-
ization of two example specifications; describing measurement characteristics and data collection
procedures.

Near the end of this thesis project, it is concluded that a number of important measurement
issues have been addressed. This includes amongst others, the identification of goals, the defin-
ition of measures, and the first steps towards the establishment of measurement protocols (e.g.
specifications, MSS). Relating this effort to the Measurement-CMM [Nie98] of Niessink and Van
Vliet, learns that the current programme is focused on achieving maturity level 2 “repeatable”.
More specific, the measurement design key process area is addressed (listed in appendix E). The
latter Measurement-CMM illustrates that the current programme is only in its initial stage. Mean-
ing that a lot of work is yet to be done. Specifically measurement implementation (i.e. collection,
analysis and feedback), which is known to account for roughly 70% of the total programme ef-
fort [Kil01]. However, measurement design requires also additional research. Nevertheless, this
research brought a number of important prerequisites (of the measurement design KPA from ap-
pendix E) in place for Daniro, to archive a higher level of measurement/improvement capability.

4 Responsible; people that get the job done,
Accountable; people that take the credit for success or responsibility for failure,
Consulted; people whose opinions are sought,
Informed; people that are kept up-to-date on progress.
SOURCE: Wikipedia

40

http://en.wikipedia.org/wiki/RACI_diagram

Chapter 8

Conclusions and Future Work

T HIS chapter summarizes the conclusions drawn, with respect to the results achieved during
the thesis project. An evaluation is also given about the work performed and the difficul-

ties/opportunities encountered. Furthermore a recommendation for programme implementation
is provided, and a number of (secondary) ideas for future work are discussed.

8.1 Conclusions

The objective of this thesis project was to investigate the possibilities of establishing a measurement
programme at Daniro J-Technologies. Thereby the primary focus laid on programme design. In
light of this, the following central research question was posed: “what process-related measures,
with respect to organizational goals, can be defined to satisfy the information needs of stakeholders
in the context of software development projects?”. In order to provide an answer to this central
question and meet the objective of the thesis project, a number of detailed research questions were
formulated (§1.2.2). These research questions have been answered in the body of this thesis. In
this section, conclusions are drawn with respect to the main questions1,2 stated.

8.1.1 Information; strategic measurement for understanding purposes

Based on stakeholders interviews, it is concluded that Daniro J-Technologies is focused on four
measurement goals; understanding productivity, baselining productivity, understanding defects and
understanding scope2. As a result the organization is willing to establish a strategic measure-
ment programme1, because the goals apply to generally any development project. Within these
software development projects there are usually five groups of stakeholders to discern: organi-
zation management, project management, functional design, technical construction and testing3.
The information needs of these stakeholders served as a basis for questions formulated, in re-
sponse to measurement goals. However, the proposed measurement programme addresses mainly
management-related information needs4. This stems from the fact that high priority goals and
questions are formulated from a management point of view. The rationale behind the latter is
that managerial stakeholder are primarily focused on process measurement. In contrast functional,
software- and test engineers are more concentrated on (detailed) product measurement.

The information needs of organization- and project management stakeholders are, however,
not the same. Project management is generally concerned with controlling cost and resources
aspects in projects. Whereas organization management is concerned with improving the allocation
and use of these aspects across projects5. Nevertheless, since the measurement programme is only
in its initial (i.e. planning and definition) stage, understanding of these aspects must be reached
first1. Therefore it is decided to focus locally on project-level measurement, but facilitate future
organizational use. In short, the purpose of the measurement programme is (in order of priority);
understanding productivity, defect reporting and scope changes in software development projects.
The scope goal is, however, excluded from initial organizational implementation.

1Since the research questions in §1.2.2 are ordered by topic, the conclusion is structured accordingly
2Conclusions are marked with numbers in subscript (e.g. 3), that refer to (answered) research questions listed in §1.2.2

41

8.1 Conclusions Conclusions and Future Work

8.1.2 Measurement; project measures to address multiple stakeholders

In literature, there’s a wealth of software measures available in all sorts of areas (e.g. risk man-
agement, technical complexity, product stability)7. Also at Daniro various measures were found,
which can roughly be divided in two categories: source code quality measures and finance-related
measures7. In order to decide what measures needed to be included in the programme, the GQM
method was applied6. Based on the information needs (i.e. questions) of stakeholders discussed
above, relevant measures were studied. In light of this, the conclusion is drawn that most measures
in the programme relate to productivity6. That is, measures of duration, effort and size. It should
be noted, however, that only a small number of measures directly concern productivity in the eco-
nomical sense of size/effort (e.g. # function points per hour). Factors depending on productivity
(schedule adherence, costs) and factors influencing productivity (readiness for release, staffing)
account for the majority of the productivity-related information needs, and thus measures5,8. With
respect to defect information needs, measures focused on understanding defect impact and effort
in development projects were included.

As concluded earlier, managerial stakeholder acted as the primary source of information in this
research (§8.1.1). However, it’s important to note that engineers (and other project members) can
also benefit from the proposed measurement programme. For instance, future decisions based on
the proposed measures directly affect the work of engineers participating in development projects.
Moreover, software process methodologies focused on individual engineers (PSP) or engineering
groups (TSP), also prescribe the type of software measures discussed in this thesis8,14.

8.1.3 Organization; measures in outsourcing projects

During the process of measurement definition, it was noticed that it’s in some cases difficult to
mandate a standard set of software measures in development projects. Meaning that projects are
in nature “unique”, which translates to variations in techniques, methods and teams11. The precise
impact and extend of variation is, however, unknown by the present author. Nevertheless, the
rationale behind the observed variation is assumed to be caused by the fact that Daniro is a service-
oriented organization. This makes measurement somewhat harder since outsourcing projects are in
certain ways customer imitated11. This is different from most measurement programmes discussed
in literature, which are established in more formal organizations. Nevertheless, since the current
programme focuses on strategic measurement, the case is made that a standard set of software
measures can still be established. Especially since the organization is increasingly focused on
operation excellence, of which the software factory initiative is a good example15.

Overall, it is concluded that a number of important measurement issues have been addressed in
this research. This includes amongst others, the identification of goals, the definition of measures,
and the first steps towards the establishment of measurement protocols. These activities brought a
number of prerequisites in place for Daniro, to archive a higher level of measurement/improvement
capability (Measurement-CMM, CMMI)14. Nevertheless, this effort only focused on programme
design. Most work is yet to be done in in the field of measurement implementation (i.e. collection,
analysis and feedback).

8.1.4 Final conclusion

Considering the central research question posed in §1.2.2; the present author concludes that pri-
marily productivity- and defect-related measures can be defined, with respect to organizational
goals. Thereby productivity measures relate to duration, effort and size, whereas defect mea-
sures focus on understanding impact and effort. To conclude the latter, stakeholders from vari-
ous disciplines were involved in the measurement design process. And the context of development
projects was also taken into account. However, further (practical) research is required to con-
clude whether the proposed measures satisfy the information needs of stakeholders in development
projects. Hence, this research can be classified as a first (theoretical) step toward the establishment
of a measurement programme at Daniro J-Technologies.

42

Conclusions and Future Work 8.2 Evaluation

8.2 Evaluation

This (personal) evaluation reflects on the work performed and process followed during the thesis
project, as well as the difficulties/opportunities encountered. The paragraph is organized accord-
ing to the three types of activities defined in the research approach of fig. 3.1 (i.e. information,
GQM and validation).

8.2.1 Information gathering

A significant part of this research was spent on information gathering. This refers to both literature
research, as well as knowledge acquisition through interviews and conversations. Overall literature
research went rather well, although not all measures and related techniques applied to the case
of Daniro, the concepts found (e.g. GQM, SPI, . . .) proved to be useful. Interviews on the other
hand, took up a lot of time (i.e. preparation, analysis, reasoning, relating literature) which wasn’t
quite expected. Nevertheless, the resulting information contributed to a better understanding of
organizational goals and context. Additionally, as an indicator of success, most issues discussed
with stakeholders were incorporated in the programme.

Even though knowledge acquisition delivered plausible results, it is certainly a difficult matter.
For instance, it was found that stakeholders have divergent information needs, and different views
on software measurement concepts. Understanding these issues (and associating jargon) required
insight in the (software development) project environment. This was a challenging undertaking
considering the limited time available. Especially for someone (inexperienced and) unfamiliar with
the organization; like the present author. Therefore, the next time, the present author would likely
start with a “kick-off session”. That is, a workshop or presentation about software measurement
programmes (targeted at project participants). This session should take place before knowledge
acquisition (§4.2, e.g. GQM interviews [Sol99]). In this way, it might be possible to get stakehold-
ers on the same line, and formulate goals (and rudiment questions) at programme inception. So
to speak, this could (drastically) shorten the time spent on knowledge acquisition. The questions
remains, however, whether this approach would have worked in the context of this research. Since
the scope at project inception was rather wide, and stakeholders weren’t (all) known.

8.2.2 Goal/Question/Metric method

One result of literature research was the adopted of the GQM method. This method appeared to
be useful because of its relative flexibly and simplicity. Flexible, because GQM is not focused on a
particular type of stakeholder and suits both project and organization level measurement. Simple,
because the basics of GQM can be explained to someone unfamiliar in the field in just a couple
of minutes. However, even though GQM may sound like a straightforward method, practice was
somewhat more complicated. For example:

• In literature (e.g. [Sol99; Par96]) GQM is often presented as a stepwise process, with ex-
tensive user involvement. This includes frequent meetings, interviews and presentations with
stakeholders. However, frequent meetings arn’t easily arranged when:

– Stakeholders and scope of the programme aren’t/isn’t known/decided yet
– Commitment is hardly established, since the programme is its initial/research stage
– There isn’t an urgent need to establish a measurement programme3

• Goals are difficult to formulate, when stakeholders have divergent needs/views. Especially
when the above issues (like urgency) are taken into consideration.

• Goals only represent consensus between stakeholder concerns (solution: viewpoints §4.3.1)
• Formulating questions at the “right” level of abstraction takes a number of iterations.
• GQM offers little support with the actual study and definition of measures (as opposed to,

e.g. PSM or more statistically-oriented methods)4.

3Stakeholders saw measurement as a useful contribution to the continuous effort for (organizational) improvement.
However, there wasn’t an “alarming situation” in the sense that measurement needed to be established to prevent from
“disaster”. Although this is a positive observation, it makes establishing commitment and motivation a bit harder [Can06].

4For instance; there are no standard measures to choose from, or specific criteria for measurement defini-
tion/formalization available. GQM assumes a more or less “unique” situation/context for each measurement programme.

43

8.3 Future Work Conclusions and Future Work

The present author noticed the above issues during GQM application. However, these issues arn’t
(all) caused by GQM. Some originate from inexperience, others because of contextual limitations.
Overall, however, GQM was found to be a valuable method for structuring the measurement pro-
gramme (as well as this research/thesis). Question definition for instance, was helpful because it
aids in understanding stakeholder needs, and provides measures with an explicit purpose.

8.2.3 Validation and implementation

Scientific as well as practical validation was difficult in this research, since the focus laid on de-
sign-aspects of the measurement programme. Although attention was given to validation (i.e.
prioritization, presentation, walkthroughs, literature survey), it was noticed that the programme
could only be validated for real after or during implementation. That is, when actual data is col-
lected and measurement results are analyzed and interpreted. In that case, conclusions can be
drawn about the success/validity of the programme with respect to goal attainment. However, due
to time constraints, organizational implementation was out of scope. On the other hand, there
were (as indicated in §1.2.1) important reasons to focus on measurement programme design (i.e.
definition and planning in [Sol99] terms). Definition is after all a mandatory step before data col-
lection and measurement analysis/interpretation. Nevertheless, excluding implementation from
the present research posed a number of difficulties. For instance, with help of presentations and
walkthroughs, it was not possible to validate whether the proposed measures actually satisfy the
goals and questions stated. The present author recognizes this (potential) weakness in the re-
search. Nonetheless, the thesis project resulted in the initial design of a well-defined measurement
programme. Which, by belief of stakeholders and the present author, greatly raises the chance of
successful implementation (as described in the following paragraphs).

8.3 Future Work

Quite some future work results from this thesis project due to its (partially) exploratory nature
(§3.1). To structure this future work, difference is made between activities requiring immediate
attention (recommendation) and activities of lower priority (remaining work).

8.3.1 Recommendation

The research in this thesis project focused only on the definition (and to some extend planning)
part of the measurement programme. However, by merely defining the programme no real im-
provement is made. Therefore, in order to achieve the goals stated, one or more pilot projects have
to be selected for implementation. This selection should be made with care, since the success of the
entire measurement programme depends on the experiences gained from these projects. Hereby
one should make sure that, amongst other, proper measurement specifications (§7.2) are in place
to inform stakeholders about the programme. Once pilot projects have been selected, measure-
ment data collection can take place. In this case, the present author suggests to start small. Begin
on the basic level (figure 8.1) by collecting high priority productivity and defect data (appendix F).
Let team leaders and project managers register this data in the (prototype) Measurement Support
System, and allow them to submit periodic status reports to the Project Office (§4.1). Once these
activities go as planned, programme implementation can be extended. However, it is not recom-
menced to directly increase the number of measures. One should first try to focus on more effective
use of existing measurement data. Start by making hypotheses [Sol99] about measurement out-
come, before collecting the actual data, in order to increase the overall learning capability. Then
start with feedback sessions (§2.3.1) to provide participants with up to date information about the
progress and quality of the project. In this way everybody will feel they have something to gain
from the programme [Bri96] and measurement will become less of a burden during daily work.

So the main recommendation toward Daniro can be summarized in a single phrase, namely:
“implement”. Nevertheless, it should be noted that work proposed in this recommendation is
largely based on best practices from literature (ch. 2). Although the concepts behind these prac-
tices are universally applicable, the exact realization may differ per project or organization. There-
fore it is suggested to further investigate these activities during programme implementation.

44

Conclusions and Future Work 8.3 Future Work

Basic

Advanced

Intermediate

1. Basic set of project-level productivity and defect measures
2. Limited number of (direct) stakeholders (i.e. project manager, project office)
3. Use of (prototype) Measurement Support System

1. Hypotheses are formulated at project inception
2. Feedback of measurement data to larger group of stakeholders
3. Inclusion of more measures (to be selected from this document)

1. Regular feedback sessions
2. Use and maintenance of organizational baseline
3. Active use of GQM, project specific questions/measures

Matu
rity

 gr
ow

th

Figure 8.1: Conceptual model of the proposed introduction plan

8.3.2 Remaining Work

Apart from the main recommendation concerning measurement programme implementation, the
activities listed below are (in no particular order) proposed as future work.

Establish measurement infrastructure

Although a prototype Measurement Support System was developed (§7.1), a complete measure-
ment infrastructure is currently missing. Most of the information used in the measurement pro-
gramme needs to be collected manually during software development projects. Although, some
information such as defects and hour logs are already registered in an information system, this
data still needs to be extracted and converted (to spreadsheets) by hand in order to calculate
the required measures. Since the measurement programme is only in its initial phase an ad-
vanced measurement infrastructure is currently not required. However, as the organization and
the measurement practice grows more mature the need for measurement support tools is assumed
to increase. Therefore a study concerning the establishment of a measurement infrastructure is
suggested. Ideally this infrastructure would integrate seamlessly with the existing software devel-
opment line (§1.1) to provide a single platform for project support.

On the commercial market several measurement support systems are available from vendors
such as IBM Rational (ProjectConsole), QSM (SLIM Metrics), Distributive Management (DataDrill)
and Predicate Logic (TychoMetrics). There are also a few early open source initiatives such as
Hackystat5 from the University of Hawaii and PROM6 by the Free University of Bolzano-Bozen.
Furthermore a GQM specific measurement system exists which is marketed by VTT Electronics
(MetriFlame). However it is unknown whether this system is still maintained. A study concerning
the establishment of a measurement infrastructure should turn out which, of these, tools suit
the measurement programme best. Furthermore this research should focus on the customization
of existing systems (eg. issues tracking and hour registration) with respect to the measurement
programme described in this thesis.

Provide training in software measurement

Training of employees is considered a critical factor (§2.4) in the successful establishment of soft-
ware measurement programme. Therefore it is suggested that employees at Daniro, who are af-
fected by the programme, receive training in order to use measures properly and effectively during
their daily work. It is expected that, depending on the role of the individual, a one-day training (or
“development day” as this is called in Daniro terms) would suffice in order to introduce employees
to the concepts and practical use of software measurement. For the initial programme presented
in this thesis a full day training course will not be necessary, since it only impacts a relatively small
number of project stakeholders. However, as more people are affected by the programme (due to
increased implementation) training is assumed to become a prerequisite for success. This is espe-

5http://www.hackystat.org
6https://prom.case.unibz.it/

45

http://www.hackystat.org
https://prom.case.unibz.it/

8.3 Future Work Conclusions and Future Work

cially true when measurement practice advances (figure 8.1) and for example; feedback sessions
are organized, organizational benchmarking is set-up and GQM is used by project participants.

Produce and analyze software process models
Software process modeling is considered to be an important activity in establishing a measurement
programme [Sol99; Bri96]. By explicitly modeling process entities (e.g. activities, roles, tools and
artifacts) and the relations among them, a more formal understanding of the software process can
be reached. Hereby it is vital to concentrate on descriptive models, that capture the process as
it is actually takes place in practice. This allows one to, amongst others, pin-point objects to be
measured and people responsible for measurement. Furthermore it helps to identify the existence
of process inconsistencies that could influence measurement implementation or outcome [Som99].

However due to the exploratory (§3.1) character of this research, as well as the initially wide
scope and the limited amount of time available, process modeling was not applied in this thesis
project. Nevertheless, modeling is advisable for reasons described above and therefore suggested
as future work. In the academic world, software process modeling already received a lot of atten-
tion. As a result a fair number of process modeling techniques and formalisms have been proposed.
Examples are: MVP-L, APPL/A, APEL and SLANG. However, these formalisms all serve a different
purpose and are not equally suited for the job. Yet, in the case of Daniro, understanding the soft-
ware process is seen as the primary goal (as opposed to automatic process enactment or process
programming [Cur92]). Therefore the present author recommends the use of SPEM; the Software
Process Engineering Metamodel7. This graphical formalism, based on UML, is also used in process
models of the RUP methodology. Hence it is assumed that stakeholders can adopt this formalism
with relative ease, since both UML and RUP are practiced at Daniro.

7http://www.omg.org/technology/documents/formal/spem.htm

46

http://www.omg.org/technology/documents/formal/spem.htm

Bibliography

[Aae97] I. Aaen, P. Bøtcher, and L. Mathiassen. Software factories. In Proceedings of the 20th
Information Systems Research Seminar. 1997. (cited on page 1).

[Abr04] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, editors. Guide to the Software En-
gineering Body of Knowledge (SWEBOK), chap. 8 “Software Engineering Management”,
pp. 1–13. IEEE Press, 2004. (cited on pages 2 and 6).

[Bas94] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric approach. Ency-
clopedia of Software Engineering, vol. 1:pp. 578–583, 1994. (cited on pages ix and 10).

[Bas95] M. J. Bassman, F. McGarry, R. Pajerski, et al. Software measurement guidebook. Tech.
Rep. SEL-94-102, NASA Goddard Space Flight Center, Software Engineering Laboratory,
1995. (cited on pages 6, 10, 12, 13, 24, and 39).

[Bir97] A. Birk, P. Giese, R. Kempkens, D. Rombach, and G. Ruhe, editors. Goal-Oriented Mea-
surement using GQM. PERFECT consortium, Fraunhofer IESE, 1997. (cited on pages 11
and 39).

[Boe01] B. Boehm and V. R. Basili. Software defect reduction top 10 list. IEEE Computer,
vol. 34(1):pp. 135–137, 2001. (cited on page 28).

[Bri96] L. C. Briand, C. M. Differding, and H. D. Rombach. Practical guidelines for
measurement-based process improvement. Software Process: Improvement and Practice,
vol. 2(4):pp. 253–280, Dec 1996. (cited on pages 9, 10, 11, 12, 19, 44, and 46).

[Bro95] F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary
Edition. Addison-Wesley Professional, August 1995. (cited on page 26).

[Can03] J. J. Cannegieter. Software Process Improvement. Ten Hagen en Stam Uitgevers, 2003.
(cited on page 5).

[Can06] J. J. Cannegieter and R. van Solingen. De Kleine CMMI: De basisuitrusting voor continue
prestatieverbetering. Academic Service, 2006. (cited on pages 5, 43, and 69).

[Car98] D. N. Card. Learning from our mistakes with defect causal analysis. IEEE Software,
vol. 15(1):pp. 56–63, 1998. (cited on page 34).

[Car05] E. R. Carroll. Estimating software based on use case points. In OOPSLA ’05: Companion
to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pp. 257–265. ACM Press, New York, NY, USA, 2005. (cited
on page 9).

[Chi92] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M.-Y. Wong. Or-
thogonal defect classification - a concept for in-process measurements. IEEE Transactions
on Software Engineering, vol. 18(11):pp. 943–956, 1992. (cited on page 33).

47

BIBLIOGRAPHY

[Cur92] B. Curtis, M. I. Kellner, and J. Over. Process modeling. Communications of the ACM,
vol. 35(9):pp. 75–90, 1992. (cited on pages 19 and 46).

[Das92] M. K. Daskalantonakis. A practical view of software measurement and implementation
experiences within motorola. IEEE Transactions on Software Engineering, vol. 18(11):pp.
998–1010, 1992. (cited on page 12).

[Dia97] M. Diaz and J. Sligo. How software process improvement helped motorola. IEEE Soft-
ware, vol. 14(5):pp. 75–81, 1997. (cited on pages 23 and 25).

[Dob88] J. Dobbins et al. Guide for the use of: IEEE standard dictionary of measures to produce
reliable software. Tech. Rep. IEEE Std 982.2, IEEE Computer Society, 1988. (cited on
pages 34 and 35).

[Fen94] N. E. Fenton. Software measurement: A necessary scientific basis. IEEE Transactions on
Software Engineering, vol. 20(3):pp. 199–205, 1994. (cited on pages 7, 8, and 39).

[Fen00] N. E. Fenton and M. Neil. Software metrics: roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pp. 357–370. ACM Press, New York,
NY, USA, 2000. (cited on pages 7 and 32).

[Fre01] B. Freimut. Developing and using defect classification schemes. Tech. Rep. 072.01/E,
Fraunhofer IESE, September 2001. (cited on page 33).

[Gar06] F. Garćıa, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini, and M. Genero.
Towards a consistent terminology for software measurement. Information & Software
Technology, vol. 48(8):pp. 631–644, 2006. (cited on page 8).

[Gra94] R. B. Grady. Successfully applying software metrics. IEEE Computer, vol. 27(9):pp.
18–25, september 1994. (cited on pages 8 and 21).

[Gre03] J. Greenfield and K. Short. Software factories: assembling applications with patterns,
models, frameworks and tools. In OOPSLA ’03: Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
pp. 16–27. ACM Press, New York, NY, USA, 2003. (cited on page 1).

[Gri00] R. Grit. Projectmanagement. Wolters-Noordhoff, 2000. (cited on page 6).

[Hal97] T. Hall and N. E. Fenton. Implementing effective software metrics programs. IEEE
Software, vol. 14(2):pp. 55–65, 1997. (cited on pages 12 and 13).

[Hum96] W. S. Humphrey. Using a defined and measured personal software process. IEEE Soft-
ware, vol. 13(3):pp. 77–88, 1996. (cited on page 28).

[Jon95] C. Jones. Backfiring: Converting lines-of-code to function points. IEEE Computer,
vol. 28(11):pp. 87–88, 1995. (cited on page 26).

[Jon96] C. Jones. Software change management. IEEE Computer, vol. 29(2):pp. 80–82, 1996.
(cited on pages 27 and 54).

[Jon03a] C. Jones. Variations in software development practices . IEEE Software, vol. 20(6):pp.
22–27, 2003. (cited on pages 35 and 36).

[Jon03b] C. L. Jones. Implementing a successful measurement program: Tried and true practices
and tools. Cutter IT Journal, vol. 16(11):pp. 12–18, nov 2003. (cited on pages 11
and 12).

[Jon03c] C. L. Jones et al. Practical software and systems measurement: A foundation for ob-
jective project management, March 2003. Guide v4.0b1, Part I, Available online (reg-
istration required): http://www.psmsc.com/. (cited on pages ix, 11, 12, 13, 20, 39,
and 40).

48

http://www.psmsc.com/

BIBLIOGRAPHY

[Kan04] C. Kaner and W. P. Bond. Software engineering metrics: What do they measure and
how do we know? In 10th International Software Metrics Symposium (METRICS 2004).
September 2004. (cited on pages 6, 27, and 39).

[Kil01] T. Kilpi. Implementing a software metrics program at nokia. IEEE Software,
vol. 18(6):pp. 72–77, 2001. (cited on pages 36 and 40).

[Kit95] B. Kitchenham, S. L. Pfleeger, and N. E. Fenton. Towards a framework for software
measurement validation. IEEE Transactions on Software Engineering, vol. 21(12):pp.
929–944, 1995. (cited on pages 8 and 39).

[Kit97] B. Kitchenham, S. L. Pfleeger, and N. E. Fenton. Reply to: Comments on “towards a
framework for software measurement validation”. IEEE Transactions on Software Engi-
neering, vol. 23(3):p. 189, 1997. (cited on page 8).

[Lat98] F. van Latum, R. van Solingen, M. Oivo, B. Hoisl, D. Rombach, and G. Ruhe. Adopting
GQM-based measurement in an industrial environment. IEEE Software, vol. 15(1):pp.
78–86, 1998. (cited on pages 10, 12, and 18).

[Lau02] S. Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley, 2002. (cited
on pages 38 and 54).

[Lis05] B. List, R. M. Bruckner, and J. Kapaun. Holistic software process performance measure-
ment: From the stakeholders’ perspective. In International Workshop on Business Process
Monitoring & Performance Management (BPMPM’05), pp. 941–947. 2005. Workshop
proceedings published as part of DEXA’05. (cited on pages 39 and 40).

[Loc03] A. Loconsole and J. Börstler. Theoretical validation and case study of requirements
management measures. Tech. Rep. UMINF 03.02, Umeå University, July 2003. (cited
on page 39).

[Low90] G. C. Low and D. R. Jeffery. Function points in the estimation and evaluation of the
software process. IEEE Transactions on Software Engineering, vol. 16(1):pp. 64–71, 1990.
(cited on pages 8 and 9).

[Max01] K. D. Maxwell. Collecting data for comparability: Benchmarking software development
productivity. IEEE Software, vol. 18(5):pp. 22–25, September/October 2001. (cited on
pages 20, 21, and 32).

[McC00] S. McConnell. The best influences on software engineering. IEEE Software, vol. 17(1):pp.
10–17, 2000. (cited on page iii).

[McC04] S. McConnell. Code Complete, Second Edition, chap. 27, pp. 649–659. Microsoft Press,
Redmond, WA, USA, 2004. (cited on page 32).

[Min00] A. Minkiewicz. Software measurement - what’s in it for me? In Software Manage-
ment/Applications of Software Measurement Conference (SM/ASM 2000). March 2000.
(cited on page 28).

[Miz98] O. Mizuno, T. Kikuno, K. Inagaki, Y. Takagi, and K. Sakamoto. Analyzing effects of cost
estimation accuracy on quality and productivity. In ICSE ’98: Proceedings of the 20th
international conference on software engineering, pp. 410–420. IEEE Computer Society,
Washington, DC, USA, 1998. (cited on page 9).

[Mor97] S. Morasca, L. C. Briand, E. J. Weyuker, V. R. Basili, and M. V. Zelkowitz. Comments
on “towards a framework for software measurement validation”. IEEE Transactions on
Software Engineering, vol. 23(3):pp. 187–188, 1997. (cited on page 8).

[Nie98] F. Niessink and H. van Vliet. Towards mature measurement programs. In CSMR ’98:
Proceedings of the 2nd Euromicro Conference on Software Maintenance and Reengineering,
pp. 82–88. IEEE Computer Society, Washington, DC, USA, 1998. (cited on pages 40
and 69).

49

BIBLIOGRAPHY

[Nie01] F. Niessink and H. van Vliet. Measurement program success factors revisited. Information
and Software Technology, vol. 43(10):pp. 617–628, August 2001. (cited on pages 12
and 13).

[Off97] R. J. Offen and R. Jeffery. Establishing software measurement programs. IEEE Software,
vol. 14(2):pp. 45–53, 1997. (cited on pages 8 and 16).

[Par96] R. E. Park, W. B. Goethert, and W. A. Florac. Goal-Driven Software Measurement - A
Guidebook. Tech. Rep. CMU/SEI-96-HB-002, Software Engineering Institute, Carnegie
Mellon University, August 1996. (cited on pages 7, 8, 10, 12, 13, 19, 24, 39, 40,
and 43).

[Put02] L. H. Putnam and W. Myers. Control the software beast with metrics-based management.
STSC CrossTalk, pp. 19–21, August 2002. (cited on page 32).

[Rif91] S. Rifkin and C. Cox. Measurement in practice. Tech. Rep. CMU/SEI-91-TR-16, Soft-
ware Engineering Institute, Carnegie Mellon University, July 1991. (cited on pages 12
and 13).

[Rif01] S. Rifkin. What makes measuring software so hard? IEEE Software, vol. 18(3):pp.
41–45, 2001. (cited on page 36).

[Sca95] W. Scacchi. Understanding software productivity. In D. Hurley, editor, Advances in Soft-
ware Engineering and Knowledge Engineering, vol. 4, pp. 37–50. World Scientific Publish-
ing Company, 1995. (cited on page 25).

[Sol99] R. van Solingen and E. Berghout. The Goal/Question/Metric Method: a practical guide for
quality improvement of software development. McGraw-Hill Publishing Company, 1999.
(cited on pages ix, 5, 6, 7, 9, 10, 11, 12, 13, 15, 18, 19, 20, 25, 37, 39, 40, 43, 44,
and 46).

[Sol00] R. van Solingen. Product Focused Software Process Improvement. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands, 2000. (cited on pages 11 and 12).

[Som99] I. Sommerville, P. Sawyer, and S. Viller. Managing process inconsistency using view-
points. IEEE Transactions on Software Engineering, vol. 25(6):pp. 784–799, 1999. (cited
on pages 19 and 46).

[Sta95] The CHAOS Report. Tech. Rep. T23E-T10E, The Standish Group, 1995. (cited on
page 53).

[Wie97] K. E. Wiegers. Metrics: Ten traps to avoid. Software Development Magazine, vol. 5(10),
1997. http://www.processimpact.com/articles/mtraps.pdf. (cited on pages 12, 30,
and 39).

[Wie99] K. E. Wiegers. A software metrics primer. Software Development Magazine, vol. 5(7),
1999. http://www.processimpact.com/articles/metrics primer.pdf. (cited on pages 12,
13, and 16).

[Woo01] T. L. Woodings and G. A. Bundell. A framework for software project metrics. In ES-
COM’01: Proceedings of the 12th European Conference on Software Control and Metrics.
2001. (cited on page 7).

50

http://www.processimpact.com/articles/mtraps.pdf
http://www.processimpact.com/articles/metrics_primer.pdf

Appendix A

Interview questions

T HIS appendix presents an overview of the questions asked during the characterization and goal
identification interviews with the various stakeholders.

General questions

1. Can you describe your job, specifically your role in software development projects?

2. What is your view/vision of software projects, processes and measurement?

3. How would you characterize the software development process at Daniro (in terms like ori-
entating, defined, optimal, repeatable, improving, ad hoc, formal, informal, agile, etc)?

4. Do you think that the software process within Daniro needs improvement?

5. What are your biggest concerns in this organization?

6. What would you like to achieve or improve in this organization?

Measurement

7. In what kind of information are you primarily interested?

8. What is your main source of information?

9. Why would you like to start a measurement programme? What is your motivation? What
purpose should it serve:

a) Understand: Provide insight in potential improvement area’s
b) Control: Early identification of problems, signals when steering is needed
c) Improve:Report the effects of improvement initiatives, techniques, . . .
d) Predict: Make better plans, more accurate (cost) estimates, . . .
e) . . .

10. Can you name a few metrics that you’re familiar with?

11. What is currently measured / registered in the software project / organization?

12. What are possible measurement goals?

13. What do you expect from measurement results?

14. What do you think is the impact of introducing / continuing a measurement programme?

15. How much time do you expect to spend on collecting, validating, analyzing and interpreting
measurement results?

16. How much time would you (or your colleagues) spent at max on this activity?

51

Interview questions

17. Do you think that software (process) measurement fits within the development line philoso-
phy of Daniro?

18. How do you feel about scaling a possible J-Technologies measurement programme to other
Development Centres, such as Microsoft, Oracle, Midrange and Mainframe, . . . ?

19. Is there a lot of variation in software projects? What are the main differences and/or simi-
larities?

Specific questions

Organization Management

1. What are the business goals of J-Technologies?
2. Can you prioritize these goals?
3. How do these goals relate to (high-level) Daniro SI&D goals?
4. Are these goals dependent on the type of project (fixed-price, fixed-date, on-site, in-house,

. . .)?
5. Apply these goals to all Daniro projects? What are the main differences and/or similarities?
6. What other factors are of influence on these goals?
7. How are these goals achieved? What information do you need in order to know this?
8. Are there any results of software process assessments, planning evaluations, audits or risk

assessments available?

Project Management

9. How is a typical project team assembled? Does this vary a lot?
10. What type of problems occur the most during development projects? Does this also apply to

your current project?
11. What kind of problems or issues cost the most?
12. Do you follow a particular type of software process methodology (iterative, incremental,

waterfall, RUP, . . .)

Functional

13. Do you see any improvement opportunities in this software project? If so, what would you
like to achieve or improve?

14. How to you specify software requirements in this project?
15. How are requirements managed (and traced)?
16. How are requirements validated?
17. How are change requests handled?

Technical

18. Do you follow a particular type of software process methodology (iterative, incremental,
waterfall, RUP, . . .)

19. Do you see any improvement opportunities in this software project? If so, what would you
like to achieve or improve?

20. What kind of issues do you encounter during your daily work?
21. What (kind of) artifacts do you typically produce during a software project?
22. What kind of tools do you use in your daily work?

52

Appendix B

Scope Measurement

NOTE: scope measurement is part of the proposed measurement programme. The body
of the thesis, however, is mainly focused on initial programme implementation. And
since all scoping measures are excluded from the basic level (§8.3.1) the discussion is
placed apart in this appendix.

T HE Standish Group indicates in its widely known CHAOS report [Sta95] that incomplete and
changing requirements are among the top causes of project failure. Together these issues

account for more than 24% of all failures (according to participant responses). The Standish
study, as well as others, show that requirements management is not a trivial matter in software
development projects. This belief was also comfirmed by (some of) the stakeholders at Daniro who
placed “manage project scope” as one of their improvement goals in the measurement programme.

Information needs

One problem that stakeholders at different organizational levels face, is managing the scope of
software projects. That is, what needs to be realized? and how does it affect our project? These
issues directly relate to (managing) software requirements.

Although requirements are volatile, there is a certain time during a (fixed-price) project at
which requirements are formally approved. Changes in functionality submitted after this date re-
sult in change requests, which are charged to the customer. A difficult issue in this matter is to
establish agreement about the cost of change. Currently project managers (together with contract
and/or account managers) need to convince the customer of a certain price. However, it is difficult
for Daniro to come up with the “right” price. That is, a price acceptable for both Daniro as well as
the customer. Price calculation is hard because the impact of change requests is difficult to quan-
tify. This includes the possible impact on schedule (increase duration) and costs (increased effort)
as well as the impact on the product1. Hereby it’s important to note that there’s are difference
between change requests and requirements. As illustrated in B.1 a change request submitted by a

Change Request

Requirement

Requirement

Requirement

Requirement

Figure B.1: From change request to requirements

1Product change, in terms of technical or architectural impact, is however beyond the scope of this research.

53

Scope Measurement

customer may, after acceptance, result in several (individual) requirements. This being said, it is
vital from a (scope) management point of view to measure both these change requests as well as
the resulting requirements.

Quality Point of View

Furthermore, it is expected that measuring change requests results in useful information about
more subjective quality matters. Such as the level of user involvement and the stability of the
project. For instance, a sudden increase in change requests after a release (in a late stadium of the
project) might indicate insufficient user testing during project inception. These issues are, however,
of lower priority than the cost and progress information needs discussed above and therefore not
(directly) included as questions, for measurement definition.

Measures

Taking the considerations of the above paragraph into account, the decision was made to mea-
sure the amount of change requests (M29) as well as the associating effort of change (M32). This
refers to the budgeted effort, plus actual effort required for change implementation. To aid in the
quantification of these costs, a measure of requirements count (M25) was included. That is, once
stakeholders understand the size of change requests (through the number of requirements resulting
from it), cost estimation and/or price calculation is assumed to become easier.

Requirements count

Measure M25 (in relation to M26) may seem obvious at first sight. However, counting require-
ments in a modern software development project is not a trivial matter. If one only assumes the
use of feature requirements2 then counting is relatively easy. Nonetheless customer demands are
hardly ever specified as feature requirements, when one follows modern methods in requirements
engineering [Lau02]. Consequently requirement specifications could well contain a mix of use
cases, task descriptions, diagrams, models and prototype screens. Even when measure M25 is
only limited to functional requirements there are still a lot of ways in which requirements can be
specified. This is especially true at Daniro where software development projects are conducted for
different (type of) customers. As a result elicitation and specification techniques are often selected
based on the specific needs of the customer.

Then how to solve this issue one might ask? Unfortunately there is no single answer. Measur-
ing requirements primarily depends on the way requirements are managed throughout the project.
Only when requirements management (and associated tooling) is consistently applied, it become
possible to faithfully count the number of requirements as well as the development of these re-
quirements over time. In the case of Daniro requirements management is currently not consistent
across projects. Changing this situation is inherently difficult and time consuming, hence it is
beyond the scope of this thesis. An alternative to this dilemma is the use function- or use case
points as a measure of requirements size. Functional size measurement is after all a measure of
the functionality from the perspective of what gets delivered to the (end)user (§2.2.2. However,
an important disadvantage in scope measurement is that FPA or UCP measures result in abstract
numbers, that do not represent individual user requirements. As such the priority (M28) or status
(M27) of requirements cannot be quantified. Therefore it is suggested that the exact method for
counting requirements (M25), just like the method for quantifying functionality (M8), is decided
individually per project.

Nevertheless, estimating costs of change with functional size measurement methods is a reason-
able option. Or as Jones [Jon96] states “Software outsourcers and contractors can now derive the
function-point totals of software during the requirements phase, which means that downstream
costs of changing requirements can be quantified”.

2Plain text requirements such as “the system shall . . . ”

54

Scope Measurement

Resulting measures
Conclusively, in response to the goal of “managing project scope”, the following measures are pro-
posed (note; numbering starts where productivity and defect measures leave off):

Q13. How many requirements are defined in this project?
M25. Number of functional requirements defined

Q14. How many requirements are fulfilled?
M26. Ratio requirements allocated vs. requirements implemented per iteration

Q15. What is the status of the requirements?
M27. Distribution of requirements over status classes (approved, rejected, . . .)

Q16. How are the requirements prioritized?
M28. Distribution of requirements over priority classes

Q17. How many change requests have been submitted?
M29. Number of change requests submitted per week

Q18. What is the purpose of change requests?
M30. Distribution of change requests over type classes (corrective, perfective, . . .)

Q29. What effort is required to implement change requests?
M31. Cumulative budgeted vs. actual effort spent on change requests, per iteration

55

Appendix C

Measurement Specification

T HIS appendix presents example “formal” specifications of two high priority measure in the
measurement programme. In short the internal characteristics, responsibilities, data collection

method and reporting procedure of the measure are highlighted.

M6: Budgeted effort planned vs. actual- and remaining effort spent per discipline
Description: This measure sets out the budgeted amount of effort (for activities belonging to a

certain discipline) against the expected amount of effort. Where expected effort is
the actual amount of effort spent + the amount of effort remaining.

Possible limitations
and/or side-effects:

N/A

Dependencies: M4 & M5
Characteristics

Discipline: A set of similar activities grouped by category (e.g. write test script,
conduct regressing tests, discuss findings, etc all belong to
discipline: system testing)

Budgeted: An estimate of the amount of effort needed to complete a set of
activities, belonging to a certain discipline.

Actual: Amount of effort already invested in activities of a specific discipline
(certain number).

Remaining Estimate of the amount of effort required to complete the current
activities (in progress) of a certain discipline (uncertain number)

Definitions:

Effort Amount of man-hours spent working on a specific activity
Formula: N/A
Type: Indirect

 Direct
 Subjective
 Objective

Entity: Project schedule
Internal attribute(s): Effort
External attribute(s): Costs, Progress
Unit/Range: Man hours
Responsibilities
Responsible: Project manager
Accountable: Project manager
Consulted: Team leaders
Informed: Project group, Project steering group
Data collection
Method: This measure is automatically aggregated from the activity level (figure D.6). So,

data collection takes place at the same time as activity progress registration.
Data source: Project Planning (MS Project)
Data storage: Measurement Support System (Excel)
Frequency: Simultaneously with the progress registration of activities
Reporting
Type: (Modified) Stacked bar chart
Frequency: Bi-weekly
Indicator: Figure D.9
Interpretation hints: Note that remaining + actual effort = expected effort

Figure C.1: Example measurement specification (M6)

57

Measurement Specification

M15: Number of defects found per iteration
Description: The number of open and closed defects found in the current iteration
Possible limitations
and/or side-effects:

The number of defect doesn’t say anything about the time required to fix defects
(M19) or the impact on the project (M21). A high number of open defects at the
end of an iteration is not necessarily a bad thing. Furthermore a (sudden)
decrease in defect count does not necessarily mean that the product is of high
quality, and ready for release. It may well indicate a decrease in the thoroughness
of testing. Therefore it is suggested to keep the amount of effort spent on testing
activities (M6) in mind during data analysis.

Dependencies: M6, M19, M21
Characteristics

Iteration:

A short period of time within a certain project. During this period tasks
of several disciplines (e.g. development, testing) are carried out in
parallel. This usually results in the release of one or more artifacts.

Artifact: A product (e.g. vision document, source code, test report, …)
developed during as part of a project.

Open Defect that is not yet complete resolved

Definitions:

Closed Opposite of open
Formula: N/A
Type: Indirect

 Direct
 Subjective
 Objective

Entity: Project artifacts
Internal attribute(s): Defects
External attribute(s): Readiness for release, Quality of work performed
Unit/Range: Natural numbers
Responsibilities
Responsible: Test leader
Accountable: Project manager
Consulted: Test team, Construction team
Informed: Project group, Project steering group
Data collection
Method: The registration of defects in an issue tracker is a necessary prerequisite of this

measure. SMART-Java offers the option for exporting defect information from the
issue tracker to CSV (comma separated values) format. This allows one to import
defect data in the Measurement Support System with minimal effort.

Data source: Issue tracker (Mantis / GForge)
Data storage: Measurement Support System (Excel)
Frequency: Once at the end of each iteration
Reporting
Type: Stacked bar chart
Frequency: After each iteration
Indicator: Figure B.5
Interpretation hints: N/A

Figure C.2: Example measurement specification (M15)

58

Appendix D

Measurement Support System

T HIS appendix lists the most important sheets (or “screens”) of the prototype Measurement
Support System (MSS). This system is developed to facilitate data registration and analysis

during software development projects. The sheets are written in Dutch to better integrate with
existing project (measurement) reports. Note that data in the sheets is fake and solely used for
demonstration purposes.

Project metrieken administratie v0.2

Project
Projectnaam: Foobar

Duratie
Begin datum: 6-5-2006
Verwachte eind datum: 15-9-2006
Werkelijke eind datum:

Tijd resterend: 71 dagen
(tot verwachte/geplande eind datum)

Omvang
Product omvang meeteenheid: (NESMA) Functie punten

Geschatte product omvang: 500 FP
Gerealiseerde omvang (tot dusver): 183 FP

Inspanning
Verwachte inspanning (man uren): 2300
Werkelijke inspanning (man uren): 98

Productiviteit
Geschatte aantal FP per uur 0.2
Werkelijk aantal FP per uur 1.9

Defects
Defect index (oplossing efficiency) 0.1
Defect dichtheid (# defects per FP) 0.2

Legenda
 = Kop tekst (read-only)
 = Invoer veld
 = Label veld (read-only)
 = Calculatie veld (read-only)

Figure D.1: Project level view of the Measurement Support System

59

Measurement Support System

Iteratie (naam) Gebudgeteerde begin datum Gebudgeteerde eind datum Werkelijke/verwachte begin datum Werkelijke/verwachte eind datum Verwachte duratie Werkelijke duratie
Iteratie 1 6-5-2006 1-6-2006 6-5-2006 20-6-2006 26 45
Iteratie 2 2-6-2006 3-7-2006 31 0
Iteratie 3 4-7-2006 10-8-2006 37 0
Iteratie 4 11-8-2006 22-8-2006 11 0
Iteratie 5 23-8-2006 15-9-2006 23 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure D.2: Iteration planning with effort, duration and size data

Gebudgeteerde inspanning Werkelijke inspanning Nog te verwachten inspanning Gerealiseerde omvang (FP) Tijdstip van omvangsm# Gevonden defects Werkelijke defect inspanning
80 98 56 10 20-5-2006 0

111 0 0 60 7-6-2006 10
103 0 0 17
60 0 0 15
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure D.3: Iteration planning with effort, duration and size data (cont.)

60

Measurement Support System

Activiteit Discipline Iteratie Gebudgeteerde begin datum Gebudgeteerde eind datum Verwachte/werkelijke begin datum

Gesprekken met klant Requirements Iteratie 1 6-5-2006 9-5-2006 6-5-2006
Viewpoints opstellen Architectuur Iteratie 1 7-5-2006 10-5-2006 10-5-2006
Ontwikkelstraat inrichten Conf. Management Iteratie 1 18-5-2006 20-5-2006 15-6-2006
Conceptueel model opstellen Requirements Iteratie 1 22-5-2006 23-5-2006 22-5-2006
Presentatie aan klant Requirements Iteratie 1 28-5-2006 1-6-2006 29-5-2006
Ontwerp UML klassen diagram (Detail) Ontwerp Iteratie 2 3-6-2006 12-6-2006
Test hypotheek invoer component Systeem testen Iteratie 3 13-6-2006 14-6-2006
Bouw component X Constructie Iteratie 2 15-6-2006 18-6-2006
Test risico berekening component Systeem testen Iteratie 3 10-6-2006 20-6-2006
Bouw component A Constructie Iteratie 2 28-6-2006 3-7-2006
Bouw component Q Constructie Iteratie 3 21-7-2006 19-7-2006
Bouw component Y Constructie Iteratie 2 4-6-2006 23-7-2006
Bouw component Z Constructie Iteratie 2 7-6-2006 24-7-2006
Bouw component C Constructie Iteratie 3 23-7-2006 29-7-2006
Deploy iteratie 2 bij klant Deployment Iteratie 3 24-7-2006 29-7-2006
Architectuur updaten Architectuur Iteratie 3 18-7-2006 30-7-2006
Bouw component B Constructie Iteratie 3 7-8-2006 9-8-2006
Bouw component U Constructie Iteratie 3 3-8-2006 18-8-2006
Test beveiliging Systeem testen Iteratie 4 5-8-2006 19-8-2006
Bouw component W Constructie Iteratie 4 2-8-2006 20-8-2006
Bouw component T Constructie Iteratie 4 3-8-2006 21-8-2006

Figure D.4: Activity planning with effort, duration and type data

Verwachte/Werkelijke eind datum Gebudgeteerde inspanning Werkelijke inspanning Nog te verwachten inspanning

12-5-2006 5 8 0
30-5-2006 10 30 6
20-5-2006 15 20 0
6-6-2006 20 20 10

20-6-2006 30 20 40
28 0 0
29 0 0
40 0 0
22 0 0
23 0 0
10 0 0
10 0 0
10 0 0
2 0 0

10 0 0
4 0 0
6 0 0

20 0 0
10 0 0
30 0 0
20 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure D.5: Activity planning with effort, duration and type data (cont.)

61

Measurement Support System

Voortgang registreren
D

atum
: 2-6-2006

44

A
antal activiteiten:

1
A

ctiviteit
R

egistratie datum
B

egin datum
Verw

achte eind datum
G

eleverde inspanning (m
an uren)

u
N

og te verw
achten inspanning (m

an uren)ummExpert schatting

P
resentatie aan klant

02-6-2006
29-5-2006

20-6-2006
20

40
15%

V
iew

points opstellen
23-5-2006

10-5-2006
30-5-2006

30
6

4%
C

onceptueel m
odel opstellen

23-5-2006
22-5-2006

6-6-2006
20

10
4%

G
esprekken m

et klant
20-5-2006

6-5-2006
12-5-2006

8
0

3%
O

ntw
ikkelstraat inrichten

20-5-2006
15-6-2006

20-5-2006
20

0

N
ieuw

e registratie

A
anm

aken

Figure D.6: Periodic progress registration at the activity level

62

Measurement Support System

Defect ID Iteratie Discipline Prioriteit Ernst (severity) Gebudgeteerde inspanning Werkelijke inspanning Status
6237 Iteratie 2 Constructie Hoog Major 1 1 Closed
7195 Iteratie 2 Constructie Laag Minor 2 1 Closed
7194 Iteratie 3 Constructie Hoog Major 0.5 3 Closed
7047 Iteratie 2 (Detail) Ontwerp Hoog Block 0.25 1 Closed
7193 Iteratie 2 (Detail) Ontwerp Hoog Major 3 1 Closed
7190 Iteratie 4 Conf. Management Hoog Minor 4 2 Closed
7191 Iteratie 4 Constructie Laag Minor 1 3 Closed
7192 Iteratie 4 Constructie Hoog Major 1 1 Closed
7075 Iteratie 3 Constructie Laag Minor 2 1 Closed
5482 Iteratie 4 Constructie Hoog Minor 10 25 Closed
7189 Iteratie 3 Systeem testen Hoog Minor 2 1 Closed
4403 Iteratie 3 Systeem testen Hoog Major 3 1 Closed
7188 Iteratie 2 Systeem testen Laag Minor 0.5 1 Closed
7187 Iteratie 3 Systeem testen Laag Minor 2 2 Closed
7174 Iteratie 3 Systeem testen Laag Minor 1 1 Closed
7185 Iteratie 3 Constructie Laag Minor 1 1 Closed
7186 Iteratie 3 Constructie Laag Major 1 2 Closed
1568 Iteratie 2 Requirements Laag Minor 2 1 Closed
4286 Iteratie 3 Constructie Hoog Major 1.5 1.3 Closed
7184 Iteratie 4 Constructie Laag Minor 1 Open
6844 Iteratie 2 Constructie Laag Minor 1 Open
4428 Iteratie 3 Constructie Laag Major 1 Open
7183 Iteratie 3 Constructie Laag Minor 2 Open
7160 Iteratie 2 Constructie Laag Major 3 2 Closed
7182 Iteratie 3 Constructie Hoog Minor 1 5 Closed
7181 Iteratie 2 (Detail) Ontwerp Laag Minor 1 2 Closed
6769 Iteratie 3 Conf. Management Hoog Block 1 Open
7180 Iteratie 3 Constructie Laag Minor 2 1 Closed
7179 Iteratie 4 Conf. Management Laag Minor 2 Open
7052 Iteratie 2 Constructie Laag Minor 1 1 Closed
7178 Iteratie 3 Constructie Laag Minor 1 Open
7177 Iteratie 3 Constructie Laag Minor 2 2 Closed
7176 Iteratie 4 Constructie Laag Minor 2 1 Closed
6534 Iteratie 4 Constructie Laag Major 1 Open
7175 Iteratie 4 Conf. Management Hoog Block 1 1 Closed
7179 Iteratie 4 Conf. Management Laag Minor 2 Open
7052 Iteratie 3 Systeem testen Laag Minor 1 1 Closed
7178 Iteratie 4 Systeem testen Laag Minor 1 Open
7177 Iteratie 4 Acceptatie testen Laag Minor 2 2 Closed
7176 Iteratie 4 Acceptatie testen Laag Minor 2 1 Closed
6534 Iteratie 4 Systeem testen Laag Major 1 Open
7175 Iteratie 4 Systeem testen Hoog Block 1 1 Closed

Tijdstip Impact Inspanning (man uren)

Figure D.7: Defect tracking sheet with time, impact and effort data

63

Measurement Support System

Productiviteit rapportage

Defect reparatie inspanning per iteratie

0 5 10 15 20 25 30 35 40

Iteratie 1

Iteratie 2

Iteratie 3

Iteratie 4

Iteratie 5

Inspanning (man uren)

Werkelijke defect
inspanning

Verwachte defect
inspanning

Werkelijke duratie vs. Werkelijke inspanning
 in verhouding tot de gerealiseerde omvang

Iteratie 1

Iteratie 2

-20

0

20

40

60

80

100

120

-10 0 10 20 30 40 50 60

Duratie (dagen)

In
sp

an
ni

ng
 (m

an
-u

re
n)

Gerealiseerde
omvang (FP)

Gebudgeteerde inspanning vs. Werkelijke en Verwachte
inspanning

Figure D.8: Productivity reporting based on progress and costs (showing M19 & M13)

64

Measurement Support System

20

40

60

80

100

120

140

160

180

Iteratie 1 Iteratie 2 Iteratie 3 Iteratie 4 Iteratie 5

In
sp

an
ni

ng
 (m

an
 u

re
n)

Gebudgeteerde inspanning vs. Werkelijke en Verwachte
inspanning

Nog te verwachten
inspanning

Gebudgeteerde
inspanning

Werkelijke
inspanning

Granulariteit
Selecteer iteratie: Iteratie 1

0

20

40

60

80

100

120

Req
uir

em
en

ts

Arch
ite

ctu
ur

(D
eta

il)
Ontw

erp

Con
str

uc
tie

Sys
tee

m te
ste

n

Acc
ep

tat
ie

tes
ten

Ond
erh

ou
d

Dep
loy

men
t

Con
f. M

an
ag

em
en

t

In
sp

an
ni

ng
 (m

an
 u

re
n)

Gebudgeteerde inspanning vs. Werkelijke en Verwachte
inspanning, per discipline (voor de geselecteerde iteratie)

Nog te
verwachten
inspanning
Gebudgeteerde
inspanning

Werkelijke
inspanning

Figure D.9: Productivity reporting based on progress and costs (showing M5 & M6)

65

Measurement Support System

Project gereedheid
(% gerealiseerd van gebudgeteerde omvang vs.
% man uren besteed van verwachte inspanning)

0%

2%

4%

6%

8%

10%

12%

14%

16%

19
-5-

20
06

21
-5-

20
06

23
-5-

20
06

25
-5-

20
06

27
-5-

20
06

29
-5-

20
06

31
-5-

20
06

2-6
-20

06

4-6
-20

06

6-6
-20

06

8-6
-20

06

%
 G

er
ee

d

Gerealiseerde
omvang (FP)

Expert
schatting

Inspanning
(cumulatieve ontwikkeling over tijd)

0

50

100

150

200

250

300

350

400

3-5
-20

06

23
-5-

20
06

12
-6-

20
06

2-7
-20

06

22
-7-

20
06

11
-8-

20
06

31
-8-

20
06

Tijd (dagen)

C
um

ul
at

ie
ve

 in
sp

an
ni

ng
 (m

an
 u

re
n)

Verwachte
inspanning

Gebudgeteerd
e inspanning

Aantal gevonden defects per iteratie

0

2

4

6

8

10

12

14

16

18

Iteratie 1 Iteratie 2 Iteratie 3 Iteratie 4 Iteratie 5

A
an

ta
l d

ef
ec

ts

Open defects
Closed defects

Figure D.10: Productivity reporting based on progress and costs (showing M4, M9 & M15)

66

Measurement Support System

Kwaliteit rapportage

Granulariteit
Selecteer iteratie: Iteratie 4 FALSE

Defects gevonden naar discipline

Requirements
Architectuur
(Detail) Ontwerp
Constructie
Systeem testen
Acceptatie testen
Onderhoud
Deployment
Conf. Management

Toon alle iteraties (gehele project)

Defects naar ernsts (severity)

Minor

Major

Block

Defects naar prioriteit

Hoog

Laag

Figure D.11: Quality reporting based on defect information (showing M17, M21 & M22)

67

Appendix E

Overview of Measurement-CMM

N IESSINK and Van Vliet proposed a capability maturity model (in [Nie98]), specifically aimed at
software measurement programmes. This maturity model, known as M-CMM, is not affiliated

with CMM(I) [Can06] nor endorsed by the Software Engineering Institute (SEI). Nevertheless, it
provides a useful basis for reasoning about the state of measurement practice within an organiza-
tion. An excerpt of the five maturity levels in M-CMM [Nie98], and associating Key Process Areas,
is provided below. This thesis is primarily focused on the measurement design KPA.

1. Initial: The organization has no defined measurement processes, few measures are gathered,
measurement that takes place is solely the result of actions of individuals.

- No key process areas.

2. Repeatable: Basic measurement processes are in place to establish measurement goals,
specify measures and measurement protocols, collect and analyse the measures and provide
feedback to software engineers and management. The necessary measurement discipline is
present to consistently obtain measures.

⇒ Measurement Design: Measurement goals, measures and measurement protocols are es-
tablished according to a documented procedure, and goals, measures and protocols are
kept consistent with each other. Measurement protocols are managed and controlled.

- Measure Collection: Measures are collected according to the measurement protocol.

- Measure Analysis: Collected measures are analyzed with respect to measurement goals.

- Measure Feedback: The measurement goals, the measurement protocols, the collected
measures and the results of the analysis are made available to the people involved in
the measurement process.

3. Defined: The measurement process is documented, standardized, and integrated in the stan-
dard software process of the organization. All projects use a tailored version of the organiza-
tion’s standard measurement process.

- Organization Measurement Focus: Software measurement activities are coordinated across
the organization. Strengths and weaknesses of the measurement process are identified
and related to the standard measurement process.

- Organization Measurement Design: A standard measurement process for the organiza-
tion is developed and maintained and information with respect to the use of the stan-
dard measurement process is collected, reviewed and made available.

- Organization Measure Database: Collected measures are stored in an organization-wide
database and made available.

- Training Program: People are provided with the skills and knowledge needed to perform
their roles.

69

Overview of Measurement-CMM

4. Managed: The measurement process is quantitatively understood. The costs in terms of
effort and money are known. Measurement processes are efficient.

- Measurement Cost Management: The costs of measurement are known and used to guide
the Measurement Design Process and the Organization Measurement Design process.

- Technology Selection: The information of measurement costs is used to choose and eval-
uate technology support for the measurement process.

5. Optimizing: Measurements are constantly monitored with respect to their effectiveness and
changed where necessary. Measurement goals are set in anticipation of changes in the orga-
nization or the environment of the organization.

- Measurement Change Management: The measurement capability is constantly being im-
proved by monitoring the measurement processes and by anticipating changes in the
software process or its environment.

70

Appendix F

“Basic level” measurement

T HE measures listed below (and discussed in chapter 6) are suggested for initial implementation
in pilot projects. However, it is important to note that a measurement programme is typically

subjected to change1. Although this appendix lays down a number of basic measures, it is by no
means complete.

Productivity
M3. Budgeted iteration duration vs. actual and remaining iteration duration

M4. Cumulative budgeted effort planned vs. expected effort spent

M5. Budgeted effort planned vs. actual- and remaining effort spent per iteration

M6. Budgeted effort planned vs. actual- and remaining effort spent per discipline

M7. Product size divided by the amount of effort planned vs.
Product size divided by the amount of effort spent

M8. Estimated vs. actual product size

M9. Percentage of budgeted product size implemented vs. Expert effort estimate

M13. Actual duration vs. Actual effort spent in relation to the
Actual product size per iteration

Defects
M15. Number of defects found and fixed per iteration

M17. Defect detection time by discipline

M19. Budgeted vs. actual effort spent on defect fixes per iteration

M21. Defects by severity

M22. Defects by priority

1Stakeholder needs are expected to change, based on the information resulting from the programme. Therefore new
questions will arise, and (existing) measures have to be refined and implemented.

71

	Preface
	Contents
	List of Figures
	1 Introduction and Motivation
	1.1 Context
	1.2 Problem definition
	1.2.1 Scope
	1.2.2 Research question

	1.3 Outline

	2 Background and Context
	2.1 Software Process
	2.1.1 Software Process Improvement
	2.1.2 Software Engineering Management

	2.2 Software Measurement
	2.2.1 Measurement Theory
	2.2.2 Functional Size Measurement

	2.3 Measurement Methods
	2.3.1 Goal Oriented Measurement
	2.3.2 Practical Software and Systems Measurement

	2.4 Success Factors

	3 Research Method and Approach
	3.1 Methodology
	3.2 Approach
	3.3 Contribution

	4 Characterization and Goal Identification
	4.1 Project environment
	4.1.1 Progress reporting

	4.2 Knowledge acquisition
	4.3 Goals
	4.3.1 Viewpoints
	4.3.2 Measurement goals

	4.4 Concluding remarks

	5 Information needs and Constraints
	5.1 Terminology
	5.2 Strategy
	5.3 Information needs
	5.3.1 Productivity questions
	5.3.2 Defect questions

	5.4 Concluding remarks

	6 Measurement Definition
	6.1 Granularity
	6.2 Measures
	6.2.1 Productivity measures
	6.2.2 Defect measures

	6.3 Prioritization
	6.4 Concluding remarks

	7 Implementation Aspects
	7.1 Measurement Support System
	7.1.1 Construction
	7.1.2 Usage and Validation

	7.2 Measurement Specifications
	7.2.1 Formalizing measures
	7.2.2 Data Collection and Reporting

	7.3 Concluding remarks

	8 Conclusions and Future Work
	8.1 Conclusions
	8.1.1 Information; strategic measurement for understanding purposes
	8.1.2 Measurement; project measures to address multiple stakeholders
	8.1.3 Organization; measures in outsourcing projects
	8.1.4 Final conclusion

	8.2 Evaluation
	8.2.1 Information gathering
	8.2.2 Goal/Question/Metric method
	8.2.3 Validation and implementation

	8.3 Future Work
	8.3.1 Recommendation
	8.3.2 Remaining Work

	Bibliography
	A Interview questions
	B Scope Measurement
	C Measurement Specification
	D Measurement Support System
	E Overview of Measurement-CMM
	F ``Basic level'' measurement

