
Cobol Data Flow Restructuring

Gerbrand Stap

August 11, 2005

Master Software Engineering,
University of Amsterdam

Supervisors:
Steven Klusener 1

Niels Veerman 1

Mark van den Brand 2

Performed at: Free University of Amsterdam, May–August 2005

1Free University of Amsterdam
2University of Amsterdam

Contents

1 Introduction 2

1.1 Rationale . 2
1.2 Nested programs vs. OO Cobol 3
1.3 Related work . 3
1.4 Technical details . 4
1.5 Organization of thesis . 5

2 Algorithm and its implementation 6

2.1 Assumptions . 6
2.2 Overview . 7
2.3 Code normalization . 7
2.4 Data flow extraction . 8
2.5 Data flow analysis . 13
2.6 Transformation to nested programs 21
2.7 Points of interest . 23

3 Results 26

3.1 Applying the transformations . 26
3.2 Future work . 27
3.3 Conclusion . 30

Abstract

In 1997 the world-wide amount of Cobol code was estimated at 180
Gloc (1 Gloc = 1,000,000,000 lines of code), which was growing at a
rate of 5 Gloc a year. If this growth did not change in the past eight
years, it would mean that Cobol accounts for 220 Gloc world wide(!)
[2]. This in contrast to the amount of newly trained Cobol developers
which – according to [7] – is decreasing.

To cope with the vastly increasing amount of code that has to be
maintained by the shrinking group of Cobol developers and maintainers,
some measures have to be taken that enhance the maintainability of the
Cobol code. One possible approach to this is the reduction of global
variables. The transformations presented here can determine parameters
and local variables in existing Cobol code.

1 Introduction

1.1 Rationale

In the first standard of Cobol – released in 1960 – the only variables that
could be declared were global variables. The reason for this is that there is one
specific division reserved for declarations, the DATA DIVISION. The big prob-
lem with one large block of variable declarations is that later on a variable can
be used everywhere in the program. So it is not clear which variable belongs
to which part of the code. Also it is not clear where a variable will or might
be changed. The solution to this problem is a block structured program with
methods, procedures and/or functions, which is very common in modern lan-
guages. These blocks can contain their own variable declarations and their scope
is limited to that block.

Another problem of programs that have no block structure is the lack of
parameters. In order to ‘simulate’ parameters in Cobol, some assignments
(MOVEs) are typically done before and after a call of a section (PERFORM). For
example:

MOVE OWN-VAL-1 TO ADD-VAL-1

MOVE OWN-VAL-2 TO ADD-VAL-2

PERFORM ADD-UP

MOVE ADD-RESULT TO OWN-RESULT.

It is clear that this is more lengthy and more variables are required than
with single procedure call with two input and one output parameter. Removing
unneeded MOVE statements and declarations does not belong within the scope of
this research, but is a logical follow-up.

Block structured programs were introduced in Cobol with the Cobol-85
standard (ISO/IEC 1989:1985). The concept that gave the programmer the
opportunity to make use of local variables and parameters was called ‘nested
programs’. Unfortunately, twenty years later, this technique is still not used on a
large scale. Some recent compilers also support OO Cobol, which is part of the
Cobol-2002 standard (ISO/IEC 1989:2002) and is also used in the Microsoft
.Net framework. In OO Cobol, classes can be defined which contain methods
that have their own local variables and parameters.

2

To attack the problem of the global variables in Cobol, automatic trans-
formations will be used to transform ‘normal’ Cobol programs into Cobol
programs that make use of local variables and parameters. The reason why
automatic transformations are used is the consistency of the resulting code, the
possibility to improve and apply the transformations rapidly and the fact that
knowledge about what is transformed is stored in the transformations (and not
in difference between the original and the resulting code).

So the aim of this research becomes the increase in maintainability of Cobol
programs by improving its data flow with the use of automatic transformations.
The result should be a block structured program that makes use of parameters
and local variables, and with the same functionality as the original program.
The results will be an overview of the parameters and local variables that are
resolved in order to create such a block structured program and of course the
resulting code.

1.2 Nested programs vs. OO Cobol

As mentioned, there are two ways in Cobol to make use of local variables and
input and output parameters.

Nested program are (as the term implies) programs within another program.
These nested programs look the same as ‘normal’ programs: they have their own
DATA and PROCEDURE DIVISIONs and can be called with the CALL statement,
which is also used to pass input and output parameters. The main difference
with a normal program is that a nested program is only accessible from the
containing program.

The structure of an OO Cobol program is quite different from a normal
program, because it is composed of classes. Instead of sections and paragraphs,
the PROCEDURE DIVISION of a Cobol class contains methods. Methods also
have their own DATA DIVISION and can accept input and output parameters.
From that point of view, methods are like nested programs. But when declared
PUBLIC, methods are accessible by other programs. Methods are called using
the INVOKE statement, which like a CALL statement can accept input and out-
put parameters. When comparing nested programs to methods, (containing)
programs should be comparable with classes. This comparison is not correct
though, because a class can not be called, only its methods can be INVOKEd.

It is the intention to take existing code, transform it to improve its data
flow, and use it in its original environment. That is why it is desirable that the
transformed code is compatible with the original code. If a program would be
transformed to a class, the CALLs to that program should be changed to INVOKEs
to its methods and it would be necessary that the (existing) compiler supports
OO Cobol. Because of these incompatibilities, it is easier to stick to a more
conventional solution and therefore the transformation to nested programs is
discussed here. A transformation to OO Cobol could be done later with the
use of the resolved parameters and local variables, if needed.

1.3 Related work

A great part of the algorithm that extracts parameters and local variables is
derived from [5]. An algorithm that extracts parameters from RPG code for
the generation of wrappers is presented in that paper. For this research, this

3

algorithm is adapted for Cobol code and some features are added to extract
the local variables.

In [4] the problem of implicit structures is recognized. Such structures are
for instance: enumerated types, procedures and local variables. In [4] some
leads are given to make these implicit structures explicit. Also a step by step
plan is given to ‘remodularize’ Cobol code (create nested programs). This
plan is, however, not exhaustive and is meant to be carried out by hand. The
transformations presented here do the same work in an automated manner.

The main benefits and bottlenecks of nested programs are discussed in [1].
Performance issues are also addressed and the conclusion is made that calling a
nested program is faster when less than five parameters are used. And frequently
called nested programs are most likely faster than frequently performed sections
/ paragraphs. But the difference in performance is probably hardly measurable.
Note that improving performance is not a goal for this research.

A research similar to the research presented here is described in [12]. In
this research, global variables are identified in Ada code. When such a global
variable is used within a procedure, the variable will be added as a parameter
of this procedure. This is done for the same reason as the transformations
applied to the Cobol code, namely to enhance the maintainability of the code.
The difference is that the variable in the Ada code will remain global and the
identification of parameters is only done to indicate that a variable is used in a
specific procedure. The analysis to determine the ‘global parameters’ is based
on only one procedure at a time, so it is not checked whether a value set to
a variable will reach a use in another procedure. This may result in unneeded
input and/or output parameters.

More research, mainly concerning automated transformations on Cobol
code, at the Free University in Amsterdam can be found in [6]. A part of this re-
search is presented in [11], where Cobol/CICS legacy systems are transformed
to make them better maintainable. The main operations done on Cobol code
are the removal of GO TO statements and the isolation of paragraphs that can be
used as subroutines. This ‘componentization’ can be seen as a first step towards
transforming Cobol programs into block structured programs.

A research that focuses on Cobol and is based on [11], is presented in [13].
The transformations from [11] are improved in [13] to make them more stable
and more transparent and they are combined in an automated algorithm that
can be applied on a large amount of Cobol programs. Also more transformation
rules were implemented so that they could be applied to more Cobol programs.

Automatic transformations are also applied on real-world Cobol code at
the Free University. A good example of this can be found in [8]. These trans-
formations concerned a data expansion of a product code that needed to be
changed from two to three digits.

The papers [11] and [13] present transformations to enhance the control flow
of a Cobol program (e.g. remove GO TOs, etc.). This can be seen as a prereq-
uisite to enhance the data flow, which can be done using the transformations
presented here.

1.4 Technical details

The transformations are specified using the Asf+Sdf Meta-Environment. The
ASF+SDF Meta-Environment is an interactive development environment for

4

the automatic generation of interactive systems for manipulating programs,
specifications, or other texts written in a formal language. The generation
process is controlled by a definition of the target language, which typically in-
cludes such features as syntax, pretty printing, type checking and execution of
programs in the target language [3].

In this case an already defined grammar, specified in Sdf, of Compaq
Cobol was used. This grammar was obtained earlier using a IBM VS II
Cobol grammar [10], which was adapted using the Grammar Deployment Kit
(GDK)[9]. Beside it, some grammars were specified in Sdf for intermediate
data structures specific to this research. Rewrite rules to transform the Cobol
programs and to determine the local variables and parameters, were specified
in Asf.

Comments will disappear when using a compiled version of the Asf trans-
formations. Removing comments does not increase maintainability, which is one
of the main motivations for this research. According to the website [3], it will
be possible to match layout and comments in future versions of the Asf+Sdf
Meta-Environment (from version 1.6, which is currently under development).

All examples concerning grammars / syntax and rewrite rules are given in
the Asf+Sdf formalism.

A code base of 1.2 Mloc real-world Compaq Cobol code is available for
testing purposes and will be addressed simply with the term ‘code base’ from
here on.

Source code examples were tested using IBM ILE Cobol/400 on an IBM
AS/400.

Transformations were made and run using a desktop PC with an AMD
Athlon 64 3200+ processor (running at 2200 MHz) and 512 MB memory.

1.5 Organization of thesis

The thesis will first continue with ‘Algorithm and its implementation’ (section
2) in which – at first – some assumptions are discussed that were made before
the algorithm was implemented. After that the algorithm and how it was im-
plemented in the transformations are discussed in four steps (2.3 through 2.6).
A number of subjects that were encountered and caused the need to adapt the
implementation are discussed in ‘Points of interest’ (2.7).

The next and last section is ‘Results’ (section 3). In this chapter some statis-
tics are given that were collected during the appliance of the transformations on
a real life system. This is followed by a few topics that could not be solved for
the time being, or with other words ‘Future work’ (3.2). Finally, a conclusion
(3.3) completes this thesis.

5

2 Algorithm and its implementation

2.1 Assumptions

In order to successfully apply the transformations, two assumptions are made.
These assumptions are explained in this section.

Program consists of at least two sections

The PROCEDURE DIVISION (the statement part) of a Cobol program must con-
sist of sections, or paragraphs optionally followed by sections. Sections, on their
turn, can also contain paragraphs. So a program does not need to have sections,
but the assumption states that they do. This is because each section will be
transformed to a nested program. The reason for this is that all programs in the
code base are completely divided into several sections. Each section performs
a logical function like opening a file, writing data to it or displaying results.
So there already is a division into functionality and these sections are therefore
logical candidates to be transformed nested programs. These sections also con-
tain paragraphs, but it is not logical to transform these paragraphs to nested
programs. Some sections, for example, are divided in two paragraphs, where
the first paragraph is used to initialize variables and the second part processes
these values. Transforming such paragraphs to nested programs would result in
two nested programs that exchange all variables that they use. Transforming a
program that contains only one section is quite useless, because the first section
will not be transformed to a nested program and thus the program would not
be modified (see also section 2.6).

A Cobol program that is not divided into sections or just has one section
would require some preprocessing in which possible sections are identified. Or
the transformation could be adapted so that paragraphs are transformed instead
of sections. But this is not within the scope of the work presented here.

Paragraphs in other sections are not accessed directly

In order to execute the statements in a section and let the program return to
the executing statement (just as one would expect with a function or method),
this section needs to be PERFORMed. An interesting detail of Cobol is that the
PERFORM statement can also be used on paragraphs, which can exist inside a
section. GO TO statements can also jump to a section or paragraph, with the
difference that the flow of control will not automatically return to the GO TO

statement.
Execution of a (nested) program is done by using the CALL statement, which

can transfer parameters. PERFORMs on sections will be translated to these CALLs
on nested programs and PERFORMs on paragraphs will be left unchanged. After
the transformation, there might still be paragraphs inside a nested program,
but these paragraphs are no longer reachable from other nested programs. This
is the reason why PERFORMs and GO TOs on paragraphs inside another section
(and later: another nested programs) are not allowed. A PERFORM or GO TO on
a paragraph within the same section will not cause any problems and will be
moved (without change) to the new nested program.

6

2.2 Overview

The transformation of normal Cobol programs to programs that contain nested
programs, is actually a series of transformations. The transformations that must
be applied to the code in order to acquire the final result are (section numbers
are included):

2.3 Code normalization

2.4 Data flow extraction

• Variable declarations

• Data and control flow

2.5 Data flow analysis

• Build data flow tables

• Determine parameters and local variables

2.6 Transformation to nested programs

To determine the parameters and local variables, there must be knowledge
of the existing variables. Therefore all declarations of the program that will
undergo the transformation are gathered first. This data is needed in all re-
maining transformations. The data and control flow can now be extracted from
the statements of the program. The data gathered here are the ‘uses’ (the value
of a variable is used) and ‘sets’ (the value of a variable is set) of the variables
and some simplified control flow information.

After these steps the actual algorithm that determines the parameters and
local variables, using the data and control flow information, is applied. This
algorithm is derived from the algorithm presented in [5]. The two main steps
in this algorithm are to build up eight tables that contain specific information
about the data flow, and determining the parameters and local variables.

All transformation will be discussed in detail in the following corresponding
sections.

2.3 Code normalization

Some code normalizations are applied to the code which make the transfor-
mation less complex and therefore better understandable. Some examples of
these normalizations are the removal of optional (meaningless) keywords and
the addition of ELSE branches to IF statements. In order to force these code
normalizations, some of the transformations from [13] are applied before anal-
ysis are done. The only reason for the appliance of these normalizations is the
simplification of the analysis that determine the parameters and local variables.
They will not be visible in the resulting code.

Nameless variables and FILLERs

A normalization that was not addressed in [13] is the removal of nameless vari-
ables and FILLERs. The problem with nameless variables and FILLERs is that
they are often used in REDEFINES, for example:

7

01 YEAR PIC 9999.

01 REDEFINES YEAR.

03 CENTURY PIC 99.

03 FILLER PIC 99.

REDEFINES are used to define different classifications for the same data. So
the YEAR variable and the nameless variable make use of the same piece of
memory. Changing the YEAR changes the CENTURY and vice versa. Therefore
this notation is comparable to typecasting. In this code example it is impos-
sible to fully qualify the variable CENTURY and to store the redefine of YEAR

(because it can not be named). That is why a transformation was made that
renamed nameless variables to names that were temporarily added to the syntax
(NONAME#x and FILLER#x), to avoid name collisions. So the example declaration
would become the following during transformation:

01 YEAR PIC 9999.

01 NONAME#1 REDEFINES YEAR.

03 CENTURY PIC 99.

03 FILLER#2 PIC 99.

During transformation the redefined variable can be referred to as NONAME#1
REDEFINES YEAR and it is possible to fully qualify unnamed variables, like
CENTURY IN NONAME#1. Of course, these names will not be visible in the re-
sulting code, because they do not comply to the Cobol syntax.

Copy books

Copy books must be expanded before the code can be analyzed. The code base
contained mostly copy books that inserted a declaration of some frequently used
data structure. This data is of course crucial for the output of the algorithm.
That is why copy books were expanded with use of a pre- and post-processing
script, written in Perl.

2.4 Data flow extraction

Variable declarations

A very typical characteristic of Cobol are the record structures that can be
declared and used as variables. These records mostly represent a logical set of
data that reflects real world data. To keep these logical sets of data logical to a
programmer, the records have to be kept together. Take for example a postal
code record like this:

01 POSTALCODE.

03 DIGITS PIC 9999.

03 CHARACTERS PIC XX.

When a subroutine only uses the DIGITS of the POSTALCODE, only these
DIGITS could be passed as an input parameter. But it is unclear what a param-
eter named DIGITS represents. That is why the algorithm must only produce

8

parameters and local variables that are top-level (01) variables. So in this case
the entire POSTALCODE will be passed, even if only the DIGITS are required.

Data flow restructuring is all about the variables, so the way in which the
variable declarations are stored during transformation is crucial. The record
structure of variables is a very important factor in the representation, because
it must be clear when a variable is set. When, for example, a postal code is
declared as in the example in this section and used as follows:

SOME SECTION.

...

MOVE "1081HV" TO POSTALCODE

DISPLAY DIGITS.

...

It becomes clear that there has to be knowledge about all declared variables.
The representation of the variables must make a distinction between levels of
records. The distinction between levels is necessary because it has to be clear
when the value of a variable is set. It is set when its own value is set, the value
of a super-level is set, or all sub-level variables are set. The variable DIGITS

in the example is therefore set before use and it will not be necessary to, for
example, pass DIGITS as input parameter for section SOME.

During analysis Cobol variables are represented by using a built-in list (of
the Meta Environment). This list is used to store the fully qualified name of the
variable by putting the name of the bottom level in the list as the first element.
This way it is easy to determine whether for example a variable has a value
set to it by using list matching. The Asf+Sdf Meta Environment also has a
built-in set, which is used to store all variable declarations. The syntax in Sdf
of a Cobol variable and the set of all variables is:

"[" { Type "," }* "]" -> List[[Type]]

"{" { Type "," }* "}" -> Set [[Type]]

List [[Lex-cobword]] -> Variable

Set [[List[[Lex-cobword]]]] -> Variable-set

Where the Lex-cobword is a sort from the Cobol grammar that is used
(amongst other things) for a name of a variable. Note that a variable is rep-
resented by a list of Lex-cobwords, i.e. its fully qualified name. After the
declarations of the earlier mentioned POSTALCODE is gathered, it will thus be
represented like this:

{[POSTALCODE], [DIGITS, POSTALCODE], [CHARACTERS, POSTALCODE]}

A number sections in the DATA DIVISION can contain variables, but only
variables from the WORKING-STORAGE SECTION are gathered. Variables from the
FILE SECTION are ignored, because file descriptors can not be passed between
(nested) program. Variables from the LINKAGE SECTION (in which parameters
are declared) are also ignored, because the interface of the program must not
change. More details on this can be found in section 2.7.

9

Redefines are also gathered and stored in a built-in table of the Meta Envi-
ronment. The general syntax of this table and the syntax of the specific table
used, are:

List [[< Key, Value >]] -> Table[[Key, Value]]

Table[[Variable, Variable]] -> Redefine-table

In this table, the first variable (the key) is the variable that redefines the
second variable (the value).

Here is another example of a postal code (with another name to avoid any
confusions), but now the digits are accessible using a redefine. Note that the
original code is given and the code after the transformation mentioned in 2.3,
because otherwise it would not be possible to store the redefines.

Declarations After renaming

01 POSTAL PIC 9999XX.

01 REDEFINES POSTAL.

03 DIGITS PIC 9(4).

03 REDEFINES DIGITS.

05 FIRST2 PIC 99.

05 LAST2 PIC 99.

03 PIC XX.

01 POSTAL PIC 9999XX.

01 NONAME#1 REDEFINES POSTAL.

03 DIGITS PIC 9(4).

03 NONAME#2 REDEFINES DIGITS.

05 FIRST2 PIC 99.

05 LAST2 PIC 99.

03 NONAME#3 PIC XX.

The resulting Redefine-table would be:

Redefine-table

[< [NONAME#1], [POSTAL] >,

< [NONAME#2, NONAME#1], [DIGITS, NONAME#1] >

]

This table is used to check, for every use or set of a variable (see next
paragraph), whether it has a redefine. If this is the case, not this variable will
be used in the remaining part of the algorithm, but the variable it redefines.
So making use of the variable NONAME#1 is interpreted as using POSTAL, and
using NONAME#2 is interpreted as using DIGITS. When the program is actually
transformed to a program with nested programs, all level 01 redefines have to
be kept together with the variables they redefine. Redefines on lower levels are
automatically kept together because they will belong to the same super levels.

Data and control flow

All necessary data regarding the data and control flow will be gathered in this
stage. Only two possible facts about a variable used in the source code have to
be retrieved: the set or use of a variable. The representation of the control flow
is also limited to the minimum; a PERFORM of another section is stored (perf)
and it is possible to indicate that the control flow path splits up (fork). The
syntax of the needed data is as follows:

"set" Variable -> Dataflow-info

10

"use" Variable -> Dataflow-info

"perf" Label-name -> Dataflow-info

"fork" "("

Dataflow-info-list ":"

Dataflow-info-list

")" -> Dataflow-info

List [[Dataflow-info]] -> Dataflow-info-list

Where Label-name is a sort from the Cobol grammar that is used for a
name of a section.

The explanation of this notation will be done using some examples:

ADD statement

Statements Data-flow-info-list

ADD A, B TO C, D [use[A], use[B], use[C],

set[C], use[D], set[D]

]

The ADD statement given here performs two calculations, namely: C = C

+ A + B and D = D + A + B. The most important aspect here is to get the
uses and sets in the right order. The values of C, A and B will be used before
C is set and in addition D is used to set D. It is not a problem that ‘use[A],
use[B]’ is not repeated before ‘use[D]’, because the results that matters (e.g.
the value of A is used before the value of D is set) will remain unchanged. Such
a conclusion makes a difference when a statement like ‘ADD A TO A’ (= A + A)
is used, because A is now used before it has been set. When A is not set in
previous statements, it will probably become an input parameter of the section
where where this statement is used.

IF and MOVE statement

Statements Data-flow-info-list

IF C = 0

MOVE B TO A

ELSE

MOVE C TO A

END-IF

[use[C], fork(

[use[B], set[A]] :

[use[C], set[A]]

)

]

The IF statement is probably the most obvious example to show the use of
the ‘fork’. After checking the condition (C = 0), there are two possible paths
to execute, the if-branch and the else-branch. Both paths consist of a MOVE

statement, which uses the value of its first argument to set the value of the
second.

Record structures

Statements Data-flow-info-list

MOVE "1081HV"

TO POSTALCODE

DISPLAY DIGITS.

[set[POSTALCODE],

use[DIGITS, POSTALCODE]

]

This example uses the declaration of a postal code from section 2.4 and
illustrates that a variable from a lower level will be represented with its fully
qualified name.

11

PERFORM statement

Statements Data-flow-info-list

PERFORM VARYING A

FROM B

BY D

UNTIL C

PERFORM SEC

END-PERFORM

[use[B], set[A], use[C],

fork(

[perf SEC, use[A],

use[D], set[A], use[C],

fork(

[perf SEC, use[A],

use[D], set[A]

] :

[]

)

] :

[]

)

]

This example contains a few interesting things. First of all it contains two
types of PERFORM statements, the in-line (1st) and the out-of-line (2nd) PERFORM.
The in-line PERFORM produces a counter A that starts at B and is each loop
increased by D as long as condition C is true before the statements are executed.
The out-of-line PERFORM calls another section or paragraph and is transformed to
‘perf SEC’. All other data flow information is generated by the in-line PERFORM.

The representation of the control flow is chosen to simplify the processing of
the data and control flow at a later stage. Therefore the in-line PERFORM must
be represented with only the fork mechanism. The condition (C) can be false
before the first loop, therefore a fork is inserted after the use of the condition
which has one empty path. The other path contains the data and control flow
information of the statements nested in the in-line PERFORM (i.e. perf SEC),
followed by the increase of the counter (i.e. use[A], use[D], set[A]). In
order to match the data and control flow information with the semantics of a
loop, the part from the use of the condition to the end of the PERFORM statement
is copied (the part in italics). Now all possible sequences of uses and sets are
represented in the data and control flow information. Even when the loop is
always executed more than twice, it is not necessary to copy the part in italics
more often, because it would not add any new sequences, which is the only thing
that matters for the representation of the control flow.

For a complete program the data and control flow information is stored
in a table that uses the name of the section (the Label-name) as key and the
Dataflow-info-list as value. Thus, the syntax of the table is:

Table[[Label-name, Dataflow-info-list]] -> Dataflow-info-table

By using this Table it becomes easy to look up the Dataflow-info-list

of a specific section. This comes in handy when, later on in the algorithm, this
data must be looked up for a performed section. Here is an example of how a
piece of code is transformed to a Dataflow-info-table:

12

Example with more sections

Sections Data-flow-info-table

SOME SECTION.

MOVE ’HELLO WORLD!’ TO S

PERFORM DISP.

DISP SECTION.

DISPLAY S.

[< SOME,

[set[S], perf DISP]

>,

< DISP,

[use[S]]

>

]

2.5 Data flow analysis

The algorithm used to resolve the input and output parameters from existing
code, is the algorithm described in [5]. This algorithm is used to resolve the
interface of RPG program subroutines to produce wrapper code. This problem
is comparable to the problem in this case, with the difference that the knowl-
edge about the resolved interface is used to restructure existing code instead of
producing wrappers.

The algorithm presented in [5] is based on the control flow graph of the
program, and therefore called flow-sensitive. This approach is more precise
(and more intensive) than a flow-insensitive algorithm like the one presented
in [12]. This is feasible because the transformations on the code are needed
to enhance the maintainability. When, for example, too many parameters are
added to a subroutine, maintainability decreases because it still is not clear
what that subroutines exactly needs to do its work properly.

A restriction of the algorithm is that it can not handle programs with recur-
sive subroutines. The good news is that not all Cobol compilers can handle
recursive PERFORMs of sections or paragraphs mainly because recursive sec-
tions or paragraphs are not a part of the official Cobol standard. The only way
in Cobol to define a recursive process is to make an entire program recursive
(by adding the RECURSIVE phrase) and let that program CALL itself. But since
the scope of this research is not on interaction between programs but between
sections, this restriction of the algorithm causes no problems.

Build data flow tables

The first step in the algorithm is to build up a number of tables that contain in-
formation about the data flow. This information is gathered using the extracted
information about the control and data flow from the Data-flow-info-table

(see section 2.4) and will eventually be used to determine the parameters and lo-
cal variables. In this first step the eight tables RUSE, RXSET, RSET, SET, SE-
TUSEDOWN, SETUSEUP, RUSECALL and RSETCALL will be built. These
tables will then be used to build the tables INPUT, OUTPUT and LOCAL,
which hold the input parameters, output parameters and local variables respec-
tively. The dependencies between these tables (and the Dataflow-info-table)
is shown in figure 1.

13

Dataflow-info-table

RUSERXSETRSETSET

SETUSEDOWNSETUSEUP RUSECALLRSETCALL

LOCAL

INPUTOUTPUT

Nodes that have the same shape are tables with the same syntax.
Dashed nodes are intermediate results.

Figure 1: Dependencies of data flow tables

The tables RUSE, RXSET, RSET, SET, INPUT, OUTPUT and LOCAL
have the following syntax:

Table[[Label-name, Variable-set]]

This means that for each section (with name Label-name), a set of variables
is stored that have a specific characteristic. How this variable set is determined,
will be explained later on. The remaining tables (SETUSEDOWN, SETUSEUP,
RUSECALL and RSETCALL) have the syntax:

Table[[< Label-name, Label-name >, Variable-set]]

These tables contain a variable set for each pair of section names (the tuple
< Label-name, Label-name >), where the first section performs the second.

Note that the tables are different from the the way they are defined in [5].
The choice of the syntax for these tables relies mostly on the used tool, the
ASF+SDF Meta Environment.

Each table will be explained in the following paragraphs.

RXSET contains the variables that are (indirectly) set on all paths in a sec-
tion. Its contents vary during the process of building up the tables. The fol-
lowing example will be used to explain the tables RXSET, RUSE, RSET and
SET:

14

Code example for RXSET, RUSE, RSET and SET
Declarations Code fragment

01 X PIC X.

01 Y PIC X.

01 Z PIC X.

01 CONDITION PIC 9.

A SECTION.

MOVE ’x’ TO X

IF CONDITION = 0

MOVE ’y’ TO Y

* checkpoint

END-IF

DISPLAY X

PERFORM B.

B SECTION.

DISPLAY X

DISPLAY Y

MOVE ’z’ TO Z.

Intermediate RXSET table at comment ‘* checkpoint’

[< A, { [X], [Y] } >]

At the ‘checkpoint’ X and Y are always set in section A.

RXSET table at end of code fragment

[< A, { [X], [Z] } >,

< B, { [Z] } >

]

At the end of the code fragment control flow is of course outside the IF

statement, so it is possible that Y is not set and therefore deleted from the
RXSET table. On the other hand, the variable Z is set (and added to RXSET)
in section B, so the PERFORM of B in section A also causes the addition of Z to
the RXSET table for section A.

RUSE contains for each section a set of variables that are (indirectly) used
without being set on every path. To check whether a variable is set, the RXSET
table is consulted (see previous paragraph). The RUSE table for the example
will thus be:

RUSE table

[< A, { [CONDITION], [Y] } >,

< B, { [X], [Y] } >

]

In section B the variables X and Y are not set before they are DISPLAYed.
So these two variables are added to the RUSE table for B. Note that it is not
taken into consideration that section A is executed first. In section A the value
of CONDITION is never set and thus is added to the table. X is present in the
RXSET table at the first statement ‘DISPLAY X’, so X must not be added to the
RUSE table for section A. The same applies to the indirect use of X in section
B. Y is indirectly used outside the IF statement, because B is PERFORMed by A.
So Y is not set on all paths leading to the ‘DISPLAY Y’ statement. This is the
reason for the addition of Y for section A.

15

RSET contains for each section all variables that might have been (indirectly)
set. When looking at the example, the difference with the RXSET table is that
Y is never removed:

RSET table

[< A, { [X], [Y], [Z] } >,

< B, { [Z] } >

]

SET (among other tables) is later used to determine local variables. As the
name indicates, it is the same as the RSET table without the indirectly set
variables. So when using the same example, the result will be:

SET table

[< A, { [X], [Y] } >,

< B, { [Z] } >

]

The SET table is the only table that is not presented in [5], because only the
problem of determining input and output parameters for wrappers is covered
and no local variables are determined.

Before explaining the rest of the tables, another form of the explained tables
is given here. This form contains all variables from the original table plus all
sub-levels of these variables. The notation of this form is the name of the original
table with an asterisk (∗). The definition is (taking the RSET table as example):

RSET ∗(S) = {x|y ∈ RSET (S), x ∈ Variable-set; x ⊆ y}

In this definition ‘x ⊆ y’ means that x is a variable that is part of the
record structure y, or the same variable. This form is only used here to keep
the definitions of other tables more compact and clear.

Two other notation used in the definitions indicate the state (and thus con-
tents) of a table before (→perf S) and after (perf S →) the perform (perf) of
section S.

SETUSEDOWN contains for each pair of a performing (S1) and a performed
section (S2) the set of variables that might be set in the performing section before
the actual PERFORM statement and then used in the performed section. So the
definition becomes:

SETUSEDOWN(S1, S2) = RSET ∗(S1,→perf S2) ∩ RUSE(S2)

These variables will become input parameters for the performed section. For
an example, see figure 2.

SETUSEUP can be seen as the opposite of the SETUSEDOWN table and
contains for each pair of a performing (S1) and a performed section (S2) the
set of variables that might have been set in the performed section and after the
PERFORM statement used in the performing section. So the definition becomes:

16

SETUSEUP (S1, S2) = RUSE(S1,perf S2 →) ∩ RSET ∗(S2)

These variables will become output parameters for the performed section.
For an example, see figure 2.

RUSECALL contains for each pair of a performing (S1) and a performed (S2)
section the set of variables that is used by the performed section but not set by
the performing section before the actual PERFORM statement. The definition of
this table is:

RUSECALL(S1, S2) = RUSE(S2) \ RXSET ∗(S1,→perf S2)

These variables might become pass through variables by being an input
parameter for both sections (S1 and S2). For an example, see figure 2.

RSETCALL contains for each pair of a performing and a performed section
the set of variables that is set in the performed section, but does not get set
in the performing section after the PERFORM statement. The definition of this
table is:

RSETCALL(S1, S2) = RSET (S2) \ RXSET ∗(S1,→perf S2)

These variables might become pass through variables by being an output
parameter for both sections (S1 and S2). For an example, see figure 2.

Example

When the code from figure 2 would be transformed to a program with nested
programs, it should contain two variables (X1 and X2) that are passed immedi-
ately from the section where they are set to to the section where they are used.
Two other variables (Y1 and Y2) have to be passed through by section B in order
to get same output as in the original form of the program. This variable passing
is indicated by the ‘arrows’ on the right side of the asterisks.

To give a complete picture, all earlier explained tables are also given for this
example:

RUSE table

[< B, { [X1], [Y1] } >,

< C, { [Y1] } >

]

RXSET and RSET table

[< A, { [X1], [Y1], [X2], [Y2] } >,

< B, { [X2], [Y2] } >,

< C, { [X2], [Y2] } >

]

Note that RXSET and RSET are the same because of the lack of statements
that influence the control flow (e.g. an IF statement that would result in a
fork).

SETUSEDOWN table

[< <A, B>, { [X1], [Y1] } >]

17

ID DIVISION.

PROGRAM-ID. EXAMPLE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 X1 PIC X(2).

01 X2 PIC X(2).

01 Y1 PIC X(2).

01 Y2 PIC X(2).

01 S PIC X(6) VALUE IS ’value ’.

PROCEDURE DIVISION.

A SECTION.

MOVE ’X1’ TO X1 * ->X1

MOVE ’Y1’ TO Y1 * | ->Y1

PERFORM B * | |

DISPLAY S Y2. * | | <-Y2

STOP RUN. * | | |

* | | |

B SECTION. * \/ \/ /\

DISPLAY S X1 * <-X1 | |

PERFORM C * | |

DISPLAY S X2. * <-X2 | |

* | | |

C SECTION. * /\ \/ /\

MOVE ’X2’ TO X2 * ->X2 | |

DISPLAY S Y1 * <-Y1 |

MOVE ’Y2’ TO Y2. * ->Y2

Figure 2: Code example for SETUSEDOWN, SETUSEUP, RUSECALL and
RSETCALL

These variables will become input parameters (from A to B). They are added
because they exist in the RUSE table of B and in the RSET table of A at the
point where B is performed. The variable Y1 is not directly used in B, but has
to be passed through to C. This will be determined later using the values in the
RUSECALL table.

SETUSEUP table

[< <A, B>, { [Y2] } >,

< <B, C>, { [X2] } >

]

These variables will become output parameters (from B to C). The entries
are added because they are set in the performed section and then used in the
performing section. In the case of the entry ‘<<B, C>, [X2]>’, this is quite
obvious. The other entry (<<A, B>, [Y2]>) seems a bit odd, because Y2 is not
directly set in B. Instead, Y2 is indirectly set in B through the PERFORM of C and
thus also needs to be an output parameter of C. This will be determined later
using the values in the RSETCALL table.

18

RUSECALL table

[< <B, C>, { [Y1] } >]

The fact that B has to pass through Y1 from A to C, can be derived from this
entry. As it happens, the only entry in the table is also a useful one. But the
table may contain unneeded entries, like the RSETCALL table.

RSETCALL table

[< <A, B>, { [X2], [Y2] } >,

< <B, C>, { [X2], [Y2] } >

]

The only value needed from this table is the value Y2 for the key <B, C>. The
values in this table are compared to those from the SETUSEUP table according
to the definition given earlier. Because section A is never called, the first entry is
unneeded. Section B, however, is called by A and A expects the output parameter
Y2 from B. But B does not set Y2, so B has to pass through this variable, which
can be concluded from the second entry.

Determine parameters and local variables

The resulting input (INPUT table) and output parameters (OUTPUT table)
can now be determined; they are already indicated by the arrows in the com-
ments of figure 2. In the example only 01 level variables are used, but it is
possible that the tables presented so far contain variables of other levels. In
2.4 it is mentioned that only 01 level variables can become a parameter or local
variable. So from this point, only the 01 level of variables in the tables

are needed. This means that all entries of variables in the previous presented
tables must be replaced by their 01 level. Otherwise the following definitions
are not correct.

In the definitions of INPUT and OUTPUT, SETUSEDOWN and SETUSEUP
are used with a single argument. In this form the table contains only values for
the performed sections (S2). So when a performed section has more than one
entries, these entries are ‘unioned’.

SETUSEDOWN(S2) =

⋃

S1 ∈ fanin(S2)
SETUSEDOWN(S1, S2)

Note that the ‘fanin’ function on S2 results in a set of all sections that
perform S2. The definitions of the INPUT and OUTPUT tables are:

INPUT (S) = SETUSEDOWN(S) ∪
(

⋃

S1 ∈ fanin(S)
SETUSEDOWN(S1) ∩ RUSECALL(S1, S)

)

OUTPUT (S) = SETUSEUP (S) ∪
(

⋃

S1 ∈ fanin(S)
SETUSEUP (S1) ∩ RSETCALL(S1, S)

)

In these definitions a clear division between the direct and pass through pa-
rameters is visible. The direct parameters are the sets SETUSEDOWN(S) and
SETUSEUP(S). The rest of the definitions produce the pass through variables.

19

The definition of the LOCAL table is:

LOCAL(S) = SET (S) ∪

(
⋃

S1 ∈ fanout(S)
SETUSEUP (S, S1)

)

\

RUSE(S) \ INPUT (S) \ OUTPUT (S)

Note that the ‘fonout’ function is used here, which produces a set of all
section called by its argument. The candidate local variables are those variables
that are set before use in particular section [4]. That is why the variables from
SET are taken and those from RUSE are removed. A variable must also become
local when a section S receives an output parameter P from a section it performs
and S does not have the output parameter P . These are typically the variables
from the SETUSEUP table for the performing section. A variable can never
be both parameter and local variable for the same section, so variables from
INPUT and OUTPUT are also removed.

According to the definition, the INPUT table for the example from figure 2
has to be:

INPUT table

[< B, { [X1], [Y1] } >,

< C, { [Y1] } >

]

The first entry contains in this case all ‘direct’ input parameters, taken from
the SETUSEDOWN table. The only indirect input parameter in the example is
Y1. This parameter is found when the entries from SETUSEDOWN and RUSE-
CALL) are compared. The called section from the SETUSEDOWN (which is
B) is equal to the calling section from RUSECALL. All similar variables from
both entries (only Y1 in this case) are added to the INPUT table for the called
section from RUSECALL, which is C. These entries are in line with the input
parameters indicated by the arrows in the example code.

According to the definition, the OUTPUT table for the example from figure
2 has to be:

OUTPUT table

[< B, { [Y2] } >,

< C, { [X2], [Y2] } >

]

For the OUTPUT table, direct parameters are taken from the SETUSEUP
table. Indirect output parameters are determined in the same way as the input
parameters, but instead the SETUSEUP and RSETCALL tables are used. A
difference is that the RSETCALL table contains unused values (RUSECALL
does not) which do not intersect with the values from the values from SE-
TUSEUP.

According to the definition, the LOCAL table for the example from figure 2
has to be:

LOCAL table

[< A, { [X1], [Y1], [Y2] } >,

< B, { [X2] } >

]

20

2.6 Transformation to nested programs

The transformation to a program with nested programs can now be done with
the data gathered and stored in the INPUT, OUTPUT and LOCAL table. The
actual transformation has not yet been implemented, but some tests are done
to determine whether a transformed program, is functionally equivalent to the
original program. Transforming the program from figure 2, should result in a
program similar to the program in figure 3:

The output of both the original program and the resulting program with
nested programs is:

value X1

value Y1

value X2

value Y2

The most striking differences with the original program are, of course, the
two sections that have become a nested program. The first section remained a
section, because a Cobol program can not start with a nested program. An
alternative for this is to transform all sections and generate a first section that
CALLs the original first section. This would result in a little less global variables,
because the original first section will also receive its own parameters and local
variables. The two sections that were transformed, have the COMMON phrase
added to their PROGRAM-ID paragraph. This enables the nested programs to be
called by all nested programs within the same outer program, instead of only the
program that directly contains the nested program. It might be that the COMMON
phrase is not necessary for every nested program (like B in this case), but in the
original program, all sections were reachable from all other sections. So adding
the COMMON phrase to all nested programs resembles the original program the
most.

There is one variables left that is not mentioned in the INPUT nor the
OUTPUT nor the LOCAL table, namely S. When this is the case, such a variable
should remain global. This can be done by adding the GLOBAL clause to its
declaration, which makes a variable in the outer program accessible to all nested
programs. The conclusion that can be made here is that variables that have no
GLOBAL clause are local variables of the first section (A in this case).

In each nested program, the variables in the DATA-DIVISION are directly
related to those mentioned in the resulting INPUT, OUTPUT and LOCAL
tables. The local variables can be found in the WORKING-STORAGE SECTION

and the input and output parameter are located in the LINKAGE SECTION. The
parameters can also be found in the USING phrase of the PROCEDURE DIVISION

header. The names in the USING phrase determine the order in which the
parameters must be given in a CALL statement to that nested program and the
LINKAGE SECTION defines the types of these parameters. In this example the
input parameters are passed BY CONTENT and the output parameters are passed
BY REFERENCE. It must be possible for a nested program to return more than
one variable. IBM VS II Cobol has a CALL statement that has an optional
RETURNING phrase, but this can only handle one output parameter. Compaq
Cobol does not even contain this phrase, but has instead has a GIVING phrase
that can only return an integer value. So there is no other possibility to return
more than one variable than to pass the needed parameters BY REFERENCE.

21

ID DIVISION.

PROGRAM-ID. EXAMPLE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 X1 PIC X(2).

01 Y1 PIC X(2).

01 Y2 PIC X(2).

01 S PIC X(6) VALUE IS ’value ’ IS GLOBAL.

PROCEDURE DIVISION.

A SECTION.

MOVE ’X1’ TO X1

MOVE ’Y1’ TO Y1

CALL ’B’ USING BY CONTENT X1 Y1

BY REFERENCE Y2

DISPLAY S Y2.

STOP RUN.

ID DIVISION.

PROGRAM-ID. B IS COMMON.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 X2 PIC X(2).

LINKAGE SECTION.

01 X1 PIC X(2).

01 Y1 PIC X(2).

01 Y2 PIC X(2).

PROCEDURE DIVISION USING X1 Y1 Y2.

B SECTION.

DISPLAY S X1

CALL ’C’ USING BY CONTENT Y1

BY REFERENCE X2 Y2

DISPLAY S X2.

END PROGRAM B.

ID DIVISION.

PROGRAM-ID. C IS COMMON.

DATA DIVISION.

LINKAGE SECTION.

01 Y1 PIC X(2).

01 X2 PIC X(2).

01 Y2 PIC X(2).

PROCEDURE DIVISION USING Y1 X2 Y2.

C SECTION.

MOVE ’X2’ TO X2

DISPLAY S Y1

MOVE ’Y2’ TO Y2.

END PROGRAM C.

END PROGRAM EXAMPLE.

Figure 3: Example in figure 2 transformed to a program with nested programs.

22

In order to execute the nested programs, the PERFORM statements must be
transformed to CALL statements. A syntactical difference with the PERFORM

statement is that the name of the called nested program must be placed within
quotes (because the name can also be stored in a variable). The parameters that
must be added to the CALL statement can easily be looked up in the INPUT
and OUTPUT tables.

2.7 Points of interest

Existing parameters must remain unchanged after the transformation, oth-
erwise the interface of the program would be compromised and the new program
would be incompatible with the original. So the question is whether it is possi-
ble that the algorithm produces a result which would change the interface of the
program. In theory this is possible, but only when the value of the parameter
is set before use in all sections where the parameter is mentioned. Because a
parameter is treated as a normal variable, it would, in that case, become a local
variable in those sections. This would mean that the passed value for that pa-
rameter is never used in the program. The most plausible explanation for this
would be that it is assumed that the parameter is always passed BY REFERENCE

and therefore is an output parameter (just like the output parameters for the
nested programs).

So the conclusion is that variables from the existing LINKAGE SECTION must
never be transformed to local variables of nested programs. In the case that
the algorithm does produce a result that states that a parameter is a local
variable, it must instead receive a GLOBAL clause to its declaration. Existing
parameters can however become parameters between nested programs, just like
normal variables (which excludes that they will be local variables).

Initial values of variables, given in the declaration of those variables, are not
taken into account during the algorithm. But this does not cause any difficulties,
see for example the variable S in the example program from figure 2 and the
resulting code in figure 3

The initial value can be seen as a sort of input parameter, so the same
reasoning applies as for the existing parameters. With of course the difference
that it can not be an output parameter of the program. Therefore it is not a
problem when this variable would become local, but it means that its initial
value is never used. This could be the case when, for example, all values are
(by convention) set to a default value, like SPACES.

Files are different from variables because they can have a status like ‘opened’,
‘read-only’ and ‘closed’. This is not a problem when one section makes use of
a particular file. But when different sections perform different operations on
a file, like opening, writing and closing, files become a problem. Distributing
operations on files is a common practice in the available code base and therefore
a solution to this problem had to be found.

Passing the file descriptors (FDs) as parameters between the different nested
programs is not an option, because this is not allowed [1]. So the best way
to overcome the problem is to leave the file description, along with its record
description, global. This means effectively that declarations of files and file

23

records are not gathered in the algorithm. With adding the GLOBAL clause to
the file description, the file will be accessible from all nested programs. The
statements that do operations on the file can therefore be left unchanged.

Declaratives are the error-handling sections in Cobol. DECLARATIVES are
often triggered when a file error occurs. Files will remain global, so most
DECLARATIVES do not need to be examined to figure out if they might be moved
to a nested program. This also avoids code duplication and unnecessary work.
DECLARATIVES can also be made global by adding the GLOBAL clause. Variables
used in those declaratives are also removed from the INPUT, OUTPUT and
LOCAL table to ensure that they will will receive the GLOBAL clause and are
thus reachable from both the nested programs and the declaratives.

Indexes can be declared along with multi-dimensional records, also called ta-
bles (comparable to an array). These indexes enhance the performance when
using tables. But indexes do not maintain their value when passed as a param-
eter in a CALL statement. Therefore all indexes are also gathered and treated
as if they were normal variables. So when an index is recognized as an input or
output parameter, it must be separately passed and its value must be copied to
the index of the passed table.

Database manipulation in Compaq Cobol can be done using the FETCH
statements which occurred in some programs in the code base. This statement
can also be used to retrieve a record that is on a higher level in hierarchical
structure of the database, as in:

FETCH OWNER WITHIN A-SET.

Where OWNER is a reserved keyword that represents the higher level in hier-
archical structure of the database. The problem is that the information about
the structure of the database can not be derived from the code. So it is not
known which variables are set or used when this statement is executed. The
structure can be retrieved using the data description of the database, but this
was too complex when taking in account the available time for this project.

False positives can occur when using the presented algorithm. Take for
instance the following code example (a fragment of code from the code base
actually did something like this):

...

IF X

MOVE "DATA" TO Y

END-IF

IF X

DISPLAY Y

END-IF

...

When displaying the contents of Y, the algorithm assumes that the value of
Y does not necessarily have to be set. This is because the statement that sets

24

this value (MOVE) is inside of a conditional statement (IF), and the statement
that uses this value (DISPLAY) is inside another branch of another conditional
statement. Even though the conditions for both the setting and using statements
are the same, Y might now be identified as an input parameter, because the
values of conditions are not analyzed. Whether Y will be an input parameter
can not be concluded from the example, because there has to be a statement in
another section that sets the value of Y and this value must reach the statements
of the code example. The functionality of the program will not be compromised
when Y does become an input parameter. But an unneeded parameter could
cause confusion and therefore maintainability would decrease.

PERFORM THRU statements are used to execute a series of paragraphs
and / or sections. Especially in combination with GO TO statements, these
PERFORM THRUs can be very complex to understand. After an examination of
the code base, the conclusion was that there was no direct need to address this
problem, because there existed only two PERFORM THRUs. These PERFORM THRUs
were also on paragraphs within the same section and thus could be ignored,
because they would be placed within a new nested program and semantics would
be left unchanged.

25

3 Results

3.1 Applying the transformations

To test the transformations and to see if the transformations produce a usable
result, they were applied to a system from the code base that contained 84 pro-
grams suitable for transformation. Some programs in this system were skipped
because they contained only one section and were too small to divide into more
sections. A program with one section is not interesting because this section is
not transformed to a nested program. To give an idea of the size of the test set,
some characteristics are given:

• 84 programs

• 82,656 LOC (70,102 LOC non-comment and non-empty)

• 1,676 level 01 variables

• 1,296 sections

• 2,349 performs

The time consumed by the transformation varied greatly for each program
and could take from 1 second to 4 hours and 40 minutes. This was not in
direct relation with the lines of code of the program. A remarkable example is
a certain program of 3,144 LOC took 16.65 seconds to be transformed, while
another program of 2,177 LOC took 316.59 seconds (a factor 19 longer). The
programs had an equivalent number of section (33 and 31 respectively) and calls
to other sections (83 and 71 respectively). And while the Dataflow-info-table
of the first program was almost twice the size of the second program, it still was
much easier to retrieve the parameters and local variables of the first program.
The reason for this is probably the complexity of the Dataflow-info-table,
which is caused by factors like the number and depth of nested forks.

The following table summarizes the results of the transformation:

amount
type amount duplicates (%) unique (%) per section
input 2,125 1,633 (77%) 492 (23%) 1.64
output 1,769 1,306 (74%) 463 (26%) 1.36
local 880 460 (52%) 420 (48%) 0.68
total 4,774 4,018 (84%) 756 (16%) 3.68

A remarkable number from the table is the number of duplicates in the ‘total’
row (note that this is not the sum of the other duplicates, because one variable
can be both parameter and local variable within the same program). According
to this number each variable that becomes a parameter of local variable must be
declared more than five times. This means that in the final form of the program
4,018 declarations will be duplicates of an already existing declaration. Code
duplication is not desired when enhancing the maintainability of source code,
but unfortunately in this case it will be necessary.

The number of unique variables that can be used as parameter or local
variable seems a bit low, because it is only 16% of the total number of parameters

26

and local variables. But when this number is compared to the original number
of variables (1,676), it is actually quite high, because on average 45% of all

global variables in the original program can be used as a parameter or local
variable!

These numbers also show that an average section has an almost ‘traditional’
number of parameters; one or two input parameters and one, sometimes two,
output parameters. The number of local variables is a bit disappointing, only
two third of the sections has one local variable.

3.2 Future work

GO TOs

An observant reader might have noticed that the notorious GO TO statement was
not mentioned in the section about control flow extraction (section 2.4). Many
GO TO statements can be eliminated using the transformations from [13], but
there is no guarantee that this will remove all GO TOs. GO TOs can be copied from
a section to a nested program without compromising the control flow, provided
that these GO TOs do not jump out of the section. This because paragraphs in
other sections will no longer be reachable when these sections are transformed
to nested programs. The problem with GO TOs within a section is that they can
influence the control flow such that a section would require other parameters
and local variables.

Analyzing a control flow that includes GO TOs is much more complex than
analyzing a control flow represented as in section 2.4. A possible solution for
this problem is to, at first, include the GO TOs and then expand these GO TOs in
order to eliminate them from the control flow representation.

Two scenarios are presented here that are most common: a forward and a
backward GO TO from a conditional statement. The forward GO TO is mostly
used to skip some statements that must not be executed when some condition
is met. In languages that do not support GO TOs, these skipped statements will
most likely appear in an ‘else’ branch of an ‘if’ statement. The backwards GO

TO is mostly used to create some loop, comparable to a ‘for’ or ‘while’ loop.
The expansion of a forward GO TO is visible in figures 4 and 5 and the

expansion of a backward GO TOs is visible in the figures 6 and 7.

Removing unneeded MOVE statements and declarations

This is a next step to enhance the maintainability of Cobol programs, as men-
tioned in the introduction (section 1.1). In order to ‘simulate’ parameters in
Cobol, some assignments (MOVEs) have to be done before and after a call of a
section (PERFORM). So calling a section that adds the two variables ADD-VAL-1

and ADD-VAL-2 and stores the result in ADD-RESULT, could look like this:

MOVE OWN-VAL-1 TO ADD-VAL-1

MOVE OWN-VAL-2 TO ADD-VAL-2

PERFORM ADD-UP

MOVE ADD-RESULT TO OWN-RESULT.

Whereas calling a (sub/nested) program, using parameters looks like this:

27

1 2

5

3 PAR. 4

6

8

7

GO PAR. 9

Figure 4: Expanding a forward GO TO in the control flow, original

1 2, 3

5

4

6, 7, 3

8

Figure 5: Expanding a forward GO TO in the control flow, result

1 PAR. 2 3

5

4

6

8

7

GO PAR. 9

Figure 6: Expanding a backward GO TO in the control flow, original

1, 2 3

5

4

6, 7

8, 2 3

5 6, 7

8

Figure 7: Expanding a backward GO TO in the control flow, result

Legend

x
Dataflow-info-list

...

... fork

GO PAR. PAR. A GO TO with corresponding paragraph

28

CALL "ADD-UP" USING OWN-VAL-1 OWN-VAL-2

GIVING OWN-RESULT.

This form is better maintainable, because there is no misunderstanding
about what values the called subroutine uses. This in contrast to the PERFORM

ADD-UP statement, which gives no clarity about the variables used in the sub-
routine. The second form also differs in number of statements and variable
declarations. It does not contain the three MOVE statements and the three vari-
ables OWN-... do not have to be declared.

Removing these MOVE statements and declarations is a great profit to main-
tainability, because it is often difficult to gain a clear view of the functionality
of Cobol code because of the many MOVE statements and declarations. As an
indication: the code from the code base exists of 831,168 loc (1.2 Mloc mi-
nus comments and empty lines) which contains 93,945 (11%) declarations and
140,138 (17%) MOVE statements.

Tables and pointers

These are variables that can be dynamically addressed, which is in contrast to
the static analysis done on the code. Tables are very often used in Cobol, but
fortunately a quick scan of the code shows that most uses of tables are quite
decent implemented; when a number of records are set in a section and this sec-
tion PERFORMs a section that uses records from the same table, the used records
are almost always the same or a subset of the records that are set. In other
cases the resulting parameters and local variables could be incomplete, because
the record number (or index) is ignored when the used variable is determined.

So in the following example:

WORKING STORAGE SECTION.

01 SOMETABLE.

03 SOMERECORD PIC X(20) OCCURS 10 INDEXED BY IDX.

...

A SECTION.

PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > 10

MOVE "SOMEVALUE" TO RECORDS(IDX)

END-PERFORM.

PERFORM B.

B SECTION.

PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > 5

DISPLAY SOMETABLE(IDX)

END-PERFORM.

The current algorithm only ‘knows’ that there is a variable SOMERECORD (and
not SOMERECORD(1) ... SOMERECORD(10)). But since this variable is set in A

and this value reaches the use in B, SOMERECORD will become an input parameter
for B. The records used in B are a subset of those set in A, so there will be no
changes in the functionality in this case. But it can not be guaranteed that in
other situations, all operations on tables will remain functionally unchanged.

Pointers are rarely used in the code base and most of this small collection of
pointers are initialized immediately when they are declared. These pointers are

29

treated as redefines, which they in fact are as long as the pointer is not changed
in the program.

An improved algorithm should fully analyze these types of variables, prob-
ably by interpreting the code to determine all possible values of pointers and
record numbers. In some situations this might be possible (e.g. PERFORM state-
ments that always process a complete table), but a generic approach to this
problem would be complex to implement.

3.3 Conclusion

In this thesis a series of transformations was presented that make it possible
to transform plain Cobol code into block structured Cobol code. In order
to determine the needed parameters, the algorithm from [5] was adapted to
Cobol and features were added to determine local variables. Most difficulties
concerning the adaption of the algorithm to Cobol were solved, resulting in
fully automated transformations that was applied to over 80Kloc of Cobol
code. This resulted in some promising numbers. The most interesting fact was
that almost half of the variables in the programs can be used as parameter or
local variable. On average, for each block of code one or two input parameters
and one, sometimes two, output parameters were found.

With the data resulting from the transformations presented here, the follow-
ing step towards the transformation to block structured Cobol programs can
be made.

30

References

[1] T. Scott Ankrum. Cobol nested programs. Object-Z Systems Inc
http://objectz.com/columnists/tscott/04302001.htm.

[2] Edmund C. Arranga and Frank P. Coyle. Cobol: Perception and reality.
Computer, 30(3):126–128, 1997.

[3] M. van den Brand et al. The Asf+Sdf Meta-Environment.
http://www.cwi.nl/projects/MetaEnv/.

[4] Tony Cahill. Remodularization of COBOL programs through Scope and
DataFlow Analysis. University of Limerick
http://www.csis.ul.ie/RsrchPubs/Remodcob.htm.

[5] Aniello Cimitile, Ugo de Carlini, and Andrea de Lucia. Incremental Migra-
tion Strategies: Data Flow Analysis for Wrapping. In Working Conference
on Reverse Engineering (WCRE), pages 59–68, 1998.

[6] Cobol Research at the Free University in Amsterdam.
http://www.cs.vu.nl/Cobol/.

[7] Bill C. Hardgrave and E. Reed Doke. Cobol in an Object-Oriented World:
A Learning Perspective. IEEE Software, 17(2):26–29, March/April 2000.

[8] S. Klusener, R. Lämmel, and C. Verhoef. Architectural Modifications to
Deployed Software. Science of Computer Programming, 54:143–211, 2005.

[9] J. Kort, R. Lämmel, and C. Verhoef. The grammar deployment kit. Elec-
tronic Notes in Theoretical Computer Science, 65(3), 2002.

[10] R. Lämmel and C. Verhoef. VS Cobol II Grammar Version 1.0.4, April
2003.
http://www.cs.vu.nl/grammars/vs-cobol-ii/.

[11] M. P. A. Sellink, H. M. Sneed, and C. Verhoef. Restructuring of
COBOL/CICS legacy systems. Science of Computer Programming, 45(2–
3):193–243, 2002.

[12] Ricky E. Sward and A. T. Chamillard. Re-engineering global variables
in ada. In SIGAda ’04: Proceedings of the 2004 annual ACM SIGAda
international conference on Ada, pages 29–34, New York, NY, USA, 2004.
ACM Press.

[13] N. Veerman. Revitalizing modifiability of legacy assets. Software Mainte-
nance and Evolution: Research and Practice, Special issue on CSMR 2003,
16(4–5):219–254, 2004.

31

