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a b s t r a c t

There is much debate over the degree to which language learning is governed by innate
language-specific biases, or acquired through cognition-general principles. Here we exam-
ine the probabilistic language acquisition hypothesis on three levels: We outline a novel
theoretical result showing that it is possible to learn the exact generative model underlying
a wide class of languages, purely from observing samples of the language. We then describe
a recently proposed practical framework, which quantifies natural language learnability,
allowing specific learnability predictions to be made for the first time. In previous work,
this framework was used to make learnability predictions for a wide variety of linguistic
constructions, for which learnability has been much debated. Here, we present a new
experiment which tests these learnability predictions. We find that our experimental
results support the possibility that these linguistic constructions are acquired probabilisti-
cally from cognition-general principles.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Much research suggests children can learn language
from mere exposure, without relying on other’s feedback
about their own utterances, i.e., from positive evidence
alone. How children thus learn language has been a heavily
researched topic. Two main perspectives on language
acquisition can be understood through the distinction
between discriminative and generative learning models
(Hsu & Griffiths, 2009). A discriminative model learns by
establishing a boundary between categories by mapping
inputs to categories from a set of input-category pairs.
For language, these are categories of grammatical and
ungrammatical sentences. From the discriminative per-
spective, the ability to learn from only positive examples
seems puzzling: with only positive examples, i.e., gram-
. All rights reserved.
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matical sentences, a discriminative learner has no basis
on which to determine the boundary between grammatical
and ungrammatical sentences. Under discriminative based
perspectives, theoretical analyses of learnability from only
positive examples tend to be discouraging (Gold, 1967;
Nowak, Komarova, & Niyogi, 2002). Indeed, thinking about
language learning as a classification problem has led many
theorists to conclude that language acquisition faces fun-
damental ‘‘logical’’ problems (Baker & McCarthy, 1981;
Horning, 1969).

The Bayesian approach to cognitive development, ex-
plored in this special issue, and the cognitive sciences more
generally, e.g., Griffiths, Chater, Kemp, Perfors, and Tenen-
baum (2010), suggest a different perspective on learning:
generative models learn by making inferences about the
probability distribution that produces the language input.
Thus, from a generative perspective, language acquisition
is not a matter of discriminating ‘‘good’’ from ‘‘bad’’ linguis-
tic forms; instead the aim is to model the underlying regu-
larities that give rise to the language. The key assumption
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Table 1
Sentences used in experiment: quadruplets illustrating restriction rule.

Set 1 Set 2

(a) restricted form of construction with restriction⁄ (a) restricted form of construction with restriction⁄

(b) un-restricted form of construction with restriction (b) un-restricted form of construction with restriction
(c) restricted form of related construction (c) restricted form of related construction
(d) un-restricted form of related construction (d) un-restricted form of related construction

1 (a) I think it is fine where it’s.⁄ (a) Do you know who she’s?⁄

(b) I think it is fine where it is. (b) Do you know who she is?
(c) I think it’s fine for now. (c) Do you know who she’s waiting for?
(d) I think it is fine for now. (d) Do you know who she is waiting for?

2 (a) He arrived the plane safely.⁄ (a) The captain arrived the ship on a small island.⁄

(b) The plane arrived safely. (b) The ship arrived on a small island.
(c) He landed the plane safely. (c) The captain landed the ship on a small island.
(d) The plane landed safely. (d) The ship landed on a small island.

3 (a) I am glad he came the helicopter in time.⁄ (a) The pilot came the plane ten minutes ahead of schedule.⁄

(b) I am glad the helicopter came in time. (b) The plane came ten minutes ahead of schedule.
(c) I am glad he landed the helicopter in time. (c) The pilot landed the plane ten minutes ahead of schedule.
(d) I am glad the helicopter landed in time. (d) The plane landed ten minutes ahead of schedule.

4 (a) Tom donated the hospital a large amount of money.⁄ (a) Charles donated the library some very valuable books.⁄

(b) Tom donated a large amount of money to the hospital. (b) Charles donated some very valuable books to the library.
(c) Tom gave the hospital a large amount of money. (c) Charles gave the library some very valuable books.
(d) Tom gave a large amount of money to the hospital. (d) Charles gave some very valuable books to the library.

5 (a) He fell the crumbs on the ground.⁄ (a) During the earthquake, he fell the wine glass.⁄

(b) The crumbs fell on the ground. (b) During the earthquake, the wine glass fell from his hands.
(c) He dropped the crumbs on the ground. (c) During the earthquake, he dropped the wine glass.
(d) The crumbs dropped on the ground. (d) During the earthquake, the wine glass dropped from his hands.

6 (a) She disappeared her money behind the curtains.⁄ (a) Cathy was able to disappear her anger.⁄

(b) She disappeared behind the curtains. (b) Cathy was able to disappear.
(c) She hid behind the curtains. (c) Cathy was able to hide her anger.
(d) She hid her money behind the curtains. (d) Cathy was able to hide.

7 (a) That is an unusual object What’s it?⁄ (a) I know something is bothering you. What’s it?⁄

(b) That is an unusual object. What is it? (b) I know something is bothering you. What is it?
(c) That is an unusual object. What’s it used for? (c) I know something is bothering you. What’s wrong?
(d) That is an unusual object. What is it used for? (d) I know something is bothering you. What is wrong?

8 (a) I poured the truck with gravel.⁄ (a) Kate poured the fish tank with pebbles.⁄

(b) I poured the gravel into the truck. (b) Kate poured the pebbles into the fish tank.
(c) I loaded the truck with gravel. (c) Kate loaded the fish tank with pebbles.
(d) I loaded the gravel into the truck. (d) Kate loaded the pebbles into the fish tank.

9 (a) He vanished the treasure inside a cave.⁄ (a) Ben vanished his toys behind the door.⁄

(b) He vanished inside a cave. (b) Ben vanished behind the door.
(c) He hid the treasure inside a cave. (c) Ben hid his toys behind the door.
(d) He hid inside a cave. (d) Ben hid behind the door.

10 (a) Susan created her daughter a new dress.⁄ (a) The chef will create you a special dish.⁄

(b) Susan created a new dress for her daughter. (b) The chef will create a special dish for you.
(c) Susan made her daughter a new dress. (c) The chef will make you a special dish.
(d) Susan made a new dress for her daughter. (d) The chef will make a special dish for you.

11 (a) Someone is at the door. Who’s it?⁄ (a) I heard you found a date for the party. Who’s it?⁄

(b) Someone is at the door. Who’s there? (b) I heard you found a date for the party. Who’s the lucky girl?
(c) Someone is at the door. Who is it? (c) I heard you found a date for the party. Who is it?
(d) Someone is at the door. Who is there? (d) I heard you found a date for the party. Who is the lucky girl?

12 (a) Dan is gonna a picnic in the park.⁄ (a) My sister is gonna Disneyland for her school trip.⁄

(b) Dan is going to a picnic in the park. (b) My sister is going to Disneyland for her school trip.
(c) Dan is gonna attend a picnic in the park. (c) My sister is gonna be at Disneyland for her school trip.
(d) Dan is going to attend a picnic in the park. d) My sister is going to be at Disneyland for her school trip.

13 a) James suggested his manager the plan.⁄ a) Rachel suggested the client her new idea.⁄

b) James suggested the plan to his manager. b) Rachel suggested her new idea to the client.
c) James told his manager the plan. c) Rachel told the client her new idea.
d) James told the plan to his manager. (d) Rachel told her new idea to the client.

14 (a) That is an unusual object. What’s it?⁄ (a) Who do you think that is meeting with the boss?⁄

(b) That is an unusual object. What is it? (b) Who do you think is meeting with the boss?
(c) That is an unusual object. What’s it used for? (c) Who do you think that the boss is meeting with?
(d) That is an unusual object. What is it used for? (d) Who do you think the boss is meeting with?

15 (a) Which player does does Richard wanna win?⁄ (a) Who do you wanna win the championships?⁄

(continued on next page)
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Table 1 (continued)

Set 1 Set 2

(b) Which player does Richard want to win? (b) Who do you want to win the championships?
(c) Which player does Richard wanna beat? (c) Who do you wanna beat in the championships?
(d) Which player does Richard want to beat? (d) Who do you want to beat in the championships?

16 (a) I’d rather the spaghetti.⁄ (a) I would rather to see the later show.⁄

(b) I’d prefer the spaghetti. (b) I would prefer to see the later show.
(c) I would rather have the spaghetti. (c) I would rather the later show.
(d) I would prefer the spaghetti. (d) I would prefer the later show.
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for generative models is that the input is sampled from the
natural language distribution; discriminative models do
not require this assumption.

In this paper, we present a generative Bayesian perspec-
tive on the problem of language acquisition spanning three
levels of analyses, theoretical, computational and experi-
mental. The theoretical and experimental results are novel
contributions of this paper and the computational results
are summarized from recent related work. First, we pres-
ent new theoretical learnability results, indicating that un-
der fairly general conditions, it is possible to precisely
identify the generative language model. Combined with
prior work, these results suggest that the ‘‘logical’’ problem
of language acquisition may be reduced by adopting a
probabilistic perspective. Second, we review a recently
proposed, general framework which quantifies Bayesian
learnability of constructions in natural language under a
simplicity principle. This framework has been used to pre-
dict natural language learnability for a wide variety of lin-
guistic rules, using corpus data. Third, we present a new
experiment which tests these learnability predictions by
comparing them with adult grammaticality judgments.
1 This is a mild restriction, which presumably holds for any cognitively
plausible model of language production or mental representation of
language; and clearly holds for standard probabilistic models of language,
such as probabilistic context free grammar, n-gram models, or hidden
Markov models (provided the parameters are computable).
2. Gold revisited: generative model identification in the
limit

A central theoretical question is: given sufficient expo-
sure to the language, can the learner recover a perfectly
accurate description of that language? Gold (1967) showed
under certain assumptions this is not possible. However, a
range of more positive results have since been derived, e.g.,
(Angluin, 1988; Chater & Vitányi, 2007; Feldman, Gips,
Horning, & Reder, 1969; Horning, 1969). These results ap-
ply across linguistic levels: including the acquisition of
phonology, morphology, syntax, or the mapping between
syntax and logical form. Crucially, our results rely on the
assumption of the computability of the probability distribu-
tion from which language is sampled. This assumption fol-
lows naturally from a computational perspective on the
mind, and hence language production: but turns out to
radically simplify the problem of language acquisition.

Specifically, we outline a new and strong positive lear-
nability result. Our most basic result is the Computable
Probability Identification Theorem. Although the result ap-
plies more generally, we will frame the discussion in terms
of language. Informally, the theorem can be stated as fol-
lows: suppose an indefinitely long language corpus is gen-
erated by identical independently distributed (i.i.d.)
samples from some probability distribution, p, over a
countable set (e.g., the set of sentences in a language).
We require only that p is computable 11: there exists some
computational device (e.g., a Turing machine), that, for each
x, can compute the probability p(x).

Then there exists a computable algorithm that receives
the sentences, in sequence, and generates a sequence of
guesses concerning the generative probabilistic model of
the language (see Appendix). We will call these guesses
q1, q2, . . .. After sufficient linguistic data, the algorithm will
almost surely alight on a guess which subsequently never
changes: that is the sequence q1, q2, . . . ‘‘converges’’ almost
surely to q. Moreover q = p, the probability distribution
generating the language. This implies that the learner can
then itself generate language using the correct probability
distribution.

This result indicates not only that there need not be
a ‘‘logical’’ problem of language acquisition (Baker &
McCarthy, 1981; Hornstein & Lightfoot, 1981); but pro-
vides an algorithm which defines a computable process
that will almost surely define (precisely if the sequence
of samples is typical) not only the language, but the precise
generative probabilistic model from which the language.

This result is stronger than many previous results, in a
number of ways. (1) The language can be learned from
the entire class of computable generative probability dis-
tributions for language. Thus, the method is not restricted
to particular classes of language structure, such as finite
state or probabilistic context-free grammars, in contrast,
to many important theoretical results (e.g., Angluin,
1988; Clark & Eyraud, 2007; Feldman et al., 1969). (2)
The learner does not merely approximate the language,
as in most positive probabilistic results, but identifies the
generating distribution precisely. (3) The learning method
is computable (in contrast, for example, to Chater & Vitá-
nyi, 2007).

A number of open questions remain. The proof in the
i.i.d. case depends on the strong law of large numbers.
The question remains whether our results hold under
weakened i.i.d. assumptions, e.g., sentences which have
only ‘‘local’’ dependencies (relative to the total corpus the
learner has been exposed to). In reality, there are complex
interdependencies between sentences at many scales.
These may arise from local discourse phenomena such as
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anaphora, to much higher-level dependencies determined
by the over-all coherence of a conversation or narrative.
One possibility is that these dependencies will ‘‘wash
out’’ over long time horizons. Additionally, for probabilistic
processes which are stationary and ergodic, there are limit
theorems analogous to the strong law of large numbers,
raising the possibility that analogous results apply. Note
that the present result is much stronger than traditional
language identification in the limit (e.g., Osherson, Stob,
& Weinstein, 1985): we show that the precise probability
distribution generating language can be precisely identi-
fied (almost surely), not merely the set of sentences al-
lowed in the language. A second open question concerns
the impact of errorful linguistic input: can the learner infer
the underlying ‘‘correct’’ structure, nonetheless? A third
open question concerns the number of sentences typically
required for identification to occur. We leave these, and
other, open questions for a later technical paper (Vitányi
& Chater, in preparation).

The present result might appear remarkably strong.
After all, it is not generally possible to precisely identify
the probability p with which a biased coin lands heads
from a finite set of coin flips, however long.2 The same ap-
plies to typical statistical language models, such as probabi-
listic context-free phrase structure grammars. These
language models are typically viewed as having real valued
parameters, which is a psychologically and computationally
unrealistic idealisation that makes the problem of genera-
tive model identification unnecessarily difficult. In practice,
any computational process (e.g., inside the head of the par-
ent, to whom the child is listening) can only be determined
by computable processes—and hence computable parame-
ters, dramatically reducing the possible parameter values.
We do not mean to suggest that the child can or does pre-
cisely reproduce the generative probabilistic model used
by adult speakers. But if such identification is possible for
any computable linguistic structure, the child presumably
faces no insurmountable logical problems in acquiring a lan-
guage from positive data alone.
3. A practical framework for quantifying learnability

We have presented above a new and strong learnability
result. But much debate concerning language acquisition
concerns more specific questions, such as how children
learn restrictions to general rules from only positive exam-
ples. Restrictions on the contraction of ‘going to’ provide an
illustrative example: ‘I’m gonna leave’ is grammatical,
whereas ‘I’m gonna the store’ is ungrammatical. Table 1
shows quadruplets (sentences a–d) relevant to restrictions
on a variety of constructions: a is the ungrammatical, re-
stricted form of the construction (e.g., contraction of going
to where to begins a prepositional phrase). b is the gram-
matical un-restricted form (e.g., un-contracted form of
going to is always allowed). c and d contain an analogous
2 To see this, note that the number of real values on the interval [0, 1] is
uncountable, whereas the number of guesses associated with any infinite
sequence of coin flips is countable. Therefore, the probability any of these
guesses is correct has measure 0 in the standard uniform measure on the
real interval [0, 1].
construction to that in a and b, but for which there is no
restriction (e.g., contracted and un-contracted forms of
going to where to is part of an infinitive verb). Sentences
c and d are the basis for over-generalization of the re-
stricted form in a.

Language acquisition requires the speaker to generalize
from previously heard input. Research indicates that many
(perhaps most) children are rarely corrected when they pro-
duce an over-general, ungrammatical sentence (Bowerman,
1988). These observations evoke the question: how do chil-
dren learn which over-generalizations are ungrammatical
without explicitly being told? Many language acquisition
researchers have traditionally claimed that such learning
is impossible without the aid of innate language-specific
knowledge (Chomsky, 1975; Crain, 1991; Pinker, 1989).

More recently, researchers have shown that statistical
models are capable of learning such rules from positive
evidence only (Dowman, in preparation; Foraker, Regier,
Khetarpal, Perfors, & Tenenbaum, 2009; Grünwald, 1994;
Perfors, Regier, & Tenenbaum, 2006; Regier & Gahl,
2004). These statistical models are based on a particular
instantiation of Bayesian modelling in which languages
are chosen based on the principle of simplicity.

Recently, a general quantitative framework has been pro-
posed which can be used to assess the statistical learnabil-
ity of any given specific linguistic restriction in the context of
real language, using only positive evidence (Hsu & Chater,
2010). This framework built upon previous simplicity-
based modelling approaches (Dowman, in preparation;
Foraker et al., 2009; Perfors et al., 2006) to develop a meth-
od that is generally applicable to constructions in natural
language. When using this framework there are two main
assumptions: (1) The description of the grammatical rule
to be learned. (2) The corpus approximating the learner’s
input. Given these two assumptions, the framework pro-
vides a method for quantifying learnability from language
statistics. The framework allows for comparison of results
which arise from varying these two main assumptions,
providing a common forum for quantifying and discussing
language learnability. This framework assumes an ideal
statistical learner and thus provides an upper bound on
learnability based on language statistics. However, mea-
sures of learnabity should give an indication for how rela-
tively statistically learnable constructions are in reality.
3.1. The minimum description length hypothesis

Because this framework is detailed elsewhere (Hsu &
Chater, 2010), we only provide a brief overview here. Lear-
nability evaluations under simplicity are instantiated
through the principle of minimum description length
(MDL). MDL is a computational tool that quantifies the
information available to an idealized (cognition-general)
statistical learner (Jacob Feldman, 2000). When MDL is ap-
plied to language, grammars are represented as a set of
rules, such as that of a probabilistic context-free grammar
(PCFG) (Grünwald, 1994). An information-theoretic cost is
assigned to encoding grammar rules as well as to encoding
the language under those rules. MDL has formal relations
to Bayesian probabilistic analysis, although we do not



Fig. 1. MDL simple grammar vs. efficient language encoding trade off. (A) A simpler grammar is often over-general, i.e., allows for ungrammatical sentences as
well as grammatical ones. Such an over-general grammar may be easy to describe (i.e., short grammar encoding length), but results in less efficient (longer)
encoding of the language data. (B) A more complex grammar may capture the language more accurately, i.e., allows only for grammatical sentences and
doesn’t allow for ungrammatical sentences. This more complex grammar may be more difficult to describe (i.e., longer grammar encoding length), but will
provide a shorter encoding of language data. (C) Initially, with limited language data, the shorter grammar yields a shorter coding length over-all, and is
preferred under MDL. However, with more language input data, the savings accumulated from having a more efficient encoding of language data correctly
favour the more complex grammar.
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focus on this here (see Chater, 1996 for an informal
description; Vitányi & Li, 2000 for a detailed analysis).

Hsu and Chater (2010) used two-part MDL. In the con-
text of language acquisition, the first part of MDL specifies
probabilistic grammatical rules to define a generative
probability distribution over linguistic constructions,
which combine to form sentences. Note that these are
not necessarily the true probabilities in the language, but
are the probabilities as specified under the current hypoth-
esized grammar. The second part of MDL uses the probabi-
listic grammar to encode all the sentences heard so far.
MDL selects the grammar that minimizes the total code
length (measured in bits) of both the grammatical descrip-
tion and the encoded language length.3

According to information theory, the most efficient code
occurs when each data element is assigned a code of length
equal to the smallest integer greater than or equal to
�log2(pn) bits, where pn is the probability of the nth ele-
ment in the data. For our purposes, these elements are dif-
ferent grammar rules. The probabilities of these grammar
rules are defined by the grammatical description in the
first part of MDL. Because efficient encoding results from
knowing the correct probabilities of occurrence, the more
accurately the probabilities defined in the grammar match
the actual probabilities in language, the more briefly the
grammar will encode the sentences in the language.
3 The MDL framework can also be expressed as a corresponding Bayesian
model with a particular prior (Chater, 1996; MacKay, 2003; Vitányi & Li,
2000). Here, code length of the model (i.e., grammar) and code length of
data under the model (i.e., the encoded language) in MDL correspond to
prior probabilities and likelihood terms respectively in the Bayesian
framework.
Under MDL, learners prefer grammatical descriptions
that provide the shortest two-part code for the data re-
ceived so far. Savings occur because certain grammatical
descriptions result in a more efficient (shorter) encoding
of the language data. If there is little language data (i.e., a
person has little language exposure), encoding detailed
specification of the language in the first part of the code
will not yield large enough savings in the second part of
the code to be chosen. Instead, a ‘‘cheaper’’, simpler, gram-
mar will be preferred. When there is more language data,
investment in a more costly, complicated grammar be-
comes worthwhile (see Fig. 1). This characteristic of MDL
learning can explain the early over-generalizations fol-
lowed by retreat to the correct grammar that has been ob-
served in children’s speech (Bowerman, 1988).
3.2. A practical example

We provide a brief example of how the framework is used
to assess learnability of the restriction on contraction of
going to (see Hsu and Chater (2010) for details). MDL part 1
assesses the difference between original and new grammar
lengths (grammar cost). Here the old grammar allows going
to to contract under all circumstances. The new grammar
will enumerate situations where contraction of going to is
not allowed. The difference between grammar encoding
lengths came from defining the specific situations where
going to can and cannot contract, i.e., [contractable going
to] = [going to] [verb] and [not-contractable going to] [going
to] [a place]. Concepts within brackets were represented as a
single encoded symbol: [going to] represents use of the
words going to in a sentence and [verb] represents any verb
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and [a place] represents any destination one may go to.
These formally correspond to the use of to as part of an infin-
itive verb, e.g., I am going to stay and the use of to as a prep-
osition meaning towards, e.g., I am going to school.4 The
additional encoding length cost from the additional defini-
tions can then be quantified in bits through MDL, see Hsu
and Chater (2010).

The second part of MDL requires the evaluation of sav-
ings under the new grammar. This requires specifying the
occurrence probabilities (estimated from a chosen corpus)
of each sentence under original vs. new grammars. Under
the original grammar, contractions were always allowed,
and finite code lengths were required to encode whether
contraction occurs in all situations. Under the new gram-
mar, going to contraction never occurs when to is a prepo-
sition and thus 0 bits are required to encode contraction.
By comparing the difference in encoding costs under the
original vs. new grammars, we can calculate the savings
accrued per occurrence of going to contracted in the infin-
itive form (which is the only one where contraction is al-
lowed). The number of occurrences needed to learn the
construction is obtained by determining the amount of
occurrences needed so that savings becomes greater than
or equal to the cost in grammar length difference.

In summary, learnability is affected by (1) Complexity of
the rule to be learned. More complexity increases grammar
cost and decreases learnability. (2) Frequency of the restricted
vs. un-restricted forms of a construction in other similar lex-
ical items, e.g., frequency of sentence type c vs. d in Table 1.
Greater frequency increases encoding savings and increases
learnability. For example, for assessing the dative restriction
on donate: if give appeared mostly in the direct dative (re-
stricted form for donate), one would more quickly notice the
suspicious absence of the direct dative form for the verb do-
nate. (3) Occurrence frequency of the construction whose
restriction is to be learned, e.g., type b sentences, such as
use of going to where to introduces a prepositional phrase.
(1) and (2) determine how many occurrences are needed for
learning and (3) (estimated from corpora serving as input)
then will determine how many years it will take to accrue
the number of occurrences needed.
4. Testing learnability predictions

Hsu and Chater (2010) used the above framework to
predict learnability for linguistic rules whose learnability
have been commonly debated in the language acquisition
field. These rules all involve restriction rules for the follow-
ing 15 constructions5: contractions of want to, going to, is,
4 These formal definitions are not directly used in learnability analyses
because it is unlikely that first language learners are acquiring grammatical
knowledge at this level.

5 Hsu and Chater (2010) also included analysis of rules concerning the
necessary transitivity of the verbs hit and strike and the dative restriction
on shout and whisper. However, hit and strike have ambitransitive usage in
colloquial speech: In COCA there are 3678 and 1961 intransitive occur-
rences of hit and strike respectively, e.g. The storm hit. Lightning struck. Also,
recent work has suggested that manner-of-speaking verbs such as shout
and whisper, while not traditionally partaking in the dative alternation,
actually can alternate (Nikitina & Bresnan, 2009). Thus we did not include
these verbs in our experiment.
what is and who is; the optionality of that reduction; dative
alternation for the verbs donate, suggest, create, pour; transi-
tivity for the verbs, disappear, vanish, arrive, come, fall. Table 1
shows example quadruplets for each construction (ordered
by learnability) showing sentences for (a) the restricted
form, (b) the un-restricted form and (c–d) corresponding
sentences for which restricted and un-restricted forms are
both grammatical (see Hsu and Chater (2010) for details).
There was a large spread in learnability predictions. Some
constructions appeared learnable within a few years
whereas others required years beyond human life spans.
Hsu and Chater (2010) compared predicted MDL learnability
with child grammar judgments from previous experimental
work (Ambridge, Pine, Rowland, & Young, 2008; Theakston,
2004). It was found that child grammar judgments were bet-
ter correlated with MDL learnability than with frequency
counts. However, the comparison with child judgements
was limited to a handful of constructions. Here, we wish
to test learnability predictions for the full range of construc-
tions analysed in Hsu and Chater (2010). To do so we
hypothesise that learnability should also correlate with adult
grammaticality judgments: In particular, the easier a con-
struction is to learn, the greater the relative difference
should be between judgments of the ungrammatical vs.
grammatical uses of the construction. It is important to mea-
sure relative grammaticality because semantic and syntactic
contexts may affect perceived grammaticality (e.g., the con-
text in which we use the verb disappear may appear more
grammatical than the context in which we use the verb ar-
rive). Here we make the first-order assumption that contri-
butions to grammaticality perception add linearly.
Therefore, in order to measure knowledge of the restriction
rule without the effects of syntactic or semantic context, we
will subtract ratings of the grammatical form from ratings of
the ungrammatical form (i.e., a–b). Furthermore, lexical or
syntactic differences between the un-restricted vs. restricted
forms of a construction (a vs. b) may also influence gram-
maticality, independent of the restriction rule. For example,
contractions or the transitive usage may be perceived as
inherently less grammatical than un-contracted words or
the intransitive usage. Thus, we also normalize our measure
by subtracting out the grammaticality differences between
the related pairs of sentences for which both forms are
grammatical (e.g., sentences c and d). This allows us to take
into account grammaticality differences that may be due to
variations in sentence form (e.g., contraction vs. no-contrac-
tion, transitive vs. intransitive) which are not related to
knowledge of the restriction rule that we are testing. Thus
our measure of relative grammaticality will be the differ-
ences between sentences a and b subtracted by differences
between sentences c and d, i.e., (a–b)–(c–d). The method of
using relative grammar judgments to test linguistic learna-
bility has been previously used in children (Ambridge
et al., 2008).

4.1. Model predictions

The most appropriate type of corpus for making learna-
bility predictions is that of child-directed speech, e.g.,
CHILDES database (Mac Whinney, 1995). However, be-
cause many constructions do not occur often enough for
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statistical significance, Hsu and Chater (2010) analysed
only four constructions using CHILDES. Therefore, we use
model predictions obtained in Hsu and Chater (2010) using
the full Corpus of Contemporary American English (COCA),
containing 385 million words (90% written, 10% spoken), a
reasonable representation of the distributional language
information that native English language speakers receive.
Learnability results using the British National Corpus were
similar to that from COCA (Hsu & Chater, 2010). Fig. 2a
shows the estimated number years, Nyears, required to learn
the 15 constructions (Hsu & Chater, 2010). Nyears was calcu-
lated as Oneeded/Oyear where Oneeded is the number of occur-
rences needed for learning under MDL and Oyear is the
number of occurrences per year, estimated from COCA.
We quantify learnability as log(1/Nyears) (Fig. 2c). This puts
Oyear in the numerator, allowing for direct comparison with
the entrenchment hypothesis which compares grammar
judgments with occurrence frequency (see Fig. 2b and d
and section below). All frequency estimates were esti-
mated by manually counting all relevant sentence frames.
Relevant sentence frames were obtained using the search
tools offered through Mark Davies’ online corpus analysis
site (Davies, 2008). The learnability estimates depend on
an assumption of the number of total symbols used in a
child’s original grammar. Here we present results assum-
ing 100,000 total symbols. The relative learnability does
not change depending on the assumed number of total
symbols. However, the general scale does change, e.g.,
when assuming 200 total symbols, number of years needed
is approximately halved for all constructions. Thus the
Fig. 2. Learnability vs. occurrence frequency: (a) Estimated years required to learn
(c) Learnability predictions: log(1/years needed). (d) Entrenchment predictions
Chater, 2010). The constructions are sorted according to learnability: (1) is, (2)
vanish, (10) create, (11) who is, (12) going to, (13) suggest, (14) that, (15) ⁄want
frequencies are estimated by assuming a child hears�6 million words per year (H
COCA contains. Note that while more learnable constructions do tend to have h
learnability results of Hsu and Chater (2010) are best inter-
preted as quantifiers of relative rather than absolute
learnability.

4.2. Relation to entrenchment

MDL learnability bears some relation to entrenchment
theory (Brooks, Tomasello, Dodson, & Lewis, 1999).
According to entrenchment theory, the likelihood of a
child over-generalizing a construction with a restriction
is inversely related to the occurrence frequency of the
construction’s un-restricted form, i.e., sentences b in
Table 1. Previous work has shown that construction
occurrence frequency can often predict children’s over-
generalization errors (Ambridge et al., 2008; Theakston,
2004). However, entrenchment theory lacks a computa-
tional explanation: it posits that children avoid over-
generalizing commonly heard constructions without
offering a feasible method for how this is learned. In
contrast, MDL provides a principled account of how re-
treat from over-generalization may be computed through
a cognition-general mechanism for probabilistic learning.
Learnability and entrenchment predictions are often re-
lated because high construction occurrence frequencies
do aid learnability. Thus, learnability may provide a
principled explanation for the success of entrenchment
theory.

The predictions of entrenchment and learnability will
also sometimes differ because of the additional factors
that affect learnability (see Fig. 2). These other factors
construction. (b) number of occurrences per year (estimated from COCA).
: log(number of occurrences per year). Results summarized from (Hsu &
arrive (3) come, (4) donate, (5) fall, (6) disappear, (7) what is, (8) pour, (9)
to. ⁄Predicted years for learning want to is 3800 years. Yearly occurrence
art & Risley, 1995) and dividing this number by the 385 million words that
igher occurrence frequencies, the two are not completely correlated.
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include the complexity of the grammatical rule to be
learned, and the relative occurrence probabilities of
restricted vs. un-restricted forms in related constructions,
e.g., sentences c vs. d in Table 1. Constructions with signif-
icant differences between learnability and entrenchment
predictions include donate, suggest and that: Learnability
of suggest and donate are relatively higher and learnability
of that is relatively lower than mere occurrence frequen-
cies would predict. High encoding savings contribute to
the learnability of donate and suggest because the direct
dative is more common than the prepositional dative in
the similar verbs give and tell. This makes the absence of
direct dative forms of donate and suggest more surprising,
and easier to learn under MDL than occurrence frequency
would predict. The lower learnability of that comes from
the complexity of the rule governing optionality of that
insertions, not accounted for by frequency. In order to
show the relationship between learnability and entrench-
ment results, we will also compare adult grammar judg-
ments to construction occurrence frequencies (estimated
from COCA).
5. Experimental method

5.1. Participants

200 native English speakers (50 per condition) were re-
cruited for an online grammar judgment study (age range:
15–96 years, mean: 27 years). The majority (90%) of partic-
Fig. 3. Human grammar judgments vs. learnability and occurrence frequency: (
p = 0.006). Relative grammaticality is ratings of sentences (a–b)–(c–d) from Tab
needed to learn the construction. (b) Relative grammaticality vs. log occurrence fr
year (estimated from COCA) of the un-restricted form of the construction to be l
for Sentence Set 2 (r = 0.63; p = 0.012). (d) Log occurrence frequency vs. relative
ipants learned English in the United States. Other countries
included the UK (6%). The remaining were from Australia,
Canada and Ireland.
5.2. Procedure

We collected ratings for two sets of quadruplets con-
sisting of sentence types a–d for each of our fifteen con-
structions. This means there were two examples of each
construction analyzed (see Table 1). We used a Latin
square design with four conditions. Each participant saw
only one sentence type for each quadruplet, i.e., condition
1 participants saw sentences 1a, 2b, 3c, 4d, 5a, etc. In order
to balance grammatical vs. ungrammatical sentences in all
conditions, we included a 16th quadruplet not analysed in
our study (see Table 1). There were 128 sentences total
(each participant saw 32 sentences). Trials were block ran-
domized for type (a–d) as well as over-all order of con-
structions. All constructions from one set were presented
before the other set. The set that was presented first was
randomized among participants. Sentences were presented
visually without audio. Participants were told to assess
grammaticality by ‘‘what sounds natural’’ and were
encouraged to say the sentences out loud. Participants
rated sentences on a scale from 1 to 5: (1) Sounds com-
pletely fine (Definitely grammatical), (2) Probably gram-
matical (Sounds mostly fine), (3) Sounds barely passable
(Neutral), (4) Sounds kind of odd (probably ungrammati-
cal), (5) Sounds extremely odd (Definitely ungrammatical).
a) Relative grammaticality vs. learnability for Sentence Set 1 (r = 0.67;
le 1. Learnability is log of the inverse of the number of estimated years
equency (r = 0.43; p = 0.11). Occurrences is the number of occurrences per

earned (sentence b in Table 1). (c) Learnability vs. relative gramamticality
grammaticality for Sentence Set 2 (r = 0.38; p = 0.16).
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6. Results

Results show strong correlations between averaged rel-
ative grammaticality and MDL learnability for both sets of
sentences, r = 0.67; p = 0.006 and r = 0.63; p = 0.012, (see
Fig. 3a and c). In contrast, grammaticality and log occur-
rence frequency are not significantly correlated, r = 0.43;
p = 0.11and r = 0.38; p = 0.16 (see Fig. 3b and d). In partic-
ular, learnability is substantially more correlated with
grammaticality judgments for restrictions on suggest and
that.
7. Summary and conclusions

This work helps evaluate how much of first language is
probabilistically acquired from exposure. We show that,
despite putative ‘‘logical problems of language acquisi-
tion,’’ any language generated from any computable gener-
ative probability distribution (including any grammars
proposed in linguistics) can be precisely identified, given
a sufficiently large i.i.d. sample. Our Universal Induction
Algorithm embodies no language-specific knowledge, and
therefore indicates that language acquisition is possible
in principle, given sufficiently large amounts of positive
data, and sufficient computing power.

How practically learnable are the types of linguistic
patterns that have been often cited as challenges for lear-
nability? To address this, we described a recently formu-
lated framework which allows probabilistic learnability
to be quantified. Together, these analyses contribute to
a substantial body of work showing that probabilistic lan-
guage learning is theoretically and computationally
possible.

Does such probabilistic learning occur in practice?
Here we propose that if language is probabilistically ac-
quired, then this should leave traces in adult grammar
judgments. MDL learnability assumes that a grammar is
learned in an absolute sense: once a grammar is chosen
under MDL, that is the one used and there is no gradation
of knowledge. However, here we conjecture that learna-
bility should not only correlate with how much data is re-
quired to learn a linguistic rule, but also the degree of
confidence in that knowledge. Experimental results
showed that predicted learnability correlates well with
relative grammar judgments for the 15 constructions
analyzed, chosen as controversial cases from the litera-
ture. Our experimental results thus support the possibility
that many linguistic constructions that have been argued
to be innate may instead be acquired by probabilistic
learning.
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Appendix A. Proof of the Computable Probability
Identification Theorem

A function is computable, if there is a Turing machine (or
equivalent) that maps the arguments to the values. Here
we consider only probability mass functions with rational
arguments. Such a function assigns a probability to each
of its arguments (which are countable). By contrast, in sta-
tistics and machine learning, many probability distribu-
tions have arguments with continuous values. For
example, take normal distributions over the reals. Mean
and standard deviation can be any real number.

The restriction to computable probability mass func-
tions is both cognitively realistic (if we assume a language
is generated by a computable process, a standard assump-
tion in cognitive science) and dramatically simplifies the
problem of language identification (for related discussion
in a different context, see Cover, 1973).

If a computable function has as values pairs of nonneg-
ative integers, such as (a, b), we can interpret this value as
the rational a/b. A real-valued function f(x) with x rational
is semi-computable from below if it is defined by a rational-
valued computable function /(x, k) with x a rational num-
ber and k a nonnegative integer such that /(x, k + 1) P /
(x, k) for every k and limk?1 /(x, k) = f(x). This means that
f can be computably approximated arbitrary closely from
below (see Li & Vitanyi, 2008, p. 35), as k increases.

Consider a subclass of functions which are semi-com-
putable from below. A function f is a semiprobability mass
function if Rxf(x) 6 1 and a probability mass function if
Rxf(x) = 1. We write ‘p(x)’ for ‘f(x)’ if the function is a semi-
probability mass function, and we consider semiprobabili-
ty mass functions which are semi-computable from below.

We use the following general strategy in the proof. First
we enumerate all semiprobabilities which are semi-com-
putable from below q1, q2, . . .. That is, we linearly order
them with a least element. Note that a computable proba-
bility mass function is a fortiori a semiprobability mass
function which is semi-computable from below. Thus, the
given enumeration contains every computable probability
mass function. Second, therefore our target probability p
occurs in this list. In fact, we can show it occurs multiple
times. We consider the least index k such that p = qk. Third,
we give an algorithm that outputs at every step the present
candidate which is the least indexed semiprobability mass
function which is semi-computable from below, and still
compatible with the data. Meanwhile the algorithm dis-
credits candidates that are incompatible with the data seen
so far according to a criterion derived from the Strong Law
of Large Numbers. Every candidate q1, . . . , qk�1 gets dis-
credited eventually, each at a certain time say t1, . . . tk�1

– Eventually, for t > max{t1, . . . ,tk�1} the algorithm will
output at every step the least indexed nondiscredited dis-
tribution, that is, qk = p. We now show how this proof strat-
egy can be carried out in more detail.

It is possible to enumerate all and only the semiproba-
bility mass functions that are semi-computable from be-
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low, by fixing an effective enumeration of all Turing ma-
chines in a fixed description syntax. Now it is possible to
change every Turing machine description in the list into
one that computes a semiprobability mass function that
is computable from below, as described in the proof of The-
orem 4.3.1 in Li and Vitanyi (1997, 2008). The list contains
all and only semiprobability mass functions that are semi-
computable from below.

Every probability mass function is a semiprobability
mass function, and every computable probability mass
function is semi-computable from below. Therefore, every
computable probability mass function is in the list (indeed,
each will appear infinitely often).

Definition 1. In probability theory the statement almost
surely means ‘‘with probability one.’’

Let us illustrate this notion for infinite objects. It is pos-
sible that a fair coin (a ð12 ; 1

2Þ Bernoulli process) generates an
infinite sequence 0, 0,. . . even though the probability of 1 is
1
2. Consider the property that the relative frequency of 1s
goes to the limit 1

2. The uniform measure of the set of those
infinite sequences is one. Hence, the probability that an
infinite sequence is of that type is one, even though there
are infinite sequences (like in the example above) that
are not of that type. Thus, ‘‘almost surely’’ for infinite ob-
jects may not mean ‘‘with certainty.’’

Theorem 1. (Computable Probability Identification Theo-
rem). Let L be a language L = {a1, a2, . . .} (a countably finite
or infinite set), and p a computable probability mass function
such that the probability of ai is p(ai) for i = 1,2, . . .. Let the
mean of p be finite (2). Then, p can almost surely be computed
by an algorithm that takes as input an infinite sequence x1,
x2, . . . of elements of L drawn i.i.d. according to p.
Proof. Our data is, by assumption, i.i.d. drawn from L
according to a computable probability mass function p.
Formally, the data x1, x2, . . . are generated by a sequence
of random variables X1, X2, . . ., each a copy of a single ran-
dom variable X with probability mass function
P(X = x) = p(x) (x 2 L). We assume that the mean of p exists,
as noted in the statement of Theorem 1. By the preceding
arguments, we can effectively enumerate the semiproba-
bility mass functions that are computable from below as

Q ¼ q1; q2; . . .
Definition 2. Define k to be the least integer such that
p ¼ qk:

We now turn to a probabilistic law that makes it possi-
ble to compute index k almost surely given data x1, x2, . . ..
The strong law of large numbers states that if we perform
the same experiment a large number of times, then almost
surely the average of the results goes to the expected value.

Again, note that it is possible that a fair coin generates
an infinite sequence 0, 0,. . . even though the probability
of 1 is 1

2. For this particular sequence the inequality (1) be-
low does not hold. Hence, the Strong Law of Large Numbers
holds ‘‘almost surely’’ and cannot hold ‘‘with certainty.’’
Let #aðx1; x2; . . . ; xnÞ be the number of elements in
x1, x2, . . . , xn equal aða 2 LÞ. Consider some x 2 L. Then, we
can consider a Bernoulli process (q, 1�q) where q = p(x)
and 1� q ¼

P
y�L�fxgpðyÞ. Then for every pair 2; d, there is

an N such that for every r > 0, all r + 1 inequalities:

j pðxÞ �#xðx1; x2; . . . ; xnÞ
n

j6 �; ð1Þ

with n = N, N+1, . . . , N + r will be satisfied with probability
at least 1� d (Feller, 1968, p. 258 ff). That is, we can say,
informally, that with overwhelming probability the left
hand part of (1) remains small for all n P N . This holds
since our sequence of variables X1, X2, . . . satisfies
Kolmogorov’s criterion that

X

i

ðriÞ2

i2 <1;

where ðriÞ2 is the variance of Xi in the sequence of mutu-
ally independent random variables X1, X2,, . . .. Since all
Xi’s are copies of a single X, all Xi’s have a common distri-
bution p and mean lp. If lp <1 as assumed, thenP

iðriÞ2=i2
<1. This is proved in the (proof of) the theorem

on page 260 in Feller (1968). To apply the Strong Law in
this case, it thus suffices that lp <1. If we order the ele-
ments of L length-increasing lexicographic, and i(x) is the
index of x in the ordered L, then we require that

lp ¼
X

x2L

iðxÞpðxÞ <1: ð2Þ

Our current guess concerning the language is the earli-
est element in the list Q of semiprobability mass functions
which are semi-computable from below and are not yet
ruled out by the data. Since the elements of Q are semi-
computable from below, if for some i at some step t we
have qt

i ðxÞ > pðxÞ then we can rule out qi (where qt
i ðxÞ is

the semi-computable function approximating qiðxÞ from
below, at step t). These hypotheses can be permanently
eliminated. On the other hand, there may be other hypoth-
eses, qj, for which qt

j ðxÞ < pðxÞ and at some later step t0 > t
we have qt0

j ðxÞP pðxÞ, because lower semi-computable
functions may increase (though not decrease) as the com-
putation proceeds. This means that our guess of the earli-
est q�Q that is actually p may change with the number of
steps t. Thus, the candidates guessed may change from ear-
lier on in the list Q to later into earlier. However, eventually
we will identify the correct hypothesis p (rather, eliminate
all incorrect previous hypotheses).

To see this, we reason as follows. On one hand, there is a
real constant a > 0 such that for every i = 1,2, . . . , k � 1
there is an a 2 L such that j qiðaÞ � pðaÞ jP a (if not, then
qi ¼ p for some i < k). Moreover, there is a timestep T such
that for every i = 1, 2, . . . , k � 1 and all t P T we have
qiðaÞ � qt

i ðaÞ � a=2 and j qt
i ðaÞ � pðaÞ j6 a=2. Therefore,

jqt
i ðaÞ �#aðx1; x2; . . . ; xnÞ j> � for t P T and n large enough

for all � 6 a=4. That is, (1) does not hold for q1; q2; . . . ; qk�1.
On the other hand, for every � > 0 there is an integer n�

such that for all n P n� the following holds. There is an
integer h and timestep T 0 such that 1�

Ph
i¼1pðahÞ 6 �=2

and for every t P T 0 and every 1 6 i 6 h we have
pðaiÞ � ptðaiÞ 6 �=2 and j pðaiÞ �#aiðx1; x2; . . . ; xn j6 �=2.
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(The condition means that each of pðahÞ; pðahþ1Þ; . . . is at
most �=2, and for an infinite language L we have h!1
with �! 0). Altogether,j pðaiÞ �#aiðx1; x2; . . . ; xnÞ j6 � for
every � > 0 and 1 6 i 6 h with h as above. That is, (1) holds
for p ¼ qk.

Thus, the (finite number of) incorrect hypotheses earlier
in the list from the correct hypothesis will eventually con-
verge closely enough to their true (incorrect) probability
estimate to be eliminated by reference to the strong law
of large numbers. It is entirely possible that the true
hypothesis may, early in the computation, be provisionally
rejected (because early in the computation, the approxi-
mation is too poor); and it may successively be proposed
and rejected a finite number of times during the computa-
tion. Eventually, however, as the true hypothesis satisfies
(1) it will never be eliminated, however much data is ob-
tained and however long the computation proceeds. Thus
the true probability distribution is identified. Moreover, it
can be shown that this process can be carried out by a con-
crete algorithm (Chater & Vitányi, in preparation). h
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