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Information Distance

Charles H. Bennett, &er Gacs, Senior Member, IEEEMing Li, Paul M. B. Vitanyi, and Wojciech H. Zurek

Abstract—While Kolmogorov complexity is the accepted abso-
lute measure of information content in an individual finite object,
a similarly absolute notion is needed for the information distance
between two individual objects, for example, two pictures. We
give several natural definitions of a universal information metric,
based on length of shortest programs for either ordinary compu-
tations or reversible (dissipationless) computations. It turns out
that these definitions are equivalent up to an additive logarithmic
term. We show that the information distance is a universal cog-
nitive similarity distance. We investigate the maximal correlation
of the shortest programs involved, the maximal uncorrelation
of programs (a generalization of the Slepian—Wolf theorem of
classical information theory), and the density properties of the
discrete metric spaces induced by the information distances. A
related distance measures the amount of nonreversibility of a
computation. Using the physical theory of reversible computation,
we give an appropriate (universal, antisymmetric, and transitive)
measure of the thermodynamic work required to transform one
object in another object by the most efficient process. Information
distance between individual objects is needed in pattern recog-
nition where one wants to express effective notions of “pattern
similarity” or “cognitive similarity” between individual objects
and in thermodynamics of computation where one wants to
analyze the energy dissipation of a computation from a particular
input to a particular output.

Index Terms— Algorithmic information theory, description
complexity, entropy, heat dissipation, information distance, in-
formation metric, irreversible computation, Kolmogorov com-
plexity, pattern recognition, reversible computation, thermody-
namics of computation, universal cognitive distance.

I. INTRODUCTION

W

ways. The set of strings is denoted by, 1}*.
The Kolmogorov complexity, or algorithmic entropi(z)

of a string = is the length of a shortest binary program t

compute z on a universal computer (such as a universal
Turing machine). Intuitively,K(x) represents the minimal
amount of information required to generatdy any effective
process, [9]. The conditional Kolmogorov complexy(x|y)

of = relative toy is defined similarly as the length of a
shortest program to computeif y is furnished as an auxiliary
input to the computation. The function&(-) and K(-|),
though defined in terms of a particular machine model, are
machine-independent up to an additive constant and acquire
an asymptotically universal and absolute character through
Church’s thesis, from the ability of universal machines to
simulate one another and execute any effective process. The
Kolmogorov complexity of a string can be viewed as an abso-
lute and objective quantification of the amount of information
in it. This leads to a theory dcdibsoluteinformation contents

of individual objects in contrast to classical information theory
which deals withaverageinformationto communicat®bjects
produced by aandom sourceSince the former theory is much
more precise, it is surprising that analogons of theorems in
classical information theory hold for Kolmogorov complexity,
be it in somewhat weaker form.

Here our goal is to study the question of an “absolute
information distance metric” between individual objects. This
should be contrasted with an information metric (entropy met-
ric) such asH(X|Y') + H(Y|X) between stochastic sources
X and Y. Nonabsolute approaches to information distance
between individual objects have been studied in a statistical
setting, see for example [25] for a notion of empirical infor-

E write string to mean a finite binary string. Othermation divergence (relative entropy) between two individual
finite objects can be encoded into strings in natur§fduences. Other approaches include various types of edit-

distances between pairs of strings: the minimal number of
edit operations from a fixed set required to transform one

String in the other string. Similar distances are defined on

trees or other data structures. The huge literature on this
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A set X provided with a metric is called anetric space to xz. This demonstrates that

For example, every sel has the trivial discrete metric

D(z,y) = 0 if # = y and D(z,y) = 1 otherwise. All Ei(z,y) = max{K(y|z), K(z|y)}

information distances in this paper are defined on the set

X = {0,1}* and satisfy the metric conditions up to an additiv&9uals the length of a shortest program= ¢d to computer

constant or logarithmic term while the identity axiom can b&0M ¥ andy from =, up to a logarithmic additive teri(It is

obtained by normalizing. very important here thgt the time of computation is com_pletely
Algorithmic Information Distance:Define the information ignored: this is why this result does not contradict the idea of

distance as the length of a shortest binary program that coffie-way functions.) _

putesz from y as well as computing from «. Being shortest, The process of going frorllir to y may be brokgn into

such a program should take advantage of any redundafty Stages. First, add the striny second, use the difference

between the information required to go fromto y and Programg betweencd andy. In the reverse direction, first use

the information required to go frony to . The program ¢ 10 90 fromy to xd; second, erasé._ Thus the computation

functions in a catalytic capacity in the sense that it is requird™ @ t0 y needs botly andd, that is, the progranp = qd,

to transform the input into the output, but itself remains preseffflile the computation frony to = needs only; as program.

and unchanged throughout the computation. We would IikeM'”'mal Correlat_lon: The converse of maximal correlatlon_

to know to what extent the information required to comput§ that in the special case of the shortest programs for going

y from z can be made to overlap with that required t@etweenmdgpendent random: and y, they can be choosen

computez from y. In some simple casesompleteoverlap COMPletely independentor example, useg to go from x

can be achieved, so that the same minimal program suffid8s¥ a@nd z to go from y to z. This turns out to hold

to computex from y as to compute; from . For example, also in the. general case for arbitrary pairsy, as will

if + andy are independent random binary strings of the san¥ Shown in Theorem 3.11, but only with respect to an

lengthn (up to additive contant& (z|y) = K (y|z) = n), then “oracle”: a certain constant string that must be in all the
their bitwise exclusive—ox @ y serves as a minimal prc,gramconditions. This theorem can be considered a generalization of

for both computations. Similarly, if = uv andy = vw where the Slepian—Wolf Theorem of classical information theory [8].
u, v, andw are independent random strings of the same length,Universal Cognmye Dlstanc.eSectu'),n IV develops an ax-
thenw @ w plus a way to distinguish: from ¢ is a minimal iomatic theory of “pattern distance” or more generally a
program to compute either string from the other. “cognitive similarity metric’ and argues that the function
Maximal Correlation: Now suppose that more information£1(; ¥) is the most natural way of formalizing eniversal

is required for one of these computations than for the other, sgg@nitive distance betweenandy. This nonnegative function
is'0 iff z = y (rather, its normalized version in Theorem 4.2

K(y|z) > K(z|y). satifies this), it is symmetric, obeys the triangle inequality to
within an additive constant, and is minimal among the class
Then the minimal programs cannot be made identical becawgedistance functions that are computable in a weak sense
they must be of different sizes. In some cases it is easy to $gf| satisfy a normalization constraint limiting the number of
that the overlap can still be made complete, in the sense that#figtinct stringsy within a given distance of any. It uncovers
larger program (fory givenz) can be made to contain all thea|| effective similarities between two individual objects.
information in the shorter program, as well as some additional |nformation Distance for Reversible Computatioblp till
information. This is so whem andy are independent randomnow we have considered ordinary computations, but if one
strings of unequal length, for exampleandvw above. Then insists that the computation be performedersibly that is,
uPv serves as a minimal program ferfrom vw, and(u®v)w by a machine whose transition function is one-to-one [3], [18],
serves as one forw from w. then the full programp = ¢d above is needed to perform
A principal result of this paper in Section Il shows that, uphe computation in either direction. This is because reversible
to an additive Iogarithmic error term, the information reqmredomputers cannot get rid of unwanted information 5|mp|y by
to translate between two strings can be represented in thigsing it as ordinary irreversible computers do. If they are
maximally overlapping way in every case. Namely, let  to get rid of unwanted information at all, they must cancel it
against equivalent information already present elsewhere in the
Fy = K(zly) ks = K(ylz) computer. Reversible computations are discussed in Section V
l=ky =k where we define a reversible distanEe(x,y) = KR(z|y) =
KR(y|z), representing the amount of information required to
program a reversible computation from to y (which by
definition is the reverse of the computation frogmto z).
The E, distance is equal within an additive constant to the

where we assumg; < ko. Then there is a string of length
k1 + K(k1, ko) and a stringd of length! such thaty serves as
the minimal program both to compute frond to ¥ and from
y to zd. The termK (k1, k») has magnitude (log k2). This
means T[hat the 'nformatlon to pas_s fm‘mt(_) y can always 1The situation is analogous to the inverse function theorem of multidimen-
be maximally correlated with the information to get fraym sional analysis. This theorem says that under certain conditions, if we have a
to z. It is therefore never the case that a large amount ¥ctor functionf (Wh) }L‘ef‘f” hj‘s an ?;‘VQFS?(%P) SUCE “llat in a certain
information is required to get fronr to y and a largebut omain, f(x. p) = y holds if and only ifg(y. p) = . In the function going

: ) . - ) from y to z, the parametep remains the same as in the function going from
independenamount of information is required to get fron z to .
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length of the conversion prograg = gd considered above, if the set of triples
and so is at most greater by an additive logarithmic term than
the optimal distance;. It is also a metric. The reversible
program functions again in a catalytic manner. _ is recursively enumerable. A functiohis lower-semicomput-
Hence, thre_e very different de_f|n|t|_ons arising from different|q it _ f is upper-semicomputable. 0
backgrounds identify up to logarithmic additive terms the same
notion of information distance and corresponding metric. It is Definition 2.2: A prefix sef or prefix-free code, or prefix
compelling to believe that our intuitive notions are adequatefpde, is a set of strings such that no member is a prefix
formalized by this universal and absolute notion of informatiodf any other member. A prefix set which is the domain of
metric. a partial recursive function (set of halting programs for a
Minimal Number of Irreversible OperationsSection VI Turing machine) is a special type of prefix code called a
considers reversible computations where the program is $gif-delimitingcode because there is an effective procedure
catalytic but in which additional informatiom(like a program) Which reading left-to-right determines where a codeword ends
besidesz is consumed, and additional informatian (like Without reading past the last symbol. A one-to-one function
garbage) besides is generated and irreversibly erased. Theith a range that is a self-delimiting code will also be called
sum of these amounts of information, defined as distangeself-delimiting code. U

E5(z,y), represents the minimal number of irreversible bit \ya can mag{0, 1}* one-to-one onto the natural numbers by

operations in an otherwise reversible computation fro®  ,ssqciating each string with its index in the length-increasing
y in which the program is not retained. It is shown to b?exicographical ordering

equal to within a logarithmic term to Zurek's sum metric

K(y|x)+ K(z|y), which is typically larger than our proposed (e, 0),(0,1), (1,2),(00,3), (01,4),(10,5),(11,6),--- (2.3)
optimal metric £; because of the redundancy betwegn ) ]

and ¢. But using the program involved irE; we both where ¢ denotes _the empty word', that i&e) = 0. This
consume it and are left with it at the end of the computatiod@ We have a binary representation for the natural numbers
accounting for2E; (z, y) irreversible bit operations, which ithat is different from the standard binary representation. It

typically larger tharEs(zz, ). Up to additive logarithmic terms 1S convenient not to dis’ginguish between the_ first and second
Ei(z,y) < Es(x,y) < 2E1(x,y). If the total computation element of the same pair, and call them “string” or “number”

time is limited then the total number of irreversible bigrPitrarily. As an example, we haver) = 00. A simple self-
operations will rise. Resource-bounded versionsHf-, -) delimiting code we use thrgughout is obtayned by reserving one
are studied in [20]. symbol, say0, as a stqp sign gnd en_coc_ilng a natural r_lumber
Thermodynamic WorkSection VIII considers the problem® @S 170. We can prefix an object with its length and iterate
of defining a thermodynamic entropgost of transforming this idea to obtain ever shorter codes:
z into y, and argues that it ought to be an antisymmetric, 1%0, fori =0
transitive function, in contrast to the informational metrics Aifz) = {)\il(l(a:))a:, for ¢ > 0.
which are symmetric. Landauer’s principle connecting logical
and physical irreversibility is invoked to argue in favor offhusAi(z) = 1“0z and has lengtti(A\; (z)) = 2i(z) + 1;
K(z) — K(y) as the appropriate (universal, antisymmetric\2(z) = Ai(l(z))z and has length(\2(z)) = I(z) +
and transitive) measure of the thermodynamic work requirg(d(z(a;))JrL From now on, we will denote b;E an inequality
to transformz into y by the most efficient process. to within an additive constant, and b¥ the situation when

Density in Information Metric SpacesSection IX investi- + + . log ) )
gates the densities induced by the optimal and sum informatigfth < and> hold. We will also use<" to de?ote an inequality

metrics. That is, how many objects are there within a givédf within an additiv? Iogarilthmic term, an& to denote the
distance of a given object. Such properties can also be viewgghation when both< and > hold. Using this notation we
as “dimensional” properties. They will govern many futurgaye, for example,

applications of information distances.

{(z,y,d): f(x,y) <d, with d rational}

(2.4)

I(As(x)) z I(z) +logl(z) + 2log logl(x).

Il. KOLMOGOROV COMPLEXITY . .. .
Define the pairing function

Let /(p) denote the length of the binary string Let #5

denote the number of elements of sgt We give some (z,y) = Aa(z)y (2.5)

definitions and basic properties of Kolmogorov complexity. ., . N . . .

For all details and attributions we refer to [22]. There one ci%'th inverses( >¥’ <. >.2' A partial recursive funcuonF(p_,a:)
. . : - ~1s called self-delimitingif for eachz, {p: F(p,z) <oo} is a

also find the basic notions of computability theory and Turin S o N .
. - ; o . elf-delimiting code. (F'(p, x) < 00" is shorthand for “there is

machines. The “symmetry of information” property in (2.11

is from [13]. It refines an earlier version in [28] relating to the y_sg(_:h thatf(p, z) = y.”) The argument is called asel_f-
original Kolmogorov complexity of [9] delimiting programfor y := F'(p,x) from z, because, owing

to the self-delimiting property, no punctuation is required to
Definition 2.1: We say that a real-valued functiof(z,y) tell the machine wherg ends and the input to the machine
over strings or natural numbeisy is upper-semicomputable can be simply the concatenatign:.
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Remark 2.6:Our results do not depend substantially oiNamely, for each: the set ofi{(y|x)’s is a subset of the length
the use of self-delimiting programs but for our purpose thiet of a prefix-code. Therefore, Property (2.9) is a consequence
form of the theory of Kolmogorov complexity is cleaner anaf the so-called Kraft inequality. It is an important fact that the
easier to use. For example, the simplicity of the normaliz&inction K (y|x) is minimal with respect to the normalization
tion property in Section IV depends on the self-delimitingProperty (2.9).

property. = Lemma 2.10:For every upper-semicomputable function

Remark 2.7: Consider a multitape Turing machide with  f(z,y) satisfyingZ, 2—f(=¥) < 1 we have
a distinguished semi-infinite tape called fvegram tape The +
program tape’s head begins scanning the leftmost square of the K(ylz) < f(z,v).
program. There is also an input tape and, possibly, a separate , L L
output tape and work tapes. We say thHdt computes the A prominent example of such a function is thdégorithmic
partial functionZ(p, z) by aself-delimiting computatioif for ~ €NrOPY
all p andz for which F(p, z) is defined H(yr) = —log Z o—1(p).

* M with programp and inputz halts with outputF'(p, z)

written on the output tape;

« the program tape head scans allpobut not beyong. Since K (y|x) is the length of the shortest progransuch that
A partial recursive function is self-delimiting if and only_U(p’x) =ywe havek (y|z) 2 H(ylx)' and—l?r?(:li)usg(y|x)
if there is a self-delimiting computation for it. A Turing IS upper-s_emlcomputable and satisfles 2= < 1 (by
machine performing a self-delimiting computation is caIIeH1e Kraft inequality) we have
a self-delimiting Turing machine

plU(p,z)=y

+
K(ylz) < H(y|x).
In what follows, informally, we will often call a self- . +
delimiting partial recursive functio a prefix machineor Together this shows thali (y|z) = K(y|x) (almost all the

self-delimiting machineeven though it is only the function entropy is concentrated in the shortest program).
computed by such a machine. O The functions(z, y, z), etc., are defined with the help of

L . L . {z,y) in any of the usual ways. We introduce the notation
Definition 2.8: The conditional descriptional complexity

(the “self-delimiting” version)K r(y|x) of y with condition K(z,y) = K({z,y)), K(z|y, z) = K(z|{y, 2))

x, with respect to the maching, is defined by ) i .
etc. Kolmogorov complexity has the following addition prop-

Kp(ylz) := min{l(p): F(p,z) =y} erty:

or ~c if suchp do not exist. There is a prefix machifé (the K(w,y) £ K(2) + K (ylo, K (). (2.11)
universal self-delimiting Turing machine) with the propert
that for every other prefix maching' there is an additive
constantcy such that for allz, »

¥gnoring for a moment the ternk((z) in the condition of
the second term of the right-hand side, this property says,
analogously to the corresponding property of information-
Ku(ylz) < Kr(ylz) + cp. Fheoretic entropy, that th_e information content of_ the paj(y)

is equal to the information content ef plus the information
(A stronger property that is satisfied by many universal maeeded to restorg from z.
chinesU is that for all F' there is a stringsz such that for all ~ The mutual informationbetweenz andy is the quantity
x,y,p we havel(sgp,z) = F(p, x), from which the stated oy
property follows (immed)iately.g SicheF depends onf" but H(z:y) = K(2) + K(y) - K(2,v). (2.12)
not onz,y such a prefix machiné will be called optimal This is the algorithmic counterpart of the mutual information
or universal We fix such an optimal machiné as reference, petween two random variabld¢X : Y) = H(X)+ H(Y) —

write H(X,Y). Because of the conditionak'(z) term in (2.11),
K — K the usual relation between conditional and mutual information

() = Ku(ylz) holds only to within a logarithmic error term (denoting :=
and call K (y|x) the conditionalKolmogorov complexityf y (@, K(2)))
with respect tar. The unconditional Kolmogorov complexity Iz :y) iK(a:) — K(zly") + K(y) — K(yla™)
of y is defined asK(y) := K(y|e) where e is the empty
word. - = K(x) - K(zly) + Olog(K ()

=K(y) — K(ylz) + O(log(K(z)).

We give a useful characterization &f(y|x). It is easy to
see thati{ (y|«) is an upper-semicomputable function with th&hus within logarithmic error/(z : y) represents both the

property that for eachx we have information iny aboutz and that inxz abouty. We considet:
i andy to be “independent” whenevdix : y) is (nearly) zero.
D ookl <, (2.9)  Mutual information should not be confused with “common
Y information.” Informally, we can say that a stringcontains
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information common in: andy if both K (z|z) andK (z|y) are Definition 3.1: The max distanceE; betweenz andy is
small. If this notion is made precise it turns out that commatefined by

information can be very low even if mutual information is
large [12]. Er(z,y) = max{K (z|y), K(y|z)}. O

By definition of Kolmogorov complexity, every program
. MAX DISTANCE that computeg from = and also computes from y satisfies

l > F , that is,
In line with the identification of the Kolmogorov complexity (p) = Er(z,0)

K(z) as the information content af, [9], we define the Eo(z,y) > Ei(z,y). 3.2
information distance between and y as the length of the ) )

shortest program that converigo i andy to z. The program I Theorem 3.3 we show that this relation also holds the other
itself is retained before, during, and after the computation. TH&Y: Eo(z,y) < E1(x,y) up to an additive logarithmic term.
can be made formal as follows. For a partial recursive functidfioreover, the information to compute fromto y can always

F computed by a prefix (self-delimiting) Turing machine, leP€ maximally correlated with the information to compute from
y to z. It is therefore never the case that a large amount of

information is required to get from to y and a largebut

FE ;= mi v =y F =l
rlzy) = min{llp): F(p,2) =y, F(p.y) = z} independenamount of information is required to get from

There is a universal prefix maching (for example, the

reference machine in Definition 2.8) such that for every partial Conversion Theorem 3.3tet K (x|y) = k1 and K (y|x) =

recursive prefix functionF” and all z, y ka2, andl = ko —k; > 0. There is a stringl of length/ and
a string ¢ of length

Ey(x,y) < Er(x,y) +cF fey + K (ky, k2) + O(1)
wherecy is a constant that depends dhbut not onz and Such thatt/(q, zd) = y andU(q,y) = zd.
y. For each two universal prefix machingsandU’, we have Proof: Givenky, ks, we can enumerate the set
for all z,y that|Ey (z,y) — Ey(z,y)| < ¢, with ¢ a constant S ={(z.y): K(zly) < k1, K(y|z) < k2}.

depending ori/ and /' but not onx andy. Therefore, with
U the reference universal prefix machifieof Definition 2.8 Without loss of generality, assume that is enumerated

we define without repetition, and with witnesses of length exactly
andk,. Now consider a dynamic grapf = (V, E') whereV’
Ey(z,y) := min{l(p): U(p,z) = y,U(p,y) = z}. is the set of binary strings, an#l is a dynamically growing

set of edges that starts out empty.

Then Eq(-,-) is the universal effective information distance Whenever a pair(z,y) is enumerated, we add an edge
which is clearly optimal and symmetric, and will be shown t§ = {#d,y} to E. Here, d is chosen to be thgi2™™ )th

satisfy the triangle inequality. We are interested in the preci8ary string of length, where: is the number of times we
expression forE,. have enumerated a pair withas the first element. So the first

2% times we enumerate a paiz,-) we choosed = 0, for

the next2*: times we choosel = 0‘~'1, etc. The condition

K(y|lz) < ko implies thati < 2*2 hencei2=" < 2!, so this
The conditional complexityK (y|z) itself is unsuitable as choice is well-defined.

information distance because it is unsymmetf¢x|x), where In addition, we “color” edges with a binary string of length

€ is the empty string, is small for alk, yet intuitively a k&; + 3. Call two edgesadjacentif they have a common

long random stringe is not close to the empty string. Theendpoint. If ¢ is the minimum color not yet appearing on

asymmetry of the conditional complexity((x|y) can be any edge adjacent to eithetl, z,yd, or y, thene is colored

remedied by defining the informational distance betweend ¢. Since the degree of every node is bounded2by (when

y to be the sum of the relative complexitids(y|z)+ K (z|y). acting as anzd) plus 2¥' (when acting as &), a color is

The resulting metric will overestimate the information requirediways available. (This particular color assignment is needed

to translate between andy in case there is some redundancyn the proof of Theorem 3.4.)

between the information required to get framto ¥ and the A matchingis a maximal set of nonadjacent edges. Note that

information required to get frony to . the colors partition® into at most2***3 matchings, since no
This suggests investigating to what extent the informatie@dges of the same color are ever adjacent. Since thé:pajy

required to compute: from y can be made to overlap within the statement of the theorem is necessarily enumerated, there

that required to computg from x. In some simple cases, itis somed of length! and colorc such that the edgézd, y}

is easy to see how complete overlap can be achieved, so ikaddded toF with color c.

the same minimal program suffices to computiEom v as to Knowing k1, k2, ¢, and either of the nodesd or y, one

computey from z. A brief discussion of this and an outlinecan dynamically reconstrué, find the unique:-colored edge

of the results to follow were given in Section I. adjacent to this node, and output the neighbor. Therefore, a

A. Maximum Overlap
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self-delimiting prograny of size K (k1, k2)+k1+0O(1) suffices B. Minimum Overlap

to compute in either direction between andy. D This section can be skipped at first reading; the material

The theorem states thaf(y|zd, q), K (zd|y, ) £ 0. It may is difficult and it is not used in the remainder of the paper.
) ) ) N . .
be called theConversion Theoremsince it asserts the existencd Of @ Pairz, y of strings, we found that shortest program
of a difference string that converts both ways betweedand Convertingz into y andg convertingy into = can be made to
y and at least one of these conversions is optimat; I ks, overlap maximally. In Remark 3.7, this result is formulated

thend = ¢ and the conversion is optimal in both directions. In terms of mutual information. The opposite question is
whetherp andg can always be made completehdependent

Theorem 3.4:Assume the notation above. Then, wit  that is, can we choosg and ¢ such thati(p : ¢q) = 0?

denoting equality up to additive logarithmic terms That is, is it true that for every, y there arep,q such that
fo(p) = K(ylwg,K(tqg :f'Kt(ery)’I(p : (f)t: OH l{ép,w)tz Y, |
lo lo =z, where the first three equalities hold up to an ad-

Eo(wd.y) = By (ad. y)(= 1(2)) di'Ei?/’ey)O (log (K (z|y)+ K (y|x))) terr?m2 This is evide?wtly true
Eo(z,y) L g (a:,y)(b:g l(qd)). in casex andy are random with respect to one another, that

is, K(z|y) > l(z) and K (y|z) > I(y). Namely, without loss

Proof: of generality lety = wwv with I(x) = I(x). We can choose
(First displayed equation): Assume the notation and propf:= (# @ u)v as a shortest program that computes from

of Theorem 3.3. First note thétg) ‘% E;(zd,y). Moreover, * © ¥ @ndg¢ := z & u as a shortest program that com-

g computes betweend andy in both directions and therefore PUteS fromy t_o x, and therefore obtain maximum overlap
I(q) > Eo(xd,y) by the minimality of Eo(-,-). Hence I(p : q) = min{i(p),l(¢)}. However, we can also choose
- T ’ shortest programg := % and ¢ := x to realize minimum

log overlap I(p : ¢) = 0. The question arises whether we can
Ey(xd,y) > Eo(zd,y). alwayschoosep, ¢ with I(p : q¢) = 0 even whenz andy are
not random with respect to one another.

Together with (3.2) this shows the first displayed equation Remark 3.8:N. K. Vereshchagin suggested replacidgy :

holds. _ _ _ _ q) = 0" (that is, K(p, q) = K(p) + K(q)) by “K(q|z) =0,
(Second displayed equation): This requires an extra argii{p|y) = 0,” everything up to an additiv®(log (K (x|y) +

ment to show that the program := gd is a program to K (y|z))) term. Then an affirmative answer to the latter

compute between andy in both directions. Namely, knowing question would imply an affirmative answer to the former
ki,k2,c,d, and stringz one can dynamically reconstructquestion. n

G and find the first enumeratedcolored edge adjacent to
either nodexr or nodexzd and output the neighbor{ or v,
respectively). By a similar argument as in the previous ca
we now obtain the second displayed equation. O

Here we study a related but formally different question:
teplace the conditionf(p : g) = 0" by “p is a function of
only 4" and “q is a function of onlyz.” Note that when this
new condition is satisfied it can still happen tH&p : ¢) > 0.

Remark 3.5:The same proofs work for the non-self\ne may choose to ignore the latter type of mutual information.
delimiting Kolmogorov complexity as in [9] and would also We show that for every pair of integefs, k., > 0 there
give rise to a logarithmic correction term in the theoreril  exists a functionf with K(f) = k1 + ky + O(log(k1 + k»))

Remark 3.6: The difference program = qd in the above Suchthatforevery,y such that (z) < ki, K(y|a) < k> we
theorem is independent of in the sense that the mutual®@e K (ylz, f(v), /) = O(log(k, + k2)) andI(f(y)) = k2,
information I(p : «) as defined in (2.12) is nearly. This that is, f(y) has aboutk; bits and suffices together with a
follows from K (z) + K(p) = K(z,y) + O(log K(z)) (use description off itself to restorey from everyz from which
(2.11) with K (y|z) = K(p)). The |;rograrrp is at the same this is possible using this many bits. Moreover, there is no
time completeiy dependent on the péir, ). significantly simpler functiory, say K(fly) < min{ky, ko},

If k1 = ko thend = e andp = ¢. Thenp = g is a conversion With this property. _ _ _
program fromz to y and fromy to = and it is both independent L€t us amplify the meaning of this for the question of
of = and independent of, that is, I(p : «),I(p : y) are the conversion programs having low mutual information. First

both nearly0. The prograny is at the same time completelyWe néed some terminology. When we say tffias a simple
dependent on the pair, ). g functionof y we mean that[_((_f|y) is small.
Suppose we have a minimal program of length ks,
Remark (Mutual Information Formulation) 3.7.et us re- Convertingx to ¥ and a minimal prograny of |ength ky
formulate the result of this section in terms of mutual inconvertingy to z. It is easy to see, just as in Remark 3.6

formation as defined in (2.12). Let be a shortest program apove that is independent of. Also, any simple function of
transformingr to y and letg be a shortest program transform-, is independent of. So, if p is a simple function of;, then
ing v to z. We have shown that and ¢ can depend on each

other as much as possible: the mutual informatiorp iand 2Footnote added in proofN. K. Vereshchagin has informed us that the
answer is affirmative if we only require the equalities to hold up to an

q is maximal: I(p : ¢) = min{l(p),!(¢)} up to an additive ,ygiional log K(z,y) term. It is then a simple consequence of Theorem
O(log (K (z|y) + K(y|x))) term. O s
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it is independent of;. The question whether can be made a and an intege with
simple function ofy is interesting in itself since it would be +, L
a generalization of the Slepian—Wolf Theorem (see [8]). And b < log(ky + k2) + 2log log(ky + k2)
it sounds no less counterintuitive at first than that theorem.gfich that for alkz,y with K (z) < & and K (y|z) < ko
it were true then f(_)lea_chy there is ak,-bit programp such K(ylz, f(y),m) <b
that for everyx satisfying K (y|z) < k2, we can reconstruct +
y from the pair(z, p). As stated already, we will show thatwhere f(y) := R(k1, k2, m,y) with I(f(y)) < ka.
p can be made &unctionof y independent of:; but we will i) Using the notation in i), even allowing for much larger
also show thap cannotbe made asimplefunction of . we cannot significantly eliminate the conditional information

Before proceeding with the formal statement and proof required in i): If b satisfies
we introduce a combinatorial lemma. In a context where a

" . X < —5log )

partition V = J; V; of a setV is called a coloring we say 05 b<hy —5log(hy +k2) (3.12)

that two elements havihe same coloif they belong to the then everym satisfying the conditions in i) also satisfies
same setl;.
l(m) Z kg — b — 510%(/%1 + kQ)

Coloring Lemma 3.9:0n a setV, let us be given a set
system withM setssS; (possibly overlapping) of size at most Remark 3.13:Thus the extra information iy needed in
N each. ForB > 0, a B-coloring of this system is a partmon addition to z to restorey can be made a functiori(y) of
vV =U; V;j such thatf#(S; N V;) < B for everyi,j, that jyst ¢, and its minimality implies that it will be essentially
is, there are at mosB points of the same color in a sét. jndependent of:. However, there is a catch: it is indispensible

There is aB-coloring with not more colors than for these results that certain fixed oracle stringdescribing
(N/B)e(MN) 5. how to computef is also used in the transformations. The
. . ) role of this oracle string is to make the complexity function
Remark 3.10:Notice thatN/B colors are trivially required computable over the set of strings of interest O
(and suffice if theS;’s are pairwise-disjoint). O '

_ . Remark 3.14:If also K (y) < k2 then the theorem holds
Proof: |f B = N then one color is enough, S0 assumg, \etrically inz andy. This is the sense in which the short-

B < N. Let us try to color withnN/B colors and then see : ; ;
est program and f(z), convertingz into ¥ andy into
what choice ofn satisfies our needs. We choose the color of brog ¥Ww) /(@) g J J

each element_ oV independently, with a L_Jniform dis_t_ribution 012 t(;]aenSitareizn;nsagweeyncoonn?/vetiil(?rﬁplng : they will be mdepelgdent
among the given number of colors, with probabilipy :=

B/(nN). For eachi, j, we can upper-bound the probability ~ Proof:

that#(S; N V;) > B, using the Chernoff bound (see, e.g., [8]) 1) We first show the existence dt andm with the above
for large deviations in the law of large numbers. In applicatioproperties. As in the proof of Theorem 3.3, &t= (V, E) be

to the present case, this bound says that if in an experim@ngraph with the node sét C {0,1}* and £ consisting of

of N coin tosses the success probabilitypishen for every those edgeswz,y) with K(x) < k; and K (y|x) < ko. Let

o' > p, the probability that there are more thafpy’ successes M =20 N =2k

is at moste®™ with
Sy ={y: (z,y) € E}
1-— Y4 B= /%‘1 + kg

;"

1-p m=#E.

c=yp ln]%—i—(l—p’) ln

We apply this bound withy = B/(nN) and p = B/N. Then#S, < N, an_d the number o:_f:’s with nonemptys,, is_

Summing over all sets (there afd sets) and all colors used@t MOSt. According to the Coloring Lemma 3.9, there is a

in each set (there are at maat colors used to color a set)3-coloring of the M sets S, with at most

we obtain tha'tMNeCN upper-bounds the probability that the (N/B)e(MN)YB = 2¢N/B (3.15)

random coloring is not &-coloring. Let us see what choice

of n makes this bound less thadn colors. LetR be a recursive function computing a coltfty) =
Estimating the second term of the right-hand side above (1, k2, m,y). Using the numbers:;, k, m it reconstructs

lnz < & — 1, itis at mosty’ — p<p’, hence the graphG. Then it finds (if there is no better way, by

" N 1) = (B/NY—1 1. gxhausuve search)ia-coloring of theS,’s set system. Finally,
c<p(_.n(p/p)+N) B/ .)( nnt1) it outputs the color ofy.
Now the conditionV Ne“™ <1 turns intoln (MN)+Nc<0. | et us estimatek (y|z, f(y), m). Without loss of generality
Substituting the above estimate fer we get a stronger ywe can assume that the representationnof< 2k1+kz js

condition In(MN) + B < Blnn, satisfied bylnn = padded up to length exactly; + k. The logarithm of the
(In(MN))/B + 1. number of colors isz ko — log(ky + k2) so with padding we
Theorem 3.11: can represent colof(y) by a string of precisely that length.

i) There is a recursive functioR such that for every pair of Therefore, we can retrievi,, ko from the representations of
integersky, k2 > 0 there is an integem with logm < k1 +k2 m and f(y) in the conditional. Now for every € S,., if we
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are givenky, k2, m,z, and f(y) then we can list the set of alland &, + k. is large enough, then for everywe have
y's in S, with color f(y). Since the size of this list is at most
B, the program to determingin it needs only the number of K(uilw) < K(w) + O (1) < ko

y in the enumeration, with a self-delimiting code of length | et ¢ = min{k;,k, — I(m)}. By (3.18) and (3.19), for every
+ there are at least
I(\2(B)) < log(ky + k2) + 2loglog(ky + k2) v

with A, as in Definition (2.4).
i) Suppose that there is a numbet with the desired values ofi with K(y;|z) < ks. Then, for everyr there must
properties with representation length be at least one of thegg’s, sayy, that satisfies

I{m) <ky—b—>5log(ks + k2) (3.16) K(ylz, f(y),m) > t — 4.51log(ky + ko).

ot —4.5log(k1+k2)

andpb satisfies (3.12). We will arrive from here at a contradicthis follows trivially by counting the number of programs of
tion. First note that the number ofs satisfying K (y|z) < k2 length less thart — 4.5log(ky + k2). Hence, by the property
for somex with K (z) < k; as required in the theorem is 4 > K(y|x, f(y), m) assumed in the statement of the theorem

log# | S L by + by — 221og(ky + k). (3.17) b > min{ky, k2 —I(m)} — 4.5log(k1 + k2).
) . ) . . ) If k1 <ke — I(m) then this contradicts (3.12), otherwise it
Namely, concatenating an arbitrary binary string with  -gntradicts (3.16). 0
K(x) b k1 and an arbitrary string: with K(v) b k2 we
can formy = zv and we haveK (y|z) b K(v) z k2. This IV. COGNITIVE DISTANCE

includes everys with {(z) 2 ki — 1.1logk; and everyv with Let us identify digitized black-and-white pictures with bi-

Jary strings. There are many distances defined for binary
+ . ) strings. For example, the Hamming distance and the Euclidean
< it will be true that for every suclr, all such stringy will  gistance. Such distances are sometimes appropriate. For in-
belong t0 5. . . _ o stance, if we take a binary picture, and change a few bits
Choose an arbitrary recursive functioRl satisfying the ,, that picture, then the changed and unchanged pictures
statements of the theorem and (3.16). For each possible v3luge small Hamming or Euclidean distance, and they do look
c of f(y) (where f(y) := R(ky, k2, m,y)), let similar. However, this is not always the case. The positive and
Y. :={y: fly) = c}. negative prints of a photo have the largest possible Hamming

and Euclidean distance, yet they look similar to us. Also, if we

Because the number ofs is lower-bounded by (3.17) andshift a picture one bit to the right, again the Hamming distance

the size of f(y) is upper-bounded by(f(y)) 2 ko there is may increase by a lot, but the two pictures remain similar.

I(v) 2 ko — 1.1log ko. For appropriate additive constants i

a c¢ such that Many approaches to pattern recognition try to define pattern
+ similarities with respect to pictures, language sentences, vocal
log #Y. > k1 — 2.2log(k1 + k2). (3.18) utterances, and so on. Here we assume that similarities be-

Let I be the first such: found when enumerating all the setWeen objects can be represented by effectively computable
Y,. This enumeration can be done as follows: Usingwe fur}ctlons (qr even upper—sem!cgmputable fu_nc_:uons) of blngry
enumerate all: with K(z) < k; by running all programs strings. This seems like a m|n|mal prereqwsne for.machme
of length < %, in rounds of one step per program; when Rattern recognition and'physmal co_gmtlve processes in general.
program halts its output is the next enumerated. For all L€t us show that the distandg, defined above is, in a sense,
of the enumerated’s, we usek, to enumerate all’s with minimal among alllsqch.reason_able S|m|Ia_r|ty measures.
K(y|z) < ks in a similar fashion. Finally, for each enumerated For a.cognm\'/e similarity metrlq the metric requirements do
y computef(y) = R(k1, k2, m,y) and enumerate thg,’s. not suffice: a distance measure lik¥z,y) = 1 for all x ;é y
Therefore, given the recursive functioR, the integers Must be excluded. For eachand d, we want only finitely

k1, ks, m, and an constant-length program we can enuméeRany element_s;/ at a distanced f_rom x. Exactly how fz?lst
ate theY,’s, determinel, and enumeratd;. We can de- We want the distances of the stringsrom z to go toco is

scribe R by a constant-length self-delimiting program an@©t important: it is only a matter of scaling. In analogy with
the integersk:,k»,m by a self-delimiting programy := Hamming distance in the space of binary sequences, it seems
A3(k1)As(k2)As3(m) with A3 as in Definition (2.4). Then, for natural to require that there should not be more tifastrings

every: such thaty; is theith element in this enumeration f ¥ ata distancel from . This would be a different requirement
i for eachd. With prefix complexity, it turns out to be more

K(y;) Ig(u) +logi + 1.1loglog convenient to replace this double series of requirements (a
+ different one for each: andd) with a single requirement for
<Il(m) +logi+ 4.4log(ky + k2). eachz

If Z 2= PEw) <1,
logi < ko —I(m) — 4.5log(k1 + k2) (3.19) yyFe
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We call this thenormalization propertysince a certain sum is is an upper-semicomputable function with
required to be bounded by.
We consider only distances that are computable in some Z 2= <1
broad sense. This condition will not be seen as unduly re- yiyFEz
strictive. As a matter of fact, only upper semicomputability of N
D(z,y) will be required. This is reasonable: as we have moteen K (y|x) < f(z,y). This implies that for every admissible
and more time to processandy we may discover more anddistanceD(-,-) we have both
more similarities among them, and thus may revise our upper

bound on their distance. The upper semicomputability means K(y|x) 2 D(x,y) and K (z|y) 2 D(y, ). O
exactly thatD(x, y) is the limit of a computable sequence of
such upper bounds. Remark (Universal Cognitive Distance) 4.3he universal

admissible distancé; minorizesall admissible distances: if

Definition 4.1: An admissible distanceé)(z,y) is a total : | q dmissible di h
nonnegative function on the pairsy of binary strings that is 'O PICtUres arel-close under some admissible distance, then

0 if and only if z = v, is symmetric, satisfies the triangle inthey are< d-close under this universal admissible distance.
equality, is upper-semicomputable and normalized, that is, iti§at is, the latter discovers all effective feature similarities or
an upper-semicomputable, normalized, metric. An admissilsiegnitive similarities between two objects: it is the universal
distanceD(z, ) is universalif for every admissible distance cognitive similarity metric. O
D'(z,y) we have

+ V. REVERSIBLE COMPUTATION DISTANCE
D(@,y) < D(z,y)- Reversible models of computation in which the transition
The following theorem shows tha; is a universal (that is, fUNction is one-to-one have been explored especially in con-
optimal) admissible distance. We find it remarkable that thECtion with the question of the thermodynamic limits of
distance happens to also have a “physical” interpretation as figinPutation. Reversible Turing machines were introduced by
approximate length of the conversion program of Theorem 3l€cerf [18], and independently but much later by Bennett [3],
and, as shown in the next section, of the smallest program that Further results concerning them can be found in [4], [5],

transformsz into 4 on a reversible machine. [19], an_d [20]. . .
Consider the standard model of Turing machine. The ele-

Theorem 4.2:For an appropriate constaatlet E(z,y) = mentary operations are rules in quadruple formata, b, ¢)
Ei(z,y) + ¢ if = # y and 0 otherwise. ThenE(z,y) iS meaning that a machine in statescanning symbot writes a
a universal admissible metric. That is, it is an admiSSib@mbd or moves the Scanning head one square left, one square
distance and it is minimal in the sense that for every admissiklght, or not at all (as indicated by) and enters state.

distanceD(z,y) we have Quadruples are said twverlap in domairnif they cause the
+ machine in the same state and scanning the same symbol to
E(z,y) < D(z,y). perform different actions. Aleterministic Turing machinés

defined as a Turing machine with quadruples that pairwise do
Proof: The nonnegativity and symmetry properties argot overlap in domain.
immediate from the definition. To prove the triangle inequality, Now consider a special format (deterministic) Turing ma-
let z, y, » be given and assume, without loss of generality, thghine using quadruples of two typesad/writequadruples and
Ey(z,z) = K(z|z). Then, by the self-delimiting property (or, movequadruples. A read/write quadrugile, a, b, ¢) causes the

the easy direction of the addition property) machine in state scanning tape symbal to write symbolb
+ + and enter state. A move quadruple(p, L, o, q) causes the
Ei(z,2) =K(z|z) < K(y, 2|x) < K(y|lx) + K(#|z,y) machine in state to move its tape head by € {—1,0,+1}

squares and enter stage oblivious to the particular symbol
in the currently scanned tape square. (Herd™ means “one
square left,” 9" means “no move” and 41" means “one
square right.”) Quadruples are said ¢werlap in rangeif
they cause the machine to enter the same state and either
both write the same symbol or (at least) one of them moves
the head. Said differently, quadruples that enter the same
state overlap in range unless they write different symbols. A
Z 9—Ei(zy) < Z o—K(yle) < 1 reversible Turing machiné a deterministic Turing machine
- - with quadruples that pairwise do not overlap in rangek-A

tape reversible Turing machine usgs: + 2) tuples that for
The first inequality follows from the definition of;, and the each tape separately select a read/write or move on that tape.
second one follows from (2.9). Moreover, every pair of tuples having the same initial state

The minimality property follows from the characterizatiormust specify differing scanned symbols on at least one tape (to
of K(y|z) given after (2.9). This property says thatfifx,y) guarantee nonoverlapping domains), and every pair of tuples

S K(yle) + K(2ly) < Ey(x,9) + Eu(y, 2)-

Hence there is a nonnegative integer constarguch that
Ei(z,2z) < Ei(x,y) + E1(y,2) + ¢ Let this ¢ be the one
used in the statement of the theorem, thiéfx, ) satisfies
the triangle inequality without an additive constant.

For the normalization property, we have

YyFED YiyFED
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having the same final state must write differing symbols on at reversible simulating machine which runs in tireg 7 +<)
least one tape (to guarantee nonoverlapping ranges). and spaceO (Slog (T/S)) compared to the tim& and
To show that each partial recursive function can be com- spaceS of the irreversible machine being simulated.
puted by a reversible Turing machine one can proceed 8
follows. Take the standard irreversible Turing machine com-
puting that function. We modify it by adding an auxiliary
storage tape called the “history tape.” The quadruple rules
are extended t6-tuples to additionally manipulate the history
tape. To be able to reversibly undo (retrace) the computation
deterministically, the new-tuple rules have the effect that theThe connection with thermodynamics comes from the fact
machine keeps a record on the auxiliary history tape consistitigat in principle the only thermodynamically costly computer
of the sequence of quadruples executed on the original tapgerations are those that dogically irreversible i.e., opera-
Reversibly undoing a computation entails also erasing thiens that map several distinct logical states of the computer
record of its execution from the history tape. onto a common successor, thereby throwing away information
This notion of reversible computation means that only onghout the computer’s previous state [3], [4], [11], [16], [20].
to-one recursive functions can be computed. To reversibje thermodynamics of computation is discussed further in
simulatet steps of an irreversible computation franto f(z) Section VIIl. Here we show that the minimal program size
one reversibly computes from inputto output(z, f(z)). Say for a reversible computer to transform inputinto outputy
this takest’ = O (t) time. Since this reversible simulationjs equal within an additive constant to the size of the minimal
at some time instant has to record the entire history of thgnversion stringy of Theorem 3.3.
irreversible computation, its space use increases linearly withthe theory of reversible minimal program size is conve-
the number of simulated stegs That is, if the simulated piently developed using a reversible analog of the univer-

irreversible computation usesspace, then for some constangg, self-delimiting function (prefix machinely defined in
¢ > 1 the simulation uset =~ c+ct time ands’ ~ c+c(s+t)  gection II.

space. After computing frora to f(z) the machine reversibly o . . . .
copies f(z), reversibly undoes the computation fromto  Definition 5.1:A partial recursive functiod”(p, z) is called
f(x) erasing its history tape in the process, and ends wighreversible self-delimiting functioif

one copy ofz and one copy off(x) in the format(z, f(z)) for eachp, F(p,x) is one-to-one as a function af

and otherwise empty tapes. , for eachx, {p: IyF(p,z) = y} is a prefix set;

Let ¢, be_the par_tlal recursive function computed by itr_e for eachy, {p: 3cF(p,z) =y} is a prefix set. 0
suchreversible Turing machineWe let ¢; denote the partial
recursive function computed by théh ordinary (in general ~Remark 5.2: A referee asked whether the last two of these
irreversible) Turing machine. Among the more important progonditions can be replaced with the single stronger one saying
erties of reversible Turing machines are the following [4], [5that{p: 3z, y/'(p,z) = y} is a prefix set. This does not seem

ﬁe-to-one functionsFrom any indexi one may effectively
obtain an indexk such that if ¢; is one-to-one, then
¥, = ¢;. The reversible Turing machineg/,}, there-
fore, provide a ®@del-numbering of all one-to-one patrtial
recursive functions.

[19]. to be the case. O
Universal reversible machin@here is a universal reversible In analogy with Remark 2.7, we can define the notion of a
machine, i.e., an index such that for allk and = reversible self-delimiting computatiomn a reversible Turing

machine. Take a reversible multitape Turing machifievith
Pu((k, ) = (b, i) a special semi-infinite read-only tape called gregram tape

There is now no separate input and output tape, only an
input—output tape. At the beginning of the computation, the
Il?]ead of the program tape is on the starting square.

We say thatM computes the partial functiof'(p, z) by
a reversible self-delimiting computatiahfor all p andx for
which F(p, ) is defined

Irreversible to reversiblefwo irreversible algorithms, one for
computingy from z and the other for computing from v,
can be efficiently combined to obtain a reversible algorith
for computingy from z. More formally, for any two indices
1 andj one can effectively obtain an indéxsuch that, for
any stringsz andy, if ¢;(x) = y and ¢;(y) = =, then

Yi(z) = . « M halts with outputy := F(p,z) written on its output
Saving input copyFrom any index one may obtain an index tape performing a one-to-one mapping« y on the
k; such thaty;, has the same domain as and, for everyr input—output tape under the control of the program

* The program tape head scans all jobut never scans
Pi(z) = (z, i(2)). beyond the end of.

At the end of the computation, the program tape head rests

on the starting square. Once it starts moving backward it

never moves forward again.

Any other work tapes used during the computation are

supplied in blank condition at the beginning of the

Efficiency The above simulation can be performed rather computation and must be left blank at the end of the
efficiently. In particular, for anye>0 one can find a computation.

In other words, an arbitrary Turing machine can be sim- )
ulated by a reversible one which saves a copy of the
irreversible machine’s input in order to assure a global |
one-to-one mapping.
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STAGE AND ACTION | PROGRAM WORK TAPE In stage 2, making an extra copy of the output onto blank
tape is an intrinsically reversible process, and therefore can be

‘;- glitial COﬂﬁsuraﬁionh_ prog = (yle)-bist done without writing anything further in the history. Stage 3

. Compute y, saving history prog v y|z)-history . . ;

2. Copy y to blank region prog  y (ylo)-history y exactly l_Jndoes the work (_)f stage 1, which is possible because

3. Undo comp. of y from = prog z y of the history generated in stage 1.

4. Swapzandy prog v ) z Perhaps the most critical stage is stage 5, in whicls

5. Compute z, saving history prog z  (z|y)-history < . .

6. Cancel extra z prog  z (x|y)-history computed fronfy for the sole purpose of generating a h|sFory of

7. Undo comp. of z from y prog y that computation. Then, after the extra copyza reversibly

. T . . disposed of in stage 6 by cancelation (the inverse of copying
Fig. 1. Combining irreversible computations gffrom = andz from y to . ;
achieve a reversible computation gffrom . onto blank tape), stage 7 undoes stage 5, thereby disposing of

the history and the remaining copy ©f while producing only
) the desired outpuy.
It can be shown (see the references given above) thajgt only are all its operations reversible, but the compu-
a function I is reversible self-delimiting if and only if it {5t5ns fromsz to y in stage 1 and fromy to « in stage 5
can be computed by a reversible self-delimiting computatiopye place in such a manner as to satisfy the requirements for
Informally, again, we will call a reversible self-delimiting, eyersible prefix interpreter. Hence, the minimal irreversible
function also areversible self-delimiting (prefix) machine  ¢qnyersion program, with constant modification, can be used

_ A universal reversible prefix machiriér, which is optimal as a reversible program fdrR to computey from z. This
in the same sense of Section Il, can be shown to exist, and gyf

: ) ! - ablishes the theorem. O
reversible Kolmogorov complexit{R (y|z) is defined as
Definition 5.4: Thereversible distancé»(x, y) between

KR (y|z) := min{l(p):UR (p, ) = y}. and y is defined by

In Section Ill, it was shown that for any strings and
y there exists a conversion program of length at most
logarithmically greater than

Es(z,y) := KR (y|z) = min{l(p):UR (p,z) = y}. O

As just proved, this is within an additive constant of the size
Ei(z,y) = max{K(y|z), K(x|y)} of the minimal conversion program of Theorem 3.3. Although
it may be logarithmically greater than the optimal distahge
such thatl/(p, z) = y andU(p, y) = . Here we show that the it has the intuitive advantage of being the actual length of a
length of this minimal such conversion program is equal withigoncrete program for passing in either direction betweand
a constant to the length of the mininralersibleprogram for 4, The optimal distance”; on the other hand is defined only
transforming into y. as the greater of two one-way program sizes, and we do not
Theorem 5.3: know whether it corresponds to the length of any two-way
+ . _ _ translation program.
KR (yle) = min{i(p): Ulp, x) = y. Ulp,y) = z}- E>(z,y) may indeed be legitimately called a distance be-
Proof: cause it is symmetric and obeys the triangle inequality to
within an additive constant (which can be removed by the

+ - . .
The minimal reversible program fay from z, with " . ; .
(>) th versive prog ¥ oW additive rescaling technique used in the proof of Theorem 4.2).

constant modification, serves as a programsfdrom z for
the ordinary irreversible prefix machiiié, because reversible Theorem 5.5:

prefix machines are a subset of ordinary prefix machines. We

can reverse a reversible program by addingJg1) bit prefix Es(z,2) 2 Es(x,y) + Ea(y, 2).
program to it saying “reverse the following program.”

(2) The proof of the other direction is an example of the  Proof: We will show that, given reversiblER programs
general technique for combining two irreversible programs, ferandg, for computing(y|x) and(z|y), respectively, a program
y from z and forz from v, into a single reversible program forof the form spg, wheres is a constant supervisory routine,
y from z. In this case, the two irreversible programs are theerves to compute from z reversibly. Because the programs
same, since by Theorem 3.3 the minimal conversion prograre self-delimiting, no punctuation is needed between them.
p is both a program fog givenxz and a program for: given If this were an ordinary irreversiblé/ computation, the
y. The computation proceeds by several stages as showrcimcatenated prograspg could be executed in an entirely
Fig. 1. To illustrate motions of the head on the self-delimitingtraightforward manner, first usingto go fromz to y, then
program tape, the programis represented by the string “prog”using ¢ to go from y to z. However, with reversible/R
in the table, with the head position indicated by a caret. programs, after executing, the head will be located at the
Each of the stages can be accomplished without using a@mginning of the program tape, and so will not be ready to
many-to-one operations. begin readingg. It is therefore necessary to remember the
In stage 1, the computation aof from z, which might length of the first program segmepnttemporarily, to enable
otherwise involve irreversible steps, is rendered reversililee program head to space forward to the beginning, difut
by saving a history, on previously blank tape, of all théhen cancel this information reversibly when it is no longer
information that would have been thrown away. needed.
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Stage and Action | Program tape Work Tape Remark 6.1:Since p will be consumed it would be too
awkward and not worth the trouble to try to extend the

0. Initial configuration pprogaprog notion of self-delimiting for this case; so, the computations
1. Compute (y|z), transcribing pprog. | PProgaprog - PPIOE e consider will not be self-delimiting over. O

2. Space forward to start of qprog. pprogdprog Yy  pprog

3. Compute (zy). pprogqprog  z  pprog It follows from the existence of universal reversible Turing
4. Cancel extra pprog as head returns. | pprogqprog =z

machines mentioned in Section V that there is a universal re-
Fig. 2. Reversible execution of concatenated programgifhr) and(z|y)  versible Turing machiné/R’ (not necessarily self-delimiting)

to transformz into =. such that for all functiong” computed on a reversible Turing
machine, we have

A scheme for doing thi_s_is s_ho_wn_ in Fig. 2, where the Eur (z,y) < Ep(z,y) + cp
program tape’s head position is indicated by a caret. To
emphasize that the programsand ¢ are strings concatenatedfor all = andy, wherecr is a constant which depends én
without any punctuation between them, they are representd#t not onx or y.

respectively in the table by the expressions "pprog” and gomark 6.2:1n our definitions we have pushed all bits to

“quJ\lrog,” arrl]d their Cong?ter]‘a“om,?Y “pprqufrpg'” iahtf be irreversibly provided to the start of the computation and all
ofice that transcribing “pprog” In stage 1 1s straightiorg;q 4 e irreversibly erased to the end of the computation. Itis

ward: as long as the program tape head moves forward S% y to see that this is no restriction. If we have a computation

a transcription will be done; according to our definition Olhere irreversible acts happen throughout the computation,

reversible self-de_limiting com_putation above, this way thfﬁen we can always mark the bits to be irreversibly erased,
whole program will be transcribed. waiting with actual erasure until the end of the computation.
Similarly, the bits to be provided can be provided (marked) at

the start of the computation while the actual reading of them

VI. Sum DISTANCE (simultaneously unmarking them) takes place throughout the

Only the irreversible erasures of a computation need ggmputation. , . .
dissipate energy. This raises the question of the minimalBY L@ndauer's principle, which we meet in Section VIIL,
amount of irreversibility required in transforming strimgnto th_e number of irreversible bit erasures -in -a compgtatl_on
string v, that is, the number of bits we have to addateat gives a lower bqund on the_ unavoidable energy dissipation
the beginning of a reversible computation framto , and ©f the computation, each bit counted a%'In 2, where
the number of garbage bits left (apart frap at the end of is Boltzmann’s constant an@’ the absolute temperature in

the computation that must be irreversibly erased to obtaind§9r€€s Kelvin. Itis easy to see (proof of Theorem 6.4) that
“clean” y. the minimal number of garbage bits left after a reversible

The reversible distancg, defined in the previous section,Compu'[at?on going frorm toy is aboutK (z[y) and in the
is equal to the length of a “catalytic’ program, which allow$CMPutation fromy to x it is about & (y|x). O

the interconversion of: and y while remaining unchanged Definition 6.3: We fix a universal reference reversible Tur-

itself. Here we consider noncatalytic reversible computatiofisy machinel/R'. The sum distancefs(x,y) is defined by

which consume some informatign besidesz, and produce

some informationg besidesy. Es(z,y) := Eur (r,y). -
Even though consuming and producing information may

seem to be operations of opposite sign, we can define & neorem 6.4:

distanceFs(-,-) based on the notion of information flow, asp., (; ) = K(z|y) + K(y|z) + O (log(K (z]y) + K (y|z))).

the minimal sum of amounts of extra information flowing

into and out of the computer in the course of the com- Proof:

putation transforminge into y. This quantity measures the (>) We first show the lower boun&s(z,y) > K(y|z) +

number of irreversible bit operations in an otherwise reversiblé(x|y). Let us use the universal prefix machitieof Section

computation. The resulting distance turns out to be withih Due to its universality, there is a constant-length binary

a logarithmic additive term of the sum of the conditiona$tring » such that for allp, z we have

complexities K (y|z) + K(z|y). See [20] for a more direct . _ y

proof than the E)n|e)provid(e(|1 r)1ere, and for a study of resource- UrAa(p), =) = (U ({p, 2)))2-

limited (for example, with respect to time) measures of th@he function), in Definition (2.4) makeg self-delimiting.

number of irreversible bit operations. For our treatment heRecall that(-,-), selects the second element of the pair.)

it is crucial that computations can take unlimited time an8upposeUR’'({p,z)) = (g,v). Then it follows thaty =

space and thereforBjs(-, -) represents a limiting quantity that/(r \»(p), z), hence

cannot be realized by feasible computation. For a function + + +

computed by a reversible Turing machine, define K(ylz) < l(riap)) < l(Xa(p)) < l(p) + 2logl(p).

Since the computation is reversible, the garbage information
Er(z,y) == min{l(p) + (q): F{{p,x)) = {q, ) }. ¢ at the end of the computation yieldig, ¢) serves the role
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of program when we reverse the computation to compute VIIl. T HERMODYNAMIC COST

from y. Therefore, we similarly have Thermodynamics, among other things, deals with the
+ mounts of h nd work ideally requir he m
K(zly) <lg)+2logl(g) amounts of heat a d work ideally required, by the most
efficient process, to convert one form of matter to another. For
which finishes the proof of the lower bound. example, at 8C and atmospheric pressure, it takes 80 calories
(<) Let us turn to the upper bound and assume of heat and no work to convert a gram of ice into water at
by = K(zly) < ks = K(y|2) the same temperature and pressure. From an atomic point of

view, the conversion of ice to water af© is a reversible
with [ = ks — k1 > 0. According to Theorem 3.3, there is aprocess, in which each melting water molecule gains about
string d of length such that 3.8 bits of entropy (representing the approximateh?-fold
+ increased freedom of motion it has in the liquid state), while
K(xdly) < ky + K(ky, k) the environment loses 3.8 bits. During this ideal melting
and process, the entropy of the universe remains constant, because
K (y|zd) 2 k1 + K (k1 k2). the entropy gain by the ice is compensated by an equal
) _ ... entropy loss by the environment. Perfect compensation takes
According to Theorem+s 3.3 and 5.3 there 'S_ a Self'del_'m't"}ﬂace only in the limit of slow melting, with an infinitesimal
program g of length = &, + K(ki,k2) going reversibly emperature difference between the ice and the water.
betweemd and y. Thergfore, W|th a cqnstant extra program Rapid melting, e.g., when ice is dropped into hot water,
s, the universal reversible machine will go frogd 0 gy.  ig thermodynamically irreversible and inefficient, with the hot
And by the above estimates water losing less entropy than the ice gains, resulting in a net
U(qd) +1(q) 2 %1 + 1+ 2K (ky, ko) = k1 + ko + O(log k). and' irredeema.ble entropy increa;e for the combined §ystem.
(Strictly speaking, the microscopic entropy of the universe
O as a whole does not increase, being a constant of motion in

Note that all bits supplied in the beginning to the comput&’pth classical and quantum mechanics. Rather what happens

tion, apart from inputz, as well as all bits erased at the end O\P/hen ice is dropped into hot water is that the marginal entropy

the computation, areandombits. This is because we supply®f the (ice+ hot water) system increases, while the entropy
f the universe remains constant, due to a growth of mutual

and delete only shortest programs, and a shortest progral s ) ; )
satisfiesk () > I(¢), that is, it is maximally random. information mediated by subtle correlations between the (ice

_ . _+ hot water) system and the rest of the universe. In principle,
Remark 6.5: It is easy to see that up to an additive logariththese correlations could be haressed and redirected so as to
mic term the functionks (=, y) is a metric on{0, 1}*; in fact cayse the warm water to refreeze, but in practice the melting
it is an admissible (cognitive) distance as defined in Sectign irreversible.)
V. [ Turning again to ideal reversible processes, the entropy
change in going from stat& to stateY is an antisymmetric
The metrics we have considered can be arranged in increéig most efficient process, it gives up 3.8 bits of entropy per
lo, i
ing order. As before, the relatioll means inequality to within molecule o the environment. When more than two states are
N log log log involved, the entropy changes are transitive: thus the entropy
an additiveO (log), and = means< and > . change per molecule of going from ice to water vapor at
Ei(z,y) = max{ K (y|x), K(z|y)} 0°C (+ 32:6 bits) plus that for going from vapor to !iquid Watgr
log (— 28.8 hits) sum to the entropy change for going from ice
= Ex(x,y) = KR (y|z) i i itivi
2\ to water directly. Because of this asymmetry and transitivity,
£ Eo(z,y) = min{l(p) : U(p,z) = y,U(p,y) =z}  entropy can be regarded as a thermodynamic potential or
state function: each state has an entropy, and the entropy

log lo

< K(zly) + K(ylz) = Es(z,y) change in going from stat¥ to stateY” by the most efficient
log rocess is simply the entropy difference between stdfes
< 2E (z,y). anY‘ Py Py

The sum distancé’s is tightly bounded between the optimum Thermodynamic ideas were first successfully applied to
distancel; and twice the optimal distance. The lower boungomputation by Landauer. According k@ndauer’s principle
is achieved if one of the conditional complexitids(y|x) [4], [6], [16], [26], [27], an operation that maps an unknown
and K (z|y) is zero, the upper bound is reached if the twetate randomly chosen from amongquiprobable states onto
conditional complexities are equal. a known common successor state must be accompanied by
It is natural to ask whether the equality an entropy increase dbg, n bits in other, non-information-
Fu(z,y) log 1, (,9) bearing degrees of freedom in the computer or its environment.
nY A8 Y At room temperature, this is equivalent to the production of
can be tightened. We have not tried to produce a counteréi In 2 (about7 - 10-22) calories of waste heat per bit of
ample but the answer is probably no. information discarded.
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The point here is the change from “ignorance” to “knowlSuch indirect conditional complexities, in which the input
edge” about the state, that is, the gaining of information amstring is supplied as a minimal program rather than directly,
not the erasure in itself (instead of erasure one could consith@ve been advocated by Chaitin [7] on grounds of their simi-
measurement that would make the state known). larity to conditional entropy in standard information theory.

Landauer’s priniciple follows from the fact that such a An analogous antisymmetric cost measure based on the
logically irreversible operation would otherwise be able tdifference of direct conditional complexities
decrease the thermodynamic entropy of the computer's data ,
without a compensating entropy increase elsewhere in the Wilylz) = K(zly) - K(ylz)

universe, thereby violating the second law of thermodynamicgss introduced and compared with (z|y) by Zurek [26],
Converse to Landauer's principle is the fact that when g, noted that the two costs are equal within a logarithmic
computer takes a physicedndomizingstep, such as t0ssing aqditive term. Here we note that”(y|z) is nontransitive to
coin, in which a single logical state passes stochastically i{ogimilar extent.
one of n equiprobable successors, thgt step can, if pmpe”yCIearIy,W’(mx) is tied to the study of distandgs, the sum
harnessed, be used to remol,n bits of entropy from . jrreversible information flow in and out of the computation.
the computer’'s environment. Models have been constructgﬁamew analysis of the proof of Theorem 6.4 shows that
obeying the usual conventions of classical, quantum, apd 4 |ogarithmic additional terms, a necessary and sufficient
thermodynamic thought-experiments [1], [3], [4], [10], [11]ymper of bits of (y|z) (the program) needs to be supplied
[15]-[17], [23] showing both the ability in principle to performy; the start of the computation fromto y, while a necessary
Ioglc_ally rev¢r5|b!e computations in a thermodynamlcal!y '&nd sufficient number of bits ok (z|y) (the garbage) needs
versible fash_pn (i.e., with arbitrarily Ilttl_e entropy production)yq pe irreversibly erased at the end of the computation.
and the ability to harness entropy increases due to dage thermodynamical analysis of Landauer's principle at the
randomization ywthm a computer to reduce correspondmgbéginmng of this section says the thermodynamic cost, and
the entropy of its environment. . hence the attending heat dissipation, of a computation of
In view of the above considerations, it seems reasonallgm, . is given by the number of irreversibly erased bits minus
to assign each string an effectl_ve thermodynamlc_ entropYyihe number of irreversibly provided bits, that I’ (y|).
equal to its Kolmogorov complexiti( (). A computation that ¢ js known that there exist strings [13]of each length such
erases am-bit random string would then reduce its entropypat K(z*|z) ~ logl(z), wherez* is the minimal program
by n bits, requiring an entropy increase in the environment gf, .. According to theW’ measure, erasing such anvia
at leastn bits, in agreement with Landauer’s principle.  he intermediate:* would generatdog /(z) less entropy than
Conversely, a randomizing computation that starts with &asing it directly, while for thé? measure the two costs

string ofn zeros and producesrandom bits has, as its typical\yqyld be equal within an additive constant. Indeed, erasing in
result, an algorithmically random-bit string z, i.e., one for 4, steps would cost only

which K(z) = n. By the converse of Landauer’s principle,

this randomizing computation is capable of removing up t& (x|z*)— K (z*|z)+ K (z*|0) — K(0|z™) = K(x)— K(z*|z)

n bits of entropy from the environment, again in agreement o

with the identification of the thermodynamic entropy an#hile erasing in one step would cost

Kolmogorov complexity. _ _ K(z|0) — K(0|z) = K(z).

What about computations that start with one (randomly

generated or unknown) string and end with another string Subtle differences like the one betweBhand W’ pointed

y? By the transitivity of entropy changes one is led to say thatit above (and resulting in a slight nontransitivity Bf’)

the thermodynamic cost, i.e., the minimal entropy increase diepend on detailed assumptions which must be, ultimately,

the environment, of a transformation efinto 4 should be motivated by physics [27]. For instance, if one were to follow

Chaitin [7] and define & c-complexity asKc(x) := K(x),

W(yle) = K(z) - K(y) Ke(z,y) = K(z,y) but the conditional information

because the transformation ofinto y could be thought of fc(ylz) = K(ylz™) then the joint information would

as a two-step process in which one first erasethen allows be given directly byKe(z,y) = Ke(z) + Ke(ylz), and

y to be produced by randomization. This cost is obviousiie Kc-analogsWe'(ylx) = We(y|z) would hold without

antisymmetric and transitive, but is not even semicomputablegarithmic corrections (becauséc(y|zr) = Kc(y|z*)). This

Because it involves thelifference of two semicomputable K¢ notation is worth considering especially because the joint

quantities, it is at best expressible as ttnmonotondimit and conditionalK c-complexities satisfy equalities which also

of a computable sequence of approximations. Invoking ti@tain for the statistical entropy (i.e., Gibbs—Shannon entropy

identity (2.11)K(z,y) + K(z)+ K(y|lz*), wherez* denotes Qeﬁned in terms of_probab|I|t|es) without logarithmic correc-

the first minimal program forr in enumeration order (or tions. This makes it a closer analog of the thermodynamic

equivalently, z* := (z,K(z))), the above cost measure€Ntropy. Moreover—as_discussed by Zurek [27], in a cyc!ic
W (y|z) can also be interpreted as a difference in conditionB[0cess Of a hypothetical Maxwell demon-operated engine
complexities involving acquisition of information through measurement,

expansion, and subsequent erasures of the records compressed
W(ylz) £ K(z|ly*) — K (y|z*). by reversible computation—the optimal efficiency of the cycle
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could be assured only by assuming that the relevant minintedwever, differently. Whilelog #B1(d,z,n) grows essen-

programs are already available. tially like d, the functionlog #Bs(d, xz,n) grows essentially
These remarks lead one to consider a more general istike d/2. This follows from the somewhat more precise result

of entropy changes in nonideal computations. Bennett [4] aimd Theorem 9.3 below. First we treat the general case below

especially Zurek [27] have considered the thermodynamicstbfat says that balls around of radiusd with ¢ random with

an intelligent demon or engine which has some capacity tespect tox contain less elementsieighborhoods of tough

analyze and transform databefore erasing it. If the demonradius’s contain less neighbars

erases a random-looking string, such as thefitsinary digits ) . .

of 7, without taking the trouble to understand it, it will commit Theorem 9.1:Let z be a binary string of lengtn. The

a thermodynamically irreversible act, in which the entrop9umber of binary stringg with £1(z,y) < d satisfies

of the data is decreased very little, while the entropy of the log #B,(d, z) £ d — K(d|z)
environment increases by a full bits. On the other hand, if i n
the demon recognizes the redundancytjrit can transformr d— K(d) <log#B1(d,z,n) <d— K(d|r).

to an (almost) empty string by a reverS|bI_e computation, arJ[(Ij1e last equation holds only for > d — K(d): for n<d —
thereby accomplish the erasure at very little thermodynamic T
cost. See [22] for a comprehensive treatment. K(d) we havelog #B,(d, x,n) = n.

More generally, given unlimited time, a demon could ap-  FTo0f: .
proximate the semicomputable functiéi{x) and so compress  (B1(d,z) <) For every binary stringe
a stringz to size K (z) before erasing it. But in limited time, oo
the demon will not be able to compressso much, and will Z#Bl(d,x)Z*d*I
have to generate more entropy to get rid of it. This tradeoff ;=¢
between speed and thermodynamic efficiency is superficially
similar to the tradeoff between speed and efficiency for phys-
ical processes such as melting, but the functional form of the
tradeoff is very different. For typical physical state changes
such as melting, the excess entropy produced per molecule =
goes to zero inversely in the timeallowed for melting to
occur. But the time-bounded Kolmogorov complexiy (x),
i.e., the size of the smallest program to compuie time less
thant, in general approaches(x) only with uncomputable

slowness as a function df and z. These issues have beeqNhere the last inequality follows from the propertiesii(-, )
analyzed in more detail by two of us in [20]. quatty prop v

proven in Theorem 4.2. Since

M=

g—d+j—1 Z 9—J

0 y:Er(z,y)=j&y#z
o—d+i—1 Z 9—E1(z.u)
Yy B (w,y)=j&y7#

o—i Z o~ Eiley) <
1 Y YFEx

.,
Il

<,
Il
o

[ L[ T1V]e
M-

-
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IX. DENSITY PROPERTIES f(@, d) :=log(2**" /#B,(d, z))

In a discrete space with some distance function, the rateisfupper-semicomputable and satisfley, 2—fl=d) < 1 py
growth of the number of elements in balls of sidecan be Lemma 2.10 we have
considered as a kind of “density” or “dimension” of the space.
For all information distances one significant feature is how
many objects there are within a distant®f a given object. + o K(de) _ _
From the pattern recognition viewpoint such information tells (Bl(d{x) >) For ,a" 0 <2 ! .conS|der the §tr!|jgs
how many pictures there are within the universal admissib¥e = As(i)z wheres is the self-fjellm}tln%f?(?delm?f Definition
(max) distanceE, (z,y) = d. For the reversible distance(2-4)- The number of such S}:'ngﬁ Is 2 . Clearly,
Es(z,y) = d this tells us how many objects one can reaclr every i, we haveK(xzly;) = 0 and K(y;|lz) = K(i[x).
using a reversible program of length For the sum distance Therefore,
Es(x,y) = d this tells us how many objects there are within
d irreversible bit operations of a given object.

K(dle) < f(z,d) £ d —log #B1(d, ).

Ei(z,u) < K(i]z).

Recall the distances Eachi can be represented by a string of length precisely
d— K(d|z), if necessary by padding it up to this length. lget
Er(z,y) = max{K(zly), K (y|z)} be a shortest self-delimiting program computifrom z. By
and definition,i(q) = K(d|x). The programyz; is a self-delimiting
Es(z,y) g K(zly) + K(y|x). program to compute from z: Useq to computed from = and

subsequently use
For a binary stringe of lengthn, a nonnegative numbe, _ e
andi = 1,3, let B;(d,z) be the set of stringg # = with d—U(g) = d— K(dlz) = l(z)
Ei(x,y) < d, and Bi(d,z,n) := Bi(d,x) N {0,1}". to determine where; ends. Hence,
The functionsB;(d, =) behave rather simpiog # B;(d, z) N
grows essentially liked. The functionsB;(d, z,n) behave, K(ilz) <l(qz)=4d
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from which E; (z, ;) 2 d follows. The implied additive con- Proof: Let

Lt :
stants in< can be removed in any of the usual ways. K(z) log . _ §(n)

(Bi(d,z,n) 2) Since#B(d,z,n) < #B1(d, z) the upper N
bound on the latter is also an upper bound on the former. (for example,K(x) = n + K(n) — 6(n)).

(Bi(d, z,n) T andn > d— K(d)) For thed — K (d) lower (=) Lety ="z with () = n and!(z) =*{5(n), and letz*
bound onlog #B;(d,z,n) the proof is similar but now we be the first self—dglfmltlng program.far (iz") = K()) that
consider alki < 2¢—X(® and we choose the strings = z & we find by dovetailing all computations on programs of length
where@ means bitwise exclusive—or (ifi) < then assume €SS tham. We can retriever from y using at mosO (log )
that the missing bits are’s) bits. There are2®™ different suchy’s. For each suchy we

(Bi(d, z,n) andn <d — K(d)) In that case we obtain all have K (z|y) = O (1), sincez can be retrieved frony using
strings i7n{70 13" asy,'s in the previous proof x*. Now suppose that we also replace the fixed fiyst bits

’ ! ' of y by an arbitraryu € {0,1}%/? for some value of to be

Note that (d) < logd + 2loglog d. It is interesting that d?tern;iged later. Then, the total numberyo§ increases to
a similar dimension relation holds also for the larger distan@ /2.

lo i i < d.
Es(z,y) og K(y|z) + K(zly). These choices of must satisfyEs(x,y) < d. Clearly,
Theorem 9.2Let = be a binary string. The number K(y|x) lig &(n) +1/2.

#Bs(d, z) of binary stringsy with Es(z,y) < d satisfies |
Moreover,K (z|y) < 1/2 since we can retrieve by providing
log #Bs(d, ) % d — K(d|z). 1/2 bits. Therefore,

lo
Proof: K (aly) + K (ylz) < 1/2+ 6(n) +1/2.
+ . . .
(Eg) This fo-llows fr-om the previous theorem sm@ > F. Since the lefi-hand side has value at lo>g d— 5(n).
(>) Consider stringy of the formpz wherep is a self-  This shows that the numbe#Bs(d, z,n) of y's such that
delimiting program. For all such program&(z|y) £ 0, since Es(x,y) < d satisfies
x can be recovered frony by a constant-length program. o §(n) + d
Therefore, log #Bs(d, z,n) > -5

Es(z,y) log K(y|ﬂ7);K(p|ﬂ7)- (£) Assume, to the contrary, that there are at least

2(d+6(n))/2+ elementsy of lengthn such thatEs(z,y) < d
Now just as in the argument of the previous proof, there ahelds, with ¢ some large constant to be determined later.

at least2?~ % (d#) sych stringg with K(p|z) < d. O Then, for somey
The number.of strings of length w.ithin any Eg—distance K(ylz) > d+8(n) +e.
of arandomstring = of lengthn (that is, a string withK (z) 2

nearn), turns out to be different from the number of string8y assumption,
of lengthn within the sameF;-distance. In theF’s-distance: o
“tough guys have few neighbors of their own Size K(x) R 6(n), K(y) .
In particular, a random string of lengthn has only about N ]
24/2 strings of lengthn within Es-distanced while there BY the addition Theorem 2.11 we find
are essentiall\2? such strings withinZ; -distanced of z by log
Theorem 9.1. Moreover, since Theorem 9.2 showed that every n+(d=6(n))/2+c < n+ K(zly).
string has essentiallg? neighbors altogether ifs-distance But this means that

d, for every random stringc asymptoticallyalmost all its
log d — 8(n)

neighbors within£s-distanced havelength unequaln. The K(zly) > ——~ +¢
following theorem describes the general situation. 2
Theorem 9.3:For eachz of lengthn we have and these two equations contradic{zy) + K (y|z) < d for
large enough: = O (logn). O
log #Bs(d, z,n) log n+d— K(x) It follows from our estimates that in every set of low
2 Kolmogorov complexity almost all elements are far away from

each other in terms of the distanég.

If S is a finite set of low complexity (like a finite initial
segment of a recursively enumarable set) then almost all pairs
of elements in the set have large information distance. Let
the Kolmogorov complexityi{(S) of a set be the length of a
(For n — K(x) > d we havelog #Bs(d,z,n) i d.) shortest binary program that enumerateand then halts.

provided

n—K(z) <d.
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Theorem 9.4:For a constantc, let S be a set with [10] R. P. Feynman, “Quantum mechanical compute@pt. Newsvol. 11,

#S = 2¢ and K(S) = clogd. Aimost all pairs of elements
x,y € S have distanceF;(x,y) > d, up to an additive
logarithmic term.

(11]

[12]

The proof of this theorem is easy. A similar statement can

be proved for the distance of a strimgpossibly outsides) to

(23]

the majority of elementg in S. If K(z) > n, then for almost

all y € S we haveE(z,y) > n+d=£ O (logdn).

. (16
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[14]
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