
University of Amsterdam 

Faculty of Science 

 

Master Thesis Software Engineering 
 

 

 

 

 

 

 

 

Comparison of the SIG Maintainability Model  

and the Maintainability Index  
 

 

 

 

Frank R. Oppedijk 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internship host organization Software Improvement Group 

Internship supervisor dr. ir. J. Visser 

Thesis supervisor drs. H.L. Dekkers 

Availability unclassified 

Date 25 July 2008 



Contents

 

- ii - 

Contents 

 

CONTENTS ........................................................................................................................................................II 

ABSTRACT....................................................................................................................................................... IV 

1 INTRODUCTION.....................................................................................................................................1 

1.1 MEASURING MAINTAINABILITY..........................................................................................................1 
1.2 TWO MAINTAINABILITY MODELS ........................................................................................................1 
1.3 RESEARCH QUESTIONS ........................................................................................................................2 
1.4 STRUCTURE OF THIS THESIS.................................................................................................................3 

2 BACKGROUND........................................................................................................................................4 

2.1 SOFTWARE QUALITY MODELS .............................................................................................................4 
2.2 CLASSIFYING SOFTWARE METRICS ......................................................................................................5 
2.3 MAINTAINABILITY INDEX ...................................................................................................................6 

2.3.1 Composition of the MI ....................................................................................................................6 
2.3.1.1 MI components...................................................................................................................................7 

2.3.2 Validation .....................................................................................................................................10 
2.3.3 Strengths and weaknesses.............................................................................................................11 

2.3.3.1 SIG criticism on the MI....................................................................................................................12 
2.4 SIG MAINTAINABILITY MODEL........................................................................................................12 

2.4.1 Composition of the SMM .............................................................................................................12 
2.4.2 Validations performed...................................................................................................................14 
2.4.3 Strengths and weaknesses.............................................................................................................14 

3 RESEARCH METHOD ..........................................................................................................................16 

3.1 EXPLORATORY PHASE .......................................................................................................................16 
3.1.1 Literature research ........................................................................................................................16 
3.1.2 Statistical comparison issues ........................................................................................................16 

3.1.2.1 Determining the normality of the populations ............................................................................17 
3.1.2.2 Determining the variances of the populations .............................................................................17 
3.1.2.3 Determining the scale of measurement.........................................................................................17 

3.1.3 Determining the statistical tests...................................................................................................18 
3.1.4 Determining which correlation value is considered good .............................................................19 

3.1.4.1 General guidelines ...........................................................................................................................19 
3.1.4.2 Situation A: languages for which the MI has been validated.....................................................19 
3.1.4.3 Situation B: OO languages ..............................................................................................................21 

3.2 PREPARATION PHASE ........................................................................................................................21 
3.2.1 Software system selection .............................................................................................................21 
3.2.2 Programming languages selection................................................................................................22 
3.2.3 MI tools selection..........................................................................................................................22 

3.2.3.1 Assessment of MI calculation precision........................................................................................23 
3.2.4 Sample data for the comparison ....................................................................................................24 

3.3 DATA EXTRACTION PHASE................................................................................................................25 
3.3.1 Determining the influence of access routines ...............................................................................25 
3.3.2 Studying the models' components................................................................................................25 

3.4 ANALYSIS PHASE ...............................................................................................................................25 
3.5 CONCLUSION PHASE .........................................................................................................................26 

4 RESULTS ..................................................................................................................................................27 



Contents

 

- iii - 

4.1 RAW DATA ........................................................................................................................................27 
4.2 RANK CORRELATION OF SMM AND MI...........................................................................................28 
4.3 INFLUENCE OF ACCESS ROUTINES ON MI VALUES ...........................................................................29 
4.4 MULTICOLLINEARITY BETWEEN INTERNAL MODEL COMPONENTS .................................................30 
4.5 FITTING A SIMPLER MI MODEL .........................................................................................................31 

5 CONCLUSIONS, DISCUSSION AND FUTURE WORK ...............................................................33 

5.1 CONCLUSIONS AND DISCUSSION ......................................................................................................33 
5.1.1 Research question RQ1, RQ1.1 and RQ1.2 .................................................................................33 

5.1.1.1 Research question RQ1.1.................................................................................................................33 
5.1.1.2 Research question RQ1.2.................................................................................................................34 
5.1.1.3 Research question RQ1....................................................................................................................35 

5.1.2 Research question RQ2.................................................................................................................36 
5.1.3 Research question RQ3.................................................................................................................37 

5.2 FUTURE WORK ...................................................................................................................................37 

BIBLIOGRAPHY ..............................................................................................................................................39 

APPENDIX A - SMM AND MI RESULTS...................................................................................................41 



Abstract

 

- iv - 

Abstract 

Maintenance is an important aspect of the software product life cycle, maintenance effort being the 

single largest cost factor. The degree in which a system is easy or hard to maintain is not fixed but can 

be influenced. Therefore, it is important that maintainability can be measured, and subsequently 

acted upon. 

 

Numerous models have been proposed that aim to measure maintainability.  In this thesis work, two 

maintainability models are discussed. The first model is the well-known and partially validated 

Maintainability Index. The other model is the SIG Maintainability Model, proposed by the Software 

Improvement Group, where this thesis research was carried out. 

 

As both models aim to indicate maintainability, one would expect the outcomes of the two 

maintainability models to show a high degree of positive statistical correlation. It was found that the 

two models have indeed a significant, positive correlation, but lower than was expected. Although 

both models were not specifically designed for measuring object-oriented programming languages, 

results suggest that both models are equally capable of dealing with object-oriented systems. 

 

Further, it is shown that access routines that are typically found in object-oriented programs and 

which have been put forward as the reason why the Maintainability Index would not work for object-

oriented systems, have only a limited influence. 

 

Finally, both models' components are studied. For each of the models, the research indicates that 

several model components are strongly correlated. Both models may be improved by removing one 

or more components. 

 



Introduction

 

- 1 - 

1 Introduction 

1.1 Measuring maintainability 

Maintenance is an important aspect of the software product life cycle, maintenance effort being the 

single largest cost factor. According to the Gartner Group, 60% to 80% of the average annual IT 

application development budget is spent on the maintenance of legacy applications. The degree in 

which a system is easy or hard to maintain is not fixed but can be influenced. Therefore, it is 

important that maintainability can be measured, and subsequently acted upon. 

 

Maintainability is defined as the ease with which a software system or component can be modified to 

correct faults, improve performance, or other attributes, or adapt to a changed environment [IEEE 

610.12, 1990]. As such, the maintainability of a software system is dependent not only on the product, 

but also on the external factors such as the person performing the maintenance and the supporting 

documentation and tools. 

 

A software system’s maintainability can be determined by measuring the maintenance process, e.g. 

the amount of time needed to carry out a modification. Fenton and Pfleeger [1997] call these external 

product attributes – attributes that are measured with respect to how the product relates to the 

environment. Drawbacks of this kind of measuring is that external attributes are usually difficult to 

measure correctly1, and can only be measured late in the development process [Fenton and Pfleeger, 

1997]. 

 

Numerous models have been proposed that aim to measure maintainability and do not have 

aforementioned drawbacks. These models use measures of internal software product attributes (e.g. 

relating to the structure of the product) that often can easily be extracted using static source code 

analysis. A good model contains a combination of internal attributes that yields a maintainability 

indication that closely approaches the external reading of maintainability.  

1.2 Two maintainability models 

In this thesis work, two maintainability models based on measuring internal product attributes are 

discussed. The first model is the well-known Maintainability Index (MI) [Oman and Hagemeister, 

1994]. This model consists of a polynomial expression which is calculated from a number of software 

product metrics, and results in one number indicating the overall system maintainability. The MI has 

been validated multiple times for several procedural programming languages (C, Pascal, FORTRAN 

and Ada), and has frequently been used as a comparison model in later maintainability research. Its 

correctness for use with object-oriented (OO) programming languages has not been formally 

validated, though several papers [Welker et al., 1997; Welker, 2001] argue that the MI is indeed usable 

for OO systems (although perhaps in a modified form, to compensate for the shorter method length 

of access routines ['getters and setters'] typically found in OO software systems). At least one study 

has used the MI as a maintainability indicator for OO systems [Misra, 2005]. 

 

The other model is the SIG Maintainability Model (SMM) [Heitlager et al., 2007], proposed by the 

Software Improvement Group (SIG), a consultancy firm that has specialized in assessing software 

quality. The SIG model possesses a hierarchical structure, in which software product metrics are 

aggregated to four higher-level quality characteristics – analyzability, changeability, stability and 

testability – which together determine system maintainability. Doing so, the SMM adheres to the ISO 

                                                           
1 One of the reasons is leakage. This is the phenomenon where a person spends effort on a task 

without registering this time spent with the task, coloring the effort measurement. 



Introduction

 

- 2 - 

9126 standard (see also section 2.1). The SIG model has not undergone scientific validation, but has 

proven its commercial value in many software system assessments carried out by SIG. 

 

Both models will be discussed in more detail in chapter 2. 

1.3 Research questions 

MI

SMM

maintainability

(partially)
validated

correlation

A

B

C ?

?

 
Figure 1. MI and SMM versus maintainability 

 

Figure 1 shows both maintainability models and the relationships they have to maintainability. The 

relationship between maintainability and the MI (depicted by A) has been validated for a number of 

programming languages. As both maintainability models intend to represent the same indication of 

maintainability, one would expect to see a similar relationship between maintainability and the SMM 

(depicted by B), and therefore one would expect a high correlation of the outcomes of both 

maintainability models in a side-by-side comparison (depicted by C). Statistically analyzing 

relationship C is the subject of this thesis. Therefore, the main research question is: 

 

RQ1. Do the outcomes of the MI and SMM maintainability models show a high degree of positive 

statistical correlation, when both models are applied side-by-side on identical software 

systems? 

 

As said before, the validation of the MI has been performed on a number of procedural programming 

languages. Because of this validation, the MI may be used as a standard for software systems written 

in these programming languages. Comparing the SMM to the validated MI for these programming 

languages acts as a validation of the SMM (for these programming languages), and thus is a special 

case. Therefore, the comparison for systems written in programming languages for which the MI has 

been validated is considered separately. 

 

As the MI has been argued to also be applicable for software systems written in OO programming 

languages, this situation is also considered separately. 

 

This leads to the following two underlying research questions: 

 

RQ1.1 Do the outcomes of the MI and SMM maintainability models show a high degree of positive 

statistical correlation, when both models are applied side-by-side on identical software 

systems written in languages for which the MI has been validated? 

RQ1.2 Do the outcomes of the MI and SMM maintainability models show a high degree of positive 

statistical correlation, when both models are applied side-by-side on identical software 

systems written in OO programming languages? 

 



Introduction

 

- 3 - 

Section 1.2 mentions papers by Welker [Welker et al., 1997; Welker, 2001], stating that it may be the 

case that the small size of access routines of OO software systems influence the value of the MI. This 

thesis investigates this influence by answering the following research question: 

 

RQ2. How much influence do the access routines of OO software systems have on the value of the 

MI? 

 

It is known from earlier research that many of the internal product attributes that are used in software 

quality models are strongly correlated. A well-known example is the strong correlation between unit 

size and cyclomatic complexity than has been confirmed in at least 10 studies [Shepperd and Ince, 

1994]. Both the MI and the SMM models use multiple internal product attributes as model 

components (including unit size and cyclomatic complexity). In a good model, these model 

components are orthogonal and correlations are low. This leads to the last research question: 

 

RQ3. How strong are the correlations of the MI and SMM internal model components? 

1.4 Structure of this thesis 

The remainder of this document is composed as follows: 

 

In chapter 2, a brief background about software quality models and software metrics classification is 

given, after which both maintainability models will be discussed in detail. 

 

Chapter 3 discusses the research method. The research consists of five phases: exploratory phase, 

preparation phase, data extraction phase, analysis phase, and conclusion phase. This chapter 

discusses these five phases in detail. 

 

In chapter 4, the results for the comparison between the two  maintainability models are presented. 

Also, the results of a test for the influence of access routines on MI values are presented. Finally, 

results for the correlations between the internal components of both models are shown.  

 

Chapter 5 interprets these results and presents the answers to the research questions in the form of 

conclusions and discussion. The very final section discusses possible future work. 



Background

 

- 4 - 

2 Background 

This chapter gives a brief background of software quality models and software metrics classification. 

Further, the MI and SMM maintainability models are discussed in detail. 

2.1 Software quality models 

Software maintainability is a part of the total quality of software. A well-known early software 

quality model, commonly called the FCM (Factor-Criteria-Metric) model, was established by McCall 

et al. [1977]. This model possesses a hierarchical structure, consisting of high-level quality factors that 

are composed of lower-level quality criteria, which are measured with metrics (see Figure 2).  

 

The reason that software quality models are often hierarchical is because the factors that one would 

like to measure are too abstract to be directly measured [Fenton and Pfleeger, 1997]. 

 

 
Figure 2. McCall software quality model2 

 

In 1992, a derivation of the McCall model was adopted as ISO standard 9126. In 2001, an extended 

version was published [ISO 9126-1, 2001]. This standard defines software quality as "the totality of 

features and characteristics of a software product that bear on its ability to satisfy stated or implied 

needs." Software quality is decomposed into six characteristics, see Figure 3. ISO 9126 claims to be 

comprehensive, meaning that any possible aspect of software quality can be described in terms of the 

six ISO 9126 characteristics. Each of the six characteristics can be subdivided into a total of 20 sub-

characteristics. 

 

A critique on the ISO 9126 standard is that levels below that of the six characteristics are not defined 

within the standard (even the 20 sub-characteristics are only defined in an annex to the standard, 

                                                           
2 Reproduced from [Fenton and Pfleeger, 1997] 



Background

 

- 5 - 

giving 'examples of possible definitions'), meaning that different parties with different views of 

software quality can select different definitions. 

 

software quality

functionality reliability usability efficiency maintainability portability

suitability 
accuracy 

interoperability 
compliance

security 

maturity 
recoverability 
fault tolerance 

learnability 
understandability 

operability 

time behaviour

resource 
behaviour 

analyzability 
changeability 

stability 
testability 

installability 
replaceability 
adaptability 

 
Figure 3. ISO 9126 software quality model 

2.2 Classifying software metrics 

In software engineering, a software project is carried out to produce some required software product 

via some specific software process. These are three important factors in software development. 

Software metrics can be classified in these three categories: project metrics, product metrics, and 

process metrics [Kan, 2003]. 

 

Project metrics describe the project characteristics and execution. Examples include project cost and 

developer productivity. A well-known cost/effort estimation model using project metrics is the 

COCOMO model by Boehm [1981]. This model consists of a number of mathematical equations that 

were calibrated on a database of previous project data. 

 

Product metrics describe the characteristics of the product, such as size, complexity, and performance.  

Both maintainability models described in this thesis use product metrics. 

 

Process metrics describe the software development and maintenance process. Examples are the 

effectiveness of defect removal, and the response time of the fix process. An example of a process 

model is the SEI Capability Maturity Model (CMM). In this model, a number of 'key process areas' 

(KPAs) have been defined which are essential for a high quality software process. A software process 

is ranked 1 (lowest) to 5 (highest) on these KPAs, leading to a measure of the ability to produce 

quality software reliably. 

 

Fenton and Pfleeger [1997] use a slightly different classification, combining projects and processes 

into the processes category, and recognizing a separate category resources, which are entities that are 

required by a process activity, such as personnel and software tools. 

 



Background

 

- 6 - 

Within each of three categories of software development, one can distinguish between internal and 

external attributes. Fenton and Pfleeger [1997] describe these as follows: 

• Internal attributes are those that can be measured purely in terms of the product, process or 

resource itself, e.g. system size or unit complexity. 

• External attributes are those that can be measured only with respect to how the product, 

process or resource relates to it environment, e.g. product usability. 

 

The quality factor that is the subject of this thesis, maintainability, is an external product attribute, as 

the maintainability of a product is dependent on external factors such as the persons performing the 

maintenance and the supporting documentation and tools [Fenton and Pfleeger, 1997]. 

 

The metrics used by the two maintainability models that will be discussed in the next two sections, 

are internal product attributes. The models are built on the assumption that internal product attributes 

can act as predictors for external product attributes. 

2.3 Maintainability Index 

2.3.1 Composition of the MI 

The Maintainability Index was constructed by Oman and Hagemeister at the University of Idaho, 

following a desire for a maintainability model consisting of a number of easily computed metrics, in 

order to be able to quickly and easily predict software maintainability [Oman and Hagemeister, 1994]. 

It consists of a polynomial expression and results in one number indicating the overall system 

maintainability. The MI has been calibrated based on correlation with subjective evaluations by 

software maintainers. 

 

The MI exists in two variants, which only differ in the last component [SEI, 2002]3: 

 

MI3 = 171 – 5.2 * ln(aveV) – 0.23 * aveV(g’) – 16.2 * ln(aveLOC) (1) 

or 

MI4 = 171 – 5.2 * ln(aveV) – 0.23 * aveV(g’) – 16.2 * ln(aveLOC) + 50 * sin (sqrt(2.4 * perCM)) (2) 

 

in which 

 

aveV = average Halstead Volume V per module 

aveV(g’) = average extended cyclomatic complexity per module 

aveLOC = average count of line of code per module 

perCM = average percent of lines of comments per module 

 

(These underlying metrics are discussed in more detail in the next section.) 

 

The components are calculated at the module level, and then averaged. The word ‘module’ used here 

means the smallest unit of functionality. Depending on the programming language, this is a function, 

procedure, method, subroutine or section. 

 

Expression (2), which includes a term for the percentage comments, should only be used if the 

comments are valid, instead of e.g. chunks of program code that have been commented out. 

Otherwise, expression (1) should be used [SEI, 2002].  

 

                                                           
3 The original definition by Coleman et al. [1994] is slightly different, the last term of the four-

component expression being defined as  50 * sin (sqrt(2.46 * perCM)). See also section 2.3.1.1. 



Background

 

- 7 - 

A higher MI value indicates better maintainability. More specifically, the following cutoff points have 

been identified [Oman and Hagemeister, 1994; Welker et al., 1997]: 

 

Maintainability Expression (1) Expression (2) 

High MI >= 50 MI >= 85 

Moderate - 65 <= MI < 85 

Low MI < 50 MI < 65 

Table 1. MI cutoff values 

 

The MI has frequently been used as a comparison model in other maintainability research. A recent 

example is that of Samoladas et al. [2004]. 

 

Besides using MI at the system level, as described above, another application that is sometimes seen, 

calculates the MI at the module level for all modules. With this approach, one can identify the 

modules with the lowest MI value, which are thought to be the modules with the greatest necessity to 

be improved. 

2.3.1.1 MI components 

Below, the four components of the MI are discussed in more detail. 

 

Lines of code 

Program or module size is often measured using the Lines of Code (LOC) metric. It probably was the 

very first software metric, being used as the basis for measuring programming productivity and effort 

since the late 1960s [Fenton and Neil, 2000]. LOC still is a very popular metric, not in the least because 

of its simplicity. 

 

There exist many definitions of what constitutes one LOC. Some definitions include comment lines 

while others don't. Some definitions count physical lines, while others count logical lines (lines with 

source instructions terminated by a logical delimiter such as a semicolon). According to Jones [1992], 

the difference between these various definitions can be as large as 500%, depending on the 

programming language. The MI calculation calls for counting physical lines of code [Welker et al., 

1997]. 

 

Halstead Volume 

Halstead Volume is one metric of the family of metrics known as Software Science, designed by 

Maurice Halstead [Halstead, 1977]. All Halstead metrics are based on four scalar numbers derived 

directly from a program's source code:  

 

n1  = the number of distinct operators 

n2  = the number of distinct operands 

N1  = the total number of operators 

N2  = the total number of operands 

 

From these numbers, Halstead first calculated vocabulary (n) and length (N): 

 

n = n1 + n2  

N = N1 + N2 

 

Finally, program volume (V) is calculated as: 

 

V = N * 2log(n) 



Background

 

- 8 - 

 

Halstead considered this metric to be representative for the size of any implementation of an 

algorithm, and also considered it to be a count of the number of mental comparisons required to 

generate a program. Fenton [1994] states that "the length, the vocabulary and volume of a program 

are considered as reflecting different views of program size." Fenton criticizes interpretation of the 

Halstead Volume as a measure of program complexity, such as done by the Carnegie Mellon 

Software Engineering Institute [SEI, 1997]. 

 

Another point of critique is that in his book, Halstead [1977] does not unambiguously define what 

should be considered an operator, and what should be considered an operand, but only provides a 

small example after which he concludes that the description of operators and operands is intuitively 

obvious and requires no further explanation. Al-Qutaish and Abran [2005] finely point out "intuition 

is insufficient to obtain accurate, repeatable and reproducible measurement results." The obscurity in 

Halstead's description has led to many different interpretations, especially for programming 

languages (such as XML) that didn't exist at the time of Halstead's writing, and which contain 

constructs incomparable to the example in Halstead's book. 

 

Further criticism is that Halstead length, which is used to construct Halstead volume, overestimates 

program length for small programs and underestimated it for large programs [Beser, 1982; Davies 

and Tan, 1987]. 

 

Despite all the criticism, the Halstead metrics remain in much use, also in recent studies [Menzies et 

al., 2002] and [Kiricenko and Ormandjieva, 2005]. 

 

Cyclomatic complexity 

Cyclomatic complexity is software metric that was developed by Thomas McCabe. It is used to 

measure program complexity [McCabe, 1976]. It measures the number of linearly independent paths 

through a program's source code. Cyclomatic complexity can be calculated in two ways. In the first, a 

module or program is regarded as a mathematical graph. Then, the following formula is calculated: 

 

V(g) = e - n + p 

 

in which 

 

e  = the number of edges in a graph, 

n  = the number of nodes in a graph, and 

p  = the number of connected components 

 

The alternative way is to count the number of decision points (if-statements, while-statements, etc) in 

a module or program, and increase this by one. Both methods yield the same result. The following 

code fragment consists of one decision point, thus yielding a cyclomatic complexity of 2. 

 

IF (A=0) (3) 

  THEN ... 

  ELSE ... 

 

A problem with this definition is whether to count the condition in compound conditional statements 

as one or as multiple nodes. In order words, whether the code fragment 

 



Background

 

- 9 - 

IF (A=0 AND B=1)   (4) 

  THEN ... 

  ELSE ... 

 

would have a cyclomatic complexity of either 2 or 3 for this fragment of code. The original McCabe 

would count it as V(g)=2. 

 

Glenford Myers reasoned that compound statements such as listed in (4) as above did increase 

complexity, so a higher cyclomatic complexity would be appropriate. However, he also felt that the 

above code fragment was less complex than example (5) below, which has a cyclomatic complexity of 

3: 

 

IF (A=0)   (5) 

  THEN IF (AND B=1) 

     THEN ... 

    ELSE ... 

  ELSE ... 

 

Myers proposed an extension to the cyclomatic complexity, in which compound conditional 

statements using AND and OR operators would receive a cyclomatic complexity range. In code 

fragment (4), the extended cyclomatic complexity would thus be 2:3 [Myers, 1977]. The extended 

cyclomatic complexity is denoted as V(g'). 

 

Present-day software metrics tooling often implements a subtly different implementation of V(g'), 

counting each component in compound conditional statements separately. In other words, the 

extended cyclomatic complexity of (4) would be 3. 

 

The MI uses the extended cyclomatic complexity. 

 

Percentage of lines of comments 

The last component of the MI is the 'percentage of comments'. It is used in an expression of the form 

 

50 * sin (sqrt(2.4 * perCM))  (6) 

 

The name perCM can be somewhat confusing. The authors meant this parameter to have values 

ranging from 0 to 1, as can be deduced from [Pearse and Oman, 1995], in which the authors refer to 

perCM as the 'proportion of comments' and consider a value of 0.49 to be very high. Using this 

interpretation results in a monotonously increasing value for (6), see Figure 4, left. This relationship 

means that the higher the proportion of comments in the source code, the better, but that the 

beneficial effect of comments decreases as the comments proportion is higher. 

 

Interpreting perCM as a percentage (ranging 0..100) instead, as some authors do (e.g. [Liso, 2001]), 

would lead to an influence that is alternating between positive and negative, see Figure 4, right. This 

kind of influence cannot be backed by any software engineering knowledge (except maybe for the 

peak at around 25% percent, which is commonly accepted as a normal value for the amount of 

comments [Liso, 2001]). 

 

The factor 2.4 in (6) is mentioned as 2.46 in Coleman et al. [1994]. The latter causes (6) to approach the 

maximum value of 50 even closer, but the difference is practically insignificant. 



Background

 

- 10 - 

 
Figure 4. Percentage comments - left uses proportion 0..1; right uses percentage 0..100 

2.3.2 Validation 

The MI has been validated multiple times for several procedural programming languages: C, Pascal, 

FORTRAN and Ada, with the emphasis on the C language [Ash et al., 1994; Coleman et al., 1994; 

Oman and Hagemeister, 1994; Coleman et al., 1995; Oman, 1995; Pearse and Oman, 1995]. In all these 

cases, the validations used subjective evaluations by maintainers of industrial software systems which 

were found to closely match the values predicted by the MI [Welker et al., 1997]. The Software 

Engineering Institute agrees that the breadth of the validations performed support the claim that "the 

MI generally fits industrial-sized software systems" [SEI, 2002]. 

 

Some specific results of the validations mentioned above are: 

• Oman and Hagemeister [1994] found a Pearson r of 0.83 (statistically significant at α=0.05) 

and a Spearman ρ of 0.83 (not statistically significant at α=0.054) on a previous version of the 

MI model (which in a later study turned out to not be significantly different from the 

definitive MI model [Welker et al., 1997]). This validation used human assessments to 

compare the MI values against. 

• Oman [1995] found a Spearman ρ of 0.81 between measured component quality and the 

quality assessed by software practitioners. 

 

The suitability of the MI for use with object-oriented (OO) programming languages has not been 

formally validated, though several papers argue that the MI is indeed usable for OO systems.  One of 

these papers is by Welker et al. [1997], in which the authors describe a case-study in which the MI was 

used on a C++ system. The results show that "the MI, despite its traditional roots, might also be used 

to quantify maintainability in object-oriented code even if the fit is somewhat less than perfect." They 

continue to say that, just as procedural software systems, "object-oriented systems are primarily 

comprised of operators and operands, lines of code, lines of comments, and have a number of paths 

through a module or system as do more traditionally designed systems. Furthermore, the software 

maintenance practitioner still is interested in and requires the means to measure code density, size, 

comments and execution logic. Although object-oriented design reflects multiple levels of abstraction 

within the design, implementation in languages such as C++ continues to possess numerous parallels 

with traditional approaches. Therefore, existing MI metrics may provide a starting point." 

 

Four years later, Welker published another article about the MI-OO subject [Welker, 2001]. He states 

that "MI is still great for identifying overly complex (and therefore difficult to maintain) modules in 

object-oriented systems."  

 

                                                           
4 The fact that the Spearman test was not statistically significant while the Pearson test was 

significant, was possibly caused by the Spearman test being a nonparametric, thus less powerful 

statistical test (see also section 3.1.2.3). 



Background

 

- 11 - 

Welker [2001] adds an interesting note on the MI values for OO systems: "It appears [...] that object-

oriented systems by nature have a fairly high MI due to the typical smaller module size. Naturally, 

smaller modules contain less operators and operands, less executable paths, and less lines of 

comments and code; therefore, the MI tends to be higher. It is the author’s opinion that even so, the 

MI is still applicable for object-oriented systems, but that maybe the maintainability classification 

thresholds should be raised when interpreting MI’s from object-oriented systems." [Welker, 2001] 

 

At least one study has used the MI as a maintainability indicator for OO systems [Misra, 2005]. 

2.3.3 Strengths and weaknesses 

Oman and Hagemeister [1994] argue that a strong point of the MI is that it is easily calculated from a 

number of well-known metrics that are derived through static code analysis. Pearse and Oman [1995] 

mention another advantage, that the MI's single value is "useful in tracking the effects of maintenance 

changes on different versions of the code over time, including inter-module comparisons of 

complexity and comparing pre- and post-change software quality." Further, "the single index is less 

volatile than any of the individual metrics from which it is constructed; that is, fluctuations in one 

metric dimension do not inordinately change the MI, making it more stable" [Pearse and Oman, 

1995]. 

 

However, the fact that the MI is a single value is also one of the model's disadvantages. As Pearse and 

Oman [1995] put it: "by looking at a single value you miss the detailed information provided by the 

raw metrics which permit you to understand the nature of the change(s) that took place. For a given 

source code maintenance task the value of MI changes when one or more of the polynomial’s four 

factors change, but you can’t tell just from looking at MI which of the four raw measurements is 

causing that change." In other words: one cannot do root-cause analysis. 

 

As was explained earlier, the coefficients in the model were determined by calibrating the model 

against existing software systems. SEI [2002] advises "to test the coefficients for proper fit with each 

major system to which the MI is applied." In other words: the model coefficients can be system-

dependent. 

 

Further, there is criticism on several of the metrics underlying the MI. The most important criticism is 

about the Halstead Volume metric, for the lack of an unambiguous definition of how operands and 

operators should be counted. The ambiguity in the Halstead Volume calculation may lead to different 

MI values, depending on which definition for the Halstead Volume metric is used. 

 

Finally, there is criticism on the way the MI is built up from components with differing scales of 

measurement (see section 3.1.2.3 for more information on scales of measurement), and the scale of the 

MI is not self-evident. Adding and subtracting the MI components required these to be on at least the 

interval scale. However, as Briand et al. [1995a] state, "often it is very difficult to determine the scale 

type of a measure. For example, what is the scale type of cyclomatic complexity? Can we assume that 

the distances on the cyclomatic complexity scale are preserved across all of the scale? This is difficult 

to say and the answer can only be based on intuition." Furthermore, Zuse [2005] proves that the scale 

type of the Halstead Volume depends on the size of the programs, changing from ratio scale (for 

small programs), to ordinal scale (for middle size programs), back to ratio scale (for large programs). 

Fenton and Pfleeger [1997] show that "the scale type for an indirect measure will generally be no 

stronger than the weakest of the scale types of [its components]". In conclusion: it could well be that 

the MI is not valid on the interval scale. This is not a problem in itself, but it reduces the range of 

statistical tests that may be used on MI data. 



Background

 

- 12 - 

2.3.3.1 SIG criticism on the MI 

SIG have expressed additional criticism on the use of MI in [Kuipers and Visser, 2007]. First, the 

authors argue that the average cyclomatic complexity is "a fundamentally flawed number. 

Particularly for systems built using OO technology, the complexity per module will follow a power 

law distribution. Hence, the average complexity will invariably be low (e.g. because all setters and 

getters of a Java system will have a complexity of 1), whereas anecdotal evidence suggests that the 

maintenance problems will occur in the few outliers that have exceptionally high complexity." 

Although the authors may have a valid point here, their argument is primarily aimed at OO systems, 

whilst the MI was not created for OO languages. 

 

Further, in [Heitlager et al., 2007], SIG argues that "counting the number of lines of comment, in 

general, has no relation with maintainability whatsoever. More often than not, comment is simply 

code that has been commented out, and even if it is natural language text it sometimes refers to earlier 

versions of the code." Again, the authors may have a point here. But commented-out code can be 

recognized as such by static code analysis tools and can thus be ignored, leaving only the argument 

that a comment "sometimes refers to earlier versions of the code." Subsequently, the authors argue 

that it may be that a large amount of comments have been added to the code "precisely because it is 

more complex, hence more difficult to maintain." Indeed, a localized high amount of comments may 

be indicative for complex code, but on the other hand, that liberal addition of comments may have 

made the combination of code and comments very maintainable. Thus, it may still make sense to use 

comments percentage as an indicator that has a positive effect on maintainability. 

 

Finally, [Heitlager et al., 2007] express that "there is no logical argument why the MI formula contains 

the particular constants, variables, and symbols that is does. The formula just 'happens' to be a good 

fit to a given data set. As a result the formula is hard to understand and explain."  

2.4 SIG Maintainability Model  

2.4.1 Composition of the SMM 

The SIG Maintainability Model has evolved over a couple of years and has been first publicly 

proposed in [Heitlager et al., 2007]. The model has a hierarchical structure and maps on the ISO 9126 

maintainability characteristic and its four sub-characteristics. An example is given in Figure 5 for the 

changeability sub-characteristic: 

 

maintainability

source code property
e.g. complexity

sub-characteristic
e.g. changeability

source code metric
e.g. cyclomatic complexity

comprises

is part of

caused by

influences

measured by

indicates

A

B

C

 
Figure 5. The SIG maintainability model 

 

The mapping between the various levels, indicated by the A, B and C in Figure 5 is as follows. 

 



Background

 

- 13 - 

Mapping A 

The mapping between source code metrics and source code properties, as indicated by the A in 

Figure 5 is not linear, but consists of a rating, which is performed as follows (the example is for 

cyclomatic complexity, other mappings are similar): 

• First, the cyclomatic complexity is calculated for each unit (being the smallest unit of 

functionality, i.e. a subroutine, function or method); 

• Then each unit is categorized in one of the four categories of Table 2, listing the SEI 

categorization for cyclomatic complexity, with a weight equaling the LOC of the unit; 

 

CC Risk evaluation 

1-10 simple, without much risk 

11-20 more complex, moderate risk 

21-50 complex, high risk 

>50 not testable, very high risk 

Table 2. Cyclomatic complexity categories 

 

• Finally, the weighed complexity percentages lead to a rating, via Table 3. This table shows the 

maximum allowed percentage of LOC per category to obtain a certain rating. For example, a 

system which has 13% of its LOC with cyclomatic complexity of  11-20, 7% of its LOC with 

cyclomatic complexity of  21-50, and 2% of its LOC with cyclomatic complexity over 50, will 

be rated with a - (the CC>50 being the most restrictive aspect in this example). 

 

CC 11-20 CC 21-50 CC >50 rating 

25% 0% 0% ++ 

30% 5% 0% + 

40% 10% 0% o 

50% 15% 5% - 

- - - -- 

Table 3. Complexity rating 

 

Each source code property is measured by one metric, as indicated in Table 4. 

 

source code property source code metric 

volume 
system LOC (converted to man-years in order 

to obtain language-independency) 

complexity cyclomatic complexity per unit 

duplication percentage duplication over 6 lines long 

unit size LOC per unit 

Table 4. Metrics for source code properties 

 

Mapping B 

The mapping between source code properties and ISO 9126 sub-characteristics, as indicated by the B 

in Figure 5 is performed by calculating the simple average of all source code properties that are 

deemed applicable for a sub-characteristic (shown in Table 5), resulting in a score that can range from 

-- to ++ (or, on a numerical scale, from -2 to +2). For example, when a system has been rated a ++ for 

complexity and an o for duplication, it will receive a + for changeability 

 



Background

 

- 14 - 

volume complexity duplication unit size sub-characteristic 

x  x x analyzability 

 x x  changeability 

    stability 

 x  x testability 

Table 5. Mapping source code properties to ISO 9126 sub-characteristics 

 

Note: In [Heitlager et al., 2007], a fifth source code property unit testing is included in the model. 

However, in the fully automated system assessments that SIG currently performs, the four-

component model shown in Table 5 is used, as unit test coverage data is not provided by the 

automated system assessments. This unit testing property is the only source code property that maps 

to the stability sub-characteristic.  

 

Note: Also, for system risk assessments (SRAs) including expert judgments, a separate model consists 

which has five extra properties: high-level architecture, modularization, separation of concerns, 

exception handling, and development process. 

 

Mapping C 

The mapping between the four ISO 9126 sub-characteristics and maintainability is performed by 

calculating the simple average of all four sub-characteristics, resulting in a overall score that can 

range from -- to ++ (or, on a numerical scale, from -2 to +2). Besides the overall maintainability score, 

SIG also always presents the sub-characteristics ratings, as they allow root-cause analysis. 

2.4.2 Validations performed 

The SIG model has not undergone scientific validation. Development of the model has been driven by 

the results of commercial software system assessments carried out by SIG: "In the course of dozens of 

software assessment projects performed on business critical industrial software systems, this model 

has been tested and refined." [Heitlager et al., 2007] 

 

Moreover, the current SIG model is still preliminary. As [Heitlager et al., 2007] explains: "adjustments 

and refinements are made to the model on a case by case basis. Nonetheless, the practical value of the 

model has already been demonstrated in our practise [sic.], and we expect further improvements of 

the model to only bring an increased degree of detail and precision."  

2.4.3 Strengths and weaknesses 

A strong point of the SMM is that the hierarchical composition of the model enables root-cause 

analysis. Further, the model uses metrics that are clearly defined and easily calculated (with the 

exception of unit test coverage, which is hard to determine using static source code analysis). Third, 

because of the categorization (mapping A), the SMM is sensitive to small changes in the system, but 

not so sensitive that its indication will be 'off the scale' when a large change has occurred in the 

system. Finally, the way the ratings are presented (on a scale ranging from -- to ++) makes them easily 

interpretable for management. 

 

A weak point of the SMM is that it is as yet not validated; thus it is unknown to SMM users how good 

it indicates maintainability. 

 

Further, a consequence of the SMM model still being adjusted and refined, is that SMM assessments 

that have been performed using an earlier version of the model cannot be simply compared to more 

recent assessments. 

 



Background

 

- 15 - 

Finally, according to measurement theory [Schneidewind, 1992], the averaging done in mappings B 

and C of the model requires the components to be on at least interval scale (see section 3.1.2.3 for 

more information on scales of measurement). However, the nonlinearity created by the categorization 

in mapping A causes the components to be valid at only the ordinal scale. Thus, the averaging 

performed is not allowed, and strictly speaking, invalidates the model. 



Research method

 

- 16 - 

3 Research method 

This chapter contains aspects concerning the research method. The research consists of five phases, 

which are presented in Figure 6 below. This chapter discusses these five phases in detail. 

 

statistical
tests

research
method

& statistics

language
selection

system
selection

tool
selection

2. Preparation phase

SMM tools

3. Data extraction phase

source
code

MI tools

SMM results

answering
research
questions

inter-
pretation

conclusions

4. Analysis phase

MI results

literature
research

1. Exploratory
phase

5. Conclusion phase

discussion
and

future work

forming
research
questions

influences; leads to

mutual influence

data flow

 
Figure 6. Research method 

3.1 Exploratory phase 

In the exploratory phase, literature research leads to forming research questions and to determining 

the appropriate research method, including the statistical approach. 

3.1.1 Literature research 

The literature research was carried out by performing an extensive search on both the University of 

Amsterdam digital library and on Google scholar, for articles regarding maintainability models in 

general and the MI and the SMM in particular. The resulting literature list was checked with subject-

matter experts from SIG. 

 

Statistics knowledge was obtained from the well-known textbook by Anderson et al. [1990]. For 

specific subjects, additional information was obtained with library research. Also, advice was 

received from Dr. M.W. van Someren of the University of Amsterdam. 

3.1.2 Statistical comparison issues 

Two categories of statistical tests exist: non-parametric tests and parametric tests. The former are 

more robust than the latter, meaning that they can be used when less can be assumed about the data. 

The latter are more powerful, meaning that their probability of correctly rejecting a false null 

hypothesis is higher. A consequence of this is that a smaller sample size can suffice for drawing a 

conclusion with the same degree of confidence. However, for most of the parametric tests, the data 

must also comply with three requirements: 

1. The data must have been obtained from populations which are statistically normal; 

2. The populations must have equal variances; 

3. The data must be at least on the interval scale of measurement. 

 



Research method

 

- 17 - 

These three requirements will be addressed in the subsections below. After that, a subsection will 

discuss which statistical tests may be used in this thesis work. 

3.1.2.1 Determining the normality of the populations 

One cannot look at the complete population of software systems in order to assess whether it is 

distributed normally. Therefore, we have three alternatives. First, if the sample data set is sufficiently 

large, one can look at the sample data set and, if that is normally distributed, it is likely that the 

population is also normally distributed. Second, one may learn the distribution type from earlier 

research. Or last, one may reason about the probable distribution of the population. 

3.1.2.2 Determining the variances of the populations 

The variance of the populations can be determined by inspection of the sample data, looking at the 

dispersion or standard deviation of the data. The F-test can also be used to test the hypothesis that the 

samples have been drawn from populations with the equal variance [Anderson et al., 1990]. 

3.1.2.3 Determining the scale of measurement 

In order to choose the appropriate statistical tests, it is important to know the scales of measurement 

of the data to be tested. Statistical science recognizes the following four scales of measurement 

[Anderson et al., 1990]: 

• Nominal scale – the data are labels or categories, e.g. gender (man, woman); 

• Ordinal scale – the data can be used to rank the observations, e.g. clothing sizes (S, M, L, etc.) 

or Likert scales (1=very unlikely, 2=unlikely, etc); 

• Interval scale – the interval between observations can be expressed in a fixed number, e.g. 

temperatures (the difference between a day-time temperature of 25°C and a night-time 

temperature of 5°C is 20°C); 

• Ratio scale – the ratio of the measurements is meaningful, e.g. prices (a car costing Є60,000 is 

twice as expensive as a car costing Є30,000). 

 

The former two scales allow nonparametric tests to be applied, while the latter two scales also allow 

parametric tests to be used (provided that the populations also satisfy the other requirements). 

 

Both the SMM and the MI ratings are at least on the ordinal scale, as from their definitions it is known 

that it is correct to say an SMM rating of ++ is better than a rating of +, and that an MI value of 75 is 

better than one of 65. 

 

However, it is not clear if the SMM and MI are also on the interval scale: is the difference between a 

++ and a + SMM rating equal to the difference between a + and a 0 rating? Is the difference between 

MI values 75 and 65 equal to the difference between 95 and 85? Intuitively, one would say so. Also, 

when looking closely at the both models, one sees that the creators assume interval-scales. Both 

models involve summing a number of components5, thus indicating that they consider the model 

components - and thus the model – to (at least) be on the interval scale. As discussed in section 2.4.3, 

the SMM cannot be on the interval scale, thus the SMM should be interpreted on the ordinal scale. 

Section 2.3.3 concluded that it may well be that the MI is not on the interval scale either, meaning that 

the MI should also be interpreted on the ordinal scale. 

 

In this thesis work, the scale of measurement will be assumed to be ordinal, meaning that the 

statistical tests used need to be of the non-parametric kind. The next section lists a number of 

applicable tests. 

                                                           
5 Strictly speaking, the SMM is the average of a number of components, which of course equals the 

sum of the components divided by the number of components. 



Research method

 

- 18 - 

3.1.3 Determining the statistical tests 

Comparison of the two maintainability indicators can be done in two ways. One is to determine the 

measure in which the two are correlated. The other is to calculate an equation defining the 

relationship between the two indicators. Table 6 shows the suitable statistical tests (sources: 

[Anderson et al., 1990; Fenton and Pfleeger, 1997]). As pointed out in the previous section, this 

research will use the non-parametric tests. 

 

Test type Non-parametric Parametric 

Measure of correlation 

• Spearman ρ 

• Kendall τ 

• Chi-squared 

• Pearson r 

Equation 
• Logarithmic transformation 

• Kendall-Theil robust line 
• Linear regression 

Table 6. Suitable statistical tests 

 

As the research questions ask to identify the degree of statistical correlation, this research will be 

using tests meant to measure the correlation. 

 

The Chi-squared statistical test for 'goodness of fit' needs each category to be compared to contain at 

least 5 items. The Kendall τ and Spearman ρ tests do not have this restriction. As our data sets don't 

have any inherent categories, and making up categories in order to be able to use the Chi-squared test 

would be arbitrary to a certain agree, the Kendall τ and Spearman ρ tests are more applicable. 

 

The only assumption Kendall τ and Spearman ρ make to the data, is that it is on at least the ordinal 

scale. 

 

Fenton and Pfleeger [1997] state that the Spearman ρ and Kendall τ tests should not be used when 

(many) ties are present in the data. This is an incomplete statement. There is indeed a restriction in 

using Spearman ρ when ties are present in the data. The regular formula for calculating Spearman ρ is 

 

 
 

in which  

 

di  = xi -yi  

xi = the rank of the ith element of the first data set 

yi = the rank of the ith element of the second data set 

n = the number of values in each data set 

 

This formula should not be used when ties are present. Instead, one should first rank each of the data 

sets (where ties receive a rank that is the average of what their ranks would otherwise be) and 

subsequently use the Pearson correlation coefficient on the ranks [Myers and Well, 2003]. The 

statistical tool that is used for this research, SPSS, uses the correct implementation and can handle 

ties. 

 

According to [Hill and Lewicki, 2007], "Spearman ρ can be thought of as the regular Pearson r, that is, 

in terms of proportion of variability accounted for, except that Spearman ρ is computed from ranks. 

Kendall τ, on the other hand, represents a probability, that is, it is the difference between the 

probability that in the observed data the two variables are in the same order versus the probability 

that the two variables are in different orders."  



Research method

 

- 19 - 

 

The Kendall and Spearman tests can be performed as either one-tailed or two-tailed tests. When the 

direction of the association between the variables is known in advance (e.g. when one hypothesizes 

that there is a large and positive correlation between the SMM and the MI), one may use the one-tailed 

variant. If the direction of the association is not known in advance and either a significant positive 

and a significant negative association would be of interest, one should use the two-tailed variant 

[Anderson et al., 1990]. The p-value for a two-tailed test is twice as high as for a one-tailed test. 

 

As the Kendall τ and Spearman ρ are equivalent in their usability, and because of the similarity of 

Spearman ρ with the well-known and familiar Pearson r, Spearman ρ was chosen as the statistical test 

to use to determine the measure of association in this thesis research. This research uses one-tailed 

tests if the direction of the association is known in advance, and two-tailed tests otherwise. 

3.1.4 Determining which correlation value is considered good 

3.1.4.1 General guidelines 

The following general rule of thumb exists as to how to interpret the various values for the (rank) 

correlation coefficient (see Table 7). 

 

r or ρ interpretation 

0.00 - 0.19 very weak, or no relationship 

0.20 - 0.39 weak 

0.40 - 0.59 moderate 

0.60 - 0.79 strong 

0.80 - 1.00 very strong 

Table 7. Interpreting correlation coefficients 

 

It must be added that interpreting correlation coefficients must also take the context into account. In 

social sciences, finding a correlation of 0.4 in a human-behavior related study might be considered 

good, while in medical research, a correlation of 0.8 may be interpreted as being unacceptably low. 

 

Specific to this research, a more specific way of interpreting correlation coefficients is given in the 

next two sections. 

3.1.4.2 Situation A: languages for which the MI has been validated 

As explained in section 2.2, both the SMM and the MI models use internal product attributes to arrive 

at an indication that approaches the (external) product attribute maintainability. As Fenton and 

Pfleeger [1997] state, this correlation cannot be perfect, as the complexity of an external attribute can 

never be fully described by a combination of internal attributes. 

 

In section 2.3.2, it was stated that MI validations have shown the Spearman correlation between the 

MI model and the maintainability as assessed by experts was about 0.81 to 0.83. This correlation was 

considered very good, and it may have been one of the factors that the MI has been applied as 

maintainability indicator in much academic research. In Figure 7, this correlation has been depicted as 

ρA ≈ 0.8. 



Research method

 

- 20 - 

MI

SMM

maintainability

ρA ≈ 0.8

correlation

A

B

C

ρB

ρC

 
Figure 7. MI and SMM versus maintainability 

 

This research does not measure the correlation between maintainability and the SMM, but, if the 

SMM model would be of comparable quality as the MI model, ρB could be around a value of 0.8 as 

well. 

 

The Spearman ρ correlation coefficient indicates how much of the variability of the dependent 

variable is accounted for by the independent variable. Thus, ρA being ≈ 0.8 means that 0.8 of the 

maintainability variability is accounted for by the MI model. In Figure 8, this is depicted graphically 

for both the MI and the SMM. The SMM-MI correlation is the area between the dashed lines. 

 

In the extreme case that the MI and SMM models both account for maximally different fractions of the 

variability, the SMM-MI correlation is expected to be 1 - 0.2 - 0.2 = 0.6 (see Figure 8, top). In the other 

extreme case where the MI and SMM models account for identical fractions of the variability, the 

correlation between the two models will equal 1 (see Figure 8, bottom). 

maintainability

MI accounts
for 0.8

SMM accounts
for 0.8

maintainability

MI accounts
for 0.8

SMM accounts
for 0.8

(a)

(b)

 
Figure 8. Variability accounted for by MI and SMM 

 

Thus, a reasonable value to be found for the Spearman rank correlation between the MI and SMM 

maintainability models would be 0.6 ≤ ρC ≤ 1, assuming that ρB = 0.8 . More generally, one can expect 

ρC to be at least equal to 1 - (1 - ρA ) - (1 - ρB ) , which equals  

 

ρC = ρA + ρB - 1 (7) 

 

In order for the correlations to have sufficient statistical significance, we state that the results should 

be significant at the α=0.05 level. This is a common statistical practice; also, it equals the significance 

levels of the MI validation work. 



Research method

 

- 21 - 

3.1.4.3 Situation B: OO languages 

The above reasoning is valid only for the case where one may assume that ρA ≈ 0.8, thus only for the 

languages for which the MI has been validated. For OO languages, for which the MI has not been 

validated, there is no such guideline. 

 

Still, as has been said in section 2.3.2, Welker et al. [1997] reason that, just like procedural systems, 

"object-oriented systems are primarily comprised of operators and operands, lines of code, lines of 

comments, and have a number of paths through a module or system." It is true that OO programs 

also have additional aspects that may have an influence on maintainability, such as abstraction and 

inheritance, which the MI does not measure, and this is why Welker [2001] considers using the MI for 

OO programs "a starting point." 

 

An important point to consider is that both the MI and the SMM are alike in this respect: Both models 

consist of internal product attributes related to the structure and size of programming units, and both 

models lack metrics regarding typical OO aspects. Therefore, it is assumed that both models are 

equally good in dealing with OO systems. 

 

Another effect OO programs have, is their smaller average unit size (because of the access routines), 

which influences the MI [Welker, 2001; Heitlager et al., 2007]. As the SMM does not contain a 

component for average unit size, but looks for outliers (units with very large unit size), the effect of a 

smaller average unit size on the SMM may very well differ from the effect on the MI. 

 

However, as the complete sample will suffer from the above-mentioned effect, and as we are looking 

at the models' rank correlations instead of correlations of their absolute values, this will not influence 

the rank ordering within the sample. As a consequence, the smaller average unit size of the sample 

does not influence the value of the SMM-MI correlation6.  

 

In conclusion: for systems written in OO languages, correlations that are similar to those specified in 

the previous section are expected to be seen. 

3.2 Preparation phase 

The preparation phase deals with selecting software systems, written in a selection of languages. 

Also, appropriate tools have to be selected. This section closes with an overview of the research data 

selected. 

3.2.1 Software system selection 

The metrics that go into both SMM and the MI model must be obtained by means of static source 

code analysis. Thus, in order to be able to compare the SMM and MI, source code must be available. 

 

SIG keeps a source code repository containing the source code of many systems that have been 

assessed by SIG, either in a one-time Software Risk Assessment or in an ongoing Software Monitor. 

The source code repository was used in selecting 52 closed-source software systems. 

 

Besides source code from the SIG repository, 21 open-source systems were included.  

 

System selection is heavily dependent on which programming languages should be included in the 

comparison. This is the subject of the next section. 

                                                           
6 Yet as soon as samples containing a mixture of systems with differing smaller-average-unit-sizes are 

studied (such as a sample containing both C and Java programs), this argument no longer holds, and 

we may see differing correlations. 



Research method

 

- 22 - 

3.2.2 Programming languages selection 

In the selection process of which programming languages to include in the comparison, three factors 

were of influence. First, it had to be possible to calculate both the SMM and the MI for each 

programming language. This may sound obvious, but calculating the MI requires calculation of the 

Halstead Volume metric. The algorithm for calculating Halstead Volume for languages such as XML 

lacking a notion of operators and operators similar to that of FORTRAN, Pascal, or C, would be rather 

arbitrary (see also section 2.3.1.1). 

 

Second, in order to answer research questions RQ1.1 and RQ1.2, systems written in procedural 

languages (for which MI has been validated), and systems written in OO languages must be selected. 

For statistical purposes, in order to reduce the dependency on one language for the OO programming 

paradigm, multiple languages must be included. Therefore, two languages per programming 

paradigm were chosen. 

 

Third, and also for statistical purposes, it was desired that an ample amount of source code be 

available for all languages chosen. An investigation into the SIG source code repository yielded Table 

8. This shows that the largest part of source code (measured in lines of code) in the repository consists 

of Java code, followed by C code, etc. 

 

Rank Language % 

1 Java 24.4% 

2 C 18.6% 

3 XML 10.6% 

4 C++ 7.6% 

5 C# 7.3% 

6 ABAP 6.7% 

7 COBOL 4.3% 

8 Informix 4GL 4.1% 

9 ADABAS 4.0% 

10 JSP 2.5% 

Table 8. Languages in the repository 

 

Of the languages for which the MI has been validated (C, Pascal, FORTRAN and Ada), the SIG 

repository contained only C systems. Therefore, only one language will be included for answering 

RQ1.1 

 

For the OO programming languages for answering RQ1.2, the decision was to include Java and either 

C++, because these are the OO languages of which the most source code is available in the SIG source 

code repository. 

3.2.3 MI tools selection 

With the choices for the programming languages described in section 3.2.2 in mind, a tools selection 

phase was carried out. Ideally, the tools calculate MI directly, or alternatively, the tools should 

calculate unit level Halstead Volume, Cyclomatic Complexity or Extended Cyclomatic and LOC, after 

which the MI can be calculated fairly easily. 

 



Research method

 

- 23 - 

First, it was determined which features the tool(s) should have: 

• Calculate metrics by performing static source code analysis; 

• Calculate system-level MI (both 3-component and 4-component variants). Alternative is 

calculation of Halstead Volume, Cyclomatic Complexity or Extended Cyclomatic and LOC at 

the unit level; 

• Command-line mode, in order to support batch processing; 

• Sets of source files identified by file lists or filter expressions; 

• Output written to text file, for further processing. 

 

Second, an Internet search was done for available metrics tools. Also, papers from the literature study 

dealing with MI validation were studied for clues about tools used. Besides languages supported, the 

availability of a student license was also investigated. The outcome of this research phase is shown in 

Table 9. 

 

Tool name Java C C++ C# 

Power Software Essential Metrics Java x    

Power Software Essential Metrics C/C++  x x  

Testwell CMT Java x    

Testwell CMT++  x x  

McCabe IQ x x x x 

Virtual Machinery JHawk x    

Pro Et Con Java FGM x    

Abraxas CodeCheck  x x  

Table 9. MI tools 

 

Based on this information and the availability of student licenses, the products by Power Software, 

Testwell and McCabe were obtained and installed. 

 

A preliminary test revealed that for the languages C and C++ the McCabe IQ suite requires either 

preprocessed source files to be available in the code base, or a preprocessor for the source platform to 

be available. As these preprocessed files were not available, and neither was the source platform, the 

McCabe IQ tool suite could not be used for C and C++. 

 

The Essential Metrics documentation lacked a specification of whether the 3-component or the 4-

component was calculated by the tool set. Neither could the tool manufacturer provide this 

information. Because of this lack of information, it was decided not to use the Essential Metrics tool 

set. 

 

As a result of the above findings, it was decided to perform all data extraction with the Testwell CMT 

Java and CMT++ tool sets. 

3.2.3.1 Assessment of MI calculation precision 

As has been pointed out in section 2.3.3, the value of the MI may be influenced by the Halstead 

Volume definition used. In order to assess the magnitude of this effect in the MI tools selected, a 

comparative test was performed using three MI tools available, on the source code of the 15 OSS 

systems.  

 

It was reasoned that differences in the exact MI values given by the various tools were acceptable, but 

that the rank order of the results should be highly consistent. The thought behind this reasoning is 

that the statistical tests used during the analysis phase will be non-parametric tests that need ordinal 



Research method

 

- 24 - 

scale but not interval scale on the measurement results. Hence, it is important that rank order is not 

influenced, but the exact values of the measurement results (thus, their intervals) are not important. 

 

Table 10 shows the outcomes of this test. As can be seen, the Spearman rank correlation between the 

McCabe and CMT tools is very strong, although not perfect. The correlation between the EM tool and 

the CMT tool is somewhat lower, although still very strong. The McCabe and EM correlation is lowest 

(and is not significant). Please note that the McCabe tool was only used for the Java systems, reducing 

the sample size to 5. This may explain the lower significance for the correlations with the McCabe 

tool. 

 

 McCabe - CMT CMT-EM7 McCabe - EM 

MI variant corr. sign. n corr. sign. n corr. sign. n 

MI3 0.900 0.019 5 0.862 0.000 15 0.500 0.196 5 

MI4 0.895 0.020 5 0.839 0.000 15 0.154 0.402 5 

Table 10. Spearman rank correlation coefficients, on 15 OSS systems 

 

The error may be caused by different Halstead Volume implementations of the various tools. Also, 

other differences, such as parse errors or different interpretations of the other metrics (such as LOC, 

see also section 2.3.1.1) may be of influence.  

 

The influence of the tools on the outcome is considered acceptably small. 

3.2.4 Sample data for the comparison 

At the end of the preparation phase, 73 systems, written in C, C++ and Java were available for the 

research. Source data was available from 52 closed-source systems that had previously been issued to 

SIG in order for a software risk assessment to be carried out, as well as 21 open-source systems. 

 

Table 11 shows descriptive statistics of these software systems. Besides containing the information for 

the three separate programming languages, it also contains information for the OO subset (containing 

the C++ and the Java systems) and for all systems. As can be seen, the data contains systems of 

various system sizes. This is also visible in Figure 9, which shows histograms of system size on linear 

and logarithmic scales. The linear histogram shows that the majority of the systems are small. On a 

logarithmic scale, the distribution of systems turns out to be bi-modal, with the peaks at ln(LOC)≈11 

(LOC≈60k) and ln(LOC)≈12.5 (LOC≈270k). 

 

The number of C and OO systems should be sufficient for obtaining statistically significant results. 

No other noticeable aspects are visible from the data. 

 

language #systems 

min 

size 

(KLOC) 

max 

size 

(KLOC) 

mean 

size 

(KLOC) 

std dev 

size 

(KLOC) 

min 

#units 

max 

#units 

mean 

#units 

std dev 

#units 

C 19 9.8 4581 717 1393 136 116752 15235 31404 

C++ 11 13.0 558 184 169 859 21279 7024 6471 

Java 43 1.1 1031 150 209 137 85942 14527 18582 

OO 54 1.1 1031 157 200 137 85942 12998 17054 

all 73 1.1 4581 303 759 136 116752 13581 21486 

Table 11. Descriptive statistics of software systems researched 

                                                           
7 Please note that the EM tools only give one MI value, and that we do not know whether this is the 

MI3 or the MI4. The correlation values suggest it is the MI3. 



Research method

 

- 25 - 

 
Figure 9. Size distribution of software systems researched 

3.3 Data extraction phase 

The data extraction phase consists of passing the source code of all selected software systems through 

the tools calculating the maintainability indication for both the maintainability models.  

3.3.1 Determining the influence of access routines 

In order to determine the influence of access routines on the MI value for RQ2, the MI3, MI4 and the 

MI components were calculated with the data from the access routines removed. As the way the MI3 

and MI4 values are calculated differs from the MI values mentioned elsewhere in this thesis, this is 

explained below. 

 

Whilst the MI values mentioned elsewhere were calculated directly by the MI tools, the MI values of  

for determining the influence of the access routines were calculated by taking the unit-level output 

from the MI tools for the MI components aveV, aveV(g'), aveLOC, and perCM and subsequently 

calculating the MI3 and MI4. This alternative approach enabled filtering out the data for the access 

routines without needing to modify all source files. 

 

In order to eliminate any differences that may have been introduced by this alternative calculation 

method, it was used for both the part with access routines and the part without access routines. 

3.3.2 Studying the models' components 

In order to be able to study the correlations between the models' components for RQ3, the values for 

the components of both models had to be available for all systems. 

 

The SMM component values are readily available, as they are reported with each run of the SMM 

tools. The MI component values were determined by taking the unit-level component values from the 

MI tools and subsequently calculating the system averages from this. 

3.4 Analysis phase 

In the analysis phase, the obtained results for both maintainability models undergo a number of 

statistical tests, after which the results are interpreted and the research questions are answered. 

 



Research method

 

- 26 - 

Research questions RQ1 (and the underlying questions RQ1.1 and RQ1.2) will be answered by 

running the data extraction phase on multiple software systems for which the MI has been validated, 

as well as on multiple OO software systems, and subsequently comparing the SMM and MI results. 

 

Research question RQ2 will be answered by running the data extraction phase once again, on OO 

software systems which had all access routines removed. 

 

Finally, research question RQ3 will be answered by collecting the models' components values for both 

models during the data extraction phase and comparing these. 

3.5 Conclusion phase 

In the conclusion phase, results obtained in the analysis phase will be used to draw conclusions. This 

phase will also comprise a carefully balanced discussion, and report on aspects that can be covered in 

future work. 

 



Results

 

- 27 - 

4 Results 

In this chapter, the results from the data extraction and the statistical tests are presented. Spearman 

correlation coefficients will be given for both comparisons. Also, the results of a test for the influence 

of access routines on MI values are presented. Further, Spearman correlation coefficients will be given 

for the multicollinearity between the internal components of both models. Finally, the similarities 

between the MI3 model and a number of simplifications to it are shown. 

4.1 Raw data 

The results from the data extraction phase for all systems used in the comparison are listed in full in 

Table 22 in Appendix A. 

 

Table 12 below shows the descriptive statistics of these results. It displays SMM, MI3 and MI4, as well 

as SMM and MI components. The data are separated on language, shown for the OO subset, and for 

all systems together. For each of these, the minimum, maximum and median values in the sample 

data are shown.  

 

As can be seen, the SMM results for the data set run from -2 to roughly +1, while the SMM scale runs 

from -2  ('--') to +2 ('++'). In other words, the systems in the data set do not cover the complete range of 

the SMM scale. 

 

In Figure 10, box plots are shown for SMM overall maintainability, MI3 and MI4, for the same five 

sample groups. In each box plot, the box runs from the first to the third quartile of the sample data 

(also called the interquartile range), approximately covering the middle half of the observed data. The 

whiskers at each side of the box show the distance from the end of the box to the largest and smallest 

observed values that are less than 1.5 box lengths from either end of the box. Observed values 

between 1.5 and 3 box lengths from either end of the box are called outliers and are shown as an 'o'. 

Values over 3 box lengths away from the box are called extremes and are shown as an '*'.  

 

Figure 10 shows various outliers and/or extremes. The calculations for these systems were checked 

but no errors could be found. Therefore, these data points are regarded as valid. The systems in 

question were not removed from the data set. 

 
  SMM MI 

language type maint ana chg tst dup comp usize vol MI3 MI4 aveV aveV(g') aveLOC perCM 

min -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 49 81 565.4 3.479 21.89 0.08 

max 0.611 0.667 1.000 0.500 2.000 2.000 -1.000 2.000 89 124 3359.1 12.491 163.88 0.44 C 

median -1.278 -0.667 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 76 103 862.9 5.301 40.95 0.23 

min -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 58 97 361.9 2.368 16.99 0.09 

max 0.000 0.000 0.500 -0.500 1.000 1.000 -2.000 2.000 97 119 1621.4 6.304 76.89 0.36 
C++ 

 
median -1.056 -1.000 -1.000 -2.000 -1.000 -2.000 -2.000 0.000 85 115 636.9 3.319 26.68 0.18 

min -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 81 109 133.4 1.288 7.37 0.03 

max 0.889 1.000 1.500 1.000 2.000 2.000 0.000 2.000 113 150 713.6 3.405 29.56 0.42 Java 

median -0.611 0.000 -0.500 -1.500 0.000 -1.000 -2.000 2.000 100 136 243.0 1.985 14.05 0.28 

min -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 58 97 133.4 1.288 7.37 0.03 

max 0.889 1.000 1.500 1.000 2.000 2.000 0.000 2.000 113 150 1621.4 6.304 76.89 0.42 OO 

median -0.750 -0.333 -0.500 -1.500 0.000 -1.000 -2.000 1.000 98 132 277.3 2.228 14.90 0.27 

min -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 49 81 133.4 1.288 7.37 0.03 

max 0.889 1.000 1.500 1.000 2.000 2.000 0.000 2.000 113 150 3359.1 12.491 163.88 0.44 all 

median -0.944 -0.333 -1.000 -1.500 -1.000 -1.000 -2.000 1.000 93 124 395.2 2.776 18.21 0.24 

Table 12. Descriptive statistics of results 

 

 



Results

 

- 28 - 

 
Figure 10. SMM, MI3 and MI4 box plots 

 

4.2 Rank correlation of SMM and MI 

The scatter plots of Figure 11 show SMM being plotted against MI3 and MI4. Clearly visible is that 

SMM tends to be higher for higher MI3 and MI4 values, indicating a possible positive correlation. 

 

Interesting to see is also, that the results seem to be clustered by language. In general the C systems 

score worst, C++ systems generally score higher, and Java systems perform best. This effect is most 

pronounced on the MI axes, but seems to be also visible on the SMM axis. 

 
Figure 11. Scatter plots of MI3 and MI4 against SMM 

 

As discussed in section 3.1.3, the Spearman rank correlation test is used to determine the correlation 

between the two maintainability models. The outcome of this test is shown in Table 13. 

 



Results

 

- 29 - 

 SMM - MI3 SMM - MI4 

language corr. sign. n corr. sign. n 

C 0.494 0.016 19 0.476 0.020 19 

C++ 0.365 0.135 11 0.423 0.098 11 

Java 0.459 0.001 43 0.500 0.000 43 

OO 0.554 0.000 54 0.569 0.000 54 

all 0.621 0.000 73 0.617 0.000 73 

Table 13. Rank correlation of SMM versus MI3 and MI4 

 

The SMM show a significant correlation to MI3 or MI4 for the C and Java systems (significance being 

better than α=0.05), but not for the C++ systems. 

 

Interesting to see, is that the correlation for all systems together is higher than the correlation of any 

of its subsets, for both SMM-MI3 and SMM-MI4. 

 

Ranking the 73 systems on both SMM, MI3 and MI4, and subsequently sorting the systems on MI3 or 

MI4 yields the line diagram of Figure 12. If the SMM-MI correlation would have been perfect (+1.0), a 

monotonously rising line would have been visible, with the difference between SMM rank numbers 

for systems adjacent on the MI3 or MI4 axis being equal to 1. As it is, Figure 12 shows lines that jump 

up and down. The average absolute differences in SMM rankings for systems that are adjacent on the 

MI3 or MI4 axis is 16.0 (SMM-MI3) or 16.2 (SMM-MI4). 

 

 

4.3 Influence of access routines on MI values 

In order to calculate the influence of access routines on the MI value, the MI3, MI4 and the MI 

components were recalculated for all 73 software systems that were available, with the data 

concerning the access routines removed. The percentages of routines removed per language are 

shown in Table 14. 

 

The exercise of removing the access routines was carried out not only for the systems in the OO 

languages C++ and Java, but also for the C systems, as it may have been the case that the (primarily 

Figure 12. MI3 and MI4 ranking against SMM ranking 



Results

 

- 30 - 

OO) practice of providing access routines for data attributes had also been applied in some of the C 

systems.  

 

language 
#units (with 

access routines) 

# units (without 

access routines) 

diff 

 (%) 

C 224016 222448 -1% 

C++ 55209 44632 -19% 

Java 510918 221552 -57% 

OO 566127 266184 -53% 

Table 14. Number of access routines per language 

 

The effect of removing the data concerning the access routines are shown in Table 15. This table 

shows the data with access routines on the left, and the data without access routines on the right. 

 

As can be seen, removing the access routines causes an increase in the average Halstead volume, 

average extended cyclomatic complexity and average unit size, while perCM remains stable, leading 

to a drop in MI3 and MI4 values of 3 for the C++ systems and 8 for the Java systems8. 

 

 with access routines without access routines  

language aveV aveV(g') aveLOC perCM MI3 MI4 aveV aveV(g') aveLOC perCM MI3 MI4 
diff 

MI3 

diff 

MI4 

C 1396.6 6.457 61.64 0.23 70 103 1405.3 6.470 61.95 0.23 70 103 0 0 

C++ 757.7 3.802 32.40 0.19 82 112 829.4 4.116 36.58 0.19 79 109 -3 -3 

Java 271.9 2.128 13.65 0.27 100 135 458.4 2.816 19.66 0.27 92 127 -8 -8 

OO 370.8 2.469 17.47 0.25 96 130 534.0 3.081 23.10 0.25 89 123 -7 -7 

Table 15. Influence of access routines on MI values 

 

Removing the access routines when calculating the MI, also changes the rank order of the MI3 and 

MI4 scores, as Table 16 shows. If removing the access routines had no influence on the rank ordering, 

correlations between the MI with versus without access routines had been 1,000. As it is, the 

correlations are somewhat lower than that, indicating a (limited) change in rank ordering 

(significances are one-tailed). 

 

 MI3 (without access routines) MI4 (without access routines) 

 corr. sign. n corr. sign. n 

MI3 with access routines 0.922 0.000 73 - - - 

MI4 with access routines - - - 0.942 0.000 73 

Table 16. Correlation between MI values with and without access routines 

4.4 Multicollinearity between internal model components 

In Table 17 and Table 18, the Spearman rank correlations between the SMM components have been 

listed. The significances shown are the two-tailed variant (as we do not know in advance whether any 

correlation will be positive or negative).  

 

Table 17 shows the correlation between the maintainability sub-characteristics analyzability, 

changeability and testability. The correlations are all significant at the 0.01 level. The correlations 

changeability-analyzability and changeability-testability are strong, indicating that these SMM 

components are not orthogonal entities. 

                                                           
8 Strictly speaking, subtracting MI values is only allowed if the MI is valid on at least the interval 

scale, which isn't beyond dispute (see section 2.3.3). 



Results

 

- 31 - 

 

Table 18 shows the correlation between the source code properties duplication, complexity, unit size 

and volume. Here, weak correlations are visible. All correlations are significant at the 0.05 level, and 

are lower than between the sub-characteristics. 

 

 SMM chg SMM tst 

 corr. sign. n corr. sign. n 

SMM ana 0.822 0.000 73 0.485 0.000 73 

SMM chg - - - 0.755 0.000 73 

 

 

 SMM comp SMM usize SMM vol 

 corr. sign. n corr. sign. n corr. sign. n 

SMM dup 0.245 0.037 73 0.296 0.011 73 0.389 0.001 73 

SMM comp - - - 0.628 0.000 73 0.286 0.014 73 

SMM usize - - - - - - 0.302 0.009 73 

 

 

Table 19 shows the Spearman rank correlation between the MI components (again, significances are 

two-tailed). As can be seen, very strong correlations exist between aveV, aveV(g') and aveLOC (all 

significant at α=0.01), indicating that the model components are not orthogonal. The perCM 

component has a smaller and less significant correlation to the other model components, suggesting 

this is more of an orthogonal component than the other three. 

 

 aveV(g') aveLOC perCM 

 corr. sign. n corr. sign. n corr. sign. n 

aveV 0.953 0.000 73 0.952 0.000 73 -0.301 0.010 73 

aveV(g') - - - 0.913 0.000 73 -0.283 0.015 73 

aveLOC - - - - - - -0.136 0.252 73 

 

 

Finally, Table 20 shows the correlation between MI3 and MI4 (one-tailed). As can be seen, the 

correlations are strong to very strong, with high significance. 

 

 MI3 - MI4 

 corr. sign. n 

C 0.700 0.000 19 

C++ 0.922 0.000 11 

Java 0.759 0.000 43 

OO 0.852 0.000 54 

all 0.912 0.000 73 

Table 20. MI3-MI4 comparison 

4.5 Fitting a simpler MI model 

As Table 19 in the previous section showed, the MI components aveV, aveV(g') and aveLOC have a 

very strong correlation. Table 21 shows the results of replacing the MI3 model by a simpler, one-

component model MI'. The table shows three one-component models, each based on one of the 

components of the original MI3 model. These were obtained by fitting a linear regression line of the 

same form as the component in the original MI3 model. 

 

Table 17. Rank correlation of SMM sub-characteristics 

Table 18. Rank correlation of SMM source code properties 

Table 19. Rank correlation of MI components 



Results

 

- 32 - 

Besides the rank correlation coefficients of the new MI' versus the original MI3, the table also shows 

the coefficient of determination r2 of the linear regression line. 

 

 MI3- MI'  rank correlation  

MI' expression corr. sign. n r2 

197,46 - 17,717 * ln(aveV) 0.983 0.000 73 0.966 

110,07 - 5,7036 * aveV(g') 0.937 0.000 73 0.877 

151,48 - 20,242 * ln(aveLOC) 0.998 0.000 73 0.995 

Table 21. Simpler MI models 

 

 



Conclusions, discussion and future work

 

- 33 - 

5 Conclusions, discussion and future work 

This chapter interprets the results of this research and presents the answers to the research questions 

in the form of conclusions and discussion. The very final section discusses possible future work. 

5.1 Conclusions and discussion 

5.1.1 Research question RQ1, RQ1.1 and RQ1.2 

This thesis research has looked at the correlations between the SMM 

and the MI maintainability models. As both models attempt to show 

the same indication of maintainability, a high agreement in the 

outcomes of both models was expected. This was voiced in research 

question RQ1 (see sidebar). As this question differs for software 

systems written in languages for which the MI has been validated and 

software systems written in OO programming languages, the question 

was split into RQ1.1 and RQ1.2. 

 

The answers to RQ1.1 and RQ1.2 will first be discussed in detail, after 

which RQ1 is answered. 

5.1.1.1 Research question RQ1.1 

It is concluded that the MI and SMM maintainability models show a 

moderate, significant degree of positive correlation, when both models 

are applied side-by-side on identical software systems written in the 

programming language C. 

 

The SMM-MI correlation for C programs is 0.494 (SMM versus MI3) or 

0.476 (SMM versus MI4) (see Table 13). Both are significant correlations 

(at α=0.05). This correlation was somewhat lower than the minimum 

expected value of 0.6 that was expressed in section 3.1.4.2. 

 

Using formula (7) from section 3.1.4.2, one sees that this lower value may indicate that the relation 

between the SMM and maintainability ρB (see Figure 7, here reproduced as Figure 13) is less than the 

expected 0.8. However, it may also be that, for the sample of 19 C programs, the relation between the 

MI and maintainability (ρA) is smaller than the ≈0.8 that have been found in the MI validations. To test 

this, expert assessments would be necessary. 

 

Additional discussion about the meaning of this lower correlation is in section 5.1.1.3. 

 

Furthermore, it is important to realize the limitation of the conclusion. In this research, only one 

procedural programming language was included. Therefore, the answer to RQ1.1 is valid for C only, 

and cannot be generalized to the other three languages for which the MI has previously been 

validated (the - now fairly uncommon - languages Pascal, FORTRAN, and Ada9). 

 

                                                           
9 A survey on job advertisements that mention programming language skills do not mention Pascal, 

FORTRAN or Ada in the top-25 most wanted language skills. C is at number 2, Java at 4, C# at 6, and 

C++ at 9 [Enticknap, 2007]. 

RQ1 - Do the outcomes of the MI 

and SMM maintainability models 

show a high degree of positive 

statistical correlation, when both 

models are applied side-by-side on 

identical software systems? 

RQ1.1 - Do the outcomes of the MI 

and SMM maintainability models 

show a high degree of positive 

statistical correlation, when both 

models are applied side-by-side on 

identical software systems written 

in languages for which the MI has 

been validated? 

RQ1.2 - Do the outcomes of the MI 

and SMM maintainability models 

show a high degree of positive 

statistical correlation, when both 

models are applied side-by-side on 

identical software systems written 

in OO programming languages? 



Conclusions, discussion and future work

 

- 34 - 

MI

SMM

maintainability

ρA ≈ 0.8

correlation

A

B

C

ρB

ρC

 
Figure 13. MI and SMM versus maintainability 

5.1.1.2 Research question RQ1.2 

It is concluded that the outcomes of the MI and the SMM maintainability models shows a moderate, 

significant degree of positive correlation, when the models are applied on the OO systems in this 

research. 

 

Let's first discuss the limitations of the positive correlation with the OO sample. The C++ systems 

form a minority in the OO sample (11 C++ systems versus 43 Java systems). Therefore, the research 

results from the OO sample largely reflect the Java results.  

 

Further, the decision was made to limit the OO languages choices to two (Java and C++), which is a 

limited subset of all OO languages available, although containing two of the three most popular OO 

languages (the third being C#) [Enticknap, 2007]. The research findings therefore cannot be directly 

extrapolated to C# or other languages, although the results may be valid for these languages to a 

certain extent. 

 

For Java, the research shows significant SMM-MI correlations of 0.459 (SMM-MI3) and 0.500 (SMM-

MI4). Again, these correlations are lower than expected. Possible reasons for this discrepancy equal 

those given for the C systems, i.e. that either ρA or ρB is lower than assumed. More discussion on the 

meaning of this in section 5.1.1.3. 

 

Interesting to see, is that the SMM-MI correlations for the Java systems are similar to those for the C 

systems. This seems to confirm the assumption (made in section 3.1.4.3) that the fact that both models 

lack specific OO metrics makes them equally capable of dealing with OO systems. 

 

It must be noted that the results for the C++ language systems have insufficient significance, which 

could well have been caused by the small sample size of 11 systems. Briand et al. [1995a] state that for 

a population correlation of 0.6, a sample size of about 20 is needed for the Spearman test (with a one-

tailed significance of 0.05 and a power of 80%). For lower population correlations, the sample size 

must be even larger. As the sample correlations for the C++ systems, 0.365 (SMM versus MI3) and 

0.423 (SMM versus MI4) do not suggest to be population correlation to be larger than 0.6, this 

indicates that 11 may indeed be too small a sample size. In order to give a decisive answer, a larger 

sample size would be needed. However, this was not available in this research. 

 

Another way to circumvent the insufficient significance would have been to use more parametrical 

statistical tests, which usually are more powerful. As we haven't been able to determine that the MI 

and SMM are valid on the interval scale, the common statistical knowledge is that we cannot use 

parametric tests. However, Briand et al. [1995b] state that "with care and after thorough reflection" one 

could still use certain parametric tests in these cases. "Many common parametric techniques (e.g., 

product moment correlation, t-test) are robust to non-linear distortions of interval scales as long as 

they are not 'too extreme', e.g., exponential. If this is the case, these statistics will have a tendency to 



Conclusions, discussion and future work

 

- 35 - 

be conservative and underestimate existing relationships or differences" [Briand et al., 1995b]. Studies 

such as Oman and Hagemeister [1994] have indeed used parametric statistical tests on the MI, 

without proof of the MI being valid on the interval scale. 

 

Finally, the SMM-MI correlations for the OO programs as a whole (combining the C++ and Java 

samples), as well as the SMM-MI correlations for all languages together (combining the C, C++ and 

Java samples), show higher correlations than each of their subsets. This has likely been caused by the 

fact that the data are rather clustered by language, as can be seen in the scatter plots of Figure 11. This 

clustering leads to high between-subset rank correlations, which in turn raises the correlations for the 

supersets. 

5.1.1.3 Research question RQ1 

As was pointed out in the previous two sections, the SMM-MI correlations for both the language for 

which the MI has undergone previous validation, as well as for the OO languages included in this 

research are moderately high, positive, and significant, but lower than expected. It has been stated in 

the previous sections that this may have been caused by ρA and/or ρB being lower than assumed.  In 

other words: either the MI model or the SMM model, or both, are worse indicators of maintainability 

than previously assumed. As we have not measured ρA and ρB directly, we cannot know whether this 

is the case. Measuring ρA and ρB would call for a different research approach, using expert 

assessments in order to get to know a system's maintainability.  

 

Another consideration as to the lower than expected correlations is the following. Both models have a 

different approach to determining maintainability. While the MI model looks at system-wide 

averages, the SMM uses a hybrid approach, in which extremes (such as one unit with a cyclomatic 

complexity over 50) can be detected, while also looking at the big picture (by using categorization (see 

section 2.4.1, mapping A). This makes the SMM more sensitive to small changes, which can cause the 

SMM value to change while the MI value stays unaffected (this is visualized by the large vertical 

jumps in Figure 12). Obviously, this can influence the rank ordering and thus lower the rank 

correlation. Also, the SMM moves in a non-linear way because of the categorization in the model. A 

jump in the SMM value may still cause a change in the rank ordering and subsequently a lower rank 

correlation, even if both the MI and the SMM react to a change10. 

 

Still, the (significant) correlations found in this research are in the range that is considered indicating 

a moderate relationship, using the rule of thumb given in section 3.1.4.1. This indicates that indeed, 

both models do measure the same phenomenon (and the ρA ≈ 0.8 found in the validation described in 

section 2.3.2 suggests that this phenomenon is maintainability). The fact that both models are 

implemented in a different way may be the cause of the lower than expected correlation. This 

research does not decide on how good each of the models is at indicating maintainability, or which 

one is the better model. But again, this was not the intention of this research. 

 

The fact that the correlations for the languages included in this research are quite similar suggests 

that the SMM-MI correlation is fairly language-independent, implying that both SMM and MI are 

equal in indicating maintainability for either procedural programming languages or OO 

programming languages. The language-independence is confirmed by looking at the model 

components: the MI can be calculated for each language that allows the calculation of its components 

                                                           
10 For the sake of completeness it must be said that the MI also moves in a slightly non-linear way 

because the MI values are usually (as by the tool used in this research) rounded to whole numbers. 

This effect, however, is quite small for the MI (the non-linear 'jump' by the rounding is only 2 to 3% 

[MI4 and MI3, respectively] of the total MI range seen in this research, while on average this is 19% 

for the SMM). 



Conclusions, discussion and future work

 

- 36 - 

(languages such as XML are notorious exceptions - see section 2.3.1.1); the SMM was even designed to 

be language-independent [Heitlager et al., 2007]. 

 

Having said this, it may be the case that the SMM-MI correlation measured in this research is also 

valid for programming languages outside the scope of this research. However, this needs to be 

investigated further. 

5.1.2 Research question RQ2 

Welker [2001] remarks on the MI values for OO systems that "It appears 

[...] that object-oriented systems by nature have a fairly high MI due to 

the typical smaller module size." Research question RQ2 deals with 

determining the extent of this influence. 

 

The conclusion is that, while the OO systems researched indeed have a higher average MI than the 

procedural systems, the influence of access routines on the height of the average MI of OO systems is 

limited. The research has shown that access routines account for one-quarter to one-third of the 

higher MI that OO systems have, compared with procedural systems.  

 

It was shown that the amount of access routines varies considerably per programming language (C++: 

19%, Java: 53%) and the effect of this on the MI varies per language as well (C++: 3 MI points, Java: 8 

MI points) (see Table 14 and Table 15).  Still, the difference in average MI of C++ and Java systems 

when compared with C systems is much higher: the median C++ MI3 is 9 points higher than the 

median C MI3, while the median Java MI3 is 24 points higher than the median C MI3. For the MI4 

these differences are 12 and 33 points, respectively (data from Table 12). From these data, it can be 

calculated that the influence of access routines on the MI values of OO systems is limited to 24% to 

33%11. 

 

The remaining part of the difference in MI values is caused by OO programs having smaller overall 

unit sizes (not limited to just the access routines) as well as lower unit complexity, when compared to 

procedural programs. This is shown in Table 15: the average unit size and average complexity of OO 

systems without access routines are over twice as small as those of the C systems. Apparently, OO 

programmers create smaller and less complex units than their procedural counterparts. 

 

It must be noted, however, that both the SMM and the MI measure unit complexity only within units. 

Creating a system consisting of many very small units could introduce possible complexity-increasing 

aspects such as high coupling and excessive inheritance. These aspects are measure by OO-specific 

metrics such as fan-out and depth of inheritance tree, which are not part of either the SMM or MI. 

Therefore, such influences cannot be captured by these models. 

 

Finally, removing the access routines when calculating the MI changes the rank order of the MI3 and 

MI4 scores very little. As Table 16 shows, the rank correlation between the MI version with access 

routines and the MI version without access routines are very strong. This means that the rank 

ordering on the MI scores with and without access routines are very much alike. 

 

                                                           
11 Please note that this calculation assumes the MI to be valid on the interval scale, which isn't beyond 

dispute (see section 2.3.3). 

RQ2 - How much influence do the 

access routines of OO software 

systems have on the value of the 

MI? 



Conclusions, discussion and future work

 

- 37 - 

5.1.3 Research question RQ3 

Both maintainability models are a composition of multiple components. 

As part of this research, the correlations between the components of 

each model were studied (see Table 17 through Table 20). 

 

A common rule of thumb is that each pair of model components should have a correlation coefficient 

in the range -0.5 ≤ r ≤ 0.5. When a correlation coefficient outside this range is encountered, one of the 

two variables of the pair could be removed from the model [Kooiker, 1997]. Anderson et al. [1990] use 

a slightly different rule of thumb. They state that multicollinearity becomes a problem if the absolute 

value of the sample correlation coefficient exceeds 0.7. 

 

Irrespective of which rule of thumb is applied, one reaches the same conclusion: that the SMM 

components changeability and analyzability, as well as the SMM components changeability and 

testability may have too high a multicollinearity. The same goes for all pairs of the MI components 

average Halstead Volume, average extended cyclomatic complexity and average unit size. Both 

models might benefit from removing one or more components. It must be noted, that SIG currently 

already prefers to interpret the SMM components (analyzability, changeability and testability) 

separately, instead of the overall SMM maintainability rating, because of the possibilities of root-

cause analysis, as described in section 2.4.3.  

 

Table 21 shows three possible simpler MI models, each containing just one of the MI3's components. 

As can be seen, there are very strong rank correlations between the original model and the simplified 

ones, and also the coefficient of determination r2 of the linear regression line is very high. This 

supports the opinion expressed above that the MI3 model can be simplified12. 

 

As Table 19 shows, the percentage comments component, part of the MI4, is the model component 

with the smallest (absolute) value of multicollinearity, suggesting that this component is more of an 

orthogonal component than the other three. Yet, the SMM does not contain a comments component, 

as SIG argues that "more often than not, comment is simply code that has been commented out." 

While this may be true, commented-out code should be pretty well recognizable for static code 

analysis tools, and thus could be ignored. The SMM might benefit from the addition of such a 

comments component. 

 

The MI perCM component has a negative correlation to the other three MI components (Table 19). 

However, as the sign of the perCM in the MI formula (see section 2.3.1) is opposite from the sign of 

the other three components, the perCM component still affects the MI value in the same direction as 

the other three MI components do (although less pronounced than the other three, because of its 

lower multicollinearity). This also explains why the MI3 and the MI4 (whose only mutual difference 

is the perCM component) still have such a strong multicollinearity (see Table 20). 

5.2 Future work 

This thesis work has studied the MI and SMM maintainability models, comparing how they perform 

as maintainability indicators. It has done so by looking at the level of correlation between the two 

models. As has been pointed out in section 3.1.4.2, a correlation anywhere in the range from 0.6 to 1.0 

may indicate that the SMM performs just as good as the MI. The breadth of this range, which is 

                                                           
12 It must be added that the high r2 score in itself is not proof that the suggested simplified MI' 

expressions are appropriate to replace the MI3. Also, a residual analysis must be undertaken to 

confirm that the linear regression expression fits properly. 

RQ3 - How strong are the 

correlations of the MI and SMM 

internal model components? 



Conclusions, discussion and future work

 

- 38 - 

caused by the fact that the SMM was judged by comparing it to the MI instead of comparing it 

directly to maintainability, limits the power of this research. 

 

Another limitation of the research is that it cannot tell which of the two maintainability models 

performs better. In order to be able to do so, one would ideally compare both models to 

maintainability as assessed by human experts. Unfortunately, performing human expert assessments 

on a large number of software systems is an arduous task. 

 

An alternative approach may be to use an indicator that has been shown to be strongly correlated to 

maintainability or maintenance effort, and which can be obtained in an automated way. Li and Henry 

[1993] have successfully used the number of changed source code lines as an indicator for 

maintenance effort. As maintainability has been defined as the ease with which a software system or 

component can be modified, it can also be regarded as the number of change requests that can be 

implemented per unit of maintenance effort. Or, taking Li and Henry's findings into account, as the 

number of change requests divided by the number of changed lines. 

 

The approach suggested in the previous above was not followed in this thesis research as the system 

change history was not available for most of the systems. However, to conclude our research, we did 

carry out a small study using change request and changed lines data collected by Yu [2006] on 117 

versions of the Linux kernel. When both the SMM and the MI model were calculated on these Linux 

systems, the results indicated significant (at α=0.05) but weak correlations of 0.175 for the SMM and 

0.320 for the MI4, while the MI3 did not show a significant correlation. These weak correlations may 

have been caused by limitations of this preliminary study. 

 

One limitation of this study is that all change requests were regarded equal, which of course is a bold 

assumption. Yu [2006] concludes that a corrective maintenance task requires more effort than the 

other types of maintenance task. Another limitation is that each changed source code line was 

regarded equal. With present-day refactoring tools, changing a hundred lines of code in an 

automated refactoring may be very unlike to changing a hundred lines by hand. Still, using a 

maintainability indication that is obtained in an automated way may be a promising alternative for 

performing a wide-scale study into the performance of both the MI and the SMM maintainability 

indicators for a variety of present-day programming languages. 

 



Bibliography

 

- 39 - 

Bibliography 

 
[Al-Qutaish and 

Abran, 2005] 

Al-Qutaish, R.E., and Abran, A., An analysis of the design and definitions of Halstead’s metrics, In 15th Int. Workshop on Software Measurement, 

2005, pp. 337-352. 

[Anderson et al., 

1990] 

Anderson, D.R., Sweeney, D.J., and Williams, T.A. Statistics for Business and Economics, 9th ed. West Pub. Co., 1984. 

[Ash et al., 1994] Ash, D., Alderete, J., Yao, L., Oman, P., and Lowther, B., Using software maintainability models to track code health. In Proceedings of the 

international conference on software maintenance, 1994, pp. 154-160. 

[Beser, 1982] Beser, N., Foundations and experiments in software science. In Selected Papers of the 1982 ACM SIGMETRICS Workshop on Software Metrics: Part 

2, 1982, pp. 48-72. 

[Boehm, 1981] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981. 

[Briand et al. 1995a] Briand, L., El Emam, K., and Morasca, S., Theoretical and Empirical Validation of Software Product Measures. Technical Report number ISERN-95-03, 

International Software Engineering Research Network, 1995. 

[Briand et al. 1995b] Briand, L., El Emam, K., and Morasca, S., On the application of measurement theory in Software Engineering. Technical Report number ISERN-95-04, 

International Software Engineering Research Network, 1995. 

[Coleman et al., 1994] Coleman, D., Ash D., Lowther, B., and Oman, P., Using Metrics to Evaluate Software System Maintainability. In IEEE Computer, 1994, vol. 27(8), 

pp. 44-49. 

[Coleman et al., 1995] Coleman, D., Lowther, B., and Oman, P., The application of software maintainability models in industrial software systems. In Journal of Systems and 

Software, 1995, vol. 29(1), pp. 3-16. 

[Davies and Tan, 

1987] 

Davies, G., and Tan, A., A note on metrics of Pascal programs. In ACM SIGPLAN Notices, 1987, vol. 22(8), pp. 39-44. 

[Enticknap, 2007] Enticknap, N., IT salary survey: finance boom drives IT job growth. In SSL/Computer Weekly. Online version:  

http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm. Visited July 

2008. 

[Fenton and Neil, 

2000] 

Fenton, N.E. and Neil, M., Software metrics: roadmap. In Proceedings of the Conference on the Future of Software Engineering, 2000, pp. 357-370. 

[Fenton and Pfleeger, 

1997] 

Fenton, N.E. and Pfleeger, S.L., Software Metrics. A rigorous & practical approach. PWS Publishing Company, 1997. 

[Fenton, 1994] Fenton, N., Software Measurement: A Necessary Scientific Basis. In IEEE Transactions on Software Engineering, 1004, vol. 20(3), pp. 199-206. 

[Halstead, 1977] Halstead, M.H., Elements of Software Science. Elsevier, 1977. 

[Heitlager et al., 2007] Heitlager, I., Kuipers, T. and Visser, J., A Practical Model for Measuring Maintainability. In 6th International Conference on the Quality of 

Information and Communications Technology, 2007, pp. 30-39. 

[Hill and Lewicki, 

2007] 

Hill, T., and Lewicki, P., STATISTICS Methods and Applications. StatSoft, 2007. Online version: http://www.statsoft.com/textbook/stathome.html. 

Visited July 2008. 

[IEEE 610.12, 1990] IEEE, IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology. Standards Coordinating Committee, 1990. 

[ISO 9126-1, 2001] ISO/IEC 9126-1:2001, Software engineering -- Product quality -- Part 1: Quality model, 2001. 

[Jones, 1992] Jones, C., Critical Problems in Software Measurement. Software Productivity Research, 1992. 

[Kan, 2003] Kan, S. H., Metrics and Models in Software Quality Engineering, 2nd ed. Addison-Wesley, 2003. 

[Kiricenko and 

Ormandjieva, 2005] 

Kiricenko, V., Ormandjieva, O., Measurement of OOP size based on Halstead’s Software Science. In Proceedings of the 2nd Software European Forum, 

2005, pp. 253-259. 

[Kooiker, 1997] Kooiker, R., Marktonderzoek, Wolters Noordhoff, 1997 

[Kuipers and Visser, 

2007] 

Kuipers, T., and Visser, J., Maintainability Index revisited – position paper. In 11th European Conference on Software Maintenance and 

Reengineering, 2007. 

[Li and Henry, 1993] Li, W., and Henry, S., Object-Oriented Metrics that Predict Maintainability. In Journal of Systems and Software, 1993, vol. 23(2), pp. 111-122. 

[Liso, 2001] Liso, A., Software Maintainability Metrics Model: An Improvement in the Coleman-Oman Model. In Crosstalk, Journal of Defense Software 

Engineering, 2001, pp. 15-17. 

[McCabe, 1976] McCabe, T.J., A Complexity Measure. In IEEE Transactions on Software Engineering, 1976, vol. 2(4), pp. 308-320. 

[McCall et al., 1977] McCall, J.A., Richards, P.K., and Walters, G.F., Factors in Software Quality. General Electric Co., 1977. 

[Menzies et al., 2002] Menzies, T., Di Stefano, J.S., Chapman, M., and McGill, K., Metrics That Matter. In Proceedings of the 27th Annual NASA Goddard Software 

Engineering Workshop, 2002. 

[Misra, 2005] Misra, S. C., Modeling Design/Coding Factors That Drive Maintainability of Software Systems. In Software Quality Control, 2005, vol. 13(3), pp. 297-

320. 

[Myers and Well, 

2003] 

Myers, J.L. and Well, A.D., Research Design and Statistical Analysis, 2nd ed. Lawrence Erlbaum, 2003. 

[Myers, 1977] Myers, G.J., An extension to the cyclomatic measure of program complexity. In SIGPLAN Notices, 1977, vol. 12(10), pp. 61-64. 

[Oman and 

Hagemeister, 1994] 

Oman, P., and Hagemeister, J., Construction and testing of polynomials predicting software maintainability. In Journal of Systems and Software, 1994, 

vol. 24(3), pp. 251-266. 



Bibliography

 

- 40 - 

[Oman, 1995] Oman, P., Applications of an automated source code maintainability index. Technical Report number 95-08-SL, Software Engineering Test Laboratory, 

University of Idaho, presented at the 1995 Software Technology Conference, 1995. 

[Pearse and Oman, 

1995] 

Pearse, T. and Oman, P., Maintainability measurements on industrial source code maintenance activities. In Proceedings of the international 

Conference on Software Maintenance, 1995, pp. 295-303. 

[Samoladas et al., 

2004] 

Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou, A., Open source software development should strive for even greater code maintainability. In 

Communications of the ACM, 2004, vol. 47(10), pp. 83-87. 

[Schneidewind, 1992] Schneidewind, N.F., Methodology for Validating Software Metrics. In IEEE Transactions on Software Engineering, 1992, vol. 18(5), pp. 410-422. 

[SEI, 1997] VanDoren, E., Halstead Complexity Measures. Software Engineering Institute, Carnegie Mellon University, 1997. Online version: 

http://www.sei.cmu.edu/str/descriptions/halstead.html. Visited July 2008. 

[SEI, 2002] VanDoren, E., Maintainability Index Technique for Measuring Program Maintainability. Software Engineering Institute, Carnegie Mellon University, 

2002. Online version: http://www.sei.cmu.edu/activities/str/descriptions/mitmpm_body.html. Visited July 2008. 

[Shepperd and Ince, 

1994] 

Shepperd, M. and Ince, D. C., A Critique of Three Metrics. In the Journal of Systems and Software. Elsevier Science, 1994, vol. 26(3), pp. 197-210. 

[Welker et al., 1997] Welker, K.D., Oman, P.W., and Atkinson, G.G., Development and application of an automated source code maintainability index. In Journal of Software 

Maintenance, 1997, vol. 9(3), pp. 127-159. 

[Welker, 2001] Welker, K.D., The Software Maintainability Index Revisited. In Crosstalk, Journal of Defense Software Engineering, 2001. 

[Yu, 2006] Yu, L., Indirectly predicting the maintenance effort of open-source software. In Journal of Software Maintenance and Evolution: Research and Practice, 

2006, vol. 18(5), pp. 311-332. 

[Zuse, 2005] Zuse, H., Resolving the mysteries of the Halstead Measure. In Metrikon 2005 – Software-Messung in der Praxis, 2005. Online version: 

http://www.horst-zuse.homepage.t-online.de/z-halstead-final-05-1.pdf. Visited July 2008. 

 

 



Bibliography

 

- 41 - 

Appendix A - SMM and MI results 

Table 22 shows the results from the data extraction of the SMM and MI on 73 software systems. The 

columns have the following meaning (from left to right): 

• system ID 

• system programming language 

• SMM overall maintainability 

• SMM analyzability, changeability, and testability sub-characteristics 

• SMM duplication, complexity, unit size, and volume source code properties 

• 3-component and 4-component MI 

• average Halstead Volume, average extended cyclomatic  complexity, average LOC, and 

average proportion of comments (all at the unit-level) 

 
  SMM MI 

# lang maint ana chg tst dup comp usize vol MI3 MI4 aveV aveV(g') aveLOC perCM 

1 C -1.778 -1.333 -2.000 -2.000 -2.000 -2.000 -2.000 0.000 57 87 2704.3 9.263 115.61 0.19 

2 C -1.278 -0.333 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 49 86 3359.1 12.491 163.88 0.36 

3 C -1.278 -0.333 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 50 81 3307.0 10.345 132.37 0.28 

4 C -1.333 -1.000 -1.500 -1.500 -2.000 -1.000 -2.000 1.000 76 97 746.5 5.301 32.25 0.14 

5 C -1.667 -1.000 -2.000 -2.000 -2.000 -2.000 -2.000 1.000 58 88 3085.3 10.873 130.85 0.17 

6 C -1.556 -0.667 -2.000 -2.000 -2.000 -2.000 -2.000 2.000 57 87 3005.9 10.759 130.12 0.26 

7 C -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 76 109 862.9 4.677 50.92 0.30 

8 C -0.444 0.667 0.000 -2.000 2.000 -2.000 -2.000 2.000 76 117 661.7 4.781 40.47 0.38 

9 C -1.111 -0.333 -1.000 -2.000 0.000 -2.000 -2.000 1.000 76 104 834.3 6.026 39.02 0.23 

10 C -0.722 0.333 -0.500 -2.000 1.000 -2.000 -2.000 2.000 82 115 1098.0 4.706 40.95 0.32 

11 C -1.222 -0.667 -1.000 -2.000 0.000 -2.000 -2.000 0.000 71 104 934.3 5.517 47.97 0.24 

12 C -1.278 -0.333 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 80 116 700.5 4.800 28.57 0.33 

13 C -1.111 -1.333 -0.500 -1.500 0.000 -1.000 -2.000 -2.000 79 108 882.9 4.586 34.90 0.22 

14 C -1.389 -0.667 -1.500 -2.000 -1.000 -2.000 -2.000 1.000 81 111 722.0 4.279 32.95 0.21 

15 C 0.611 0.333 1.000 0.500 0.000 2.000 -1.000 2.000 89 105 565.4 3.479 21.89 0.10 

16 C -1.444 -1.333 -1.000 -2.000 0.000 -2.000 -2.000 -2.000 75 103 1126.0 6.232 43.50 0.24 

17 C -1.278 -0.333 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 84 102 673.5 4.304 28.64 0.18 

18 C -0.722 0.333 -0.500 -2.000 1.000 -2.000 -2.000 2.000 85 109 654.6 4.572 27.80 0.19 

19 C -1.556 -0.667 -2.000 -2.000 -2.000 -2.000 -2.000 2.000 78 98 612.1 5.694 28.52 0.09 

20 CPP -1.778 -1.333 -2.000 -2.000 -2.000 -2.000 -2.000 0.000 94 115 497.9 2.764 21.62 0.10 

21 CPP -1.444 -1.333 -1.500 -1.500 -2.000 -1.000 -2.000 0.000 90 115 417.6 2.368 22.46 0.15 

22 CPP -1.500 -1.000 -1.500 -2.000 -1.000 -2.000 -2.000 0.000 58 97 1297.2 6.187 76.89 0.36 

23 CPP -1.056 -0.667 -1.000 -1.500 -1.000 -1.000 -2.000 1.000 93 115 361.9 2.848 16.99 0.12 

24 CPP -1.000 -1.000 -1.000 -1.000 -2.000 0.000 -2.000 1.000 77 101 912.5 2.371 34.06 0.18 

25 CPP -1.000 0.000 -1.000 -2.000 0.000 -2.000 -2.000 2.000 80 101 636.9 3.544 30.66 0.09 

26 CPP -0.944 -0.333 -0.500 -2.000 1.000 -2.000 -2.000 0.000 85 115 1017.4 5.965 25.17 0.19 

27 CPP 0.000 0.000 0.500 -0.500 0.000 1.000 -2.000 2.000 97 119 463.1 3.023 20.36 0.18 

28 CPP -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 74 106 1507.5 5.365 52.64 0.31 

29 CPP -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 81 113 787.4 4.492 32.88 0.21 

30 CPP -0.444 -0.333 0.000 -1.000 0.000 0.000 -2.000 1.000 87 115 435.2 2.894 22.66 0.16 

31 Java -0.111 0.667 0.500 -1.500 2.000 -1.000 -2.000 2.000 105 140 204.5 1.948 10.04 0.26 

32 Java -1.444 -1.333 -1.500 -1.500 -2.000 -1.000 -2.000 0.000 108 149 155.3 1.288 8.65 0.33 

33 Java 0.000 0.000 0.500 -0.500 0.000 1.000 -2.000 2.000 102 124 304.2 2.178 11.27 0.11 

34 Java 0.556 0.667 1.000 0.000 1.000 1.000 -1.000 2.000 112 150 133.4 1.444 7.74 0.27 

35 Java 0.833 1.000 1.500 0.000 2.000 1.000 -1.000 2.000 112 147 151.0 1.573 7.38 0.22 

36 Java -1.222 -0.667 -1.500 -1.500 -2.000 -1.000 -2.000 2.000 81 112 713.6 3.405 29.56 0.17 

37 Java 0.167 0.000 0.500 0.000 0.000 1.000 -1.000 1.000 103 142 217.8 1.837 10.80 0.31 

38 Java -0.500 0.000 -0.500 -1.000 0.000 -1.000 -1.000 1.000 110 124 197.8 1.860 7.37 0.03 

39 Java -1.167 -1.000 -1.000 -1.500 -1.000 -1.000 -2.000 0.000 96 129 274.8 2.255 16.22 0.24 

40 Java -1.389 -0.667 -1.500 -2.000 -1.000 -2.000 -2.000 1.000 94 109 395.2 3.363 15.17 0.05 

41 Java -0.333 0.000 0.000 -1.000 0.000 0.000 -2.000 2.000 105 145 185.6 1.423 10.81 0.31 

42 Java -0.611 -0.333 -0.500 -1.000 -1.000 0.000 -2.000 2.000 82 110 658.7 3.227 27.61 0.17 

43 Java -0.778 -0.333 -0.500 -1.500 0.000 -1.000 -2.000 1.000 105 138 189.3 1.727 10.77 0.21 

44 Java -0.667 0.000 -0.500 -1.500 0.000 -1.000 -2.000 2.000 102 138 217.2 1.922 11.23 0.27 

45 Java -0.111 0.667 0.000 -1.000 1.000 -1.000 -1.000 2.000 99 141 243.0 2.225 14.60 0.38 

46 Java -0.778 -0.333 -1.000 -1.000 -1.000 -1.000 -1.000 1.000 101 132 250.8 2.096 11.93 0.16 

47 Java 0.278 0.333 0.500 0.000 0.000 1.000 -1.000 2.000 113 141 147.9 1.783 7.12 0.37 

48 Java -0.889 -0.667 -0.500 -1.500 0.000 -1.000 -2.000 0.000 92 132 248.6 2.379 19.20 0.38 

49 Java -0.500 0.000 0.000 -1.500 1.000 -1.000 -2.000 1.000 98 125 362.7 2.768 12.88 0.17 

50 Java -0.722 0.333 -0.500 -2.000 1.000 -2.000 -2.000 2.000 88 125 349.9 2.869 19.92 0.35 

51 Java -0.111 0.667 0.500 -1.500 2.000 -1.000 -2.000 2.000 101 139 221.7 1.800 12.58 0.28 

52 Java -0.778 -0.333 -0.500 -1.500 0.000 -1.000 -2.000 1.000 99 136 233.2 2.393 13.48 0.34 

53 Java -1.167 -1.000 -1.000 -1.500 -1.000 -1.000 -2.000 0.000 100 138 229.4 1.928 12.97 0.30 

54 Java 0.278 0.333 0.500 0.000 0.000 1.000 -1.000 2.000 97 135 259.9 2.294 14.63 0.34 

55 Java -0.389 0.333 -0.500 -1.000 0.000 -1.000 -1.000 2.000 96 135 274.8 2.261 15.75 0.35 

56 Java 0.889 0.667 1.000 1.000 0.000 2.000 0.000 2.000 104 143 190.6 1.756 11.34 0.38 



Bibliography

 

- 42 - 

57 Java -0.722 0.333 -0.500 -2.000 1.000 -2.000 -2.000 2.000 104 145 186.2 1.841 11.48 0.39 

58 Java 0.889 0.667 1.000 1.000 0.000 2.000 0.000 2.000 100 139 209.9 1.724 14.20 0.37 

59 Java -1.778 -1.333 -2.000 -2.000 -2.000 -2.000 -2.000 0.000 93 129 347.8 2.342 15.29 0.26 

60 Java -1.889 -1.667 -2.000 -2.000 -2.000 -2.000 -2.000 -1.000 93 131 253.3 1.774 15.64 0.31 

61 Java -0.111 -0.333 0.000 0.000 -1.000 1.000 -1.000 1.000 97 137 280.2 2.103 14.55 0.35 

62 Java 0.000 0.000 0.000 0.000 -1.000 1.000 -1.000 2.000 106 148 167.0 1.609 10.69 0.38 

63 Java 0.611 0.333 1.000 0.500 0.000 2.000 -1.000 2.000 99 139 207.1 1.503 12.92 0.36 

64 Java -1.167 -1.000 -1.000 -1.500 -1.000 -1.000 -2.000 0.000 95 133 338.0 2.467 15.36 0.30 

65 Java -1.167 -1.000 -1.000 -1.500 -1.000 -1.000 -2.000 0.000 102 132 239.0 1.842 10.18 0.17 

66 Java -1.278 -0.333 -1.500 -2.000 -1.000 -2.000 -2.000 2.000 93 113 568.8 3.086 15.55 0.06 

67 Java -0.944 -0.333 -1.000 -1.500 -1.000 -1.000 -2.000 2.000 93 130 329.3 2.776 18.29 0.29 

68 Java -0.500 0.000 -0.500 -1.000 0.000 -1.000 -1.000 1.000 105 141 219.7 1.819 10.29 0.22 

69 Java -1.167 -1.000 -1.000 -1.500 -1.000 -1.000 -2.000 0.000 96 128 309.4 2.232 15.52 0.21 

70 Java -0.500 0.000 -0.500 -1.000 0.000 -1.000 -1.000 1.000 99 133 229.1 1.895 14.05 0.28 

71 Java 0.000 0.000 0.000 0.000 -1.000 1.000 -1.000 2.000 100 144 187.1 1.757 13.51 0.42 

72 Java -1.222 -0.667 -1.500 -1.500 -2.000 -1.000 -2.000 2.000 111 145 133.8 1.757 8.40 0.20 

73 Java -1.056 -0.667 -1.000 -1.500 -1.000 -1.000 -2.000 1.000 89 121 473.5 2.974 20.13 0.20 

Table 22. SMM and MI results 


