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The Power and Perils of MDL
Pieter Adriaans and Paul Vitányi

Abstract

Practical use of MDL is full of pitfalls in which the practitioners tend to fall head over heels. We analyse the

power and the perils in the use of MDL. Generally, the classical approach is inadequate to express the goodness-of-fit

of individual models for individual data sets. In practice however, this is precisely what we are interested in: both to

express the goodness of a procedure and where and how it can fail. To achieve this practical goal, we paradoxically

have to use the, supposedly impractical, vehicle of Kolmogorov complexity.

I. INTRODUCTION

In machine learning pure applications of MDL are rare, partially because of the difficulties one encounters trying

to define an adequate model code and data-to-model code, and partially because of the operational difficulties that

are poorly understood. Based on new theoretical insights [16] we elucidate aspects of both the power and the perils

of the practical use of MDL precisely and formally. We first resurrect a familiar problem from our childhood to

illustrate some of the issues involved.

The process of solving a jigsaw puzzle involves an incremental reduction of entropy, and this serves to illustrate

the analogous features of the learning problems which are the main issues of this work. Initially, when the pieces

come out of the box they have a completely random ordering. Gradually we combine pieces, thus reducing the

entropy and increasing the order until the puzzle is solved. In this last stage we have found a maximal ordering.

Suppose that Alice and Bob both start to solve two versions of the same puzzle, but that they follow different

strategies. In the first stage Alice sorts all pieces according to color. Bob starts to sort the pieces according to

shape.1 The crucial insight, shared by experienced puzzle aficionados, is that Alice’s strategy is efficient whereas

Bob’s is not and is in fact even worse than a random strategy. Alice’s strategy is efficient, since the probability

that pieces with about the same color match is much greater than the unconditional probability of a match. On the

other hand the information about the shape of the pieces can only be used in a relatively late stage of the puzzle

process. Bob’s effort in the beginning is a waste of time, because he must reorder the pieces before he can proceed

to solve the puzzle. This example shows that if the solution of a problem depends on finding a maximal reduction of
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entropy this does not mean that every reduction of entropy brings us closer to the solution. Consequently reduction

of entropy is not in all cases a good strategy.

A. Entropy Versus Kolmogorov Complexity

Above we use “entropy” in the often used, but inaccurate, sense of “measure of unorderedness of an individual

arrangement.” However, entropy is a measure of uncertainty associated with a random variable, here a set of

arrangements each of which has a certain probability of occurring. The entropy of every individual arrangement is

by definition 0. To circumvent this problem, often the notion of “empirical entropy” is used, where certain features

like letter frequencies of the individual object are analysed, and the entropy is taken with respect to the set of all

objects having the same features. The result obviously depends on the choice of what features to use: no features

gives maximal entropy and all features (determining the individual object uniquely) gives entropy 0 again. Unless

one has knowledge of the characteristics of a definite random variable producing the object as a typical outcome, this

procedure gives arbitrary and presumably meaningless, results. This conondrum arises since classical information

theory deals with random variables and the communication of information. It does not deal with the information

(and the complexity thereof) in an individual object independent of an existing, or non-existing, random variable

producing it. To capture the latter notion precisely one has to use “Kolmogorov complexity” instead of “entropy,”

and we will do so in our treatment. For now, the “Kolmogorov complexity” of a file is the number of bits in the

ultimately compressed version of the file from which the original can still be losslessly extracted by a fixed general

purpose decompression program.

B. Learning by MDL

Transferring the jigsaw puzzling insights to the general case of learning algorithms using the minimal description

length principle (MDL), we observe that although it may be true that the maximal compression yields the best

solution, it may still not be true that every incremental compression brings us closer to the solution. Moreover, in

the case of most MDL problems there is a complicating issue in the fact that the maximal compression cannot be

computed.

More formally, in constrained model selection the model is taken from a given model class. Using two-part

MDL codes for given data, we assume that the shortest two-part code for the data, consisting of the model code

and the data-to-model code, yields the best model for the data. To obtain the shortest code, the natural way is to

approximate it by a process of finding ever shorter candidate two-part codes. Since we start with a finite two-part

code, and with every new candidate two-part code we decrease the code length, eventually we must achieve the

shortest two-part code. Unfortunately, there are two problems: (i) the computation to find the next shorter two-part

code may be very long, and we may not know how long; and (ii) we may not know when we have reached the

shortest two-part code: with each candidate two-part code there is the possibility that further computation may yield

a still shorter one. But because of item (i) we cannot a priori bound the length of that computation.
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C. A Common Misconception

Therefore, in practice, we look for ever shorter two-part codes, and if our available time runs out we make do

with the last candidate we found. It is commonly thought that this candidate yields a better model than any of its

predecessors in the search process: they yielded a longer two-part code and therefore a worse model, didn’t they?

The underlying assumption is that a shorter two-part code for the data yields a better model than a longer two-part

code.

It is the purpose of this paper to debunk this myth: While a sequence of ever shorter two-part codes for the

data converges in a finite number of steps to the best model, it is not the case that this convergence is necessarily

monotonic. In fact, in the sequence of candidate two-part codes converging to the shortest, it is possible that the

models involved oscillate from being good to bad, only to converge at the (unknown) very end to the best model.

Convergence is only monotone if the model-codes in the successive two-part codes are always the shortest (most

compressed) codes for the models involved. But this property cannot be guarantied by any effective method.

It is very difficult, if not impossible, to formalize the goodness-of-fit of an individual model for individual data

in the classic statistics setting, which is probabilistic. Therefore, it is impossible to express the practically important

issue above in those terms, which is no doubt one of the reasons why this confusion is rampant. Fortunately, new

developments in the theory of Kolmogorov complexity make it possible to rigorously analyse the questions involved,

and exhibit the phenomena, in certain model classes, as in [16]. Here we elaborate on that treatment, make it more

accessible and probe its implications for MDL. This then is illustrative for what happens in practical situations.

D. Statistics and Modeling

At first glance, a central task of statistics is to identify the true source that produced the data at hand. But suppose

the true source is 100,000 fair coin flips and our data is the outcome 00 . . . 0. A method that identifies flipping

a fair coin as the cause of this outcome is surely a bad method, even though the source of the data it came up

with happens to be the true cause. Thus, for a good statistical method to work well we assume that the data are

“typical” for the source that produced the data, so that the source “fits” the data. The situation is more subtle for

data like 0101 . . .01. Here the outcome of the source has an equal frequency of 0s and 1s, just like we would

expect from a fair coin. But again, it is virtually impossible that such data are produced by a fair coin flip, or

indeed, independent flips of a coin of any particular bias. In real-world phenomena we cannot be sure that the true

source of the data is in the class of sources considered, or, worse, we are virtually certain that the true source is

not in that class. Therefore, the real question is not to find the true cause of the data, but to model the data as well

as possible. In recognition of this, we often talk about “models” instead of “sources,” and the contemplated “set of

sources” is called the contemplated “model class.” In traditional statistics “typicality” and “fitness’ are probabilistic

notions tied to sets of data and models of large measure. In the Kolmogorov complexity setting we can express

and quantify “typicality” of individual data with respect to a single model, and express and quantify the “fitness”

of an individual model for the given data.
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E. Strings and Numbers

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and {0, 1}∗ according to the

correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the binary string x, not to be confused

with the cardinality |S| of a finite set S. For example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The

emphasis is on binary sequences only for convenience; observations in any alphabet can be so encoded in a way

that is ‘theory neutral’. Below we will use the natural numbers and the binary strings interchangeably. Definitions,

notations, and facts we use about prefix codes, self-delimiting codes, and Kolmogorov complexity, can be found in

[15] and are briefly reviewed in the Appendix A.

F. Meaningful Information

The information contained in an individual finite object (a finite binary string) is measured by its Kolmogorov

complexity—the length of the shortest binary program that computes the object. Such a shortest program contains

no redundancy: every bit is information; but is it meaningful information? If we flip a fair coin to obtain a finite

binary string, then with overwhelming probability that string constitutes its own shortest program. However, also

with overwhelming probability all the bits in the string are meaningless information, random noise. On the other

hand, let an object x be a sequence of observations of heavenly bodies. Then x can be described by the binary string

pd, where p is the description of the laws of gravity, and d the observational parameter setting: we can divide the

information in x into meaningful information p and accidental information d. The main task for statistical inference

and learning theory is to distil the meaningful information present in the data. The question arises whether it is

possible to separate meaningful information from accidental information, and if so, how. The essence of the solution

to this problem is revealed when we rewrite the definition of Kolmogorov complexity (9) in Appendix A as follows:

K(x) = min
p,i

{K(i) + |p| : Ti(p) = x} (1)

This expression emphasizes the two-part code nature of Kolmogorov complexity. For example

x = 10101010101010101010101010

we can encode x by a small Turing machine printing copies of the pattern “01,” which computes x from the

program “13.” This way, K(x) is viewed as the shortest length of a two-part code for x, one part describing a

Turing machine, or model, for the regular aspects of x, and the second part describing the irregular aspects of x

in the form of a program to be interpreted by T . The regular, or “valuable,” information in x is constituted by the

bits in the “model” while the random or “useless” information of x constitutes the remainder.

DRAFT



5

II. DATA AND MODEL

Because all finite discrete data can be binary coded, we consider only data x ∈ {0, 1}∗. In a typical statistical

inference situation we are given a set D ⊆ {0, 1}∗ of such data, the data sample, and are required to infer a model

for the data sample. Our models will be sets M ⊆ {0, 1}∗, and for M to be a model for D we require that D ⊆ M .

Instead of {0, 1}∗ we will consider {0, 1}≤n =
⋃n

i=0{0, 1}≤i in the sequel.

A. What Does It Mean That A Model Fits Given Data

Denote the complexity of the finite set A by K(A)—the length (number of bits) of the shortest binary program p

from which the reference universal prefix machine U computes a listing of the elements of S and then halts. That

is, if A = {x1, . . . , xd}, then U(p) = 〈x1, 〈x2, . . . , 〈xd−1, xd〉 . . .〉〉. The shortest program p, or, if there is more

than one such shortest program, then the first one that halts in a standard dovetailed running of all programs, is

denoted by A∗. Consider a data sample D and a model M , such that D ⊆ M ⊆ {0, 1}≤n. Denote the cardinalities

by lower case letters:

d = |D|, m = |M |.

The conditional complexity K(D | M, d)) of D given M and d is the length (number of bits) in the shortest binary

program p from which the reference universal prefix machine U from input M (given as a list of elements) and

the number of elements d, outputs D as a list of elements and halts. We elaborate on the approach of [16]. If

D ⊆ M ⊆ {0, 1}≤n we have

K(D | M, d)) ≤ log

(

m

d

)

+ O(1). (2)

Indeed, consider the selfdelimiting code of D, given M and the number d of elements in D followed by the

dlog
(

m
d

)

e bit long index of D in the lexicographical ordering of the number of ways to choose d elements from

M . This code is called the data-to-model code. Its length quantifies the maximal “typicality,” or “randomness,” any

data sample of |D| elements can have with respect to model M .

DEFINITION 1: The lack of typicality of D with respect to M is measured by the amount by which K(D | M, d)

falls short of the length of the data-to-model code. The randomness deficiency of a data sample D, of known

cardinality d = |D|, in model M , is defined by

δ(D | M, d) = log

(

m

d

)

− K(D | M, d), (3)

for D ⊆ M , and ∞ otherwise.

If the randomness deficiency is close to 0, then there are no simple special properties that single D out from the

majority of data samples to be drawn from M . This is not just terminology: If δ(D | M, d) is small enough, then

D satisfies all properties of low Kolmogorov complexity that hold for the majority of subsets of M . To be precise:

A property P represented by M is a subset of M , and we say that D satisfies property P if D ⊆ P .

LEMMA 1: Let d, m, n be natural numbers, and let D ⊆ M ⊆ {0, 1}≤n, |D| = d, |M | = m, and let δ be a

simple function of the natural numbers to the reals, like log or √.
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(i) If P is a property satisfied by all D ⊆ M with δ(D | M, d) ≤ δ(n), then P holds for a fraction of at least

1 − 1/2δ(n) of the subsets of cardinality d of M .

(ii) Let n and M be fixed, and let P be any property that holds for a fraction of at least 1 − 1/2δ(n) of the

subsets of cardinality d of M . There is a constant c, such that every such P holds simultaneously for every D ⊆ M

with |D| = d and δ(D | M, d) ≤ δ(n) − K(P | M) − c.

Proof: (i) By assumption, all subsets D ⊆ M of cardinality d with

K(D|M, d) ≥ log

(

m

d

)

− δ(n) (4)

satisfy P . There are only
log (m

d )−δ(n)−1
∑

i=0

2i =

(

m

d

)

2−δ(n) − 1

programs of length smaller than log
(

m
d

)

− δ(n), so there are at most that many subsets D of cardinality d that do

not satisfy (4). There are
(

m
d

)

subsets of cardinality d in M , and hence a fraction of at least 1 − 1/2δ(n) of them

satisfy (4).

(ii) Suppose P does not hold for a data sample D ⊆ M and the randomness deficiency satisfies δ(D|M, d) ≤
δ(n)−K(P |M)− c. Then we can reconstruct D from a description of P , which can use M , and D’s index j in an

effective enumeration of all subsets of cardinality d in M for which P doesn’t hold. There are at most
(

m
d

)

/2δ(n)

such data samples by assumption, and therefore there are constants c1, c2 such that

K(D | M, d) ≤ log j + c1 ≤ log

(

m

d

)

− δ(n) + c2.

Hence, by the assumption on the randomness deficiency of D, we find K(P |M) ≤ c2 − c, which contradicts the

necesssary nonnegativity of K(P |M) if we choose c > c2.

The minimal randomness deficiency function (with known cardinality of the data sample) is

βD(α) = min
M

{δ(D | M, d) : M ⊇ D, K(M |d) ≤ α}, (5)

where we set min ∅ = ∞. The smaller δ(D | M, d) is, the more D can be considered as a typical data sample from

M . This means that a set M for which D incurs minimal randomness deficiency, in the model class of contemplated

sets of given maximal Kolmogorov complexity, is a “best fitting” model for D in that model class—a most likely

explanation, and βD(α) can be viewed as a constrained best fit estimator.

REMARK 1 (KNOWN OR UNKNOWN CARDINALITY): In [16] only singleton data samples are considered, there-

fore always d = 1. In the current setting we have multiple data, and we have assumed that the cardinality d of the

data sample is known. Formally, this is represented by putting d in the conditional everywhere, as in K(D | M, d)

and δ(D|M, d). In some cases it may be more natural to assume that the cardinality of the data sample is unknown.

This results in the same theory with minor changes, as follows:

K(D | M)) ≤ m + O(1)

δ′(D | M) = m − K(D | M),
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and changing
(

m
d

)

to 2m, and “subsets of cardinality d” into “subsets” in the statement of the lemma above and its

proof. The definition of βD in (5) changes to the unconditional (on d)

β′
D(α) = min

M
{δ(D | M) : M ⊇ D, K(M, d) ≤ α},

It is a trivial exercise to similarly adapt all of this paper to the case of data samples of unknown cardinality.

REMARK 2 (LOSSY COMPRESSION): The function βD(α) is relevant to lossy compression (used, for instance,

to compress images) as was observed in [16]. Assume we need to compress D to α bits where α � K(D). Of

course this implies some loss of information present in D. One way to select redundant information to discard is

as follows: Find a set M ⊇ D with K(M) ≤ α and with small δ(D|M, d), and consider a compressed version M ∗

of M . Instead of reconstructing D precisely, we are satisfied to reconstruct an object that cannot be distinguished

from D using both M and simple properties. To this purpose, a decompresser uncompresses M ∗ to M and selects

uniformly at random a data sample D′ from M . Since with high probability the randomness deficiency of D′ in

M is small, D′ serves the purpose of the data sample D as well as does D itself. Let us look at an example. To

transmit a picture of “rain” through a channel with limited capacity α, one can transmit the indication that this is a

picture of the rain and the particular drops may be chosen by the receiver at random. In this interpretation, βD(α)

indicates how “random” or “typical” D is with respect to the best model at complexity level α—and hence how

“indistinguishable” from the original D the randomly reconstructed D′ can be expected to be. The relation of the

structure function to lossy compression and rate-distortion theory is the subject of an upcoming paper [12].

III. MINIMUM DESCRIPTION LENGTH ESTIMATOR

The length of the minimal two-part code for D, with known cardinality d = |D| consisting of the model cost

K(M) (|M | = m) and the length of the index of D in the enumeration of choices of d elements out of m, in the

model class of sets M of given maximal Kolmogorov complexity α, the complexity of M upper bounded by α, is

given by the MDL function or constrained MDL estimator:

λD(α) = min
M

{Λ(M) : M ⊇ D, K(M |d) ≤ α}, (6)

where Λ(M) = K(M |d) + log
(

m
d

)

≥ K(D|d) − O(1) is the total length of two-part code of D with help of

model M and the cardinality d. This function λD(α) is the celebrated two-part Minimum Description Length code

length as a function of α, with the model class restricted to models of code length at most α. Indeed, consider the

following two-part code for D when we know its cardinality d: the first part is a shortest self-delimiting program

p for M and the second part is dlog
(

m
d

)

e bit long index of D in the lexicographical ordering of all choices of

d elements from M . Since M, d determines log
(

m
d

)

this code is self-delimiting and we obtain the two-part code,

where the constant O(1) is the length of the program to reconstruct D from its two-part code and known cardinality
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d. 2 For those α’s that have λD(α) = K(D|d) + O(1), the associated model M (witness for λD(α)) for D, or the

description of M |d of ≤ α bits, is called a sufficient statistic.

LEMMA 2: If M is a sufficient statistic for D, then the randomness deficiency of D in M is O(1), D is a typical

data sample for M , and M is a model of best fit for D.

Proof: If M is a sufficient statistic for D, then K(M |d) + log
(

m
d

)

= K(D|d) + O(1). That is, the two-part

description of D using the model M, d and as data-to-model code the index of D in the enumeration of the number

of choices of d elements from M in log
(

m
d

)

bits, is as concise as the shortest one-part code of D, given its

cardinality d, in K(D|d) bits. Therefore,

K(D|d) ≤ K(D, M |d) + O(1)

≤ K(M |d) + K(D | M, d) + O(1)

≤ K(M |d) + log

(

m

d

)

+ O(1) = K(D|d) + O(1).

To see this, use straightforward inequalities (for example, given M ⊇ D and D, we can describe D self-delimitingly

in log
(

m
d

)

+ O(1) bits), and the sufficiency property. This sequence of inequalities implies that K(D | M, d) =

log
(

m
d

)

+ O(1).

REMARK 3 (SUFFICIENT BUT NOT TYPICAL): Note that the data sample D can have randomness deficiency

about 0, and hence be a typical element for models M , while M is not a sufficient statistic. A sufficient statistic

M for D has the additional property, apart from being a model of best fit, that K(D, M | d) = K(D | d) + O(1)

and therefore by (11) in Appendix A we have K(M |D∗) = O(1): the sufficient statistic M is a model of best fit

that is almost completely determined by D∗, the shortest program for D.

REMARK 4 (MINIMAL SUFFICIENT STATISTIC): The sufficient statistic associated with λD(α) with the least α

is called the minimal sufficient statistic.

REMARK 5 (KNOWN OR UNKNOWN CARDINALITY): We continue Remark 1. If, instead of assuming that the

cardinality d of the data sample D is known, we assume it is unknown, then the definition of λD of (6) changes

to the unconditional (on d):

λ′
D(α) = min

M
{Λ′(M) : M ⊇ D, K(M, d) ≤ α},

where Λ′(M) = K(M, d) + log
(

m
d

)

≥ K(D)−O(1) is the total length of two-part code of D with help of model

M and the cardinality d.

REMARK 6 (PROBABILITY MODELS): Following Kolmogorov we analyzed a canonical setting where the models

are finite sets (and here we have generalized Kolmogorov’s singleton data samples into multiple-item data samples).

As Kolmogorov himself pointed out, the finite sets model class is equivalent, up to a logarithmic additive term, to

2The original Kolmogorov structure function hD [8], [16] was defined for a singleton data sample D = {x} (d = 1) as hx(α) =

minM{dlog |M |e : M 3 x, K(M) ≤ α}, and it was shown in [16] that the graph of hx(α) + α is situated within a strip of logarithmic (in

n) width centered on the graph of λx(α). Thus, hx(α) can be viewed as the minimal data-to-model code length associated with models of

maximal description length α.
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the model class of probability density functions, as studied in [11]. Formal proofs of this equivalence are given

(for the singleton data-sample case) in [16]. In this case, the models are computable probability mass functions,

and λP (α) = minP {K(P | d) + log 1/P (D) : P (D) > 0 and P is a computable probability mass function with

K(P |d) ≤ α}.

IV. ESSENCE OF MODEL SELECTION

The first parameter we are interested in is the simplicity K(M | d) of the model M explaining the data sample D

when we know cardinality d = |D|. The second parameter is how typical the data is with respect to M , expressed

by the randomness deficiency δ(D | M, d) = log
(

m
d

)

− K(D | M, d). The third parameter is how short the two

part code Λ(M) = K(M | d) + log
(

m
d

)

of the data sample D, of cardinality d, using theory M is. The second

part consists of the full-length index, ignoring savings in code length using possible non-typicality of D in M (like

being the first d elements in the enumeration of M ). These parameters induce a partial order on the contemplated

set of models. We write M0 ≤ M1, if the M0 scores equal or less than M1 in all three parameters. If this is the

case, then we may say that M0 is at least as good as M1 as an explanation for D (although the converse need not

necessarily hold, in the sense that it is possible that M0 is at least as good a model for D as M1 without scoring

better than M1 in all three parameters simultaneously.).

The algorithmic statistical properties of a data sample D are fully represented by the set Ax of all triples

〈K(M | d), δ(D | M, d), Λ(M)〉,

such that M ⊇ D, together with a component wise order relation on the elements of those triples. The complete

characterization of how this set may look like for the singleton data sample case, d = 1, is now known by the

results in [16]. These results are obtained by a proof of, and analysis, of the equality (writing D = {x} as x):

βx(α) = λx(α) − K(x) (7)

which holds within negligible additive logarithmic (in n) terms, in argument and value. Every set M that witnesses

the value λx(α), also witnesses the value βx(α) (but not vice versa). The functions λx and βx can assume all

possible shapes over their full domain of definition (up to additive logarithmic precision in both argument and

value). We summarize the relevant formal statements in Appendix B

V. POWER AND PITFALLS

The previous analysis of MDL allows us to show justify its application and to identify problems in its application

that may not be apparent at first glance.

A. Computability

How difficult is it to compute the functions λD , βD, and the minimal sufficient statistic? To express the properties

appropriately we require the notion of functions that are not computable, but can be approximated monotonically

by a computable function.
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DEFINITION 2: A function f : N → R is upper semi-computable if there is a Turing machine T computing a

total function φ such that φ(x, t + 1) ≤ φ(x, t) and limt→∞ φ(x, t) = f(x). This means that f can be computably

approximated from above. If −f is upper semi-computable, then f is lower semi-computable. A function is called

semi-computable if it is either upper semi-computable or lower semi-computable. If f is both upper semi-computable

and lower semi-computable, then we call f computable (or recursive if the domain is integer or rational).

To put matters in perspective: even if a function is computable, the most feasible type identified above, this

doesn’t mean much in practice. Functions like f(x) of which the computation terminates in computation time of,

say measured in flops, of t(x) = xx are in among the easily computable ones. But for x = 30, even a computer

performing an unrealistic Teraflop per second, requires 3030/1012 > 1028 seconds. This is more than 3 · 1020

years. It is out of the question to perform such computations. Thus, the fact that a function or problem solution is

computable gives no insight in how feasible it is. But there are worse functions and problems possible: For example,

the ones that are semi-computable but not computable. Or still worse, functions that are not even semi-computable.

Semi-computability gives no knowledge-of-convergence guaranties: even though the limit value is monotonically

approximated we know at no stage in the process how close we are to the limit value. In Section V-C, the “indirect

method” shows that the function λD (the MDL-estimator) can be monotonically approximated in the upper semi-

computable sense. But in [16] it was shown for singleton data samples D, and therefore a fortiori for multiple data

samples D, the fitness function βD (the “direct method” in Section V-C) cannot be monotonically approximated

in that sense, nor in the lower semi-computable sense, in both cases not even up to any relevant precision. Let us

formulate this a little more precisely:

The functions λD(α), βD(α) have finite domain for given D and hence can be given as a table—so formally

speaking they are computable. But this evades the issue: there is no algorithm that computes these functions for

given D and α. Considering them as two-argument functions it was shown (and the claimed precision quantified):

• The function λD(α) is upper semi-computable but not computable up to any reasonable precision.

• Moreover, there is no algorithm that given D∗ and α finds λD(α).

• The function βD(α) is not upper- or lower semi-computable, not even to any reasonable precision, but we can

compute it given an oracle for the halting problem. 3

• There is no algorithm that given D and K(D) finds a minimal sufficient statistic for D up to any reasonable

precision.

B. Invariance under Recoding of Data

In what sense are the functions invariant under recoding of the data? If the functions βD, λD give us the

stochastic properties of the data D, then we would not expect those properties to change under recoding of the data

3The problem of whether an arbitrary given Turing machine started on an initially all-0 tape will eventually terminate or compute forever.

This problem was shown to be undecidable by A.M. Turing in 1937, see for example [15]. An oracle for the halting problem will, when asked,

tell whether a given Turing machine computation will or will not terminate. Such a device is assumed in order to determine theoretical degrees

of noncomputability, and is deemed not to exist.
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into another format. Yet, if we recode the elements of D = {x1, . . . , xd} by a mapping c of {0, 1}≤n to obtain

c(D) = {c(x1), . . . , c(xd)} such that c(xi) = x∗
i with |x∗

i | = K(xi) (1 ≤ i ≤ d), then we are in trouble. We can

choose the xi’s such that K(c(D) | {0, 1}≤µ, d) ≈
(

2µ+1−1
d

)

, with µ = max{K(c(xi)) : 1 ≤ i ≤ d}. Then,

δ(c(D) | {0, 1}≤µ, d) ≈ 0.

That is, c(D) is a typical d-element subset of {0, 1}≤µ, and the latter in turn is the best fitting model for c(D).

Therefore λc(D)(α) drops to the Kolmogorov complexity K(c(D)) already for some α ≤ K(µ)+O(1) = O(log n),

since λc(D)(K(µ)+O(1)) = K({0, 1}≤µ | d)+log
(

2µ+1−1
d

)

≈ K(c(D)), so almost immediately (and it stays within

logarithmic distance of that line henceforth). That is, λc(D)(α) = K(x∗
1, . . . , x

∗
d) for every α, up to logarithmic

additive terms in argument and value, irrespective of the (possibly quite different) shape of λD . It is clear that

a coding c that achieves this is not a recursive function, and neither is the inverse. However, it is not the non-

recursiveness alone, but also the necessary partiality of the inverse function (not all data samples contain data

of maximal Kolmogorov complexity) that causes the collapse of the structure function. Nonetheless, the structure

function is invariant under “proper” recoding of the data, as follows:

THEOREM 1: Let f be a recursive permutation of the set of finite binary strings in {0, 1}n (one-one, total, and

onto), and extend f to subsets D ⊆ {0, 1}n. Then, λf(D) is “close” to λD in the sense that the graph of λf(D) is

situated within a strip of width K(f) + O(1) around the graph of λD .

Proof: Let M ⊇ D be a witness of λD(α). Then, Mf = {f(y) : y ∈ M} satisfies K(Mf ) ≤ α+K(f)+O(1)

and |Mf | = |M |. Hence, λf(D)(α + K(f) + O(1)) ≤ λD(α). Let M ′ ⊇ f(D) be a witness of λf(D)(α).

Then, M ′
f−1 = {f−1(y) : y ∈ M ′} satisfies K(M ′

f−1) ≤ α + K(f) + O(1) and |M ′
f−1 | = |M ′|. Hence,

λD(α + K(f) + O(1)) ≤ λf(D)(α) (since K(f−1) = K(f) + O(1)).

C. Finding the MDL Code

Given D ⊆ {0, 1}n, the data to explain, and the model class consting of all models (sets) M ⊆ {0, 1}n that have

complexity at most K(M) ≤ α. Here, α is the maximum complexity of an explanation we allow. As usual, we

denote m = |M | and d = |D|. We search for programs p of length at most α that print a finite set M ⊇ D. Such

pairs (p, M) are possible explanations. The best explanation is defined to be the (p, M) for which δ(D | M, d) is

minimal. Since the function δ(D | M, d) is not computable, there is no algorithm that halts with the best explanation.

The programs use unknown computation time and thus we can never be certain that we have found all possible

explanations. Following [16], we can overcome this problem by using an indirect method. Initially, we are given

data sample D.

Indirect Method: We minimize the randomness deficiency by minimizing the MDL code length, justified by (7),

and thus maximizing the fitness of the model for this data sample. To this end, run all programs dovetailed fashion.

If a program, say p, halts, then check its output to see whether it is a subset, say M , of {0, 1}n in agreed-upon

standard notation. If so, then check whether that subset contains all elements in the data sample D. At every

computation step t consider all pairs (p, M) such that program p has printed the set M containing D by time t.
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Let (pt, Lt) stand for the pair (p, M) such that |p| + log
(

m
d

)

is minimal among all these pairs (p, M). The best

hypothesis Lt changes from time to time due to the appearance of a better hypothesis. Since no hypothesis is

selected as the best one twice, from some moment onwards the explanation (pt, Lt) which is best does not change

anymore. Compare this indirect method with the direct one:

Direct Method: This time, we directly minimize the randomness deficiency, as follows: Run all programs

dovetailed fashion. After step t of the dovetailing process, select (p, M) for which log
(

m
d

)

− Kt(D|M, d) is

minimal among all programs p that up to this time have printed a set M containing D. Here K t(D|M, d)

is the approximation of K(D|M, d) obtained after t steps of dovetailing, that is, K t(D|M, d) = min{|q| :

U on input 〈q, 〈M, d〉〉 prints D in at most t steps}. Let (qt, Bt) stand for that model. This time the same hy-

pothesis can be selected as best hypothesis twice. However from some moment onwards the explanation (qt, Bt)

which is best does not change anymore.

The reason why we prefer the indirect method over the direct one in the theoretical setting is similar to a

comparable situation in the practice of the real-world MDL, in the analogous process of finding the MDL code in

the real setting. There, we often deal with t that are much less than the time of stabilization of either Lt or Bt, both

the indirect method and the direct method. And for these small t, the model Lt is better than Bt in the following

respect: Lt has some guarantee of goodness, since we know that

δ(D | Lt, d) + K(D|d) ≤ |pt| + log

(|Lt|
d

)

+ O(1), (8)

since K(D|d) − K(D | Lt, d) ≤ K(Lt | d) ≤ |pt| (ignoring additive constants). That is, we know that the sum of

the randomness deficiency of D in Lt and K(D|d) is less than some known value. This idea will be expanded in

Theorem 2 below. In contrast, the model Bt has no guarantee of goodness at all: we do not know any upper bound

neither for δ(D | Bt, d), nor for δ(D | Bt, d) + K(D).

The results in [16] we have quoted above, and expand in Appendix B, imply that the indirect method of MDL

gives not only some garantee of goodness but also that, in the limit, that guarantee approaches the value it upper

bounds, that is, approaches δ(D | Lt, d)+K(D), and δ(D | Lt, d) itself is not much greater than δ(D | Bt, d).4 That

is, in the limit, the method of MDL will yield an explanation that is only a little worse than the best explanation.

VI. DOES SHORTER MDL CODE MEAN BETTER MODEL?

Thus, if we continue to approximate the MDL code then we will eventually reach the optimal code which is

approximately the best explanation at the given model complexity. During this process we have some guarantee of

goodness as in (8). That is the good news. The bad news is, that we do not know when we have reached this optimal

solution, and the noncomputability of computing λD to a given precision assures us that there simply does not exist

a convergence criterion we could use to terminate the approximation somewhere close to the optimum. The known

upper bound (8) on the randomness deficiency of each approximation is noncomputable. Thus, in practice we must

4Assuming that α is not critical as in Appendix B.
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terminate the search prematurely. A natural assumption is that the longer we approximate the optimal MDL code

the better the resulting model explains the data. Thus, many practitioners simply assume that if one approximates

the MDL code, than every next shorter MDL code also yields a better model. Alas, this is not true. To give an

example that shows where things go wrong it is easiest to first give the conditions under which premature search

termination is all right, slightly correcting an idea first given in [16].

Assume that in the indirect MDL algorithm, as described in Section V-C, we change the currently best explanation

(p1, M1) for data D (|D| = d) to the explanation (p2, M2) only if |p2|+log
(

|M2|
d

)

is much less than |p1|+log
(

|M1|
d

)

,

say |p2| + log
(

|M2|
d

)

≤ |p1| + log
(

|M1|
d

)

− c′ log log
(

2n

d

)

for a constant c′. We show: if c′ is large enough and p1

is a shortest program of M1, d, then δ(D | M2, d) is less than δ(D | M1, d). That is, every time we change the

explanation we improve its goodness unless the change is just caused by the fact that we have not yet found the

minimum length program for the current model.

THEOREM 2: Let (p1, M1) and (p2, M2) be two consecutive candidate best explanations in the search process for

the best model for data sample D (|D| = d, 0 < d < 2n) above. There is a constant c such that if |p2|+log
(

|M2|
d

)

≤
|p1| + log

(

|M1|
d

)

− (|p1| − K(M1)) − 2c log log
(

2n

d

)

then δ(D | M2, d) ≤ δ(D | M1, d) − c log log
(

2n

d

)

+ O(1).

Proof: For every pair of sets M1, M2 ⊇ D we have

δ(D | M2, d) − δ(D | M1, d) = Λ(M2) − Λ(M1) + ∆,

with

∆ = K(M2 | d) + K(D | M2, d) − K(M1 | d) + K(D | M1, d)

≤ K(M1, D | d) − K(M2, D | d) + O(1) ≤ K(M1 | M2, D) + O(1).

Since

Λ(M2) − Λ(M1) ≤ |p2| + log

(|M2|
d

)

− Λ(M1)

= |p2| + log

(|M2|
d

)

− (|p1| + log

(|M1|
d

)

) + (|p1| − K(M1))

≤ −2c log log

(

2n

d

)

,

we need to prove that K(M2 | M1, D) ≤ c log log
(

2n

d

)

+ O(1). Note that (p1, M1), (p2, M2) are consecutive

explanations in the algorithm and every explanation may appear only once. Hence to identify M1 we only need

to know p2, M2, α and D. Since p2 may be found from M2 and length |p2| as the first program computing M2

of length |p2|, obtained by running all programs of length at most α dovetailed style, we have K(M2 | M1, D) ≤
2 log |p2| + 2 log |α| + O(1) ≤ 4 log log

(

2n

d

)

+ O(1). Hence we can choose c = 4.

Thus, to be sure that in the sequence (p1, M1), (p2, M2), . . . of candidate explanations of ever shorter MDL codes

the explanation (pi+1, Mi+1) is actually a better explanation for the data than the preceding (pi, Mi), it suffices

that |pi+1| + log
(

|Mi+1|
d

)

≤ |pi| + log
(

|Mi|
d

)

− (|pi| − K(Mi)) − 2c log log
(

2n

d

)

. The unknown, and in general

noncomputable, quantification of the required improvement in MDL code length is |pi| − K(Mi). If we have an
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hypothesis Mi encoded by a program pi that is far from optimal, then the slack in model code length given by

|pi|−K(Mi) is large, and it is possible that we improve the MDL code length by giving a worse hypothesis Mi+1

using, however, an encoding pi+1 that is shorter than the encoding pi of the previous candidate Mi. Thus,

COROLLARY 1: (i) On the one hand, if |pi+1| + log
(

|Mi+1|
d

)

≤ |pi| + log
(

|Mi|
d

)

− 2c log log
(

2n

d

)

and |pi| =

K(Mi)+O(1), then Mi+1 is a better explanation for data D than is Mi, in the sense that δ(D | Mi+1, d) ≤ δ(D |
Mi, d) − 4 log log

(

2n

d

)

+ O(1).

(ii) On the other hand, if |pi| − K(Mi) is large, then Mi+1 may be a much worse explanation than Mi as we

show with some examples below.

VII. SINGLETON DATA SAMPLE

Assume that we want to infer a language, given a single positive example (element of the language). The positive

example is D = {x} with x = x1x2 . . . xn, xi ∈ {0, 1} for 1 ≤ i ≤ n. For convenience we restrict the question to

inferring a language consisting of a set of elements of the same length as the positive example, that is, we infer a

subset of {0, 1}n. We can view this as inferring the slice Ln of the (possibly infinite) target language L consisting

of all words of length n in the target language. We also identify the singleton data sample D with the constituent

data string x.

Each M ⊆ {0, 1}n can be represented by its characteristic sequence χ = χ1 . . . χ2n with χi = 1 if the ith

element of {0, 1}n is in M , and 0 otherwise. Conversely, every string of 2n bits is the characteristic sequence of a

subset of {0, 1}n. Most of these subsets are ‘random’ in the sense that they cannot be represented concisely: their

characteristic sequence is incompressible. Now choose some integer δ. Simple counting tells us that there are only

22n−δ −1 binary strings of length < 2n− δ. Thus, the number of possible binary programs of length < 2n − δ is at

most 22n−δ−1. This in turn implies (since every program describes at best one such set) that the number of subsets

M ⊆ {0, 1}n with K(M) < 2n − δ is at most 22n−δ − 1. This implies that the number of subsets M ⊆ {0, 1}n

with

K(M) ≥ 2n − δ

is greater than

(1 − 1/2δ)22n

.

Now if K(M) is significantly greater than K(x), then it is impossible to learn M from x. This follows already from

the fact that K(M |x) ≥ K(M |x∗)+O(1) = K(M)−K(x)+K(x|M∗)+O(1) by (11) (note that K(x|M∗) > 0).

That is, we need more than K(M) − K(x) extra bits of dedicated information to deduce M from x. We can

conclude that almost all sets in {0, 1}n have such great complexity that no effective procedure can infer this set

from a single example. This holds in particular for every (even moderately) random set.

Thus, to infer such a set M ⊆ {0, 1}n, given a sample datum x ∈ M , using the MDL principle is clearly out of

the question. The datum x can be literally described in alread n bits by the trivial MDL code M = {x} with x literal

at model cost about n bits and data-to-model cost log |M | = 0, which we take to be O(1) bits. It can be concluded
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that the only sets M that can possibly be inferred from x (using MDL or another effective deterministic procedure)

are those that have K(M) ≤ K(x) ≤ n + O(log n). Such sets are extremely rare: only a 1/2n−log n fraction of

all subsets of {0, 1}n has that small complexity. This negligible fraction of possibly learnable subsets are very

non-random, simple in the sense that their characteristic sequences have great regularity (otherwise the Kolmogorov

complexity could not be this small). But this is all right: we do not want to learn random, meaningless, languages,

but only languages that have meaning which is necessarily expressed in terms of regularity. We now show that even

if we can learn the target model by an MDL algorithm in the limit, selecting a sequence of models that decrease

the MDL code with each next model, a later model in this sequence can be a worse model than a preceding one.

Theorem 2 showed conditions that prevent this from happening. We now show that if those conditions are not

satisfied, it can indeed happen.

THEOREM 3: Given datum x and target model M 3 x, such that the x has minimal randomness deficiency in M

in the sense that δ(x|M) = minM ′{δ(x|M ′) : M ′ ⊆ {0, 1}n, M ′ 3 x}. Assume that we have an MDL algorithm

using an arbitrarily large but fixed constant c as below, and that, on input datum x, in the limit finds M . Assume

that in this MDL algorithm we change the currently best explanation (p1, M1) to the explanation (p2, M2) only

if |p2| + log |M2| is much less than |p1| + log |M1|, say |p2| + log |M2| ≤ |p1| + log |M1| − c log n. Under these

conditions it is still possuble that a later model, say M2, is much worse fitting than an earlier model, say M1, in

the sense that δ(x|M2) � δ(x|M1). (Even though we find the best-fitting model in the limit).

Proof: We exhibit an MDL estimator that produces shorter and shorter two-part codes and yet periodically

worse-fitting models. Fix datum xn = uvw with u, v, w of equal length (say n is a multiple of 3) with K(xn) =

K(u)+K(v)+K(w) = 2n/3, K(u) = n/9, K(v) = 4n/9, and K(w) = n/9. We ignore O(log n) additive terms

in this proof.

Consider an MDL process that produces the sequence of models M0, M1, . . . , Mn with Mi = {x1 . . . xi}{0, 1}n−i

(0 ≤ i ≤ n). The process starts with candidate model M0 and switches to candidate Mi, i = n/3, 2n/3, n, if that

model gives a shorter MDL code than the previous candidate.

Now K(Mi) = K(xi) and log |Mi| = n− i. However, our MDL estimator uses a compressor that does not grasp

the hidden regularities involved, and codes the model for Mi at 0.9i bits, that is, it compresses xi by 10%. Thus,

the MDL code length 0.9i + log |Mi| ≤ 0.9i + n − i ≤ n for every contemplated model Mi.

• In particular, the MDL code length of the initial candidate model M0 is n. The randomness deficiency

δ(xn|M0) = n − K(xn|M0) = n/3. The last equality holds since clearly K(xn|M0) = K(xn|n).

• For the contemplated model Mn/3 we find: The MDL code length for model Mn/3 is n−n/30. The randomness

deficiency δ(x|Mn/3) = 2n/3− K(v|n) − K(w|n) = n/9.

• For contemplated model M2n/3 we find: The MDL code length is n − 2n/30. The randomness deficiency is

δ(x|M2n/3) = n/3− K(w|n) = 2n/9.

Thus, our MDL process initializes with candidate model M0, then switches to candidate Mn/3 since this model

decreases the MDL code length by n/30. Indeed, Mn/3 is a much better model than M0, since it decreases the

randomness deficiency by a whopping 2n/9. Subsequently, however, the MDL process switches to candidate model
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M2n/3 since it decreases the MDL code length greatly again, by n/30. Oops, M2n/3 is a much worse model than

the previous candidate Mn/3, since it increases the randomness deficiency again by a whopping n/9.

REMARK 7: By Theorem 2 we know that if, in the process of MDL estimation by a sequence of decreasing

MDL codes, a candidate model is represented by its shortest program, then the following candidate model which

improves the MDL estimation is actually a model of at least as good fit as the preceding one. Thus, if in the

example used in the proof above we encode the models at shortest code length, we obtain MDL code lengths n

for M0, K(u) + 2n/3 = 7n/9 for Mn/3, and K(u) + K(v) + n/3 = 8n/9 for M2n/3. Hence the MDL estimator

using shortest model code length changes candidate model M0 for Mn/3, improving the MDL code length by n/9

and the randomness deficiency by 2n/9. However, and correctly, it does not change candidate model Mn/3 for

M2n/3, since that would increase the MDL code length by n/9. It so prevents, correctly, to increase the randomness

deficiency by n/9. Thus, by the cited theorem, the oscillating randomness deficiency in the MDL estimation process

in the proof above can only arise in cases where the consecutive candidate models are not coded at minimum cost

while the corresponding two-part MDL code lengths are decreasing.

VIII. MULTIPLE DATA SAMPLE

Assume that we want to infer a language, given a set of positive examples (elements of the language) D. For

convenience we restrict the question to inferring a language M ⊆ {0, 1}n. We can view this as inferring the slice

Ln of the target language L consisting of all words of length n in the target language. Since D consists of a subset

of positive examples of M we have D ⊆ M . To infer a language M from a set of positive examples D ⊆ M

is, of course, a much more natural situation than to infer a language from a single example element x ∈ M as in

the previous example. Note that while the complexity K(x) of a single example element x in the language cannot

exceed n + O(log n), while the complexity of the language itself can rise to 2n + O(n), in the current setting

K(D) can rise to 2n + O(n), just as K(M) can. So contrary to the singleton datum case, in principle sets M of

every complexity can be inferred depending on the data D at hand. An obvious example is D = M . Note that the

cardinality of D plays a role here, since the complexity K(D|n) ≤ log
(

2n

|D|

)

+O(log |D|) with equality for certain

D. A traditional and well-studied problem in this setting is to infer a grammar from language examples, which is

the subject of the next section.

IX. INFERRING A GRAMMAR (DFA) FROM POSITIVE EXAMPLES

The field of grammar induction studies a whole class of algorithms that aims at constructing a grammar by means

of incremental compression of the data set represented as a digraph representation of a DFA accepting the data

set. This digraph can be seen as a model for the data set. Every word in the data set is represented as a path in

the digraph with the symbols either on the edges or on the nodes. The learning process takes the form of a guided

incremental compression of the data set by means of merging or clustering of the nodes in the graph. None of

these algorithms explicitly makes an estimate of the data-to-model code. Instead they use heuristics to guide the

model reduction. After a certain time a proposal for a grammar can be constructed from the current state of the
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compressed graph. Examples of such algorithms are SP [21], [20], EMILE [17], ADIOS [19], and a number of

DFA induction algorithms, specifically evidence driven state merging (EDSM), [18], [22]. Our results (above and

below) do not imply that compression algorithms improving the MDL code of DFA’s can never work on real life

data sets. There is a lot of empirical evidence that there are situations in which they work. In those cases specific

properties of a restricted class of languages or data sets must be involved. However, our results are quite general,

and applicable to the common digraph simplification techniques used in grammar inference. Contrary to what is

generally believed, this holds equally for algorithms that use just positive, just negative examples, or both.

DEFINITION 3: A DFA A = (S, Q, q0, t, F ) where S is a finite set of input symbols, Q is a finite set of states,

t : Q × S → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states.

The DFA A is started in the initial state q0. If it is in state q ∈ Q and receives input symbol s ∈ S it changes

its state to q′ = t(q, s). If the machine after zero or more input symbols, say s1, . . . , sn, is driven in a state q ∈ F

then it is said to accept the word w = s1 . . . sn, otherwise it rejects the word w. The language accepted by A is

L(A) = {w : w is accepted by A}. We denote Ln(A) = L(A)
⋂{0, 1}n.

We can effectively enumerate the DFAs as A1, A2, . . . in lexicographic length-increasing order. This enumeration

we call the standard enumeration.

The first thing we need to do is to show that all laws that hold for finite-set models also hold for DFA models,

so all theorems, lemmas, and remarks above, both about the power and about the perils, apply. To do so, we show

that for every data sample D ⊆ {0, 1}n and a contemplated finite set model for it, there is an almost equivalent

DFA.

LEMMA 3: For every D ⊆ M ⊆ {0, 1}n there is a DFA A with Ln(A) = M such that K(A) ≤ K(M) + O(1)

and δ(D | A, d, n) = δ(D | M, d) + O(1).

Proof: Since M is a finite set of strings, there is a DFA that accepts it, by elementary formal language theory.

Define DFA A such that A is the first DFA in the standard enumeration for which Ln(A) = M—note that we can

infer n from M . Hence, K(A) ≤ K(M) + O(1) Trivially, log
(

|M |
d

)

= log
(

|Ln(A)|
d

)

and K(D | A, d, n) = K(D |
M, d) + O(1), so that δ(D | A, d, n) = δ(D | M, d) + O(1).

The converse of Lemma 3 is: for every data sample D and a contemplated DFA model for it, there is a finite

set model for D that has no worse complexity, randomness deficiency, and worst-case data-to-model code for D,

up to additive logarithmic precision.

LEMMA 4: Let A be a DFA. For every D ⊆ Ln(A) ⊆ {0, 1}n, there is a finite set M ⊇ D such that log
(

|M |
d

)

=

log
(

|Ln(A)|
d

)

, δ(D | M, d) ≤ δ(D | A, d, n) + O(1) and K(M) ≤ K(A, n) + O(1).

Proof: Choose M = Ln(A). Then, log
(

|M |
d

)

= log
(

|Ln(A)|
d

)

and K(M) ≤ K(A, n) + O(1). Since also

K(D | A, d, n) ≤ K(D | M, d) + O(1), we have δ(D | A, d, n) ≥ δ(D | M, d) + O(1).

A. MDL Estimation

To analyse the MDL estimation for DFAs, given a data sample, we first fix details of the code. For the model

code, the coding of the DFA, we encode as follows. Let A = (Q, S, t, q0, F ) with q = |Q|, s = |S|. Then there q
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possibilities for F , by renaming of the states we can always take care that F ⊆ Q are the last f states of Q. There

are qsq different possibilities for t, and q possibilities for q0. Altogether, for every choice of q, s there are ≤ qqs+2

distinct DFAs, some of which may accept the same languages.

Small Model Cost but Difficult to Decode: We can enumerate the DFAs by setting i := 2, 3, . . ., for every

i considering q + s = i for all partitions of i in positive integer summands, and for every particular choice of

q, s considering every choice of final states, transition function, and initial state. This way we obtain a standard

enumeration A1, A2, . . . of all DFAs, and, given the index j of a DFA Aj we can retrieve the particular DFA

concerned, and for every n we can find Ln(Aj).

Larger Model Cost but Easy to Decode: We encode a DFA A with q states and s symbols by

• The encoding of the number of symbols s in self-delimiting format in dlog se + dlog log se bits;

• The encoding of the number of states q in self-delimiting format in dlog qe + dlog log qe bits;

• The encoding of the set of final states F by indicating that all states numbered q − f, q − f + 1, q are final

states, by just giving q − f in dlog qe bits;

• The encoding of the initial state q0 by giving its index in the states 1, . . . , q, in dlog qe bits; and

• The encoding of the transition function t in lexicographical order of Q×S in dlog qe bits per transition, which

takes qsdlog qe bits altogether.

Altogether, this encodes A in a self-delimiting format in (qs + 3)dlog qe + 2dlog log qe + dlog se + 2dlog log se ≈
(qs + 4) log q + 2 log s bits. Thus, we reckon the model cost of a (q, s)-DFA as m(q, s) = (qs + 4) log q + 2 log s

bits. This cost has the advantage that it is easy to decode and that m(q, s) is an easy function of q, s. We will fix

on this model cost.

Data-to-model cost: Given a DFA model A, the word length n, in log n + 2 log log n bits which we simplify to

2 logn bits, and the size d of the data sample D ⊆ {0, 1}n, we can describe D by its index j in the set of d choices

out of l = Ln(A) items, that is, up to rounding upwards, log
(

l
d

)

bits. For 0 < d ≤ l/2 this can be estimated by

lH(d/l) − log l/2 + O(1) ≤ log
(

l
d

)

≤ lH(d/l) where H(p) = p log 1/p + (1 − p) log 1/(1 − p) (0 < p < 1) is

Shannon’s entropy function. For d = 1 or d = l we set the data-to-model cost to 1 + 2 log n, for 1 < d ≤ l/2 we

set it to 2 log n + lH(d/l) (ignoring the possible savings of log l/2 term), and for l/2 < d < l we set it to the cost

of l − d. This reasoning brings us to the following MDL cost of a data sample D for DFA model A:

DEFINITION 4: The MDL code length of a data sample D of d strings of length n, for a DFA model A such

that D ⊆ Ln(A), denoting l = |Ln(A)|, is given by

MDL(D, A) = (qs + 4) log q + 2 log s + 2 logn + lH(d/l).

B. Randomness Deficiency Estimation

Given data sample D and DFA A with D ⊆ Ln(A) ⊆ {0, 1}n, we can estimate the randomness deficiency.

Again, use l = Ln(A) and d = |D|. By (3), the randomness deficiency is

δ(D | A, d, n) = log

(

l

d

)

− K(D | A, d, n).
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Then, substituting the estimate for log
(

l
d

)

from the previous section, up to logarithmic additive terms,

δ(D | A, d, n) = lH(d/l)− K(D | A, d, n).

Thus, by finding a computable upper bound for K(D | A, d, n), we can obtain a computable lower bound on the

randomness deficiency δ(D | A, d, n) that expresses the fittness of DFA model A with respect to data sample D.

C. Less MDL Code Length Doesn’t Mean Better Model

The task of finding the smallest DFA consistent with a set of positive examples is trivial. This is the universal

DFA. Yet the universal DFA will in most cases have a poor generalization error and randomness deficiency. We

show that the randomness deficiency behaves independently of the MDL code: the randomness deficiency can either

grow or shrink with a reduction of the length of the MDL code.

We show this by example. Let the set D be a sample set consisting of 50% of all binary strings of length n with

an even number of 1’s. Note, that the number of strings with an even number of 1’s equals the number of strings

with an odd number of ones, so d = |D| = 2n/4. Initialize with a DFA A such that Ln(A) = D. We can obtain D

directly from A, n, so we have K(D | A, n) = O(1), and since d = l we have log
(

l
d

)

= 0, so that altogether δ(D |
A, d, n) = −O(1), while MDL(D, A) = (qs+4) log q +2 log s+2 logn+O(1) = (2q +4) log q +2 logn+O(1),

since s = 2. Without loss of generality we can assume that the MDL algorithm involved works by splitting or

merging nodes of the digraphs of the produced sequence of candidate DFA’s. But the argument works for every

MDL algorithm, whatever technique it uses.

Initialize: Assume that we start our MDL estimation with the trivial DFA A0 that literally encodes all d elements

of D as a binary directed tree with q nodes. Then, 2n/2− 1 ≤ q ≤ 2n+1 − 1, which yields

MDL(D, A0) ≥ 2nn/2

δ(D | A0, d, n) ≈ 0,

the latter equation since d = l, so log
(

l
d

)

= 0, and K(D | A0, d, n) = O(1). Since the randomness deficiency

δ(D | A0, d, n) ≈ 0, we have that A0 is a best fitting model for D. Indeed, it represents all conceivable properties

of D since it literally models D. However, A0 doesn’t achieve the optimal MDL code.

Better MDL estimation: In a later MDL estimation we improve the MDL code by inferring the parity DFA A1

with two states (q = 2) that checks the parity of 1’s in a sequence. Then,

MDL(D, A1) ≤ 8 + 2 logn + log

(

2n/2

2n/4

)

≈ 2n−1 − n/4

δ(D | A1, d, n) = log

(

2n/2

2n/4

)

− K(D | A1, d, n)

≈ 2n−1 − n/4− K(D | A1, d, n)

We now consider two different instantiations of D, denoted as D0 and D1. The first one is regular data, and the

second one is random data.
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Case 1, regular data: Suppose D = D0 consisting of the lexicographical first 50% of all n-bit strings with an

even number of occurrences of 1’s. Then K(D0 | A1, d, n) = O(1) and

δ(D0 | A1, d, n) = 2n−1 − O(n).

In this case, even though DFA A1 has a much better MDL code than DFA A0, it has nonetheless a much worse fit

since its randomness deficiency is far greater.

Case 2, random data: Suppose, D = D1 where D1 is a random subset consisting of 50% of the n-bit strings

with even number of occurrences of 1’s. Then, K(D1 | A1, d, n) = log
(2n/2
2n/4

)

+ O(1) ≈ 2n−1 − n/4, and

δ(D1 | A1, d, n) ≈ 0.

In this case, DFA A1 has a much better MDL code than DFA A0, and it has equally good fit since both randomness

deficiencies are about 0.

REMARK 8: We conclude that improved MDL estimation of DFA’s for multiple data samples doesn’t necessarily

result in better models, but can do so nonetheless.

REMARK 9 (SHORTEST MODEL COST): By Theorem 2 we know that if, in the process of MDL estimation by

a sequence of decreasing MDL codes, a candidate DFA is represented by its shortest program, then the following

candidate DFA which improves the MDL estimation is actually a model of at least as good fit as the preceding

one. Let us look at an Example: Suppose we start with DFA A2 that accepts all strings in {0, 1}∗. In this case we

have q = 1 and

MDL(D0, A2) = log

(

2n

2n/4

)

+ O(1)

δ(D0 | A2, d, n) = log

(

2n

2n/4

)

− O(1).

Here log
(

2n

2n/4

)

= 2nH( 1
4 )−O(n) ≈ 3 · 2n−2 −O(n). (H( 1

4 ) ≈ 2
3 ) Suppose the subsequent candidate DFA is the

parity machine A1. Then,

MDL(D0, A1) = log

(

2n/2

2n/4

)

+ O(1)

δ(D0 | A1, d, n) ≈ log

(

2n/2

2n/4

)

− O(1),

since K(D0 | A1, d, n) = O(1). Since log
(2n/2
2n/4

)

= 2n−1 − O(n), we have MDL(D0, A2) ≈ 2
3MDL(D0, A2),

and δ(D0 | A2, d, n) ≈ 2
3δ(D0 | A1, d, n). So the improved MDL cost is accompanied by improved fitness by

decreasing randomness deficiency. This indeed is forced by Theorem 2, since both DFA A1 and DFA A2 have

K(A1), K(A2) = O(1). That is, the DFA’s are represented and costed according to their shortest programs (a

forteriori of length O(1)) and therefore improved MDL estimation increases the fitness of the successive DFA

models significantly.
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APPENDIX

A. Appendix: Preliminaries

1) Self-delimiting Code: A binary string y is a proper prefix of a binary string x if we can write x = yz for

z 6= ε. A set {x, y, . . .} ⊆ {0, 1}∗ is prefix-free if for any pair of distinct elements in the set neither is a proper

prefix of the other. A prefix-free set is also called a prefix code and its elements are called code words. An example

of a prefix code, that is useful later, encodes the source word x = x1x2 . . . xn by the code word

x = 1n0x.

This prefix-free code is called self-delimiting, because there is fixed computer program associated with this code

that can determine where the code word x̄ ends by reading it from left to right without backing up. This way a

composite code message can be parsed in its constituent code words in one pass, by the computer program. (This

desirable property holds for every prefix-free encoding of a finite set of source words, but not for every prefix-free

encoding of an infinite set of source words. For a single finite computer program to be able to parse a code message

the encoding needs to have a certain uniformity property like the x code.) Since we use the natural numbers and the

binary strings interchangeably, |x̄| where x is ostensibly an integer, means the length in bits of the self-delimiting

code of the binary string with index x. On the other hand, |x| where x is ostensibly a binary string, means the

self-delimiting code of the binary string with index the length |x| of x. Using this code we define the standard

self-delimiting code for x to be x′ = |x|x. It is easy to check that |x| = 2n + 1 and |x′| = n + 2 log n + 1. Let 〈·〉
denote a standard invertible effective one-one encoding from N ×N to a subset of N . For example, we can set

〈x, y〉 = x′y or 〈x, y〉 = x̄y. We can iterate this process to define 〈x, 〈y, z〉〉, and so on.

2) Kolmogorov Complexity: For precise definitions, notation, and results see the text [15]. Informally, the

Kolmogorov complexity, or algorithmic entropy, K(x) of a string x is the length (number of bits) of a shortest

binary program (string) to compute x on a fixed reference universal computer (such as a particular universal Turing

machine). Intuitively, K(x) represents the minimal amount of information required to generate x by any effective

process. The conditional Kolmogorov complexity K(x|y) of x relative to y is defined similarly as the length of a

shortest program to compute x, if y is furnished as an auxiliary input to the computation. For technical reasons

we use a variant of complexity, so-called prefix complexity, which is associated with Turing machines for which

the set of programs resulting in a halting computation is prefix free. We realize prefix complexity by considering

a special type of Turing machine with a one-way input tape, a separate work tape, and a one-way output tape.

Such Turing machines are called prefix Turing machines. If a machine T halts with output x after having scanned

all of p on the input tape, but not further, then T (p) = x and we call p a program for T . It is easy to see

that {p : T (p) = x, x ∈ {0, 1}∗} is a prefix code. Let T1, T2, . . . be a standard enumeration of all prefix Turing

machines with a binary input tape, for example the lexicographical length-increasing ordered syntactic prefix Turing

machine descriptions, [15], and let φ1, φ2, . . . be the enumeration of corresponding functions that are computed by

the respective Turing machines (Ti computes φi). These functions are the partial recursive functions or computable

functions (of effectively prefix-free encoded arguments). The Kolmogorov complexity of x is the length of the
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shortest binary program from which x is computed. For the development of the theory we actually require the

Turing machines to use auxiliary (also called conditional) information, by equipping the machine with a special

read-only auxiliary tape containing this information at the outset.

One of the main achievements of the theory of computation is that the enumeration T1, T2, . . . contains a machine,

say U = Tu, that is computationally universal in that it can simulate the computation of every machine in the

enumeration when provided with its index: U(〈y, īp) = Ti(〈y, p〉) for all i, p, y. We fix one such machine and

designate it as the reference universal prefix Turing machine.

DEFINITION 5: Using this universal machine we define the Kolmogorov complexity

K(x | y) = min
q

{|q| : U(〈y, q〉) = x}, (9)

the conditional version of the prefix Kolmogorov complexity of x given y (as auxiliary information). The uncon-

ditional version is set to K(x) = K(x | ε).

A prominent property of the prefix-freeness of K(x) is that we can interpret 2−K(x) as a probability distribution

since K(x) is the length of a shortest prefix-free program for x. By the fundamental Kraft’s inequality, see for

example [2], [15], we know that if l1, l2, . . . are the code-word lengths of a prefix code, then
∑

x 2−lx ≤ 1. Hence,
∑

x

2−K(x) ≤ 1. (10)

This leads to the notion of universal distribution—a rigorous form of Occam’s razor—which implicitly plays an

important part in the present exposition. The functions K(·) and K(· | ·), though defined in terms of a particular

machine model, are machine-independent up to an additive constant and acquire an asymptotically universal and

absolute character through Church’s thesis, from the ability of universal machines to simulate one another and

execute any effective process. The Kolmogorov complexity of an individual object was introduced by Kolmogorov

[7] as an absolute and objective quantification of the amount of information in it. The information theory of Shannon

[9], on the other hand, deals with average information to communicate objects produced by a random source. Since

the former theory is much more precise, it is surprising that analogs of theorems in information theory hold for

Kolmogorov complexity, be it in somewhat weaker form. An example is the remarkable symmetry of information

property used later. Let x∗ denote the shortest prefix-free program x∗ for a finite string x, or, if there are more

than one of these, then x∗ is the first one halting in a fixed standard enumeration of all halting programs. Then,

by definition, K(x) = |x∗|. Denote K(x, y) = K(〈x, y〉). Then,

K(x, y) = K(x) + K(y | x∗) + O(1) (11)

= K(y) + K(x | y∗) + O(1).

REMARK 10: The information contained in x∗ in the conditional above is the same as the information in the

pair (x, K(x)), up to an additive constant, since there are recursive functions f and g such that for all x we have

f(x∗) = (x, K(x)) and g(x, K(x)) = x∗. On input x∗, the function f computes x = U(x∗) and K(x) = |x∗|; and

on input x, K(x) the function g runs all programs of length K(x) simultaneously, round-robin fashion, until the

first program computing x halts—this is by definition x∗.
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3) Precision: It is customary in this area to use “additive constant c” or equivalently “additive O(1) term” to

mean a constant, accounting for the length of a fixed binary program, independent from every variable or parameter

in the expression in which it occurs. In this paper we use the prefix complexity variant of Kolmogorov complexity

for convenience.

B. Appendix: Structure Functions and Model Selection

We summarize a selection of the results in [16]. There, the data sample D is a singleton set {x}. The results

extend to the multiple data sample case in the straightforward way.

THEOREM 4: Let n be a positive integer, data sample x ⊆ {0, 1}n and complexity k = K(x), and K(x | n) ≤
n + O(1). Then:

(i) There is an integer valued non-increasing function λ defined on [0, k] such that λ(0) ≤ n, λ(k) = k and λx

is close to λ in the sense that the graph of λx is within a strip of width log n + O(1).

(ii) Conversely, for every n and non-increasing integer valued function λ whose domain includes [0, k] and such

that λ(0) ≤ n and λ(k) = k, there is x of length n and complexity k ± (K(k, n, λ) + O(1)), such that λx is close

to λ in the sense that the graph of the former is situated within a strip of width 2K(i, n, λ) + O(1) centered on

the graph of the latter.

Intuition: The MDL code length λx can assume essentially every possible relevant shape as a function of the

contemplated maximal model complexity.

As a consequence, so-called “non-stochastic” data x for which λx(α) stabilize on K(x) for large α are common.

THEOREM 5: Let n be a positive integer, data x ∈ {0, 1}n of complexity k = K(x). Therefore K(x | n) ≤
n + O(1). Then: βx(α) + k is close to λx(α) in the sense that the graph of the former is situated within a strip of

width O(log n) centered on the graph of the latter.

Intuition: A model achieving the MDL code length λx(α), essentially achieves the best possible fit βx(α).

COROLLARY 2: For every x ∈ {0, 1}n and complexity k = K(x) there is a non-increasing function β such that

β(0) ≤ n − k, β(k) = 0 and the graph of βx is situated within a strip of O(log n) of the graph of β. Conversely,

for every non-increasing function β such that β(0) ≤ n − k, β(k) = 0 there is x ∈ {0, 1}n and complexity

k ± O(log n) + 2K(β) such that βx is situated within a strip of O(log n) + 2K(β) of the graph of β.

Intuition: The best-fit function βx can assume essentially every possible relevant shape as a function of the

contemplated maximal model complexity.

In [16] Theorem 5 is proven for singleton data samples. The generalization to multi-element data samples D is

straightforward. From the proof we see that, given the data sample D, for every finite set M ⊇ D, of complexity at

most α + O(log n) and minimizing Λ(M), we have δ(D | M, d) ≤ βD(α) + O(log m). Ignoring O(log m) terms,

at every complexity level, every best hypothesis at this level with respect to Λ(M) is also a best one with respect

to typicality. This explains why it is worthwhile to find shortest two-part descriptions for given data sample D: this

is the single known way to find an M ⊇ D with respect to which D is as typical as possible at that complexity
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level. Note that the set {〈D, M, β〉 | D ⊆ M, δ(D | M, d) < β} is not enumerable so we are not able to generate

such M ’s directly, [16].

The converse is not true: not every hypothesis, consisting of a finite set, witnessing βD(α) also witnesses λD(α).

For example, let D = {x} with x a string of length n with K(x) ≥ n. Let M1 = {0, 1}n ∪{y0 . . .0} where y is a

string of length n
2 such that K(x, y) ≥ 3n

2 and let M2 = {0, 1}n. Then both M1, M2 witness βD(n
2 + O(log n)) =

O(1) but Λ(M1) = 3n
2 + O(log n) � λD(n

2 + O(log n)) = n + O(log n) while λ(M2) = n + O(log n).

However, for every α such that λD(i) decreases when i → α with i ≤ α, a witness set for βD(α) is also a

witness set for λD(α). We will call such α critical (with respect to D): these are the model complexities at which

the two-part MDL code-length decreases, while it is stable in between such critical points. In [16] it is shown,

for singleton sample sets D, that for critical α, for every A ⊇ D with K(A) ≈ α and δ(D | A, d) ≈ βD(α), we

have Λ(A) ≈ λD(α). More specifically, if K(A) ≈ α and δ(D | A, d) ≈ βD(α) but Λ(A) � λD(α) then there is

M ⊇ D with K(M) � α and Λ(M) ≈ λD(α).
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