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Abstract. We show that Naming – the existence of distinct
IDs known to all – is a hidden, but necessary, assumption of
Herlihy’s universality result for Consensus. We then show in a
very precise sense that Naming is harder than Consensus and
bring to the surface some relevant differences existing between
popular shared memory models.

1 Introduction

The Consensus problem enjoys a well-deserved reputation in
the (theoretical) distributed computing community. Among
others, a seminal paper of Herlihy added further evidence in
support of the claim that Consensus is indeed a key theoret-
ical construct [13]. Roughly speaking, Herlihy’s paper con-
siders the following problem: Suppose that, besides a shared
memory, the hardware of our asynchronous, parallel machine
is equipped with objects (instantiations) of certain abstract
data types T1, T2, . . . , Tk; given this, is it possible to imple-
ment objects of a new abstract data type Y in a fault-tolerant
manner? The notion of fault-tolerance adopted here is that of
wait-freedom, i.e. (n−1)-resiliency [13]. This question is the
starting point of an interesting theory leading to many results
and further intriguing questions (see [13,15] among others).
One of the basic results of this theory, already contained in the
original article of Herlihy, can be stated, somewhat loosely,
as follows: If an abstract data type X , together with a shared
memory, is powerful enough to implement Consensus for n
processes in a fault-tolerant manner then, X , together with a
shared memory, is also powerful enough to implement in a
fault-tolerant manner for n processes any other data structure
Y . This is Herlihy’s celebrated universality result for Consen-
sus.

In this paper we perform an analysis of some of the basic
assumptions underlying Herlihy’s result and discover several
interesting facts which, in view of the above, are somewhat
counter-intuitive and that could provocatively be summarized
by the slogans “Consensus without Naming is not universal”
and “Naming with randomization is universal.” To state our
results precisely we shall recall some definitions and known
results.

In the Consensus problem we are given a set of n asyn-
chronous processes that, as far as this paper is concerned,
communicate via a shared-memory. Every process has its own
input bit and is to produce its own output bit. Processes can
suffer from crash failures. The problem is to devise a protocol
that can withstand up to (n−1) crash failures, i.e. a wait-free
protocol, satisfying the following conditions:

• Every non-faulty process terminates;
• All output bits have the same value and,
• The output bit of each processor is the input bit of some

process.

The Naming problem on the other hand, is as follows:
Devise a protocol for a set of n asynchronous processes such
that, at the end, each non faulty process has selected a unique
identifier (key). If processes have identifiers to start with then
we have the Renaming problem.

In some sense, this paper is about the relative complex-
ity of Naming to Consensus, and viceversa. We shall mostly
concern ourselves with probabilistic protocols. Every pro-
cess in the system, modeled as an i/o automaton, has access
to its own source of unbiased random bits. The processes are
asynchronous and communicate via a shared memory. The
availability of objects of abstract data type consensus and
naming is assumed. An object of type consensus is a sub-
routine with input parameter b ∈ {0, 1}. When it is invoked by
a process p a bit b′ is returned. This bit is the same to all invok-
ing processes and is equal to some of the input bits, i.e. if b′
is returned some process p must have invoked the object with
input parameter b′. An object of type naming is a subroutine
without input parameters that, when invoked by a process p,
returns a value vp ∈ {1, .., n}, n being the overall number of
processes. For any two processes p �= q we have that vp �= vq.

The protocols we devise should be wait-free in spite of
the adversary, the “malicious” non-deterministic schedul-
ing agent modeling the environment. The adversary decides
which, among the currently pending operations, goes on next.
Pessimistically one assumes that the adversary is actually try-
ing to force the protocol to work incorrectly and that the next
scheduling decision– which process moves next– can be based
on the whole history of the protocol execution so far. This is the
so-called adaptive adversary. In contrast, sometimes it is as-
sumed that the adversary decides the entire execution schedule
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beforehand. This weaker foe is the so-called oblivious adver-
sary.

In the literature two shared-memory models are
widespread. The first assumes multiple reader - multi-
ple writer registers. In this model each location of the
shared memory can be written and read by any process. The
other model assumes multiple reader–single writer regis-
ters. Here, every register is owned by some unique process,
which is the only process that can write on that register, while
every process is allowed to read the contents of any register.
In both models reads and writes are atomic operations; in case
of concurrent access to the same register it is assumed that the
adversary “complies with” some non-deterministic, but fair,
policy.

We are now ready to state the results of this paper. Let us
start by restating Herlihy’s universality result.

Theorem. [Herlihy] Suppose that n asynchronous processes
interact via a shared memory and that,

(i) Memory registers are multiple reader–multiple writer;
(ii) Each process has its own unique identifier;

(iii) Objects of type consensus are available to the pro-
cesses.

Then, any abstract data type T can be implemented in a
wait-free manner for the n processes.

The first question we consider in this paper is: What hap-
pens if the second hypothesis is removed? Can distinct iden-
tifiers be generated from scratch in this memory model? The
answer is negative even assuming the availability of Consen-
sus objects.

Proposition 1 [Naming is impossible] Suppose that n asyn-
chronous processes without identifiers interact via a shared
memory and that,

(i) Memory registers are multiple reader–multiple writer;
(ii) Each process has access to its own source of unbiased

random-bits;
(iii) Objects of type consensus are available to the pro-

cesses;
(iv) The adversary is oblivious.

Yet, wait-free Las Vegas Naming is impossible.

This result is simple to prove, but it is interesting in several
respects. First, Consensus by itself is not universal, for wait-
free Naming objects cannot be implemented in a wait-free
manner with Consensus alone. Also, note that the result holds
even with randomization, a powerful “symmetry–breaker”,
and against the weak oblivious adversary. In particular, it holds
for the memory model used in Herlihy’s universal construc-
tion.

Recall that a Las Vegas protocol is always correct and that
only the running time is a random variable, while for a Mon-
tecarlo protocol correctness too is a random variable. Note
that Montecarlo Naming is trivial – each process generates
O(log n) many random bits and with probability 1 − o(1) no
two of them will be identical. Therefore, at least at the outset,
only the question of the existence of Las Vegas protocols is of
interest.

Proposition 1 shows that the power of randomization to
“break the symmetry”is limited. If we start from a completely

symmetric situation, it is impossible to generate identifiers that
are surely distinct. In stark contrast with the previous result,
as we prove in this paper, the following holds.

Theorem 1 [Consensus is easy] Suppose that n asynchronous
processes without identifiers interact via a shared memory
and that,

(i) Memory registers are multiple reader – multiple writer;
(ii) Each process has access to its own source of unbiased

random-bits;
(iii) The adversary is adaptive.

Then, there exist Las Vegas, wait-free Consensus protocols for
n processes whose complexity is polynomial in expectation
and with high probability.

Notice that while Proposition 1 establishes the impossibility of
Naming even against the oblivious adversary, here the adver-
sary is adaptive. We remark that the protocol can conceivably
use super-polynomial space and time, even though the proba-
bility that this happens is inverse polynomial.

Incidentally, Theorem 1 shows that hypothesis (iii) of
Proposition 1 is superfluous, for Consensus objects can be
simulated via software in a wait-free manner. It is well-known
that hypothesis (ii) is necessary, even if the adversary is obliv-
ious (see, for instance, [20,6]).

In some sense Naming captures the notion of complete
asymmetry among the processes. If we start from a completely
symmetric situation it embodies the intuitive notion of com-
plete break of symmetry. Proposition 1 shows that not even
randomness can break the symmetry to such an extent. This
leads to the question of “how much” asymmetry is needed
for Naming. A memory consisting of multiple reader – single
writer registers has some degree of built-in asymmetry. Indeed,
if the absolute address of the registers could be known Naming
could be trivially solved by ranking the physical addresses.
Therefore in Sect. 3 we introduce a memory model whose
registers are multiple reader – single writer but for which it
is impossible to obtain the physical addresses. For clarity of
exposition we shall call these anonymous multiple reader –
single writer registers.

Although our motivation is mainly theoretical, similar
models have been used to study certain situations in large
dynamically changing systems where a consistent indexing
scheme is difficult or impossible to maintain [18]. Moreover
this model could make sense in cryptographic systems where
this kind of consistency is to be avoided.

We show the following. Assume that the memory consist-
ing of anonymous multiple reader – single writer registers is
initialized fairly that is, all registers are initially 0 (or any other
fixed value). Moreover, processes do not have ID’s. Then,

• Naming is impossible for deterministic processes;
• The size of the memory is a lower-bound for any wait-free

Naming protocol. That is, if m is the memory size, any
wait-free Naming protocol must take Ω(m) time;

• There exists a Las Vegas, wait-free Naming protocol for
n processes whose running time is polynomial in expec-
tation. The protocol can use super-polynomail time and
space, but that happens with inverse polynomial proba-
bility. Furthermore the key space from which identifiers
are drawn has size n, which is optimal. The protocol can
withstand the adaptive adversary.
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Thus, by themselves, neither randomization nor multiple
reader – single writer registers can break the symmetry. What
is needed is their acting together.

To summarize, with randomization, multiple reader –
single writer registers are inherently symmetry-breaking,
whereas Consensus is not.

The last result improves on previous work in [21] in which
Naming protocols with almost-optimal key range are given. In
fact, we prove two versions of the third result above. We first
give a simple protocol whose running time is Θ(C n2 log n)
w.h.p., where C is the time required for a call of an object
of type consensus. We also give a faster protocol named
squeeze whose expected running time is O(C n log3 n).

As a by-product we also show that an object we
call selectWinner cannot be implemented by Consen-
sus alone, i.e. without Naming, even if randomization is
available and the adversary is oblivious. The semantics of
selectWinner is the following: the object selects a unique
winner among the invoking processes. After the invocation
each process knows if it is a winner or a loser. In essence,
selectWinner is a test-and-set without reset.

Since any deterministic protocol must use a key range of
size at least 2n − 1 in order to be wait-free [14], this is yet
another instance in which randomization is proven to be more
powerful than determinism, as far as fault-tolerant computing
is concerned.

Our results show, perhaps surprisingly, that multiple
reader–single writer registers are more powerful than multiple
reader–multiple writer registers, even though the latter might
represent a faster alternative. This highlights an important dif-
ference between the two models.

Our Theorem 1 is obtained by combining several known
ideas and protocols, in particular those in [3] and [10]. When
compared to the protocol in [3] it is, we believe, simpler, and
its correctness is easier to establish (see, for instance, [22]).
Moreover, it works in the more “symmetric” multiple reader –
multiple writer memory model and can deal with the adaptive
adversary. In contrast, the protocol in [10] can only withstand
the “intermediate” adversary, whose power lies somewhere be-
tween the more traditional oblivious and adaptive adversaries
we consider. From the technical point of view, our Proposi-
tions 1 and 3 use ideas contained in [17] to which we refer for
other interesting related results (those results however are not
directly relevant to the issue under consideration here, namely
the power of Consensus). Other related work can be found in
[5,16].

In spite of the fact that we make use of several known
technical ingredients, our analysis, we believe, is novel and
brings to light for the first time new and, we hope, interesting
aspects of fundamental concepts.

2 Consensus is easy, Naming is hard

We start by outlining a Consensus protocol assuming that
(a) the shared memory consists of multiple reader – multiple
writer registers, (b) processes are i/o automata without identi-
fiers which have access to their own source of (c) random bits.
Our protocol is obtained by combining together several known
ideas and by adapting them to our setting. Ours is a modifica-
tion of the protocol proposed by Chandra [10] to withstand the

intermediate adversary. The original protocol cannot be used
in our setting since its shared coins require that processes have
unique IDs. Thus, we combine it with a modification of the
weak shared coin protocol of Aspnes and Herlihy [3]. The lat-
ter cannot be directly used in our setting either, since it requires
multiple reader – single writer registers. Another difference is
that, unlike in Chandra’s protocol, we cannot revert to Aspnes’
Consensus [1]. In this paper we are only interested in estab-
lishing the existence of a polynomial protocol and make no
attempt at optimization. Since the expected running time of
our protocol is polynomial, by Markov’s Inequality, it follows
that the running time and, consequently, the space used are
polynomial with high probability (inverse polynomial proba-
bility of failure). Conceivably super-polynomial space could
be needed. We leave it as an open problem whether this is nec-
essary. In the sequel we will make use of the notion of weak
shared coin of [3]. Basically a weak-shared coin protocol re-
turns Head to all invoking processes with some probability
p; it returns Tail to all processes with the same probability
p; and it returns 0 to some processes and 1 to the remaining
ones with probability 1 − 2p. Although our treatment below
is self-contained, we refer to [3] for more details.

The protocol, shown in Fig. 1, is based on the following
idea. Processes engage in a race of sorts by splitting into two
groups: those supporting the 0 value and those supporting the
1 value. At the beginning membership in the two “teams” is
decided by the input bits. Corresponding to each team there is
a “counter”, implemented with a row of contiguous “flags”–
the array of booleans Mark[b, ·]– which are to be raised one
after the other from left to right by the members of team b,
cooperatively and asynchronously. The variable positionp of
each process p records the rightmost (raised) flag of its team
the process knows about. The protocol keeps executing the
following loop, until a decision is made. The current team of
process p is defined by the variable myTeamp. The process
first increments its own team counter by raising the positionp-
th flag of its own team (this might have already been done by
some other team member, but never mind). For instance, if p’s
team corresponds to the value b then, Mark[b, positionp] is
set to true. Thus, as far as process p is concerned, the value
of its own team counter is positionp (this might not accu-
rately reflect the real situation). The process then “reads” the
other counter by looking at the other team’s row of flags at
positions positionp +1, positionp, positionp − 1, in this or-
der. There are four cases to consider: (a) if the other team
is ahead the process sets the variable tentativeNewTeamp

to the other team; (b) if the two counters are equal, the pro-
cess flips a fair coin X ∈ {0, 1} by invoking the protocol
GetCoinδ(·, ·) and sets tentativeNewTeamp to X; (c) if
the other team trails by one, the process sticks to its team, and
(d) if the other team trails by two (or more) the process decides
on its own team and stops executing the protocol. The setting
of tentativeNewTeamp is, as the name suggests, tentative.
Before executing the next iteration, the process checks again
the counter of its own team. If this has been changed in the
meanwhile (i.e. if the (positionp +1)-st flag has been raised)
then the process sticks to its old team and continues; otherwise,
it does join the team specified by tentativeNewTeamp. The
array Mark[·, ·] is implemented with multiple reader
- multiple writer registers, while the other variables
are local to each process and accessible to it only. The local
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{Initialization}
Mark[0, 0], Mark[1, 0] ← true

{Algorithm for process p}

function propose(v): returns 0 or 1
1. myTeamp ← v; otherTeamp ← 1 - myTeamp

2. positionp ← 1
3. repeat
4. Mark[myTeamp, positionp] ← true
5. if Mark[otherTeamp, positionp + 1]
6. tentativeNewTeamp ← 1−myTeamp

7. else if Mark[otherTeamp, positionp]
8. tentativeNewTeamp

← GetCoinδ(myTeamp, positionp)
9. else if Mark[otherTeamp, positionp − 1]
10. tentativeNewTeamp ← myTeamp

11. else return(myTeamp) {Decide myTeamp}
12. if not Mark[myTeamp, positionp + 1]
13. myTeamp ← tentativeNewTeamp

14. positionp ← positionp + 1
end repeat

Fig. 1. n-process binary Consensus for multiple reader – multiple
writer registers

variables can assume only a finite (constant) set of values and
can therefore be “hardwired” in the states of the i/o automaton
representing the process.

The only, but crucial, difference between our protocol and
that of Chandra concerns the procedure GetCoinδ(·, ·). In
Chandra’s setting essentially it is possible to implement “via
software” a global coin, thanks to the Naming assumption and
the special assumption concerning the power of the adversary
(“intermediate” instead of adaptive). In the implementation in
Fig. 1, we use a protocol for a weak shared coin for multiple
reader – multiple writer registers. For every b ∈ {0, 1} and
every i ≥ 1 an independent realization of the weak shared
coin protocol is performed. An invocation of such a protocol
is denoted by GetCoinδ(b, i), where δ is a positive real that
represents the agreement parameter of the weak shared coin
(see [3]). GetCoinδ(b, i) satisfies the following conditions.
Upon invocations with values b and i, it returns 0 to all invoking
processes with probability p ≥ δ/2; it returns 1 to all invoking
processes with probability p ≥ δ/2; and, it returns 0 to some
and 1 to the others with probability at most 1 − δ [3].

First, we prove that the protocol in Fig. 1 is correct and
then analyze its complexity. Later we show how to implement
the weak shared coin.

Lemma 1 If some process decides v at time t, then, before
time t some process started executing propose(v).

Proof The proof is exactly the same of that of Lemma 1 in
[10]. ��
Lemma 2 No two processes decide different values.

Proof The proof is exactly the same as that of case (3) of
Lemma 4 in [10]. ��
Lemma 3 Suppose that the following conditions hold:

i) Mark[b, i] = true at time t,
ii) Mark[1 − b, i] = false before time t,
iii) Mark[1 − b, i] is set true at time t′ (t′ > t), and
iv) every invocation of both GetCoinδ(b, i) and

GetCoinδ(1 − b, i) yields value b.

Then, no process sets Mark[1 − b, i + 1] to true.

Proof The proof is essentially the same of that of the Claim
included in the proof of Lemma 6 in [10]. ��

The next lemma is the heart of the new proof. The difficulty
of course is that now we are using protocol GetCoinδ(·, ·)
instead of the “global coins” of [10], and have to contend with
the adaptive adversary instead of the intermediate one. The
crucial observation is that if two teams are in the same position
i and the adversary wants to preserve parity between them, it
must allow both teams to raise their flags “simultaneously,”
i.e. at least one member in each team must observe parity in
the row of flags. But then each team will proceed to invoke
GetCoinδ(·, ·), whose unknown outcome is unfavorable to
the adversary with probability at least (δ/2)2.

Lemma 4 If Mark[b, i] = true at time t and
Mark[1 − b, i] =false before time t, then with probability
at least δ2/4, Mark[1 − b, i + 1] is always false.

Proof If Mark[1 − b, i] is always false, then it can be
shown that Mark[1 − b, i + 1] is always false (the proof
is the same of that of Lemma 2 in [10]). So, assume that
Mark[1 − b, i] is set to true at some time t′ (clearly,
t′ > t). Since no invocation of both GetCoinδ(b, i) and
GetCoinδ(1 − b, i) is made before time t, the values yielded
by these invocations are independent of the schedule until
time t. Thus, with probability at least δ2/4, all the invoca-
tions of GetCoinδ(b, i) and GetCoinδ(1 − b, i) yield the
same value b. From Lemma 3, it follows that, with probability
at least δ2/4, Mark[1 − b, i + 1] is always false. ��
Theorem 2 The protocol of Fig. 1 is a randomized solution to
n-process binary Consensus. Assuming that each invocation
of GetCoinδ(·, ·) costs one unit of time, the expected running
time per process O(1). Furthermore, with high probability ev-
ery process will invoke GetCoinδ(·, ·) O(log n) many times.

Proof From Lemma 2, if any two processes decide, they de-
cide on the same value. From Lemma 1 we know that the
decision value is the input bit of some process. We now show
that all processes decide within a finite number of steps and
that this number is polynomial both in expectation and with
high probability.

As regarding the expected decision time for any process,
let P (i) denote the probability that there is a value b ∈ {0, 1}
such that Mark[b, i] is always false. From Lemma 4, it
follows that

P (i) ≥ 1 − (1 − δ2/4)i−1 i ≥ 1

Also, if Mark[b, i] is always false, it is easy to see that
all the processes decide within i + 1 iterations of the repeat
loop. Thus, with probability at least 1− (1− δ2/4)i−1, all the
processes decide within i + 1 iterations of the repeat loop.
This implies that the expected running time per process is
O(1). The high probability claim follows from the observation
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that pessimistically the process describing the invocations of
GetCoinδ(·, ·) can be modeled as a geometric distribution
with parameter p := (δ/2)2. ��

We now come to the implementation of the weak shared
coin for multiple reader – multiple writer registers, which we
accomplish via a slight modification of the protocol of Aspnes
and Herlihy [3]. In that protocol the n processes cooperatively
simulate a random walk with absorbing barriers. To keep track
of the pebble a distributed counter is employed. The
distributed counter is implemented with an array of n registers,
with position i privately owned by process i (that is, Naming
or multiple reader – single writer memory is assumed). When
process i wants to move the pebble it updates atomically its
own private register by incrementing or decrementing it by
one. The private register also records another piece of infor-
mation namely, the number of times that the owner updated it
(this allows one to show that the implementation of the read
is linearizable). While moving the pebble takes constant time,
reading its position is a non-atomic operation. To read the po-
sition of the pebble the process scans the array of registers
twice; if the two scans yield identical values the read is com-
pleted, otherwise two more scans are performed, and so on.
We shall refer to this non-atomic read of the whole array as
a scan. As shown in [3], the expected running time per pro-
cess of the protocol is O(n3) scans. In terms of elementary
operations (reads and writes) performed by each process this
is O(n4), since each scan takes O(n).

In our setting we cannot use single-writer registers there-
fore we use an array C[] of n2 multiple-writer multiple-reader
registers for the counter. The algorithm for a process p is as
follows. Firstly, p chooses uniformly at random one of the n2

registers of C[], let it be the kth. Then, the process proceeds
with the protocol of Aspnes and Herlihy by using C[k] as its
own register and by applying the counting operations to all
the registers of C[]. Since we are using n2 registers instead of
n, the expected number of steps that each process performs to
simulate the protocol is O(n5). This is because the expected
number of scans per process remains the same, but now each
scan takes Θ(n2) steps (read’s). The agreement parameter of
the protocol is set to 2eδ. Since the expected number of rounds
of the original protocol is O(n4), by Markov’s Inequality, there
is a constant B such that, with probability at least 1/2, the pro-
tocol terminates within Bn5 rounds. It is easy to see that if
no two processes choose the same register, then the proto-
col implements a weak shared coin with the same agreement
parameter of the original protocol in O(n5) many steps. To en-
sure that our protocol will terminate in any case, if after Bn5

steps the process has not yet decided then it flips a coin and
decides accordingly. Thus, in any case the protocol terminates
returning a value 0 or 1 to the calling process within O(n5)
steps. The probability that no two processes choose the same
register is(

1 − 1
n2

) (
1 − 2

n2

)
· · ·

(
1 − n − 1

n2

)
≥ 1

e
.

Thus, the agreement parameter of our protocol is at least 1/2 ·
1/e · 2eδ = δ. We have proved the following fact.

Lemma 5 For any δ > 0, a weak shared coin with agreement
parameter δ can be implemented with multiple reader – multi-

ple writer registers (with randomization) in O(n5) steps, even
against the adaptive adversary.

Corollary 1 The expected running time per process of the pro-
tocol of Fig 1 is O(n5). The protocol can use super polyno-
mial space and time, but this happens with inverse polynomial
probability.

We show next that, in contrast, no protocol exists for Nam-
ing if we use multiple reader – multiple writer registers, even
assuming the availability of Consensus objects and the obliv-
ious adversary. The proof uses ideas from [17].

Proposition 2 Suppose that an asynchronous, shared memory
machine is such that:

• registers are multiple reader – multiple writer;
• every process has access to a source of independent, un-

biased random bits, and
• Consensus objects are available.

Then, still, Naming is impossible even against an oblivious
adversary.

Proof By contradiction suppose there exist such a protocol.
Consider two processes P and Q and let only Q go. Since
the protocol is wait-free there exists a sequence of steps σ =
s1s2 . . . sn taken by Q such that Q decides on a name kσ . The
memory goes through a sequence of states m0m1 . . . mn. The
sequence σ has a certain probability pσ = p1p2 . . . pn of being
executed by Q. Start the system again, this time making both P
and Q move, but one step at a time alternating between P and
Q. With probability p2

1 both P and Q will make the same step
s1. A simple case analysis performed on the atomic operations
(read, write, invoke Consensus) shows that thereafter P and Q
are in the same state and the shared memory is in the same state
m1 in which it was when Q executed s1 alone. This happens
with probability p2

1. With probability p2
2, if P and Q make one

more step each, we reach a situation in which P and Q are in
the same state and the memory state is m2. And so on, until,
with probability p2

σ both P and Q decide on the same identifier,
a contradiction. ��

Thus, Naming is a necessary assumption in Herlihy’s uni-
versality construction.

3 Naming with multiple reader – single writer registers

We now come to the question of whether a memory consisting
of multiple reader – single writer registers can be used to break
the symmetry. Let us first give an overview of the results we
will be discussing.

First, in § 3.1 we will define the memory model formally
(anonymous multiple reader – single writer registers) and
prove some impossibility results. In particular we show that
Naming remains impossible for deterministic processes. For
randomized processes we prove that memory size is a lower
bound on the running time, if we want wait-freedom. Thus ran-
domization is necessary for Naming. To show that it is suffi-
cient, we reduce the Naming problem to another synchroniza-
tion task: selecting a unique winner out of n competing pro-
cesses. We introduce an object called selectWinner(i)
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with the following semantics. The object is invoked by any
out of n asynchronous processes with a parameter i; the re-
sponse is to return the value “You own key i!” to exactly one
of the invoking processes, and “Sorry, look for another key”
to all remaining processes. Thus, the object selects a unique
winner for key i out of n processes. The choice of the winner
is non-deterministic. In essence, this is a test-and-set without
reset.

In § 3.2 we give a wait-free implementation of
selectWinner for n randomized processes communicat-
ing via multiple reader – single writer registers. Finally,
in § 3.3 we show how to reduce the Naming problem to
selectWinner in a wait-free manner. That is, we give a
wait-free implementation of Naming for n randomized pro-
cesses communicating via multiple reader – single writer reg-
isters that have access to objects of type selectWinner.
Since the latter was shown to admit a wait-free implemen-
tation in § 3.2, we have that Naming too admits a wait-free
implementation. The running time of our protocols is polyno-
mial both in expectation and with high probability.

3.1 Model definition and impossibility results

Let us define the notion of anonymous multiple reader – single
writer registers. Recall that essentially what we are interested
in is a memory model in which the physical address of the
registers remain hidden from the processes. Here is the model.

A set of n processes communicate by means of a
shared memory. Memory registers are multiple reader
- single writer. While every process is allowed to read
the contents of any register, each register is owned by some
unique process which is the only process that can write on that
register. If this asymmetry were not somehow hidden from
the process, the Naming problem would have trivial solutions.
Specifically, if the physical addresses of the writable registers
of each process were common knowledge, this directly would
induce distinct IDs. So, to hide the physical addresses from
the processes, we introduce the following formal model. Each
process p accesses the m registers by means of a permuta-
tion πp. Register πi

p– p’s ith register– will always be the same
register, but, for p �= q, πi

p and πi
q might very well differ. In

particular processes cannot obtain the physical address of the
registers. To rule out trivial solutions to the Naming problem it
is further assumed that the permutations are chosen so that the
set of indices (not the physical addresses) of writable registers
is the same for all the processors. In case of concurrent access
to the same register it is assumed that the adversary “complies
with” some non-deterministic, but fair, policy.

Besides registers of the shared memory, each process can
have local registers, it is the only process to have access to
them, and it can distinguish between a local register and a
shared register.

We now show that in this model Naming is impossible for
deterministic processes.

Proposition 3 Suppose that the memory consists of anony-
mous multiple reader – single writer registers initially set to
0 (or any other fixed value). Then, if processes are identical,
deterministic i/o automata without identifiers, Naming is im-
possible. That holds for any choice of the permutations π.

Proof Consider n processes p1, . . . , pn that are identical de-
terministic i/o automata without identifiers. The shared mem-
ory is anonymous: any process pk accesses the m registers
by means of permutation πk. That is, when process pk per-
forms a Read(i) operation, the result will be the content of
the register having physical address πi

k. Analogously for the
Write(i, v) operations. We assume thatWrite(i, v) is
legal only if i ≤ m/n. That is, the indices of the writable regis-
ters are 1, 2, . . . , m/n. We show the impossibility of Naming
even against the very simple adversary with the alternating
execution schedule: the execution proceeds in rounds, each
round consists of a step for each process p1, . . . , pn.

We need some notation. We call the map of the contents
of all the registers, shared and local, the absolute view. It is a
function that maps each physical address a to the content of
the register of physical address a. Given an absolute view V
remains determined the local views Lk(V ) for k = 1, . . . , n.
The local view Lk(V ) is the map of the contents of the local
registers of pk and of the shared registers through the permu-
tation πk. In other words, Lk(V ) is a function that maps each
index j to the content of the register having index j w.r.t. the
process pk. In particular, if j is an index of a shared register
then the local view maps j to the content of the register of
physical address πj

k. We have already assumed that the set of
indices of shared registers is the same for all the processes (i.e.
the set {1, 2, . . . , m}). We further assume that the set of in-
dices of local registers is the same for all the processes. Thus,
the entire set of indices is the same for all the processes. There-
fore, the domains of all the local views coincide. An instant
configuration, or simply a configuration, for process pk is a
pair (L, s) where L is a local view and s is a state of pk.

Let sk
t be the state of pk at the beginning of round t. Let

Vt be the absolute view at the beginning of round t. A simple
case analysis performed on the atomic operations (read, write,
local operations) shows that, for any t, if all the configurations
(Lk(Vt), sk

t ) for k = 1, . . . , n are equal then after the execu-
tion of round t the resulting configurations (Lk(Vt+1), sk

t+1)
are equal again. This fact together with the assumption that
the initial configurations (Lk(V0), sk

0) are equal imply that
the processes cannot select unique identifiers. ��

Thus randomization is necessary to solve Naming. In the
next two subsections we will show that it is sufficient. The
next proposition however shows that the size of the memory
is a lower bound on the running time.

Proposition 4 Suppose that an asynchronous, shared memory
machine whose multiple reader – single writer registers are
anonymous is such that:

• all registers are initially set to 0 (or any other fixed value);
• every process has access to a source of independent, un-

biased random bits, and
• Consensus objects are available.

Then, for any wait-free protocol for the Naming problem there
exists a choice of the permutations π that forces the protocol
to terminate in Ω(m) expected time, where m is the size of
memory. That holds even if the adversary is oblivious.

Proof Since the protocol is wait-free, without loss of general-
ity, we show the lower bound for the case of only two processes
p and q. We prove that for any protocol there is a choice of the
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protocol selectWinner(i: key): outcome;

myReg := ‘‘private register of executing process’’;
attempt := 1;
repeat

b := random bit;
if (b = consensus(i, b)) then begin

scan W[attempt,j] for 1 ≤ j ≤ n;
if (W[attempt,j] = 0, for all j) then begin

W[attempt,myReg] := 1;
scan W[attempt,j] for 1 ≤ j ≤ n;
if (W[attempt,j] = 0, for all j <> myReg)

then return(i); {key is grabbed!}
else attempt := attempt + 1; {keep trying}

else return(‘‘Sorry, look for another key.’’);
end repeat

Fig. 2. Protocol selectWinner

permutations πp and πq such that the expected running time is
at least m/2, where m is the size of memory. By contradiction
suppose there exists a protocol whose expected running time
is T < m/2. Let only q go. Since the protocol is wait-free
and its expected running time is bounded by T , there exists a
sequence of t ≤ T steps σ = s1s2 . . . st taken by q such that
q decides on a name kσ . For every i = 1, 2, . . . , t, let vi be the
view of the shared memory by q after the execution of step si.
The sequence σ has a certain probability pσ = p1p2 . . . pt of
being executed by q. Observe that the sequence σ is a valid
execution of the protocol for every possible choice of the per-
mutations πp and πq by means of which p and q access the m
registers. Since m > 2t, we can choose the two permutations
so that if both processes were executing the sequence σ then
the sets of registers they access are disjoint. Start the system
again, this time making both p and q move, but one step at
a time alternating between p and q. With probability p2

1 both
processes will make the same step s1. A simple case analy-
sis performed on the atomic operations (read, write, invoke
Consensus) shows that thereafter p and q are in the same state
and their view of the shared memory is v1 the same of q when
q executed s1 alone. This happens with probability p2

1. With
probability p2

2, if p and q make one more step each, we reach a
situation in which p and q are in the same state and their view
of the shared memory is v2. And so on, until, with probability
p2

σ both p and q decide on the same identifier, a contradiction.
��

3.2 Wait-free implementation of SelectWinner

In this subsection we show how to implement
selectWinner in a wait-free manner in polynomial
time.

By Theorem 2 we can assume without loss of generality
the availability of objects of type consensus(i,b) where
1 ≤ i ≤ n and b ∈ {0, 1}. Each invoking process p will
perform the invocation using the two parameters i and b; the
object response will be the same to all processes and will be
“The consensus value for i is v” where v is one of the bits b
that were proposed.

The protocol for selectWinner, shown in Fig. 2, is
as follows. Each process p generates a bit bp

1 at random and

invokes consensus(1,bp
1). Let v1 be the response of the

Consensus object. If bp
1 �= v1 then p is a loser and exits the

protocol. Otherwise, p is still in the game. Now p is to ascertain
whether it is alone, in which case it is the unique winner, or if
there are other processes still in the game. To this end, p (and
every other process still in the game) scans the array W [1, i],
for 1 ≤ i ≤ n, that is initialized to all 0’s. If W [1, i] contains
a 1 then p declares itself a loser and exits; otherwise it writes
a 1 in its private position W [1, p] and scans W [1, −] again. If
W [1, −] contains a single 1, namely W [1, p] then p declares
itself the winner and grabs the key, otherwise it continues the
game. That is, it generates a second bit bp

2 at random, invokes
consensus(2,bp

2), and so on. The following observations
and lemma establish the correctness of the protocol.

Observation 1 If p declares itself the winner then it is the only
process to do so.

Observation 2 There is a winner with probability 1.

Lemma 6 With probability 1 − o(1), every process p running
the protocol of Fig. 2 generates O(log n) many random bits bp

i
and the number of bit operations per process is O(C n log n),
where C is the cost of one invocation of an object of type
consensus.

Proof We refer to an iteration of a repeat loop of protocol
selectWinner as a round, i.e. the round i refers to the
set of iterations of the repeat loop in which the participat-
ing processes toss their private coin for the ith time. We as-
sume pessimistically that the Consensus object of protocol
selectWinner is under the control of the adaptive adver-
sary, subject to the following rules. Denoting with 1, . . . , k the
processes that perform the ith coin toss, If b1

i = b2
i = . . . =

bk
i = 0 or b1

i = b2
i = . . . = bk

i = 1 then the adversary can
respond with Consensus value 0 or 1, respectively. Otherwise
the adversary can respond with any value.

The goal of the adversary is to maximize the number of
rounds. Therefore its best policy is to return the Consensus
value that eliminate the smallest number of processes, i.e. the
best strategy is to return the majority bit. The probability that
the ith outcome of process p is the majority value depends on
the number of processes, but it is easily seen to be maximized
when there are two processes. The probability that the minority
value is the outcome of at least 1/4 of the processes depends
on the number of processes, but it is monotonically decreasing.
Therefore the smallest value is 1/4, when just 2 processes are
involved.

We call a run successful if the minority value is the out-
come of at least 1/4 of the processes (i.e. at least 1/4 of
the processes are eliminated). Then, log4/3 n many successful
rounds suffice to select a winner.A straightforward application
of the Chernoff-Hoeffding bounds show that with probability
1 − o(1) at least log4/3 n rounds out of 8 log4/3 n many will
be successful.

Since every iteration of selectWinner costs O(n)
steps, the claim follows. ��

Thus we obtain the following.

Lemma 7 The protocol shown in Fig. 2 is a wait-free imple-
mentation of the objects selectWinner(i) for n random-
ized, asynchronous processes that communicate by means of
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protocol simpleButExpensive(): key;

begin
for k := 1 to n do

if selectWinner(k) = ‘‘You own key k!’’
then return(k);

end

Fig. 3. Simple but expensive protocol for Naming

multiple reader – single writer registers, even if the adversary
is adaptive. The running time per process is O(C n log n)
bit operations, both in expectation and with high probability,
where C is the cost of one invocation of an object of type
consensus.

3.3 Reducing Naming to Select-Winner

Finally, in this section we show how to reduce Naming to
Select-Winner in polynomial time. First we give a simple im-
plementation of Naming and then a more sophisticated and
efficient one.

Assuming the availability of objects of type
selectWinner, it is a simple matter to give a wait-
free implementation of Naming: Each of the n processes tries
to grab a key. If it succeeds it stops, otherwise the next key is
tried. This is done in Fig. 3.

Thus, recalling Lemma 7 we obtain the following.

Proposition 5 Suppose that n asynchronous processes with-
out identifiers interact via anonymous multiple reader – single
writer registers and that,

(i) Each process has access to its own source of unbiased
random-bits;

(ii) The adversary is adaptive.

Then, protocol simpleButExpensive is a wait-free Las
Vegas solution to Naming whose running time is polynomial
in expectation and with high probability

The high probability statement follows from Lemma 6 and
Sect. 2 in which it given a wait-free, polynomial-time imple-
mentation of objects of type consensus. Since our imple-
mentation of consensus can use super-polynomial space
with inverse polynomial probability, the same holds for our
implementation of selectWinner.

Although the expected running time of
simpleButExpensive is polynomial, given the high
cost of invoking selectWinner we turn our attention to
protocol squeeze. This protocol in expectation will only
perform O(log2 n) invocations of selectWinner instead
of linearly many.

In protocol squeeze the name space is divided into seg-
ments Ik of length sk. In the following definition p is a param-
eter between 0 and 1 to be fixed later:

sk = p(1 − p)k−1n

To simplify the presentation we assume without loss of gen-
erality that all si’s are integral. Let � be the maximal integer
i such that si ≥ log2 n. The first segment consists of the

key interval I1 := [0, s1); the second segment consists of the
key interval I2 := [s1, s1 + s2); the third of the key interval
I3 := [s1 + s2, s1 + s2 + s3), and so on. Thus each Ik has sk

keys, 1 ≤ k ≤ �, and the final segment I�+1 consists of the
last n − ∑�

j=1 sj = n − n[1 − (1 − p)�+1] = n(1 − p)�+1

keys. In the protocol, each process p starts by selecting a
tentative key i uniformly at random in I1. Then, it invokes
selectWinner(i); if p “wins,” the key becomes final and p
stops; otherwise, p selects a second tentative key j uniformly
at random in I2. Again, selectWinner(j) is invoked and if p
“wins” j becomes final and p stops, otherwise p continues in
this fashion until I�+1 is reached. The keys of I�+1 are tried
one by one in sequence. If at the end p has no key yet, it will
execute the protocol simpleButExpensive of Fig. 3 as a
back-up procedure. The resulting protocol appears in Fig. 4.

Assuming the availability of objects of type
selectWinner, protocol squeeze assigns a key to
every non-faulty process with probability 1. This follows,
because the protocol ensures that selectWinner(i) is
invoked for every i, 1 ≤ i ≤ n, and each such invocation
assigns a key to exactly one process. We will now argue that
with high probability every process receives a unique key
before the back-up procedure, and that therefore the number
of invocations of selectWinner objects is O(log2 n) per
process w.h.p..

Lemma 8 The expected number of invocations of
selectWinner per process in protocol squeeze is
O(log2 n).

Protocol squeeze maintains the following invariant
(w.h.p.). Let Pk be the set of processes that after k−1 attempts
still have to grab a key. Their k-th attempt will be to select a
key at random in segment Ik. Then, |Pk| ≈ |Ik| log n � |Ik|
(hence the protocol “squeezes” Pk into Ik). Once the numbers
are plugged in it follows that, with high probability, every key
in Ik will be claimed by some process, and this for all k. Since
every key is claimed w.h.p. before the back-up procedure, ev-
ery process, w.h.p., receives a key within O(log2 n) invoca-
tions of selectWinner. By setting the parameter p appro-
priately it is possible to keep the number of segments small,
i.e. O(log2 n), while maintaining the invariant |Pk| � |Ik|
for each segment.

Let us focus first on a run without crashes. Let pi be defined
by

pi := (1 − p)i−1n.

Since each segment Ik can capture at most sk processes, |Pi| ≥
pi. We want to show that, with high probability, |Pi| = pi, for
i < �. If we can show this we are done because then p� = s�

and the protocol ensures that every one of the remaining p�

process will receive one of the last s� keys. A key k is claimed
if selectWinner(k) is invoked by some process. Then,
since there are no crashes,

Pr[∃k ∈ Ii, k not claimed] ≤
(

1 − 1
si

)pi

≤ exp
{

−si

pi

}

= exp
{

−1
p

}
=

1
nc
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protocol squeeze(): key;

begin
for i := 1 to � do begin
k := random key in interval Ii;
if selectWinner(k) = ‘‘You own key k!’’ then return(k);
end;

for k := n - s� to n do {try key in I� one by one}
if selectWinner(k) = ‘‘You own key k!’’ then return(k);

return(simpleButExpensive()) {back up procedure}
end

Fig. 4. Protocol squeeze

for any fixed c > 0, provided that

p :=
1

c log n
.

With this choice of p the number of segments � is O(log2 n).
The expected running time is therefore

E[T (n)] = O(log2 n)(1 − �/nc) + O(n)�/nc

= O(log2 n)

for c > 3.
We now argue that with crashes the situation can only

improve. Let C1 be the set of processes that crash before ob-
taining a response to their invocation of selectWinner in
I1. Let F1 (F as in free) be the set of keys of I1 that are not
claimed after processes in P1 have made their random choice.
If F1 is non empty, assign processes of C1 to keys of F1 in a
one-to-one fashion. Let f1 be this map. Then, the probability
that a key is claimed before any process under this new scheme
is no lower than in a run without crashes. We then set C2 to be
the set of processes of P2 that crashed before obtaining a re-
sponse for their invocation of selectWinner in I2, union
C1 − f1(C1). Again, after processes in P2 randomly select
keys in I2, assign processes of C2 to keys of F2 by means of a
one-to-one function f2. Thus, again, the probability that a key
in I2 is claimed is higher than in a run without crashes. And
so on. Thus, we have the following.

We have proved the following.

Theorem 3 Protocol squeeze is a Las Vegas, wait-free
Naming protocol for anonymous multiple reader – single
writer registers, whose running time is O(S log2 n) with
probability 1 − o(1), where S is the cost of one invocation
of an object of type selectWinner.

By Lemma 7 we obtain the following corollary.

Corollary 2 Protocol squeeze is a Las Vegas, wait-free
Naming protocol for anonymous multiple reader – single
writer registers, whose running time is O(C n log3 n) with
probability 1 − o(1), where C is the cost of one invocation of
an object of type consensus.

Remark 1. Protocol squeeze is also a good renaming pro-
tocol. Instead of the random bits, each process can use the bits
of its own IDs starting, say, from the left hand side. Since the

ID’s are all different the above scheme will always select a
unique winner within O(|ID|) invocation of Consensus.

Remark 2. The only part of protocol squeeze that actually
uses the memory is protocol selectWinner. In view of
Proposition 2 this task must be impossible with multiple reader
– multiple writer registers, even if randomness and Consen-
sus are available. Thus, this is another task for which, strictly
speaking, Herlihy’s result does not hold and it is another ex-
ample of something that cannot be accomplished by the power
of randomization alone.
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