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Chapter 3

Normalized Information Distance

Paul M.B. Vitányi, Frank J. Balbach, Rudi L. Cilibrasi, and Ming Li

Abstract The normalized information distance is a universal distance measure for

objects of all kinds. It is based on Kolmogorov complexity and thus uncomputable,

but there are ways to utilize it. First, compression algorithms can be used to approxi-

mate the Kolmogorov complexity if the objects have a string representation. Second,

for names and abstract concepts, page count statistics from the World Wide Web can

be used. These practical realizations of the normalized information distance can then

be applied to machine learning tasks, especially clustering, to perform feature-free

and parameter-free data mining. This chapter discusses the theoretical foundations

of the normalized information distance and both practical realizations. It presents

numerous examples of successful real-world applications based on these distance

measures, ranging from bioinformatics to music clustering to machine translation.

3.1 Introduction

The typical data mining algorithm uses explicitly given features of the data to as-
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sess their similarity and discover patterns among them. It also comes with many

parameters for the user to tune to specific needs according to the domain at hand.
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In this chapter, by contrast, we are discussing algorithms that neither use features

of the data nor provide any parameters to be tuned, but that nevertheless often out-

perform algorithms of the aforementioned kind. In addition, the methods presented

here are not just heuristics that happen to work, but they are founded in the mathe-

matical theory of Kolmogorov complexity. The problems discussed in this chapter

will mostly, yet not exclusively, be clustering tasks, in which naturally the notion of

distance between objects plays a dominant role.

There are good reasons to avoid parameter laden methods. Setting the parameters

requires an intimate understanding of the underlying algorithm. Setting them incor-

rectly can result in missing the right patterns or, perhaps worse, in detecting false

ones. Moreover, comparing two parametrized algorithms is difficult because differ-

ent parameter settings can give a wrong impression that one algorithm is better than

another, when in fact one is simply adjusted poorly. Comparisons using the optimal

parameter settings for each algorithm are of little help because these settings are

hardly ever known in real situations. Lastly, tweaking parameters might tempt users

to impose their assumptions and expectations on the algorithm.

There are also good reasons to avoid feature based methods. Determining the

relevant features requires domain knowledge, and determining how relevant they

are often requires guessing. Implementing the feature extraction in an algorithm can

be difficult, error-prone, and is often time consuming. It also limits the applicability

of an algorithm to a specific field.

How can an algorithm perform well if it does not extract the important features

of the data and does not allow us to tweak its parameters to help it do the right thing?

Of course, parameter and feature free algorithms cannot mind read, so if we a priori

know the features, how to extract them, and how to combine them into exactly the

distance measure we want, we should do just that. For example, if we have a list of

cars with their color, motor rating, etc. and want to cluster them by color, we can

easily do that in a straightforward way.

Parameter and feature free algorithms are made with a different scenario in mind.

In this exploratory data mining scenario we are confronted with data whose impor-

tant features and how to extract them are unknown to us (perhaps there are not even

features). We are then striving not for a certain similarity measure, but for the sim-

ilarity measure between the objects. Does such an absolute measure of similarity

exist at all? Yes, it does, in theory. It is called the information distance, and the idea

behind it is that two objects are similar if there is a simple description of how to

transform each one of them into the other one. If, however, all such descriptions are

complex, the objects are deemed dissimilar. For example, an image and its nega-

tive are very similar because the transformation can be described as “invert every

pixel.” By contrast, a description of how to transform a blank canvas into da Vinci’s

Mona Lisa would involve the complete, and comparably large, description of that

painting.

The latter example already points to some issues one has to take care of, like

asymmetry and normalization. Asymmetry refers to the fact that, after all, the
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inverse transformation of the Mona Lisa into a blank canvas can be described rather

simply. Normalization refers to the fact that the transformation description size must

be seen in relation to the size of the participating objects. Section 3.2 details how

these and other issues are dealt with and explains in which sense the resulting in-

formation distance measure is universal. The formulation of this distance measure

will involve the mathematical theory of Kolmogorov complexity, which is generally

concerned with shortest effective descriptions.

While the definition of the information distance is rather theoretical and cannot

be realized in practice, one can still use its theoretical idea and approximate it with

practical methods. Two such approaches are discussed in subsequent sections. They

differ in which property of the Kolmogorov complexity they use and to what kind

of objects they apply. The first approach, presented in Sect. 3.3, exploits the rela-

tion between Kolmogorov complexity and data compression and consequently em-

ploys common compression algorithms to measure distances between objects. This

method is applicable whenever the data to be clustered are given in a compressible

form, for instance, as a text or other literal description.

The second approach, presented in Sect. 3.4, exploits the relation between Kol-

mogorov complexity and probability. It uses statistics generated by common Web

search engines to measure distances between objects. This method is applicable

to non-literal objects, names and concepts, whose properties and interrelations are

given by common sense and human knowledge.

3.2 Normalized Information Distance

Kolmogorov complexity measures the absolute information content of individual

objects. For the purpose of data mining, especially clustering, we would also like

to be able to measure the absolute information distance between individual objects.

Such a notion should be universal in the sense that it contains all other alternative

or intuitive notions of computable distances as special cases. Such a notion should

also serve as an absolute measure of the informational, or cognitive, distance be-

tween discrete objects x and y. Such a notion of universal informational distance

between two strings is the minimal quantity of information sufficient to translate

between x and y, generating either string effectively from the other. As a result of

the universality requirement, this information distance is uncomputable. However,

the study of the abstract properties of such an absolute information distance leads

to formulas and approaches applicable in practice, as we will demonstrate in subse-

quent sections.

In this section, we first give a brief introduction to the theory of Kolmogorov

complexity, providing definitions and fundamental results. We then derive the un-

normalized information distance and show its universality with respect to unnormal-

ized distance measures. Finally we discuss the normalized information distance.
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3.2.1 Kolmogorov Complexity

To provide some formal framework, we have to give a brief introduction to the the-

ory of Kolmogorov complexity (a comprehensive treatment of this theory is [19]).

In order to give a mathematically rigorous definition of Kolmogorov complexity

and related terms, we need a few notations and definitions beforehand. By N , Q,

R, and R+ we denote the set of all natural, rational, real, and non-negative real

numbers, respectively. For the cardinality of a set S we write |S|. In the following

we will only consider binary strings x ∈ {0,1}∗. All other objects that we might

consider can be encoded in a natural way as such strings. We write ε for the empty

string, and �(x) for the length of string x. All binary strings can be totally ordered

according to their length and within the same length lexicographically. We implic-

itly identify every string with its number in this ordering. Using this identity, we

have �(x) = �log(x+1)�.

For any string x we denote by x̄ the string x̄ = 1�(x)0x, called the self-delimiting

encoding of x. The set {x̄ : x ∈ {0,1}∗} then is a prefix set, that is, no element of

it is prefix of another element. Prefix sets have an important property, namely they

satisfy the Kraft inequality:

Lemma 3.1. Let S⊂ {0,1}∗ be a prefix set. Then

∑
x∈S

2−�(x) ≤ 1 .

Partial functions whose domain is a prefix set are called prefix functions. They play

a major role in the theory of Kolmogorov complexity.

Using x̄ one can define a pairing function �x,y� = x̄y, which can be extended to

k strings: �x1, . . . ,xk� = �x1,�x2,�. . .�xk−1,xk� . . .��� = x̄1 . . . x̄k−1xk. Functions with

more than one argument can be realized in the usual way via the pairing function

as ϕ(x1, . . . ,xk) = ϕ(�x1, . . . ,xk�). We use an effective enumeration ϕ1,ϕ2, . . . of all

partial recursive functions with one argument, and also an effective enumeration

ψ1,ψ2, . . . of all partial recursive prefix functions.

Now everything is in place to formulate the fundamental definition of Kol-

mogorov theory. Consider a function ϕ and two strings p and x such that ϕ(p) = x.

The string p can be interpreted as a description of x by means of the description

language ϕ . Of course, the string x can have many such descriptions, among which

the shortest ones are special. The length of a shortest description p is called the

complexity of the string x with respect to ϕ . A slightly more general version of

complexity takes into account an additional input y. In this generalization the de-

scription of x is conditional to y:

Definition 3.1. Let ϕ be a partial recursive function. The conditional complexity

(with respect to ϕ) of x given y is defined by

Cϕ(x|y) = min{�(p) : ϕ(y, p) = x} ,

the unconditional complexity of x by Cϕ(x) =Cϕ(x|ε).
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Clearly the complexity of a string depends on the choice of ϕ . There is, however,

a distinguished function ϕ0, which essentially assigns the lowest possible values,

over all partial recursive functions ϕ .

Theorem 3.1. There is a partial recursive function ϕ0 such that for all partial re-

cursive functions ϕ there is a constant c with

Cϕ0
(x|y)≤Cϕ(x|y)+ c

for all x and y.

It is sufficient for ϕ0 to satisfy ϕ0(y,n, p) = ϕn(y, p). Intuitively the behavior of

ϕ0 is to take one of its arguments, n, and simulate the n-th partial recursive function

on the input comprised of ϕ0’s other two arguments. In other words, ϕ0 is a univer-

sal function for our enumeration (ϕi)i≥1. The function ϕ0 is not unique, but every

such function defines essentially the same complexity Cϕ0
, that is, up to an addi-

tive constant (this follows from Theorem 3.1). Instead of Cϕ0
one typically simply

writes C.

A helpful intuition for understanding C is to regard C(x|y) as the length of a

shortest computer program, in any popular language, that outputs x on input y.

While simple and elegant, the notion of C(·) has some oddities. For instance,

C(xy) is in general not upper-bounded by the sum of C(x) and C(y). This is one of

the reasons that in many cases it is beneficial not to consider all partial recursive

functions, but only the prefix functions. A result very similar to Theorem 3.1 holds

for these functions.

Theorem 3.2. There is a partial recursive prefix function ψ0 such that for all partial

recursive prefix functions ψ there is a constant c with

Cψ0
(x|y)≤Cψ(x|y)+ c

for all x and y.

Instead of Cψ0
(x|y) and Cψ0

(x|ε) it is customary to write K(x|y) and K(x), re-

spectively. Also the expression K(�x,y�) is usually written simply as K(x,y). We

refer to K as the Kolmogorov complexity. Our intuition about values of K(x|y) is

essentially the same as for C(x|y), the length of the shortest program that outputs x

on input y. But in contrast to C, all shortest programs that “occur” in K constitute

a prefix set. This implies, among other important things, that two such programs

can be concatenated and still recognized as two distinct programs. This in turn al-

lows the construction of a program that simulates two other programs and combines

their output, at the same time being only a constant number of bits larger than the

concatenation of the original two programs. A consequence of this is that for K the

subadditivity holds, that is, K(xy)≤K(x)+K(y)+O(1). The next theorem summa-

rizes some more properties of K.
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Theorem 3.3. 1. K is not partial recursive.

2. K(x)≤ �(x)+2log�(x)+O(1) for all x.
3. K(x,y)≤ K(x)+K(y|x)+O(1) for all x, y.
4. Up to an additional term of O(1):

K(x,y) = K(x)+K(y|�x,K(x)�) = K(y)+K(x|�y,K(y)�)

for all x, y.

5. Up to an additional term of O(logK(xy)):

K(x,y) = K(x)+K(y|x) = K(y)+K(x|y)

for all x, y.

Item 1 does not come as a surprise since, intuitively, in order to find K(x) one has

to verify that no program under a certain length outputs x, a task that conflicts with

the undecidability of the halting problem.

Item 2 gives an upper bound of K(x) in terms of the length of x. In order to

describe x prefix free, one can use an advanced self-delimiting encoding of x namely

x= �(x)x, which has the length �(x)+2�(�(x))+1.

Items 3, 4, and 5 elaborate on the subadditivity property. While Item 3 only pro-

vides a better upper bound, which can be easily understood via the intuition of pro-

gram lengths, the other two items state equalities and require sophisticated proofs.

These results go by the name Symmetry of Information and will prove useful later

in Sect. 3.3.1.

All programs that can be identified as shortest ones by K form a prefix set. It

follows by the Kraft inequality that ∑x 2−K(x) ≤ 1. This means that the values 2−K(x)

can be regarded as quantities very similar to probabilities, because they sum up to

at most 1. In this assignment of values, less complex objects receive a higher prob-

ability than more complex objects. This can be seen as a “smooth” compromise be-

tween the contrary views of Occam’s Razor, which advises to consider the simplest

explanation only, and Epicurus’s Principle of Multiple Explanations, which advises

to consider all explanations. Indeed, this algorithmic probability R(x) = 2−K(x) is

universal in a sense made clear in the remainder of this section.

Since in the realm of probabilities we are dealing with real valued functions, we

first need to introduce some notions of computability for them.

Definition 3.2. A real valued function f : N →R is called lower semicomputable

if there is a recursive function g : N ×N → Q such that for all x the series

(g(x,k))k∈N is nondecreasing and f (x) = limk→∞ g(x,k). The function f is called

upper semicomputable if − f is lower semicomputable.

A semimeasure assigns a non-negative real number to every string (or,

equivalently, natural number). It differs from a probability measure in that the

sum of all these values can be less than 1. In the same way as there are conditional

probabilities, we can also consider conditional semimeasures.
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Definition 3.3. A discrete conditional semimeasure is a function P : N ×N →
R+ such that for all y:

∑
x

P(x|y)≤ 1 .

The large class of lower semicomputable semimeasures has a universal element

m that dominates every other lower semicomputable semimeasure up to a multi-

plicative constant.

Theorem 3.4. There is a lower semicomputable discrete semimeasure m such that

for all lower semicomputable discrete semimeasures P:

P(x|y) = O(m(x|y)) .

This universal semimeasure is intimately related to the Kolmogorov complexity

via the Conditional Coding Theorem [19]:

Theorem 3.5. − logm(x|y) = K(x|y)+O(1).

3.2.2 Information Distance

Intuitively, the minimal information distance between x and y is the length of the

shortest program for a universal computer to transform x into y and y into x. This

program then functions in a “catalytic” manner, being retained in the computer be-

fore, during, and after the computation. This measure will be shown to be, up to

a logarithmic additive term, equal to the maximum of the conditional Kolmogorov

complexities. The conditional complexity K(y|x) itself is unsuitable as optimal in-

formation distance because it is asymmetric: K(ε |x) is small for all x, yet intuitively

a long random string x is not close to the empty string. The asymmetry of the condi-

tional complexity K(x|y) can be remedied by defining the algorithmic informational

distance between x and y to be the sum of the relative complexities, K(y|x)+K(x|y).
The resulting metric will overestimate the information required to translate between

x and y in case there is some redundancy between the information required to get

from x to y and the information required to get from y to x.

For a partial recursive function ϕ , let

Eϕ(x,y) = min{�(p) : ϕ(p,x) = y and ϕ(p,y) = x} .

Lemma 3.2. There is a universal partial recursive prefix function ψ0 such that for

each partial recursive prefix function ψ and all x,y,

Eψ0
(x,y)≤ Eψ(x,y)+ cψ ,

where cψ is a constant that depends on ψ but not on x and y.
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By Lemma 3.2, for every two universal prefix functions ϕ0 and ψ0, we have for

all x,y that |Eϕ0
(x,y)−Eψ0

(x,y)| ≤ c, with c a constant depending on ϕ0 and ψ0 but

not on x and y. Thus the following definition is machine-independent.

Definition 3.4. Fixing a particular universal prefix function ψ0, we define informa-

tion distance as

E0(x,y) = min{�(p) : ψ0(p,x) = y and ψ0(p,y) = x} . (3.1)

Definition 3.5. The max distance between x and y is E(x,y)=max{K(x|y),K(y|x)}.

It has been proved that up to an additive logarithmic term, the information distance

E0 is equal to the max distance.

3.2.2.1 Maximal Overlap

To what extent can the information required to compute x from y be made to overlap

with that required to compute y from x? In some simple cases, complete overlap can

be achieved, so that the same minimal program suffices to compute x from y as to

compute y from x.

Example 3.1. If x and y are independent random binary strings of the same length n

(up to additive constants K(x|y) = K(y|x) = n), then their bitwise exclusive-or x⊕y

serves as a minimal program for both computations. Similarly, if x= uv and y= vw

where u, v, and w are independent random strings of the same length, then u⊕w is

a minimal program to compute either string from the other.

Now suppose that more information is required for one of these computations

than for the other, say, K(y|x)>K(x|y). Then the minimal programs cannot be made

identical because they must be of different sizes. Nevertheless, in simple cases, the

overlap can still be made complete, in the sense that the larger program (for y given

x) can be made to contain all the information in the smaller program, as well as some

additional information. This is so when x and y are independent random strings of

unequal length, for example u and vw above. Then u⊕v serves as a minimal program

for u from vw, and (u⊕ v)w serves as one for vw from u.

The following Conversion Theorem asserts the existence of a difference string

p of length �(p) = max{K(x|y),K(y|x)}, up to an additive logarithmic term, that

converts both ways between x and y and at least one of these conversions is optimal.

If K(x|y) = K(y|x), then the conversion is optimal in both directions.

Theorem 3.6. Let x and y be strings such that K(y|x) ≥ K(x|y). There is a string r

of length K(y|x)−K(x|y) such that

E0(rx,y) = K(x|y)+K(K(x|y),K(y|x))+O(1) .

Corollary 3.1. E0(x,y) = max{K(x|y),K(y|x)}+O(logmax{K(x|y),K(y|x)}).
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3.2.2.2 Universality

Let us assume we want to quantify how much some given objects differ with respect

to a specific feature, for instance, the length of files in bits, the number of beats per

second in music pieces, or the number of occurrences of some base in genomes.

Every specific feature induces a specific distance measure, and conversely every

distance measure can be viewed as a quantification of a feature difference.

Every distance measure should be an effectively approximable positive function

of the two objects that satisfies a reasonable density condition and obeys the trian-

gle inequality. It turns out that E is minimal up to an additive constant among all

such distances. Hence, it is a universal information distance that accounts for any

effective resemblance between two objects.

Let us consider an example of measuring distance between two pictures. Identify

digitized black-and-white pictures with binary strings. There are many distances

defined for binary strings, for example, the Hamming distance and the Euclidean

distance. Such distances are sometimes appropriate. For instance, if we take a bi-

nary picture and change a few bits on that picture, then the changed and unchanged

pictures have small Hamming or Euclidean distance, and they do look similar.

However, these measures are not always appropriate. The positive and negative

prints of a photo have the largest possible Hamming and Euclidean distance, yet

they look similar. Also, if we shift a picture one bit to the right, again the Hamming

distance may increase by a lot, but the two pictures remain similar.

Many approaches to pattern recognition define distance measures with respect

to pictures, language sentences, vocal utterances, and many more. We have already

seen evidence that E(x,y) = max{K(x|y),K(y|x)} is a natural way to formalize a

notion of algorithmic informational distance between x and y. Let us now show that

the distance E is, in a sense, minimal among all reasonable distance measures.

In general we differentiate between distance functions and metrics. The latter are

distance measures that satisfy additional conditions as formalized in the following.

Definition 3.6. A distance function is a function D : {0,1}∗ ×{0,1}∗ →R+. It is a

metric if it satisfies the metric (in)equalities:

• D(x,y) = 0 if and only if x= y, (identity)

• D(x,y) = D(y,x), (symmetry)

• D(x,y)≤ D(x,z)+D(z,y). (triangle inequality)

The value D(x,y) is called the distance between x and y. As a familiar example of

a distance function that is also a metric, consider the Euclidean metric, the everyday

distance DE(a,b) between two geographical objects a,b expressed in, say, meters.

Clearly, this distance satisfies the properties DE(a,a) = 0, DE(a,b) =DE(b,a), and

DE(a,b)≤DE(a,c)+DE(c,b) (for instance, a= Amsterdam, b= Beijing, and c=
Chicago.) Our goal is to generalize this concept of distance from our physical space

to the cyberspace and characterize the set of all reasonable distance functions that

would measure informational distances between objects.

For a distance function or metric to be reasonable, it has to satisfy a certain

additional condition, referred to as density condition. Intuitively this means that for
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every object x and value d ∈R+ there is at most a certain, finite number of objects

y at distance d from x. This requirement excludes degenerate distance measures like

D(x,y) = 1 for all x �= y. Exactly how fast we want the distances of the strings y from

x to go to infinity is not important, it is only a matter of scaling. For convenience,

we will require the following density conditions:

∑
y:y�=x

2−D(x,y) ≤ 1 and ∑
x:x �=y

2−D(x,y) ≤ 1 . (3.2)

Finally we allow only distance measures that are computable in some broad

sense, which will not be seen as unduly restrictive. More precisely, only upper semi-

computability of D will be required. This is reasonable: as we have more and more

time to process x and y we may discover newer and newer similarities among them,

and thus may revise our upper bound on their distance. The next definition summa-

rizes the class of distance measures we are concerned with.

Definition 3.7. An admissible information distance is a total, possibly asymmetric,

nonnegative function on the pairs x,y of binary strings that is 0 if and only if x= y,

is upper semicomputable, and satisfies the density requirement (3.2).

Example 3.2. The Hamming distance between two strings x = x1 . . .xn and

y= y1 . . .yn is defined as d(x,y) = |{i : xi �= yi}|. This distance does not di-

rectly satisfy the density requirements (3.2). With minor modification, we

can scale it to satisfy these requirements. In representing the Hamming dis-

tance m between x and y, strings of equal length n differing in positions

i1, . . . , im, we can use a simple prefix-free encoding of (n,m, i1, . . . , im) in

Hn(x,y) = 2logn+ 4loglogn+ 2 +m logn bits. We encode n and m prefix-free

in logn+ 2loglogn+ 1 bits each and then the literal indexes of the actual flipped-

bit positions. Thus, Hn(x,y) is the length of a prefix code word specifying the

positions where x and y differ. This modified Hamming distance is symmetric, and

it is an admissible distance by the Kraft inequality ∑y:y�=x 2−Hn(x,y) ≤ 1. It is easy to

verify that Hn is a metric in the sense that it satisfies the metric (in)equalities up to

O(logn) additive precision.

The following theorem is the fundamental result about the max distance E. It

states that E is an optimal admissible information distance.

Theorem 3.7. The function E with E(x,y) = max{K(x|y),K(y|x)} is an admissible

information distance and a metric. It is minimal in the sense that for every admissi-

ble information distance D, we have E(x,y)≤ D(x,y)+O(1).

The quantitative difference in a certain feature between two objects can be con-

sidered as an admissible distance. Theorem 3.7 shows that the information dis-

tance E is universal in that among all admissible distances it is always least. That is,

it accounts for the dominant feature in which two objects are alike. For that reason

E is also called the universal information distance.

Many admissible distances are absolute, but if we want to express similarity, then

we are more interested in relative ones. For example, if two strings of 1,000,000 bit
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differ by 1,000 bit, then we are inclined to think that those strings are relatively

similar. But if two strings of 1,000 bit differ by 1,000 bit, then we find them very

different.

Example 3.3. Consider the problem of comparing genomes. The E. coli genome

is about 4.8 megabase long, whereas H. influenza, a sister species of E. coli, has

genome length only 1.8 megabase. The information distance E between the two

genomes is dominated by their length difference rather than the amount of informa-

tion they share. Such a measure will trivially classify H. influenza as being closer to

a more remote species of similar genome length such as A. fulgidus (2.18 megabase),

rather than with E. coli. In order to deal with such problems, we need to normalize.

Our objective now is to normalize the universal information distance E(x,y) =
max{K(x|y),K(y|x)} to obtain a universal similarity distance. It should give a simi-

larity with distance 0 when objects are maximally similar and distance 1 when they

are maximally dissimilar.

3.2.3 Normalized Information Distance

It is paramount that the normalized version of the universal information distance

metric is also a metric. Were it not, then the relative relations between the objects in

the space would be disrupted and this could lead to anomalies, if, for instance, the

triangle inequality would be violated for the normalized version.

In order to obtain a normalized universal information distance function, both

versions of information distance discussed so far, E0 and E, can be normalized. We

will only discuss how to normalize the max distance E and call it the normalized

information distance.

Definition 3.8. The normalized information distance (NID) between two strings x

and y is defined as

e(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
. (3.3)

Dividing by max{K(x),K(y)} is not the most obvious idea for normalizing E,

but the more obvious ideas do not work:

• Divide by the length. Then no matter whether we divide by the sum or maximum

of the length, the triangle inequality is not satisfied.

• Divide by K(x,y). Then the distances will be 1/2 whenever x and y satisfy

K(x) ≈ K(y) ≈ K(x|y) ≈ K(y|x). In this situation, however, x and y are com-

pletely dissimilar, and we would expect distance values of about 1.

That the NID is indeed a normalized metric is a remarkable fact [18].

Theorem 3.8. The normalized information distance e(x,y) takes values in the range

[0,1] and is a metric, up to ignorable discrepancies.
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This concludes our discussion of the theoretical foundations of the NID. We

continue with demonstrations of how these insights can be put to use in practical

settings.

3.3 Normalized Compression Distance

The normalized information distance is theoretically appealing, but impractical

since it cannot be computed. In this section we discuss the normalized compres-

sion distance, an efficiently computable, and thus practically applicable, form of the

normalized information distance.

3.3.1 Introduction

The normalized information distance e(x,y), is called universal because it ac-

counts for the dominant difference between two objects. It depends on the uncom-

putable function K, and is therefore also uncomputable. First we observe that using

K(x,y) = K(xy)+O(logmin{K(x),K(y)} and Item 5 of Theorem 3.3 we obtain

E(x,y) = max{K(x|y),K(y|x)}= K(xy)−min{K(x),K(y)} , (3.4)

up to an additive logarithmic term O(logK(xy)) which we ignore in the sequel.

By rewriting E as in (3.4) we manage to remove all conditional complexity terms

and obtain a formula with only the non-conditional terms K(x),K(y),K(xy). This

comes in handy if we interpret K(x) as the length of the string x after being max-

imally compressed. With this in mind, it is an obvious idea to approximate K(x)
with the length of the string x under an efficient real-world compressor. Any correct

and lossless data compression program can provide an upper-bound approximation

to K(x), and most good compressors detect a large number of statistical regularities.

Substituting the numerator of (3.3) with (3.4) and subsequently using a real-

world compressor Z (such as gzip, bzip2, PPMZ) to heuristically replace the

Kolmogorov complexity, we obtain the distance eZ , often called the normalized

compression distance (NCD), defined by

eZ(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)}
, (3.5)

where Z(x) denotes the binary length of the compressed version of the string x

compressed with compressor Z. The distance eZ is actually a family of distances

parametrized with the compressor Z. The better Z is, the closer eZ approaches the

normalized information distance, the better the results are expected to be.
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Under mild conditions on compressor Z, the distance eZ is computable, takes

values in [0,1], and is a metric [9]. More formally, a compressor Z is normal if it

satisfies the axioms

• Z(xx) = Z(x) and Z(ε) = 0, (identity)

• Z(xy)≥ Z(x), (monotonicity)

• Z(xy) = Z(yx), (symmetry)

• Z(xy)+Z(z)≤ Z(xz)+Z(yz), (distributivity)

up to an additive O(logn) term, with n the maximal binary length of a string involved

in the (in)equality concerned.

Then the unnormalized distance EZ(x,y) = Z(xy)−min{Z(x),Z(y)}, with Z a

normal compressor, is computable, satisfies the density requirement in (3.2), and

satisfies the metric (in)equalities up to additive O(logn) terms, with n the maximal

binary length of a string involved in the (in)equality concerned.

Moreover, the normalized distance eZ of (3.5), with Z a normal compressor, has

values in [0,1] and satisfies the metric (in)equalities up to additive O((logn)/n)
terms, with n the maximal binary length of a string involved in the (in)equality

concerned.

Informal experiments [9] have shown that these axioms are in various degrees

satisfied by good real-world compressors like bzip2, and PPMZ, with PPMZ be-

ing best among the ones tested. The compressor gzip performed not so well, and

in all cases some compressor-specific window or block size determines the maxi-

mum useable length of the arguments x and y (32 KB for gzip, 450 KB for bzip2,

unlimited for PPMZ). Cebrián et al. [4] systematically investigated how far the per-

formance of real-world compressors gzip, bzip2, and PPMZ satisfy the identity

axiom Z(xx) = Z(x) of a normal compressor.

The normalized information distance e is intended to be universally applicable.

In practice, various computable distances, including eZ , can be viewed as approxi-

mations to e. Moreover, many of the measures used in the data mining community

(see Tan et al. [24]) may, after normalization, be viewed as various degrees of ap-

proximations to e.

The NCD has been put to numerous tests. Keogh et al. [14, 15] have tested a

closely related metric as a parameter-free and feature-free data mining tool on a

large variety of sequence benchmarks. Comparing the NCD method with 51 ma-

jor parameter-loaded methods found in the eight major data-mining conferences

(SIGKDD, SIGMOD, ICDM, ICDE, SSDB, VLDB, PKDD, and PAKDD) in the

last decade, on all data bases of time sequences used, ranging from heart beat sig-

nals to stock market curves, they established clear superiority of the NCD method

for clustering heterogeneous data, and for anomaly detection, and competitiveness

in clustering domain data.

Apart from providing a theoretical justification for these practical distances, the

normalized information distance does more in that it embodies all approximations.

The broad range of successful applications of eZ will be demonstrated in the remain-

der of this section, where we will discuss applications in bioinformatics, linguistics,

music, and plagiarism detection.
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3.3.2 Phylogenies

DNA sequences seem ideally suited for the compression distance approach. A DNA

sequence is a finite string over a four-letter alphabet {A,C,G,T}. We used the whole

mitochondrial genomes of 20 mammals, each of about 18,000 base pairs, to test a

hypothesis of Eutherian orders. It has been hotly debated in biology which two of

the three main placental mammalian groups, Primates, Ferungulates, and Rodents,

are more closely related. One cause of the debate is that the standard maximum like-

lihood method, which depends on the multiple alignment of sequences correspond-

ing to an individual protein, gives (Rodents, [Ferungulates, Primates]) for half of

the proteins in the mitochondrial genome, and (Ferungulates, [Primates, Rodents])

for the other half.

In recent years, when people use more sophisticated methods, together with bi-

ological evidences, it is believed that (Rodents, [Ferungulates, Primates]) reflects

the true evolutionary history. We confirm this from the whole genome perspec-

tive using the distance eZ . We use the complete mitochondrial genome sequences

from following 20 species: rat (Rattus norvegicus), house mouse (Mus musculus),

gray seal (Halichoerus grypus), harbor seal (Phoca vitulina), cat (Felis catus), white

rhino (Ceratotherium simum), horse (Equus caballus), finback whale (Balaenoptera

physalus), blue whale (Balaenoptera musculus), cow (Bos taurus), gibbon (Hy-

lobates lar), gorilla (Gorilla gorilla), human (Homo sapiens), chimpanzee (Pan

troglodytes), pygmy chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus),

Sumatran orangutan (Pongo pygmaeus abelii), with opossum (Didelphis virgini-

ana), wallaroo (Macropus robustus) and platypus (Ornithorhynchus anatinus) as

the outgroup.

For every pair of mitochondrial genome sequences x and y, evaluate the formula

in (3.5) using a special-purpose DNA sequence compressor DNACompress [7],

or a good general-purpose compressor like PPMZ. The resulting distances are the

entries in a 20×20 distance matrix. Constructing a phylogeny tree from the distance

matrix, using common tree reconstruction software, gives the tree in Fig. 3.1. This

tree confirms the accepted hypothesis of (Rodents, [Primates, Ferungulates]), and

every single branch of the tree agrees with the current biological classification.

Similarity of sequences in biology is currently primarily handled using align-

ments. However, the alignment methods seem inadequate for post-genomic studies

since they do not scale well with data set size and they seem to be confined only to

genomic and proteomic sequences. Therefore, alignment-free similarity measures

are actively pursued. Ferragina et al. [13] experimentally tested the normalized

information distance using 25 compressors to obtain the NCD, and six data sets

of relevance to molecular biology. They compared the methodology with methods

based on alignments and not. They assessed the intrinsic ability of the methodology

to discriminate and classify biological sequences and structures. The compression

program PPMd, based on PPM (Prediction by Partial Matching), for generic data

and GenCompress [17] for DNA, are the best performers among the compression

algorithms they used. The quantitative analysis supports the conclusion that the nor-

malized information/compression method is worth using because of its robustness,
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Platypus

Wallaroo

Opossum

Rat

HouseMouse

Cat

HarborSeal

GreySeal

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

Rodents

Ferungulates

Primates

Marsupials and monotremes

Fig. 3.1 The evolutionary tree built from complete mitochondrial DNA sequences of several

mammals

flexibility, scalability, and competitiveness with existing techniques. In particular,

the methodology applies to all biological data in textual format.

3.3.3 Language Trees

The similarity between languages can, to some extent, be determined by the simi-

larity of their vocabulary. This means that given two translations of the same text in

different languages, one can estimate the similarity of the languages by the similar-

ity of the words occurring in the translations. This has been exploited by Benedetto

et al. [2], who use a compression method related to NCD to construct a language

tree of 52 Euroasian languages from translations of the Universal Declaration of

Human Rights [1].

In this section we present an experiment [9] that uses the NCD method with trans-

lations of the Universal Declaration of Human Rights into 16 languages. Among

these languages are four European (German, English, Spanish, Dutch), eight African

(Pemba, Dendi, Ndebele, Kicongo, Somali, Rundi, Ditammari, Dagaare), and four

American (Chikasaw, Purhepecha, Mazahua, Zapoteco).
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Ndebele
Rundi

Kicongo
Bemba

Dagaare
Ditammari

Africa

Somali
Dendi

Africa

Zapoteco
Chickasaw

Mazahua
Purhepecha

Americas

Dutch
German
English

Spanish

Europe

Fig. 3.2 Language tree based on the Universal Declaration of Human Rights constructed using the

NCD, based on the gzip compressor

The files have been left in their original UTF-8 encoding, and all pairwise dis-

tances between them have been determined using eZ , where Z has been chosen to be

the standard text compressor gzip. From the resulting matrix of distances, the tree

in Fig. 3.2 has been generated. It shows the three main language groups, only Dendi

and Somali are somewhat too close to the American languages. Also, the classifi-

cation of English as a Romance language is erroneous from a historic perspective

and is due to the English vocabulary being heavily influenced by French and Latin.

Therefore the vocabulary, on which the approach discussed here is based, is indeed

to a large part Romance.

Similar experiments have been conducted with other clustering methods or other

languages [9, 18], but with equally plausible results.

3.3.4 Plagiarism Detection

It is a common observation in university courses with programming assignments

that some programs are plagiarized from others. That means that large portions are

copied from other programs. What makes this hard to detect is that it is relatively

easy to change a program syntactically without changing its semantics, for example,

by renaming variables and functions, inserting dummy statements or comments, or

reordering obviously independent statements. Nevertheless a plagiarized program is

somehow close to its source and therefore the idea of using a distance measure on

programs in order to uncover plagiarism is obvious.

We briefly describe the SID system [6] that uses a variant of the NID to measure

the distance between two source code files. This variant is called the sum distance,

and its Kolmogorov theoretic formulation is

esum(x,y) =
K(x|y)+K(y|x)

K(x,y)
.
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This function takes values in the interval [0,1] and is a metric according to

Definition 3.6 [17].

To compute the similarity between two Java source code files, SID first tokenizes

the programs and then uses a customized compressor to approximate the sum dis-

tance. This compressor is a variant of the Lempel–Ziv compression scheme [26]

that has an unbounded buffer size and can thus detect repetitions over the entire file.

Moreover it also takes advantage of approximate repetitions to increase the com-

pression rate.

Evaluating plagiarism detection systems is difficult, but field experiments indi-

cate that SID performs competitively and is more robust against certain attempts to

circumvent detection, such as insertion of irrelevant code.

3.3.5 Clustering Music

The previous examples of NCD applications were based on text, be it source code

or the Declaration of Human Rights. But The NCD method can also be applied to

multimedia data like music, if it is present in the right format.

Music files in the MIDI format can be transformed into files that can be success-

fully clustered with the NCD. This transformation involves stripping the files of all

instrument indicators, MIDI control signals and meta information such as title and

composer. What essentially remains of a file is a list of musical notes of the piece.

These preprocessed files can than be treated as text files.

A number of experiments has been performed [9, 11] with such files. We

present a single, representative one, in which the set of musical pieces comprises

four preludes from Chopin’s Opus 28, two preludes and two fugues from Bach’s

“Das wohltemperierte Klavier,” and the four movements from Debussy’s “Suite

Bergamesque.” After preprocessing the MIDI files as described above, the pairwise

eZ values, with bzip2 as compressor, are computed. To generate the final hierar-

chical clustering as shown in Fig. 3.3, a special quartet method [9, 11] is used.

Perhaps with the exception of Chopin’s Prélude no. 5, which seems somewhat

closer to the Bach pieces, the results agree with one’s expectations.

3.3.6 Clustering Heterogeneous Data

We test gross classification of files based on heterogeneous data of markedly differ-

ent file types:

1. Four mitochondrial gene sequences, from a black bear, polar bear, fox, and rat

obtained from the GenBank Database [3] on the World Wide Web

2. Four excerpts from the novel The Zeppelin’s Passenger by E. Phillips

Oppenheim, obtained from the Project Gutenberg Edition on the World Wide

Web
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BachWTK2F1

n5

n8

BachWTK2F2
BachWTK2P1

n0

BachWTK2P2

ChopPrel15n9

n1

ChopPrel1

n6

n3

ChopPrel22

ChopPrel24

DebusBerg1

n7

DebusBerg4

n4
DebusBerg2

n2

DebusBerg3

Fig. 3.3 Hierarchical clustering of MIDI files of four pieces by Bach, Chopin, and Debussy using

the bzip2 based NCD and a quartet method

3. Four MIDI files without further processing: two from Jimi Hendrix and two

movements from Debussy’s “Suite Bergamasque,” downloaded from various

repositories on the World Wide Web

4. Two Linux x86 ELF executables (the cp and rm commands), copied directly

from the RedHat 9.0 Linux distribution

5. Two compiled Java class files, generated by ourselves

The program correctly classifies each of the different types of files together with

like near like. The result is reported in Fig. 3.4. This experiment shows the power

and universality of the method: no features of any specific domain of application are

used. We believe that there is no other method known that can cluster data that are

so heterogeneous this reliably.
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ELFExecutableA

n12n7

ELFExecutableB

GenesBlackBearA

n13

GenesPolarBearB

n5

GenesFoxC

n10

GenesRatD

JavaClassA

n6

n1

JavaClassB

MusicBergA

n8 n2

MusicBergB

MusicHendrixA

n0

n3

MusicHendrixB

TextA

n9

n4

TextB

TextC

n11
TextD

Fig. 3.4 Clustering of heterogeneous file types using the NCD, based on the bzip2 compressor,

and a quartet clustering method. The set of file contains four MIDI files, four genomes, four English

texts, and two Java class files and Linux executables

3.3.7 Conclusion

The NCD is universal, in a mathematical sense as approximation of the universal

NID, but also in a practical sense, as witnessed by the wide range of successful ap-

plications. Nevertheless the practical universality is of a different flavor because the

NCD is a family of distance measures parametrized by a compressor. This means

that one has to pick a suitable compressor for the application domain at hand. It

does, however, not mean that one has to know the relevant features of the objects
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in that domain beforehand. Rather, using a good compressor for objects in a certain

domain, makes it more likely that the compressor does indeed capture the (combina-

tions of) features relevant for the objects in that domain. The criterion for choosing a

compressor is clearer and simpler than the criterion for picking the “right” features,

namely encoding length.

In other words, the NCD is sensitive to many features and discovers the ones that

are important for the objects under consideration. Not being tuned to specific fea-

tures beforehand contributes to the robustness of the NCD method, as well as to the

ease of use. It is thus a valuable tool in the process of exploratory data mining [14].

3.4 Normalized Web Distance

The normalized compression distance can only be applied to objects that are strings

or that at least can be naturally represented as such. Abstract concepts or ideas, on

the other hand, are not amenable to the NCD method. In this section, we present

a realization of NID overcoming that limitation by taking advantage of the World

Wide Web.

3.4.1 Introduction

There are literal objects and non-literal objects. Examples of the former include the

four-letter human genome, the text of War and Peace by Tolstoy, and the source

code of a program. Non-literal objects are essentially names, either for literal ob-

jects, like “the four-letter human genome,” “the text of War and Peace by Tolstoy,”

and “main.c,” or for concepts and ideas that are not associated with a literal ob-

ject in any way, like the concept of “home” or “red.” The latter objects acquire their

meaning from their contexts in background common knowledge in humankind. Put

differently, a sequence contains information within itself, whereas names and con-

cepts contain their information not within themselves. The name “human genome”

implies 3 gigabases of information. The phrase “War and Peace by Tolstoy” perhaps

carries information even beyond the book.

Let W be the set of pages of the World Wide Web, and let x ⊆W be the set of

pages containing the search term x. By the Conditional Coding Theorem we have

log1/m(x|x ⊆ W) = K(x|x ⊆ W) +O(1), where m is the universal lower semi-

computable discrete semimeasure. This equality relates the incompressibility of the

set of pages on the Web, containing a given search term, to its universal probabil-

ity. While we do not know how to compute m, a natural heuristic now is to use

the distribution of x in the Web to approximate m(x|x⊆W). (We give a simplified

approach where we assume that every page contains at most one search term.) Let

us define the probability mass function g(x) to be the probability that the search

term x appears in a page indexed by a given internet search engine G, that is, the
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number of pages returned divided by the overall number of pages indexed. Then the

Shannon–Fano code [23] associated with g can be set at

G(x) = log
1

g(x)
.

Replacing Z(x) by G(x) in the formula in (3.5), we obtain the distance eG, often

called the normalized Web distance (NWD):

eG(x,y) =
G(xy)−min{G(x),G(y)}

max{G(x),G(y)}
(3.6)

=
max{log f (x), log f (y)}− log f (x,y)

logN−min{log f (x), log f (y)}
.

where f (x) is the number of pages containing x, the frequency f (x,y) is the number

of pages containing both x and y, and N is the total number of indexed pages. We

can view the search engine G as a compressor using the Web, and G(x) as the binary

length of the compressed version of the set of all pages containing the search term

x, given the indexed pages on the Web. The distance eG is actually a family of

distances parametrized with the search engine G. It was originally called normalized

Google distance (NGD) and thus featured a particular search engine [10]. The name

normalized Web distance is more generic and more in line with the name NCD,

which also does not mention a concrete compressor.

Example 3.4. We describe an experiment, using a popular search engine, performed

in the year 2004, at which time it indexed N = 8,058,044,651 pages. A search for

“horse” returns a page count of 46,700,000. A search for “rider” returns a page

count of 12,200,000. A search for both “horse” and “rider” returns a page count of

2,630,000. Thus eG(horse, rider) = 0.443. It is interesting to note that this number

stayed relatively fixed as the number of pages indexed by the used search engine

increased.

The distance eG is actually a family of distances parametrized with the search

engine G. The better G is, the closer the eG approaches the normalized informa-

tion distance, and the better the results are expected to be. The distance eG is com-

putable, takes values primarily (but not exclusively) in [0,1], and is symmetric,

that is, eG(x,y) = eG(y,x). It only satisfies “half” of the identity property, namely

eG(x,x) = 0 for all x, but eG(x,y) = 0 can hold even if x �= y, for example, if the

terms x and y always occur together.

The NWD also does not satisfy the triangle inequality eG(x,y) ≤ eG(x,z) +
eG(z,y) for all x,y,z. To see that, choose x, y, and z such that x and y never occur

together, z occurs exactly on those pages on which x or y occurs, and f (x) = f (y) =√
N. Then f (x) = f (y) = f (x,z) = f (y,z) =

√
N, f (z) = 2

√
N, and f (x,y) = 0. This

yields eG(x,y) =∞ and eG(x,z) = eG(z,y) = 2/ logN, which violates the triangle in-

equality for all N. It follows that the NWD is not a metric. Indeed, we should view

the distance eG between two concepts as a relative similarity measure between those

concepts. Then, while concept x is semantically close to concept y and concept y is
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semantically close to concept z, concept x can be semantically very different from

concept z.

Another important property of the NWD is its scale-invariance. This means that,

if the number N of pages indexed by the search engine grows sufficiently large, the

number of pages containing a given search term goes to a fixed fraction of N, and so

does the number of pages containing conjunctions of search terms. This means that

if N doubles, then so do the f -frequencies. For the NWD to give us an objective

semantic relation between search terms, it needs to become stable when the number

N of indexed pages grows. Some evidence that this actually happens was given in

Example 3.4.

The NWD can be used as a tool to investigate the meaning of terms and the

relations between them as given by common sense. This approach can be com-

pared with the Cyc project [16], which tries to create artificial common sense. Cyc’s

knowledge base consists of hundreds of microtheories and hundreds of thousands of

terms, as well as over a million hand-crafted assertions written in a formal language

called CycL [21]. CycL is an enhanced variety of first order predicate logic. This

knowledge base was created over the course of decades by paid human experts. It

is therefore of extremely high quality. The Web, on the other hand, is almost com-

pletely unstructured, and offers only a primitive query capability that is not nearly

flexible enough to represent formal deduction. But what it lacks in expressiveness

the Web makes up for in size; Web search engines have already indexed more than

ten billion pages and show no signs of slowing down. Therefore search engine data-

bases represent the largest publicly-available single corpus of aggregate statistical

and indexing information so far created, and it seems that even rudimentary analy-

sis thereof yields a variety of intriguing possibilities. It is unlikely, however, that

this approach can ever achieve 100% accuracy like in principle deductive logic can,

because the Web mirrors humankind’s own imperfect and varied nature. But, as we

will see below, in practical terms the NWD can offer an easy way to provide results

that are good enough for many applications, and which would be far too much work

if not impossible to program in a deductive way.

In the following sections we present a number of applications of the NWD: hier-

archical clustering and classification of concepts and names in a variety of domains,

finding corresponding words in different languages, and a system that answers nat-

ural language questions.

3.4.2 Hierarchical Clustering

To perform the experiments in this section, we used the CompLearn software

tool [8], the same tool that has been used in Sect. 3.3 to construct trees representing

hierarchical clusters of objects in an unsupervised way. However, now we use the

normalized Web distance (NWD) instead of the normalized compression distance

(NCD). Recapitulating, the method works by first calculating a distance matrix

using NWD among all pairs of terms in the input list. Then it calculates a best-
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matching unrooted ternary tree using a novel quartet-method style heuristic based

on randomized hill-climbing using a new fitness objective function optimizing the

summed costs of all quartet topologies embedded in candidate trees [9].

3.4.2.1 Colors and Numbers

In the first example [10], the objects to be clustered are search terms consisting of

the names of colors, numbers, and some tricky words. The program automatically

organized the colors towards one side of the tree and the numbers towards the other,

Fig. 3.5. It arranges the terms which have as only meaning a color or a number, and

nothing else, on the farthest reach of the color side and the number side, respectively.

It puts the more general terms black and white, and zero, one, and two, towards the

center, thus indicating their more ambiguous interpretation. Also, things which were

not exactly colors or numbers are also put towards the center, like the word “small.”

We may consider this an example of automatic ontology creation.

3.4.2.2 Dutch Seventeenth Century Painters

In the example of Fig. 3.6, the names of 15 paintings by Steen, Rembrandt, and Bol

were entered [10]. The names of the associated painters were not included in the

input, however they were added to the tree display afterwards to demonstrate the

separation according to painters. This type of problem has attracted a great deal of

attention [22]. A more classical solution would use a domain-specific database for

similar ends. The present automatic oblivious method obtains results that compare

favorably with the latter feature-driven method.

3.4.2.3 Chinese Names

In the example of Fig. 3.7, several Chinese names were entered. The tree shows

the separation according to concepts like regions, political parties, people, etc. See

Fig. 3.8 for English translations of these names. The dotted lines with numbers in-

between each adjacent node along the perimeter of the tree represent the NWD

values between adjacent nodes in the final ordered tree. The tree is presented in

such a way that the sum of these values in the entire ring is minimized. This gen-

erally results in trees that makes the most sense upon initial visual inspection, con-

verting an unordered binary tree to an ordered one. This feature allows for a quick

visual inspection around the edges to determine the major groupings and divisions

among coarse structured problems. It grew out of an idea originally suggested by

Rutledge [22].
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black

n8

white

n4

blue

n14

n13

n10

chartreuse

n6n7

purple

eight

n9

seven

n11

fiven15

four

n0

fortytwo

n2

green

n5

one

n16

n12

n3

orange

red

six

small
n18

n1

three

transparent

zero

two

n17

yellow

Fig. 3.5 Colors, numbers, and other terms arranged into a tree based on the normalized Web dis-

tances between the terms

3.4.3 Support Vector Machine Learning

We augment the NWD method by adding a trainable component of the learning

system. This allows us to consider classification rather than clustering problems.

Here we use the Support Vector Machine (SVM) as a trainable component. For all

SVM experiments, the LIBSVM software [5] has been used.

The setting is a binary classification problem on examples represented by search

terms. We require a human expert to provide a list of at least 40 training words,
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Steen  Prince’s Day

Steen  The Merry Family

Steen  Leiden Baker Arend Oostwaert

Steen  Keyzerswaert

Steen  Woman at her Toilet

Steen  Two Men Playing Backgammon

Rembrandt  Hendrickje slapend

Rembrandt  Portrait of Maria Trip

Rembrandt  Portrait of Johannes Wtenbogaert

Rembrandt  The Stone Bridge

Bol  Maria Rey

Rembrandt  The Prophetess Anna

Bol  Consul Titus Manlius Torquatus

Bol  Swartenhont

Bol  Venus and Adonis

Fig. 3.6 Fifteen paintings by three painters arranged into a tree by hierarchical clustering. To

determine the normalized Web distances between the paintings, only the title names were used; the

painter prefixes shown in the diagram were added afterwards to assist in interpretation

consisting of at least 20 positive examples and 20 negative examples, to illustrate

the contemplated concept class. The expert also provides, say, six anchor words

a1, . . . ,a6, of which half are in some way related to the concept under consideration.

Then, we use the anchor words to convert each of the 40 training words w1, . . . ,w40

to 6-dimensional training vectors v1, . . . ,v40. The entry v j,i of v j = (v j,1, . . . ,v j,6)
is defined as v j,i = eG(wi,a j) (1 ≤ i≤ 40, 1 ≤ j ≤ 6). The training vectors are then

used to train an SVM to learn the concept, and then test words may be classified

using the same anchors and trained SVM model. We present all positive examples

as x-data (input data), paired with y= 1. We present all negative examples as x-data,

paired with y=−1.

The above method for transforming concepts into real valued vectors is not lim-

ited to be used with SVMs, but can be combined with any machine learning algo-

rithm that can handle numeric inputs.

3.4.3.1 Learning Prime Numbers

In Fig. 3.9 the method learns to distinguish prime numbers from non-prime num-

bers by example [10]. This example illustrates several common features the NWD

method that distinguish it from the strictly deductive techniques. It is common for

the classifications to be good but imperfect, and this is due to the unpredictability

and uncontrolled nature of the Web distribution.
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Fig. 3.7 Names of several Chinese people, political parties, regions, and others. The nodes and

solid lines constitute a tree constructed by a hierarchical clustering method based on the normalized

Web distances between all names. The numbers at the perimeter of the tree represent NWD values

between the nodes pointed to by the dotted lines. For an explanation of the names, refer to Fig. 3.8

3.4.3.2 WordNet Semantics: Learning Religious Terms

The next example (see the preliminary version of [10]) has been created using

WordNet [12], which is a semantic concordance of English. It also attempts to focus

on the meaning of words instead of the word itself. The category we want to learn

here is termed “religious” and represents anything that may pertain to religion. The

negative examples are constituted by simply everything else (see Fig. 3.10). Neg-

ative examples were chosen randomly and uniformly from a dictionary of English
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Fig. 3.8 Explanations of the Chinese names used in the experiment that produced Fig. 3.7

words. This category represents a typical expansion of a node in the WordNet hier-

archy. The accuracy on the test set is 88.89%.

3.4.3.3 WordNet Semantics: 100 Experiments

The previous example shows only one hand-crafted special case. To investigate the

more general statistics, a method was devised to estimate how well the NWD-SVM

approach agrees with WordNet in a large number of automatically selected semantic

categories [10].

Before we explain how each category was automatically generated, we first re-

view the structure of WordNet; the following is paraphrased from the official Word-

Net documentation available online. WordNet is called a semantic concordance of

the English language. It seeks to classify words into many categories and interrelate
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Training Data

Positive examples (21 cases)

11 13 17 19 2

23 29 3 31 37

41 43 47 5 53

59 61 67 7 71

73

Negative examples (22 cases)

10 12 14 15 16

18 20 21 22 24

25 26 27 28 30

32 33 34 4 6

8 9

Anchors (5 dimensions)

composite, number, orange, prime, record

Testing Results

Positive tests Negative tests

Positive 101, 103, 110

Predictions 107, 109,

79, 83,

89, 91,

97

Negative 36, 38,

Predictions 40, 42,

44, 45,

46, 48,

49

Accuracy: 18/19 = 94.74%

Fig. 3.9 NWD-SVM learning of prime numbers. All examples, i.e., numbers, were converted into

vectors containing the NWD values between that number and a fixed set of anchor concepts. The

classification was then carried out on these vectors using a support vector machine. The only error

made is classifying 110 as a prime

the meanings of those words. WordNet contains synsets. A synset is a synonym

set; a set of words that are interchangeable in some context, because they share a

commonly-agreed upon meaning with little or no variation. Each word in English

may have many different senses in which it may be interpreted; each of these dis-

tinct senses points to a different synset. Every word in WordNet has a pointer to

at least one synset. Each synset, in turn, must point to at least one word. Thus, we

have a many-to-many mapping between English words and synsets at the lowest

level of WordNet. It is useful to think of synsets as nodes in a graph. At the next

level we have lexical and semantic pointers. Lexical pointers are not investigated in

this section; only the following semantic pointer types are used in our comparison:

A semantic pointer is simply a directed edge in the graph whose nodes are synsets.
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Training Data

Positive examples (22 cases)

Allah Catholic Christian Dalai Lama God

Jerry Falwell Jesus John the Baptist Mother Theresa Muhammad

Saint Jude The Pope Zeus bible church

crucifix devout holy prayer rabbi

religion sacred

Negative examples (23 cases)

Abraham Lincoln Ben Franklin Bill Clinton Einstein George Washington

Jimmy Carter John Kennedy Michael Moore atheist dictionary

encyclopedia evolution helmet internet materialistic

minus money mouse science secular

seven telephone walking

Anchors (6 dimensions)

evil follower history rational scripture spirit

Testing Results

Positive tests Negative tests

Positive altar, blessing, earth, shepherd

Predictions communion, heaven,

sacrament, testament,

vatican

Negative angel Aristotle, Bertrand Russell, Greenspan, John,

Predictions Newton,Nietzsche, Plato, Socrates, air, bicycle,

car, fire, five, man, monitor, water, whistle

Accuracy: 24/27 = 88.89%

Fig. 3.10 NWD-SVM learning of religious terms. All training and test examples were converted

into vectors containing the NWD values between that example concept and a fixed set of anchor

concepts. The classification was then carried out on these vectors using a support vector machine

The pointer has one end we call a source and the other end we call a destination.

The following relations are used:

1. Hyponym: X is a hyponym of Y if X is a (kind of) Y .

2. Part meronym: X is a part meronym of Y if X is a part of Y .

3. Member meronym: X is a member meronym of Y if X is a member of Y .

4. Attribute: A noun synset for which adjectives express values. The noun weight is

an attribute, for which the adjectives light and heavy express values.

5. Similar to: A synset is similar to another one if the two synsets have meanings

that are substantially similar to each other.

Using these semantic pointers we may extract simple categories for testing. First,

a random semantic pointer (or edge) of one of the types above is chosen from the

WordNet database. Next, the source synset node of this pointer is used as a root.

Finally, we traverse outward in a breadth first order starting at this root and follow-

ing only edges that have an identical semantic pointer type; that is, if the original
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semantic pointer was a hyponym, then we would only follow hyponym pointers in

constructing the category. Thus, if we were to pick a hyponym link initially that says

a tiger is a cat, we may then continue to follow further hyponym relationships in or-

der to continue to get more specific types of cats. See the WordNet homepage [20]

documentation for specific definitions of these technical terms.

Once a category is determined, it is expanded in a breadth first way until at least

38 synsets are within the category. 38 was chosen to allow a reasonable amount

of training data to be presented with several anchor dimensions, yet also avoiding

too many. Here, a rule of thumb is helpful: it states that the number of dimensions

in the input data must not exceed one tenth the number of training samples. If the

category cannot be expanded this far, then a new one is chosen. Once a suitable

category is found, and a set of at least 38 members has been formed, a training

set is created using 25 of these cases, randomly chosen. Next, three are chosen

randomly as anchors. And finally the remaining ten are saved as positive test cases.

To fill in the negative training cases, random words are chosen from the WordNet

database. Next, three random words are chosen as unrelated anchors. Finally, 10

random words are chosen as negative test cases.

For each case, the SVM is trained on the training samples, converted to

6-dimensional vectors using NWD. The SVM is trained on a total of 50 sam-

ples. The kernel-width and error-cost parameters are automatically determined

using five-fold cross validation. Finally testing is performed using 20 examples in a

balanced ensemble to yield a final accuracy.

There are several caveats with this analysis. It is necessarily rough, because

the problem domain is difficult to define. There is no protection against certain

randomly chosen negative words being accidentally members of the category in

question, either explicitly in the greater depth transitive closure of the category, or

perhaps implicitly in common usage but not indicated in WordNet. Another detail

to notice is that WordNet is available through some Web pages, and so undoubt-

edly contributes something to Web page counts. Further experiments comparing the

results when filtering out WordNet images on the Web suggest that this problem

does not usually affect the results obtained, except when one of the anchor terms

happens to be very rare and thus receives a non-negligible contribution towards its

page count from WordNet views. In general, the previous NCD based methods, as

in [9], exhibit large-granularity artifacts at the low end of the scale; for small strings

we see coarse jumps in the distribution of NCD for different inputs which makes

differentiation difficult. With the Web based NWD we see similar problems when

page counts are less than a hundred.

We ran 100 experiments. The histogram of agreement accuracies is shown in

Fig. 3.11. On average, the NWD method turns out to agree well with the WordNet

semantic concordance made by human experts. The mean of the accuracies of agree-

ments is 0.8725. The variance is approximately 0.01367, which gives a standard

deviation of approximately 0.1169. Thus, it is rare to find agreement less than 75%.

We conclude this section with a more abstract view of the NWD-SVM method.

As we have seen, this method does not use an individual word in isolation, but in-

stead uses an ordered list of its NWD relationships with fixed anchors. Therefore
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Fig. 3.11 Histogram of accuracies over 100 trials of WordNet experiment. The average accuracy

achieved in the experiments is 0.8725

nothing can be attached to the isolated interpretation of a literal term, but only to the

ordered list by which it is represented. That is to say, the inputs to our SVM are not

directly search terms, but instead an image of the search term through the lens of the

Web distribution, and relative to other fixed terms which serve as a grounding for the

term. In most schools of ontological thought, and indeed in the WordNet database,

there is imagined a two-level structure that characterizes language: a many-to-many

relationship between word-forms or utterances and their many possible meanings.

Each link in this association will be represented in the Web distribution with strength

proportional to how common that usage is found on the Web. The NWD then am-

plifies and separates the many contributions towards the aggregate page count sum,

thereby revealing some components of the latent semantic Web. In almost every in-

formal theory of cognition we have the idea of connectedness of different concepts

in a network, and this is precisely the structure that the NWD experiments attempt

to explore.

3.4.4 Matching the Meaning

Yet another potential application of the NWD method is in natural language trans-

lation. In the experiment below [10] we do not use SVMs to obtain the result, but

determine correlations instead. Suppose we are given a system that tries to infer

a translation-vocabulary among English and Spanish. Assume that the system has

already determined that there are five words that appear in two different matched

sentences, but the permutation associating the English and Spanish words is, as yet,

undetermined. This setting can arise in real situations, because English and Spanish

have different rules for word-ordering. Thus, at the outset we assume a pre-existing

vocabulary of eight English words with their matched Spanish translation. Can we
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Given starting vocabulary

English Spanish

tooth diente

joy alegria

tree arbol

electricity electricidad

table tabla

money dinero

sound sonido

music musica

Unknown permutation

English Spanish

plant bailar

car hablar

dance amigo

speak coche

friend planta

Predicted permutation

English Spanish

plant planta

car coche

dance bailar

speak hablar

friend amigo

Fig. 3.12 English–Spanish translation problem. The left table is given to the system as background

knowledge, the middle table contains words whose mapping is not known. The right table shows

the mapping determined by the system

infer the correct permutation mapping the unknown words using the pre-existing

vocabulary as a basis?

We start by forming an NWD matrix using additional English words of which

the translation is known, Fig. 3.12. We label the columns by the translation-known

English words, the rows by the translation-unknown words. The entries of the matrix

are the NWDs of the English words labeling the columns and rows. This constitutes

the English basis matrix. Next, consider the known Spanish words corresponding to

the known English words. Form a new matrix with the known Spanish words label-

ing the columns in the same order as the known English words. Label the rows of

the new matrix by choosing one of the many possible permutations of the unknown

Spanish words. For each permutation, form the NWD matrix for the Spanish words,

and compute the pairwise correlation of this sequence of values to each of the val-

ues in the given English word basis matrix. Choose the permutation with the highest

positive correlation. If there is no positive correlation, report a failure to extend the

vocabulary. In this example, the computer inferred the correct permutation for the

testing words, see the right table in Fig. 3.12.

3.4.5 Question–Answer System

A typical procedure for finding an answer on the World Wide Web consists in en-

tering some terms regarding the question into a Web search engine and then brows-

ing the search results in search for the answer. This is particularly inconvenient

when one uses a mobile device with a slow internet connection and small display.

Question–answer (QA) systems attempt to solve this problem. They allow the user
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to enter a question in natural language and generate an answer by searching the Web

autonomously.

In this section we describe some parts of the QA system QUANTA [25] that

uses a variant of the NID to identify the correct answer to a question out of several

candidates for answers. QUANTA is remarkable in that it uses neither NCD nor

NWD introduced so far, but a variation that is nevertheless based on the same theo-

retical principles. This variation is tuned to the particular needs of a QA system. We

begin with some motivation for this particular variant and then describe it formally

within the Kolmogorov framework. We shall focus on the new distance measure,

not on other, interesting, details of the system, such as parsing and chunking the

question, interfacing Web search engines, or generating candidate answers. We thus

assume that for a given question a set of possible answers is already available, and

the system only has to pick the (or a) right one.

As an example we consider the question “Which city is Lake Washington by?,”

which allows for many answers, among them Seattle, Bellevue, or Dallas. The first

two cities are correct answers, but the preferred answer would be Seattle as the

more well-known city. In a straightforward attempt to finding the right answer using

the normalized Web distance we could compute eG(Lake Washington,Bellevue),
eG(Lake Washington,Seattle) and eG(Lake Washington, Dallas) and pick the city

with the least distance. An experiment performed in February 2008 with a popular

Web search engine yielded

• eG(Lake Washington, Bellevue) = 0.4658,

• eG(Lake Washington, Seattle) = 0.5716,

• eG(Lake Washington, Dallas) = 0.8302,

so that Bellevue would have been chosen. Without normalization the respective dis-

tance values are 6.33, 7.54 and 10.95. Intuitively, the reason for Seattle being rel-

atively far away from Lake Washington (in terms of eG) is that, due to Seattle’s

size and popularity, it has many concepts in its neighborhood not all of which can

be close. For the less known city of Bellevue, however, Lake Washington is rela-

tively more important. Put differently, the concept “Seattle” contains a lot of infor-

mation that is irrelevant for its being situated at Lake Washington. Symmetrically,

Lake Washington encompasses much information unrelated to Seattle. A variation

of (3.1) that accounts for possible irrelevant information is then

Emin,0(x,y) = min{�(p) : U(x, p,r) = y and U(y, p,q) = x (3.7)

and �(p)+ �(q)+ �(r)≤ E0(x,y)} .

Here, r represents the irrelevant information in y and q the irrelevant information

in x. The additional restriction �(p)+�(q)+�(r)≤ E0(x,y) ensures that the amount

of irrelevant information is limited. Without it, one could set r = y and q = x and

always use a program p of constant size that merely outputs one of its arguments.

Similarly as E0 in (3.1), Emin,0 cannot be used practically right away, it must be

converted into a formula based on K [25]:
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Theorem 3.9. Emin,0(x,y) = min{K(x|y),K(y|x)}+O(log�(xy)).

The term min{K(x|y),K(y|x)} is also called the min distance and denoted by Emin.

The min distance is not a metric since it does not satisfy the triangle inequality.

But in question–answer systems on the internet, distances are measured with partial

information anyway, hence it is unreasonable to require the triangle inequality to

hold. Furthermore, Emin satisfies the density conditions in (3.2) only for strings x

with K(x)≥ �(x)+O(1). It does not hold for objects with a low Kolmogorov com-

plexity, which correspond to concepts with high frequency, such as Seattle. That

Emin violates (3.2) for such objects intuitively means that popular concepts are al-

lowed to have a denser neighborhood. This property is therefore rather a feature of

Emin than a bug.

In another step paralleling the development of the NID, the min distance can be

normalized. Analogously to e, we define the normalized version emin of Emin as

emin(x,y) =
Emin(x,y)

min{K(x),K(y)}
=

min{K(x|y),K(y|x)}

min{K(x),K(y)}
.

It follows, though not obviously, that emin(x,y)≤ e(x,y) for all x and y.

The normalized min distance emin can be approximated by Web statistics in the

same way as the NWD approximates the NID (cf. (3.6)), namely using the formula

eG,min(x,y) =
min{log f (x), log f (y)}− log f (x,y)

logN−max{log f (x), log f (y)}
.

Applying this normalized min Web distance to our above example question and

answers, we obtain:

• eG,min(Lake Washington, Bellevue) = 0.4496,

• eG,min(Lake Washington, Seattle) = 0.4281,

• eG,min(Lake Washington, Dallas) = 0.7746,

that is, the answer “Seattle” would now be preferred over “Bellevue,” and Dallas is

still out of the question.

Regardless of whether we used eG or eG,min, statistics would be obtained for the

(co-)occurrence of the following single words and pairs:

• “Lake Washington”

• “Seattle”

• “Bellevue”

• “Lake Washington” and “Seattle”

• “Lake Washington” and “Bellevue”

But there is nothing hinting to the fact that we are looking for the co-location of a

city and a lake. Of course, in this example it is reasonably clear. If, however, the

question was represented by “Alan Turing,” and candidate answers were “London,”

“Wilmslow,” and “Paris,” it would be unclear whether we are looking for Turing’s

place of birth, place of death, or any other place related to him. Clearly, the veracity
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of any of these answers depends on the particular question. It is therefore necessary

to add some clues as to what the question is to the queries given to the Web search

engine. For example adding the phrase “is born in” to all queries would (hopefully)

limit the obtained statistics to Web pages that are concerned with Turing’s birth and

therefore result in “London” being chosen as answer.

The idea of such side information can easily be incorporated into the underlying

theory by adding a condition to all terms in emin (or e for that matter), yielding

emin(x,y|c) =
min{K(x|y,c),K(y|x,c)}

min{K(x|c),K(y|c)}
,

where c denotes the conditional information, such as “is born in” in the above ex-

ample. The extraction of a suitable c requires some sophistication and is beyond the

scope of our discussion here.

The conditional version of emin is at the core of the QUANTA system, whose

question answering capabilities compare favorably with other QA systems [25]. The

beneficial properties of emin can perhaps best seen in comparison to other measures

such as the normalized max distance e or the unnormalized distances E and Emin.

Replacing emin with e results in answers that are still technically correct but often

less popular and therefore less “good.” We already mentioned Bellevue being pre-

ferred over Seattle as a city located at Lake Washington. Another example is the

question “When was CERN founded?,” which would be answered by e with “52

years ago,” correct in 2006, whereas emin responds more accurately with “1954.”

Using the unnormalized E gives overly much weight to popular concepts. For

instance, “Who is the greatest scientist of all?” would be answered with “God,”

whereas emin would give “Newton,” the reason for this discrepancy being that, in

terms of Web pages, God is much more popular than Newton. More generally, ex-

periments have shown [25] that Emin and E perform about 8% worse than emin.

The development of emin to pick the most plausible answer in a QA system

demonstrates how distance measures customized to special applications can be de-

rived from first principles of Kolmogorov complexity theory, which in turn shows

the power and flexibility of this theoretical approach.

3.5 Conclusions

The approach described in this chapter rests upon the simple idea that an information

distance between two objects can be measured by the size of the shortest description

that transforms each object into the other one. This idea is most naturally expressed

mathematically using Kolmogorov complexity. Kolmogorov complexity, moreover,

provides mathematical tools to show that such a measure is, in a proper sense, uni-

versal among all (upper semi)computable distance measures satisfying a natural

density condition. These comprise most, if not all, distances one may be interested

in. This information distance happens to be a metric. Since two large, very similar,
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objects may have the same information distance as two small, very dissimilar, ob-

jects, in terms of similarity it is the relative distance we are interested in. Hence we

normalize the information metric to a relative similarity (also metric) in between 0

and 1. However, the normalized information metric is uncomputable. We approx-

imate its Kolmogorov complexity parts by off-the-shelf compression programs (in

the case of the normalized compression distance) or readily available statistics from

the internet (in case of the normalized Web distance). The outcome are two practical

distance measures, for literal as well as for non-literal data, that have been proved

useful in numerous applications, some of which have been presented in the previous

sections.

Just as important as the successes of these practical measures, however, is the un-

derlying process used to derive them. The derivations of NCD and NWD are special

instances of this process, which can roughly be broken into three steps: (1) devis-

ing an abstract distance notion, (2) transforming it inside the abstract mathematical

realm into an equivalent, yet more easily realizable, formula, and (3) using real-

world algorithms or data to practically realize the theoretically conceived measure.

That this approach does not work by chance just for the information distance, is

demonstrated by the derivation of the minimum distance, which employs the same

three step process, just with different starting requirements for the distance measure.

Central design principles behind these Kolmogorov-based distance measures are

the requirement of universality and the use of absolute measures of information

content to achieve this universality. From these principles it follows naturally that

the resulting distance measures are independent of fixed feature sets and do not

require parameters for tuning. They can thus be used to build feature- and parameter-

free methods that are suited for many tasks in exploratory data mining, alignment-

free genomics, and elsewhere.

Appendix

List of Symbols

• x̄: self-delimiting encoding of string x

• �(·): length of a string

• ε: empty string

• | . . . |: cardinality

• R+: set of all non-negative rational numbers

• R: set of all rational numbers

• N : set of all natural numbers

• Q: set of all rational numbers

• �. . .�: floor function

• �. . .�: pairing function

• C(·|·): conditional Kolmogorov complexity

• C(·): unconditional Kolmogorov complexity

• K(·|·): conditional Kolmogorov prefix complexity
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• K(·): unconditional Kolmogorov prefix complexity

• m: universal upper semicomputable discrete semimeasure

• ⊕: bitwise xor

• E: max distance

• E0: information distance

• e: normalized information distance

• eZ : normalized compression distance

• eG: normalized Web distance

• W: set of all Web pages

• x: set of all Web pages containing term x

• f (x): number of Web pages containing term x

• g(x): probability that a Web page contains term x

• Emin: min distance

• emin: normalized min distance

• eG,min: normalized min Web distance
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14. Keogh, E., Lonardi, S., Ratanamahatana, C.: Toward parameter-free data mining. In: Proc.

10th ACM SIGKDD Intn’l Conf. Knowledge Discovery and Data Mining, pp. 206–215. Seat-

tle, Washington, USA (2004). August 22–25, 2004

15. Keogh, E., Lonardi, S., Ratanamahatana, C.A., Wei, L., Lee, S.H., Handley, J.: Compression-

based data mining of sequential data. Data Mining and Knowledge Discovery 14(1), 99–129

(2007)

16. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of

the ACM 38(11), 33–38 (1995)

17. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang, H.: An information-based se-

quence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics

17(2), 149–154 (2001)

18. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.M.B.: The similarity metric. IEEE Transactions on

Information Theory 50(12), 3250–3264 (2004)
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