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All musical pieces are similar, but some are more
similar than others. Apart from serving as an infi-
nite source of discussion (“Haydn is just like Mo-
zart—No, he’s not!”’), such similarities are also
crucial for the design of efficient music informa-
tion retrieval systems. The amount of digitized
music available on the Internet has grown dramati-
cally in recent years, both in the public domain and
on commercial sites; Napster and its clones are
prime examples. Web sites offering musical content
in some form like MP3, MIDI, or other, need a way
to organize their wealth of material; they need to
somehow classify their files according to musical
genres and subgenres, putting similar pieces to-
gether. The purpose of such organization is to en-
able users to navigate to pieces of music they
already know and like, but also to give them advice
and recommendations (“If you like this, you might
also like . . .”’). Currently, such organization is
mostly done manually by humans, or based on pat-
terns in the purchasing behaviors of customers.
However, some recent research has been examining
the possibilities of automating music classification.
A human expert, comparing different pieces of
music with the goal of clustering similar works to-
gether, will generally look for certain specific simi-
larities. Previous attempts to automate this process
do the same. Generally speaking, they take a file
containing a piece of music and extract from it
various specific numerical features, related to
pitch, thythm, harmony, etc. One can extract such
features using, for instance, Fourier transforms
(Tzanetakis and Cook 2002) or wavelet transforms
(Grimaldi, Kokaram, and Cunningham 2002). The
feature vectors corresponding to the various files
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are then classified or clustered using existing clas-
sification software, based on various standard sta-
tistical pattern recognition classifiers (Tzanetakis
and Cook 2002), Bayesian classifiers (Dannenberg,
Thom, and Watson 1997), hidden Markov models
(Chai and Vercoe 2001), ensembles of nearest-
neighbor classifiers (Grimaldi, Kokaram, and Cun-
ningham 2002), or neural networks (Dannenberg,
Thom, and Watson 1997; see also a paper by Paul
Scott available online at www.stanford.edu/class/
eed73a/musicclassification.pdf).

For example, one feature to look for would be
tempo in the sense of beats per minute. One can
make a histogram in which each histogram bin cor-
responds to a particular tempo in beats per minute,
and the associated peak shows how frequent and
strong that particular periodicity was over the en-
tire piece. In Tzanetakis and Cook (2002), we see a
gradual change from a few high peaks to many low
and spread-out ones proceeding from hip-hop, rock,
and jazz to classical. One can use this similarity
type to try to cluster pieces in these categories.
However, such a method requires specific and de-
tailed knowledge of the problem area, because one
needs to know the features for which to look.

Our aim is much more general. We do not look
for similarity in specific features known to be rele-
vant for classifying music; instead we apply a gen-
eral mathematical theory of similarity. The aim is
to capture, in a single similarity metric, every ef-
fective metric: effective versions of Hamming dis-
tance, Euclidean distance, edit distances (Orpen
and Huron 1992), Lempel-Ziv distance (Cormode et
al. 2000), and so on. Such a metric would be able to
simultaneously detect all similarities between
pieces that other effective metrics can detect.
Rather surprisingly, such a ““universal’”’ metric in-
deed exists. It was developed in Li et al. (2001), Li
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and Vitanyi (2002), and Li et al. (2003), based on the
“information distance’” of Li and Vitdnyi (1997) and
Bennett et al. (1998). Roughly speaking, two objects
are deemed close if we can significantly “‘com-
press’”’ one given the information in the other, the
idea being that if two pieces are more similar, then
we can more succinctly describe one given the
other. Here compression is based on the ideal
mathematical notion of Kolmogorov complexity,
the length of the shortest compressed code from
which the original object can be losslessly repro-
duced by an effective decompressor.

Unfortunately, this limit to what current and fu-
ture compressors can do comes at the price of not
being computable, but it is a powerful theoretical
analysis tool we can use to advantage. It is well
known that when a pure mathematical theory is
applied to the real world, for example in hydro-
dynamics or in physics in general, we can only ap-
proximate the theoretical ideal. But still, the theory
gives a framework and foundation for the applied
science. In practice, we replace compression up to
the Kolmogorov complexity by standard real-world
compression techniques. We lose theoretical opti-
mality in some cases, but we gain an efficiently
computable similarity metric, the Normalized
Compression Distance (NCD), intended to approxi-
mate the theoretical ideal. In contrast, a later and
partially independent compression-based approach
of Benedetto, Caglioti, and Loreto (2002) for build-
ing language-trees—although building on Li and Vi-
tanyi (1997) and Bennett et al. (1998)—is by
essentially ad hoc arguments.

Earlier research has demonstrated that this new
universal similarity metric works well on concrete
examples in very different application fields, for ex-
ample the first completely automatic construction
of the phylogeny tree based on whole mitochon-
drial genomes (Li et al. 2001; Li and Vitdanyi 2002;
Li et al. 2003), and a completely automatic con-
struction of a language tree for over 50 Euro-Asian
languages (Li et al. 2003). Other applications de-
tected plagiarism in student computer-
programming assignments (at the University of
Santa Barbara in 2001; see dna.cs.ucsb.edu/SID) and
phylogeny of chain letters. This gives evidence
that, in practice, the approach mimics the ideal
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performance of Kolmogorov complexity, but it does
not supply theoretical justification.

The method is implemented and available as
public software, and is robust under choice of dif-
ferent compressors (Cilibrasi 2003). A subsequent
article (available online at arxiv.org/abs/cs.CV/
0312044) presents a theoretical analysis of the
method based on real-world compressors and
proves metricity and other required properties. To
substantiate the claims of universality and robust-
ness, evidence is reported there of successful appli-
cation in areas as diverse as genomics, virology,
languages, literature, handwritten digits, astron-
omy, and combinations of objects from completely
different domains, using statistical, dictionary, and
block-sorting compressors.

In this article, we apply this compression-based
method to the classification of pieces of music. We
perform various experiments on sets of pieces
(mostly classical) given as MIDI files. We compute
the distances between all pairs of pieces, resulting
in a distance matrix of pairwise NCDs. To extract
the maximal information in the distance matrix for
visual display, we cluster the data hierarchically.
This results in a tree containing those pieces in a
way that is consistent with the computed dis-
tances. Because it is rather difficult to objectively
judge the quality of the hierarchical clusters result-
ing from experiments on pieces of real music, we
first tested our method on a number of artificially
generated data sets where we know exactly what
the resulting tree should be. Quite reassuringly, our
method produced exactly the correct results in
these cases. The details of these artificial experi-
ments can be found online at arxiv.org/abs/cs.CV/
0312044; for reasons of space, we report on only
the actual musical experiments here.

First, we show that our program can distinguish
between various musical genres (classical, jazz, and
rock) quite well. Second, we experiment with vari-
ous sets of classical piano pieces. Third, we cluster
a large set of movements from symphonies by Mo-
zart, Beethoven, and others. The results are quite
good (in the sense of conforming well to our expec-
tations) for small sets of data, but they tend to get a
bit worse for large sets. Considering the fact that
the method knows nothing about music, or, in-
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deed, about any of the other areas we have applied
it to elsewhere, one is reminded of Dr. Johnson’s
remark about a dog’s walking on his hind legs: “It
is not done well; but you are surprised to find it
done at all.”

The article is organized as follows. We first sum-
marize related work, and then we give a brief
domain-independent overview of compression-
based clustering: the ideal distance metric based on
Kolmogorov complexity and the quartet method
that turns the matrix of distances into a tree. Next,
we give the details of the current application to
music, the specific file formats used, and so on. In
the following section, we report the results of our
experiments, and we conclude with some direc-
tions for future research.

Related Work

After a first version of our article appeared on a pre-
print server (arxiv.org/abs/cs.SD/0303025), we
learned of recent independent experiments on
MIDI files (Londei, Loreto, and Belardinelli 2003).
In those experiements, the matrix of distances is
computed using the alternative compression-based
approach of Benedetto, Caglioti, and Loreto (2002)
and Ball (2002), and the files are clustered on a Ko-
honen map rather than a tree. Their first experi-
ment takes 17 classical piano pieces as input and
gives a clustering of comparable quality to ours.
Their second experiment is on a set of 48 short ar-
tificial musical pieces (stimuli), and clusters these
reasonably well into eight categories.

Another very interesting line of music research
using compression-based techniques may be found
in the survey by Dubnov et al. (2003) and the refer-
ences therein. In that survey, the aim is not to
cluster similar musical pieces together, but to
model the musical style of a given MIDI file. For
instance, given a portion of a piece by Bach, one
would like to predict how the piece continues, or
to algorithmically generate new pieces of music in
the same style. Techniques based on Lempel-Ziv
compression do a surprisingly good job at this.

A third related line of work is the area of “query
by humming,”” as in Ghias et al. (1995) and many

later articles. Here, a user hums a tune, and a pro-
gram is supposed to find the piece of music (in
some database) that is closest to the hummed tune.
Clearly, any such approach will involve some
quantitative measure of similarity. However, we
are not aware of any compression-based similarity
measure being used in this area.

Algorithmic Clustering
Kolmogorov Complexity

Each object—in the application of this article, each
piece of music—is coded as a string x over a finite
alphabet, say the binary alphabet. The integer K(x)
gives the length of the shortest compressed binary
version from which x can be fully reproduced, also
known as the Kolmogorov complexity of x. *’Short-
est” means the minimum taken over every possible
decompression program—both those that are cur-
rently known as well as those that are possible but
currently unknown. We explicitly write only ““de-
compression,”’ because we do not even require that
there is also a program that compresses the original
file to this compressed version; if there is such a
program, then so much the better.

Technically, the definition of Kolmogorov com-
plexity is as follows. First, we fix a syntax for ex-
pressing all and only computations (computable
functions). This can be in the form of an enumera-
tion of all Turing machines, but also an enumera-
tion of all syntactically correct programs in some
universal programming language like Java, Lisp, or
C. We then define the Kolmogorov complexity of a
finite binary string as the length of the shortest
Turing machine, Java program, etc., in our chosen
syntax. Which syntax we take is unimportant, but
we must adhere to our choice. This choice assigns
a definite positive integer as the Kolmogorov com-
plexity to each finite string.

Though defined in terms of a particular machine
model, the Kolmogorov complexity is machine-
independent up to an additive constant and ac-
quires an asymptotically universal and absolute
character through Church’s thesis, which states
that a universal Turing machine can simulate any
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other effective computational process. The Kolmo-
gorov complexity of an object can be viewed as an
absolute and objective quantification of the
amount of information in it. This leads to a theory
of absolute-information contents of individual ob-
jects, in contrast to classic information theory,
which deals with average information to communi-
cate objects produced by a random source.

So K(x) gives the length of the ultimate com-
pressed version, of x. This can be considered as the
amount of information—i.e., number of bits—con-
tained in the string. Similarly, K(x|y) is the mini-
mal number of bits (which we may think of as
constituting a computer program) required to re-
construct x from y. In a way, K(x) expresses the in-
dividual “entropy”’ of x—the minimal number of
bits to communicate x when sender and receiver
have no knowledge where x comes from. For exam-
ple, to communicate Mozart’'s Zauberflote from a
library of a million items requires at most 20 bits
(220 ~1,000,000), but to communicate it from
scratch requires megabits. For more details on this
pristine notion of individual information content,
we refer to the textbook by Li and Vitdnyi (1997).

Distance-Based Classification

As mentioned, our approach is based on a new very
general similarity distance, classifying the objects
in clusters of objects that are close together accord-
ing to this distance. In mathematics, different dis-
tances arise in all sorts of contexts, and one usually
requires these to be a metric, because otherwise
undesirable effects may occur. A metric is a dis-
tance function D(-,-) that assigns a non-negative
distance D(a,b) to any two objects a and b in such a
way that the following properties hold:

1. D{a,b)=0, only where a=b;
2. D(a,b)=D|b,a) (symmetry); and
3. D(a,b) = Dl(a,c)+ D(c,b) (triangle inequality).

A familiar example of a metric is the Euclidean
metric, the everyday distance e(a,b) between two
objects a,b expressed in, say, meters. Clearly, this
distance satisfies the properties e(a,a)=0,
ela,b)=e(b,a), and e(a,b) = e(a,c)+e(c,b). (Substitute
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a=Amsterdam, b=Brussels, and ¢ =Chicago.) We
are interested in similarity metrics. For example, if
the objects are classical music pieces, then an ex-
ample similarity metric might be D(a,b)=0 if a and
b are by the same composer, and D(a,b)=1 other-
wise. This captures only one, but a quite signifi-
cant, similarity aspect between pieces of music.

Li et al. (2003) propose a new theoretical ap-
proach to a wide class of similarity metrics: their
“nmormalized information distance’ is a metric. It is
universal in the sense that this single metric un-
covers all similarities simultaneously that the met-
rics in the class uncover separately, in a technical
sense described below. This should be understood
in the sense that if two pieces of music are similar
(i.e., “close’) according to the particular feature de-
scribed by a particular metric, then they are also
similar (i.e., “close”) in the sense of the normalized
information-distance metric. This justifies calling
the latter the similarity metric. Oblivious to the
problem area concerned, simply using the distances
according to the similarity metric, the method
fully automatically classifies the objects con-
cerned—Dbe they musical pieces, text corpora, or ge-
nomic data.

More precisely, the approach is as follows. Each
pair of strings x and y is assigned a distance

max{K(x|y),K(y|x))

) = xRl Ky "
There is a natural interpretation to d(x,y). If, say,
Kl(y) = K[x), then we can rewrite
Kly)—Ix : y)
dxy)=———r—"" 2
(x,y) ] (2)

where I(x : y) is the information in y about x satis-
fying the symmetry property I(x : y)=I(y : x) up to a
logarithmic additive error, and hence called the (al-
gorithmic) mutual information (Li and Vitanyi
1997). That is, the distance d(x,y) between x and y
is 1 minus the “‘normalized”” mutual information
between the two strings.

It is clear that d(x,y) is symmetric, and in Li et al.
(2003) it is shown that it is indeed a metric. More-
over, they show that d is universal in the sense
that every metric expressing some similarity that
can be computed from the objects concerned is
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subsumed by d(x,y): for every appropriately normal-
ized metric f and every x and y, we have d(x,y) =
fix,v)+ O|(logk)/k), where k =max{K(x]),K(y]}. Infor-
mally speaking, this says that if x and y are close
according to any well-behaved metric f, then x and
y are also close according to the universal metric d.
It is these distances d(x,y) that we will use, albeit
in the form of a rough approximation: for K(x), we
simply use standard compression software like
gzip, bzip2, or PPMZ. To compute the conditional
version K(x|y), we use a sophisticated theorem
known as symmetry of algorithmic information
from Li and Vitdnyi (1997). This says that

K(y|x)~K(xy) - K(x), (3)

Here, xy denotes the concatenation of the strings
x and y. Accordingly, to compute the conditional
complexity K(x|y), we can just take the difference
of the unconditional complexities K(xy) and K(y).
This allows us to approximate d(x,y) for every pair

X,y.

Caveats

Our actual practice falls short of the ideal theory in
at least three respects. First, the claimed universal-
ity of the similarity distance d(x,y) holds only for
indefinitely long sequences x,y. Once we consider
strings x,y of definite length n, the similarity dis-
tance is only universal with respect to ““simple”’
computable normalized information distances,
where ““simple”” means that they are computable by
programs of length, say, logarithmic or polylogar-
ithmic in n. This reflects the fact that, technically
speaking, our universal distance can also be viewed
as a weighted sum of all similarity distances from
the class of distances considered with respect to
the objects considered. Only similarity distances of
which the complexity is small (which means that
their weight is large) with respect to the size of the
data concerned significantly contribute to this sum.

Second, the Kolmogorov complexity is not com-
putable, and it is in principle impossible to com-
pute how far off the Normalized Compression
Distance, or NCD, is from the Kolmogorov metric.
Thus, we cannot in general know how well we are
doing using the NCD.

Third, to approximate the NCD, we use standard
compression programs like gzip, bzip2, and PPMZ.
Whereas better compression of a string will always
approximate the Kolmogorov complexity better,
this may not be true for the NCD. Owing to its
arithmetic form—subtraction and division—it is
theoretically possible that while all items in the
formula get better compressed, the improvement is
not the same for all items, and the NCD value
moves away from the asymptotic value. In our ex-
periments, we have not observed this behavior in a
noticeable fashion. Formally, the quality of approx-
imation is given in an article by two of the authors
available online at arxiv.org/abs/cs.CV/0312044. A
further problem is that the triangle inequality need
no longer be satisfied when we replace Kolmogorov
complexity by the outcome of a real-world com-
pression program to obtain the NCD. In our online
article, it is shown that under mild assumptions on
the compressor, the NCD is a metric. Experiments
have shown that many standard real-world com-
pressors satisfy those assumptions.

The Quartet Method

Given a set of objects, the pairwise NCDs form the
entries of a distance matrix representing the dis-
tances between all pairs of objects. This distance
matrix contains the pairwise relations in raw form;
however, in this format, that information is not
easily usable. Just as the distance matrix is a re-
duced form of information representing the original
data set, we now must reduce the information even
further to achieve a cognitively acceptable format
like data clusters. To extract a hierarchy of clusters
from the distance matrix, we determine a dendro-
gram (e.g., binary tree) that agrees with the distance
matrix according to a cost measure. This allows us
to extract more information from the data than just
flat clustering (determining disjoint clusters in di-
mensional representation).

Clusters are groups of objects that are similar ac-
cording to our metric. There are various ways to
cluster. Our aim is to analyze data sets for which
the number of clusters is not known a priori and
the data are not labeled. As stated in Duda, Hart,
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and Stork (2001), conceptually simple, hierarchical
clustering is among the best known unsupervised
methods in this setting, and the most natural way
is to represent the relations in the form of a den-
drogram, which is customarily a directed binary
tree or undirected ternary tree. To construct the
tree from a distance matrix with entries consisting
of the pairwise distances between objects, we use
the quartet method. This is a matter of choice
only; other methods may work equally well. With
an increasing number of data items, the projection
of the NCD matrix information into the tree repre-
sentation format gets increasingly distorted. A
similar situation arises in using alignment cost in
genomic comparisons. Experience shows that in
both cases, the hierarchical clustering methods
seem to work best for small sets of data (up to 25
items), and it deteriorates for larger sets (say 40
items or more). A standard solution to hierarchi-
cally cluster larger sets of data is to cluster non-
hierarchically first, by say multidimensional
scaling of k-means, available in standard packages,
for instance MATLAB, and then applying hierarchi-
cal clustering on the emerging clusters.

We use the quartet method. The idea is as fol-
lows: we consider every group of four elements
from our set of nn elements (in this case, musical
pieces). There are (2) such groups. From each group
{u,v,w,x}, we construct a tree where each internal
node has 3 neighbors, which implies that the tree
consists of two subtrees of two leaves each. Let us
call such a tree a quartet. There are three possibili-
ties, denoted (1) uv|wx, (2) uw|vx, and (3) ux|vw,
where a vertical bar divides the two pairs of leaf
nodes into two disjoint subtrees (see Figure 1).

The cost of a quartet is defined as the sum of the
distances between each pair of neighbors; that is,
Cuex=d(u,v)+ d(w,x). For any given tree T and any
group of four leaf labels {u,v,w,x}, we say T is con-
sistent with uv|wx if and only if the path from u to
v does not cross the path from w to x. Note that
exactly one of the three possible quartets for any
set of four labels must be consistent for any given
tree. We may think of a large tree as having many
smaller quartet trees embedded within its structure
(see Figure 2). The total cost of a large tree is de-
fined to be the sum of the costs of all consistent
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quartets. Below, we describe a heuristic method,
developed first for the experiments reported here,
that searches for a tree of minimal total cost.

Let us be more precise about the measure that
our search optimizes. First, we generate a list of all
possible quartets for all groups of labels under con-
sideration. For each group of three possible quartets
for a given set of four labels, we calculate a best
(i.e., minimal) cost, and a worst (i.e., maximal) cost.
Adding all the best quartets yields the best (i.e.,
minimal) cost, and adding all the worst quartets
yields the worst (i.e., maximal) cost. The minimal
and maximal values need not be attainable by ac-
tual trees, but the score of any tree will lie between
these two values. To be able to compare tree scores
in a more uniform way, we now rescale the score
linearly such that the worst score maps to 0 and
the best score maps to 1, and we call this the nor-
malized tree benefit score S(T). If S(T')=1, then the
tree T incorporates the best quartet for every four
labels and hence represents the distance matrix
without any distortion. (The representation is in a
certain sense qualitative, because the tree edges do
not represent true distances.) Roughly speaking, the
closer S(T') is to 1, the less distortion there is of the
information in the distance matrix.

Experiments in this article as well as our article
at arxiv.org/abs/cs.CV/0312044 show that it ac-
cords well with our intuitive judgment of the qual-
ity of a tree. The distance matrix resulting from n
objects from a natural data set can be faithfully rep-
resented in n-dimensional Euclidean space. But
when it is represented in lower-dimensional spaces,
or in ternary trees, we incur unavoidable distortion,
much like the projection of the spherical Earth’s
surface onto a flat map. As long as n is small, say
n = 15, this distortion is low as is consistently evi-
denced by very high experimental S(T') values.
Also, confidence is high in that all randomized
runs end up with the same tree. When n gets large,
say n = 35, we noticed a decline in S(T) value to
below 0.9, whereas randomized runs end up with
some varieties of trees.

The goal of the quartet method is to find a full
tree with a maximum value of §(T'), which is to
say, the lowest total cost. This optimization prob-
lem is known to be NP-hard (Jiang, Kearney,
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Figure 1. The three possi-
ble quartets for the set of
leaf labels {u,v,w,x}.

n0 o

and Li 2001), which means that it is infeasible in
practice, but we can sometimes solve it and always
approximate it. The current methods in Bryant et
al. (2000) are far too computationally intensive;
they run many months or years on moderate-sized
problems of 30 objects.

We have designed a simple method based on ran-
domization and hill-climbing. First, a random tree
with 211 — 2 nodes is created, consisting of n leaf
nodes (with one connecting edge) labeled with the
names of musical pieces, and n — 2 non-leaf or in-
ternal nodes. Each internal node has exactly three

connecting edges. For this tree T, we calculate the
total cost of all consistent quartets and invert and
scale this value to find S(T). Typically, a random
tree will be consistent with around one-third of all
quartets. Now, this tree is denoted the currently
best-known tree and is used as the basis for further
searching. We define a simple mutation on a tree as
one of the three possible transformations: (1) a Ieaf
swap, which consists of randomly choosing two
leaf nodes and swapping them; (2) a subtree swap,
which consists of randomly choosing two internal
nodes and swapping the subtrees rooted at those

Cilibrasi, Vitdnyi, and de Wolf 55



Figure 2. An example tree
consistent with quartet
uv| wx.

nodes; and (3) a subtree transfer, whereby a ran-
domly chosen subtree (possibly a leaf) is detached
and reattached in another place, maintaining simi-
larity invariants.

Each of these simple mutations keeps invariant
the number of leaf and internal nodes in the tree;
only the structure and placements change. We de-
fine a full mutation as a sequence of at least one
but potentially many simple mutations, picked ac-
cording to the following distribution. First, we pick
the number k of simple mutations that we will per-
form with probability 2-*. For each such simple
mutation, we choose one of the three types of mu-
tations listed above with equal probability. Finally,
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for each of these simple mutations, we pick leaves
or internal nodes as necessary. Notice that trees
that are close to the original tree (in terms of the
number of simple mutation steps in between) are
examined often, and trees that are far away from
the original tree will eventually be examined, but
not very frequently. Thus, to search for a better
tree, we simply apply a full mutation on T to arrive
at T’ and then calculate S(T'). If S(T’) > S(T'), then
we keep T’ as the new best tree. Otherwise, we try
a new different tree and repeat. If S(T") ever reaches
1, then we halt and give the best tree as output.
Otherwise, we run until it seems no better trees are
being found in a reasonable amount of time, in
which case the approximation is complete.

Note that if a tree is ever found such that
S(T)=1, then we can stop, because we can be cer-
tain that this tree is optimal, as no tree could have
a lower cost. For real-world data, S(T) reaches a
maximum somewhat less than 1, presumably re-
flecting inconsistency in the distance matrix data
fed as input to the algorithm, or indicating a search
space too large to solve exactly. On many typical
problems of up to 35 objects, this tree-search gives
a tree with S(T') = 0.9 within half an hour on a 1.5-
GHz Pentium computer. For large numbers of ob-
jects, tree-scoring itself can be slow (as this takes
order n* computation steps), and the space of trees
is also large, so the algorithm may slow down sub-
stantially. For larger experiments, we use a C++/
Ruby implementation with MPI (Message Passing
Interface, a common standard used on massively
parallel computers) on a cluster of workstations in
parallel to find trees more rapidly. We can consider
the graph of Figure 3, mapping the achieved S(T')
score as a function of the number of trees exam-
ined. Progress occurs typically in a sigmoidal fash-
ion towards a maximal value S(T) = 1.

A problem exists, however. For natural data sets,
we often see some leaf nodes (i.e., data items)
placed near the center of the tree as singleton
leaves attached to internal nodes without sibling
leaf nodes. This results in a more linear, stretched-
out, and less-balanced tree. Such trees, even if they
represent the underlying distance matrix faithfully,
are difficult to fully understand and may cause mis-
understanding of represented relations and clusters.
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Figure 3. Progress of the
60-piece experiment over
time.
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To counteract this effect, and to bring out the clus-
ters of related items more visibly, we have added a
penalty term of the following form: For each inter-
nal node with exactly one leaf node attached, the
tree’s score is reduced by 0.005. This induces a ten-
dency in the algorithm to avoid producing degener-
ate mostly linear trees in the face of data that are
somewhat inconsistent, and it creates balanced and
more illuminating clusters. It should be noted that
the penalty term causes the algorithm in some
cases to settle for a slightly lower S(T') score than it
would have without penalty term. Also, the value
of the penalty term is heuristically chosen. The
largest experiment used 60 items, and we typically
had only a couple of orphans, causing a penalty of
only a few percent. This should be set off against
the final S(T') score of above 0.84. Another practi-

cality concerns the stopping criterion, at which
S(T) value we stop. Essentially, we stopped when
the §(T') value did not change after examining a
large number of mutated trees. An example is the
progress shown in Figure 3.

Details of Our Implementation

The software that we developed for the experi-
ments of this article and for later experiments re-
ported online is freely available at complearn
.sourceforge.net. For the experiments reported here,
we downloaded 118 separate MIDI files selected
from a range of classical composers, as well as
some popular music. We then preprocessed these
MIDI files to make them more uniform. This is
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done to keep the experiments ““honest’””: we want to
analyze just the musical component, not the title
indicator in the MIDI file, nor the sequencer’s
name, or author/composer’s name, nor sequencing
program used, nor any of the many other non-
musical data that can be incorporated in the MIDI
file. We strip this information from the MIDI file to
avoid detecting similarity between files for non-
musical reasons—for example, like being prepared
by the same source.

The preprocessor extracts only MIDI Note-On
and Note-Off events. These events were then con-
verted to a player-piano style representation, with
time quantized in 0.05-sec intervals. All instru-
ment indicators, MIDI control signals, and tempo
variations were ignored. For each track in the MIDI
file, we calculate two quantities: an average vol-
ume and a modal note. ("Modal” is used here in a
statistical sense, not in a musical sense.) The aver-
age volume is calculated by averaging the MIDI
Note-On velocity of all notes in the track. The mo-
dal note is defined to be the note pitch that sounds
most often in that track. If this is not unique, then
the lowest such note is chosen. The modal note is
used as a key-invariant reference point from which
to represent all notes. It is denoted by 0, higher
notes are denoted by positive numbers, and lower
notes are denoted by negative numbers. A value of
1 indicates a half step above the modal note, and a
value of —2 indicates a whole step below the mo-
dal note.

The modal note is written as the first byte of
each track. For each track, we iterate through each
0.05-sec time sample in order, producing a single
signed 8-bit value as output for each currently
sounding note (ordered from lowest to highest).
Two special values are reserved to represent the
end of a time step and the end of a track. The
tracks are sorted according to decreasing average
volume and then output in succession. The prepro-
cessing phase does not significantly alter the musi-
cal content of the MIDI file: the preprocessed file
sounds almost the same as the original.

These preprocessed MIDI files are then used as
input to the compression stage for distance-matrix
calculation and subsequent tree search. We chose
to use the compression program bzip2 for our ex-
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periments. Unlike the well-known dictionary-based
Lempel-Zip compressors, bzip2 transforms a file
into a data-dependent permutation of itself by us-
ing the Burrows-Wheeler Transform (BWT; Burrows
and Wheeler 1994). The BWT operates on the file
as well as on all of its rotations; the algorithm sorts
this block of rotations and uses a move-to-front en-
coding scheme to focus the redundancy in the file
into simple statistical biases that can be used by an
entropy coder in the output stage without context.

The resulting matrix of pairwise distances is
then fed into our tree construction program, de-
scribed in detail in the previous section, which lays
out the experiment’s MIDI files in tree format. Ev-
erything runs on 1.5-GHz Pentium computers
(with 1 GB of RAM that we do not use).

Results of Five Experiments
Genres: Rock vs. Jazz vs. Classical

Before testing whether our program can see the dis-
tinctions between various classical composers, we
first show that it can distinguish between three
broader musical genres: classical music, rock, and
jazz. This should be easier than making distinc-
tions within classical music. All musical pieces we
used are listed in the tables in the Appendix. For
the genre-identification experiment, we used
twelve classical pieces (the small set from Table 1,
consisting of Bach, Chopin, and Debussy), twelve
jazz pieces (Table 2), and twelve rock pieces (Table
3). The tree that our program produced is given in
Figure 4. The S(T) score is 0.858.

Viewed from our preconception about the genres,
the discrimination between the three genres is
good but not perfect. But already, the relatively low
S(T) value shows that the tree distorts the proxim-
ity relations represented by the distance matrix.
Rerunning this experiment gave consistently about
the same results, showing that the NCD distance
matrix of this natural data set cannot be repre-
sented in ternary tree representation without sig-
nificant distortion. The upper-right branch of the
tree contains ten of the twelve jazz pieces, but also
Chopin’s Prélude No. 15 and a Bach Prelude. The
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Figure 4. Output for the 36
pieces from three genres.
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two other jazz pieces, Miles Davis’s ““So What'’ and
John Coltrane’s “Giant Steps’’ are placed elsewhere
in the tree, perhaps according to some kinship that
now escapes us but can be identified by closer
studying of the objects concerned. Of the twelve
rock pieces, nine are placed close together in the
lower left branch, whereas Jimi Hendrix’s ““Voodoo
Chile,” Rush’s ““Yyz,” and Dire Straits’s ““Money
for Nothing”” are further away. Most of the classical
pieces are in the middle and lower-right part of the
tree. The four Debussy movements are close to-
gether, as are three of the four Chopin Préludes.

Surprisingly, two of the four Bach pieces are
rather misplaced. It is not clear why this happens
and may be considered an error of our distance
measure, because intuitively we perceive the four
Bach pieces to be very close. On the other hand,
the fact that they are closer to other pieces than to
each other does reflect some (dis)similarity. In ef-
fect, our similarity engine aims at the ideal of a
perfect data-mining process, discovering known as
well as unknown features in which the data can be
similar. Whether this specific placement of the
Bach pieces reveals anything about musical similar-
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ity remains to be seen; it could also be some simi-
larity that is an artifact of our model. Indeed,
ideally some of the more surprising similarities
claimed by our method could point the way for fur-
ther musicological investigation.

Classical Piano Music (Small Set)

For the next three experiments, we restrict atten-
tion to clustering classical piano pieces. In Table 1,
we list all 60 pieces used, together with their ab-
breviations. Some of these are complete composi-
tions; others are individual movements from larger
compositions. Before running our program on the
whole set of 60 piano pieces, we first tried it on
two smaller sets: a small twelve-piece set, indi-
cated by “(s)"” in Table 1, and a medium-size 32-
piece set indicated by “(s)”” or “/(m).”” The small set
encompasses the four movements from Debussy’s
Suite Bergamasque, four movements of Book 2 of
Bach’s Das Wohltemperierte Klavier, and four Pré-
ludes from Chopin’s Opus 28. As one can see in
Figure 5, our program does a fairly good job at clus-
tering these pieces. The S(T) score of 0.958 is also
high. Because the number of objects is small, the
tree can represent the NCD matrix of this natural
data set without much distortion.

The four Debussy movements form one cluster,
as do the four Bach pieces. The only imperfection
in the tree, judged by what one would intuitively
expect, is that Chopin’s Prélude No. 15 lies a bit
closer to Bach than to the other three Chopin
pieces. This Prélude No. 15 (“Raindrop”’), in fact,
consistently forms an odd one out in our other ex-
periments as well. There may be some musical
truth to this, as No. 15 is probably the most excep-
tional among the 24 Préludes of Chopin’s Opus 2.8.
For example, it is by far the longest, it exhibits the
most variety in dynamics, and it includes an un-
usually high incidence of repetition of a single
pitch.

Classical Piano Music (Medium Set)

The medium set adds 20 pieces to the small set: six
additional Bach pieces, six additional Chopin
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pieces, one more Debussy piece, and seven pieces
by Haydn. The experimental results are given in
Figure 6. The S(T') score of 0.895 is slightly lower
than in the small-set experiment. Again, there is a
lot of structure and expected clustering. Most of
the Bach pieces are together, as are the four De-
bussy pieces from the Suite Bergamasque. The fifth
Debussy item is somewhat apart, which is not too
surprising as it comes from another piece. Both the
Haydn and the Chopin pieces are clustered in little
sub-clusters of two to four pieces, but those sub-
clusters are scattered throughout the tree instead of
being close together in a larger cluster.

Classical Piano Music (Large Set)

Figure 7 gives the output of a run of our program
on the full set of 60 pieces. This experiment adds
ten pieces by Beethoven, eight by Buxtehude, and
ten by Mozart to the medium set. The experimen-
tal results are given in Figure 7. The results are still
far from random but leave more to be desired than
the smaller-scale experiments. Indeed, the S(T)
score has dropped further from that of the medium-
sized set to 0.844, implying increasing distortion of
the proximity relations in the NCD matrix. Bach
and Debussy are still reasonably well clustered, but
other pieces, notably the Beethoven and Chopin,
are scattered throughout the tree. The placement of
the pieces is closer to intuition on a small level (for
example, most pairing of siblings corresponds to
musical similarity in the sense of the same com-
poser) than on the larger level. This is similar to
the phenomenon of little sub-clusters of Haydn or
Chopin pieces that we saw in the medium-set ex-
periment.

Clustering Symphonies

Finally, we tested whether the method worked for
more complicated music, namely 34 symphonic
pieces. We took two Haydn symphonies (No. 95 in
one file, and the four movements of No. 104), three
Mozart symphonies (Nos. 39, 40, and 41), three
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Figure 5. Output for the
12-piece set.
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Beethoven symphonies (Nos. 3, 4, and 5), Schu-
bert’s Unfinished Symphony, and three movements
of Saint-Siens’s Symphony No. 3.

The results are given in Figure 8, with a passable
S(T) score of 0.860. Broadly speaking, the Mozart
movements are in the lower part of the tree and the
Beethoven movements are in the upper and upper-
left part. Three of the four movements from
Haydn’s Symphony No. 104 are in the upper-right
part, two of the three Saint-Siens movements are
together, whereas the two Schubert movements
look more or less randomly placed. It is interesting
to note that our method is more likely to cluster
together similarly structured movements from dif-
ferent symphonies than different movements from
the same symphony. This suggests that, for exam-
ple, two allegro movements from different Mozart
symphonies have more in common than the allegro
and adagio movements from the same Mozart sym-
phony.

Conclusions and Future Work

In this article, we reported on experiments that
cluster sets of MIDI files by means of compression.
The intuitive idea is that two files are closer to the
extent that one can be compressed better given the
other. Thus, the notion of compression induces a
similarity metric on strings in general, and MIDI
files in particular. Our method derives from the no-
tion of Kolmogorov complexity, which describes
the ultimate limits of compression. As a theoretical
approach, this is provably universal and optimal.
The actual implementation, however, is by neces-
sity suboptimal because the incomputable Kolmo-
gorov complexity must be replaced by some
computable approximation—in this case, a real-
world compressor (we used bzip2 here).

We described various experiments where we first
computed the matrix of pairwise distances between
the various MIDI files involved, and then we used a
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Figure 6. Output for the
32-piece set.
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new heuristic tree construction algorithm to as-
semble the pieces in a tree in accordance with the
computed distances. We want to stress again that
our method does not rely on any music-theoretical
knowledge or analysis but only on general-purpose
compression techniques. We view this as a strength
of the method, though one may also view it as a
limitation, because it makes it more difficult to
bring useful musical background knowledge into
play to improve the results. The versatility and
general-purpose nature of our method is also exem-
plified by the range of later experiments reported in
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our online article (arxiv.org/abs/cs.CV/0312044),
and the robustness is evidenced by the consistency
of results under variations of compressors used.
Our research raises many questions worth exam-
ining further. For one, it is difficult to judge the re-
sults of our experiments in a more rigorous way
than just to see whether the tree looks acceptable
intuitively (i.e., is congruent with our intuitive ex-
pectations about musical similarity). Our S(T) score
quantitatively measures how well a tree conforms
to a matrix of distances, but not really how well
the tree conforms to our expectations. This also
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Figure 7. Output for the
60-piece set.
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makes it difficult to compare our results with other
methods.

Second, the program can be used as a data-
mining machine to discover hitherto unknown
similarities between music pieces of different com-
posers or different genres. In this manner, we can
discover plagiarism or indeed honest influences be-
tween music pieces and composers. It is possible
that we can use the method to discover seminality
of composers, or separate music eras and fads.

A very interesting and third application of our
program would be to select a plausible composer
for a newly discovered piece of music of which the
composer is not known. In addition to such a piece,
this experiment would require a number of pieces

from known composers that are plausible candi-
dates. We would run our program on the set of all
those pieces and see where the new piece is placed.
If it lies squarely within a cluster of pieces by a par-
ticular composer, then that would be a plausible
candidate composer for the new piece.

A fourth area to examine lies in the quartet
method. Each run of our program is different—even
on the same set of data—owing to our use of ran-
domness for choosing mutations in the quartet
method. Experiments have shown that the higher
the §(T') score, the more stable the outcomes are
over different such runs.

Fifth, at various points in our program, some-
what arbitrary choices were made. Examples are
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Figure 8. Output for the
set of 34 movements of
symphonies.
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the compression algorithms used (all practical com-
pression algorithms will fall short of Kolmogorov
complexity, but some compress better than others);
the way we transform the MIDI files (choice of
time-interval length, choice of note representation);
and the cost function in the quartet method. Other
choices are possible and may or may not lead to
better clustering. For example, we compared the
quartet-based approach to the tree reconstruction
with alternatives. One such alternative that we
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tried is to compute the Minimum Spanning Tree
(MST) from the matrix of distances. MST has the
advantage of being very efficiently computable, but
it resulted in trees that were much worse than the
quartet method. It appears that the quartet method
is extremely sensitive in extracting information
even from small differences in the entries of the
distance matrix, where other methods would be led
to error. Ideally, one would like to have well-
founded theoretical reasons to decide such choices
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in an optimal way. Lacking those, trial-and-error
seems the only way to deal with them.

Finally, the experimental results got decidedly
worse when the number n of pieces grew, appar-
ently owing to the inherently greater distortion of
representing n-dimensional metric distances in a
ternary tree for larger n.
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Appendix: The Music Used

Tables 1-3 list all pieces of music used in our
study. Table 1 gives the 60 classical pieces used,
Table 2 gives the twelve jazz pieces, and Table 3
gives the twelve rock pieces.

Table 1. The 60 Classical Pieces Used

Composer Piece

Acronym

J. S. Bach (10) Das Wohltemperierte Klavier II: Preludes and Fugues 1, 2
Goldberg Variations: Aria, Variations 1 and 2
Die Kunst der Fuge: Variations 1 and 2
Invention 1
Beethoven (10) Sonata No. 8 (“Pathetique”), first movement
Sonata No. 14 (“Mondschein”’), three movements
Sonata No. 21 (“Waldstein’’), second movement
Sonata No. 23 (““Appassionata’’)
Sonata No. 26 (“Les Adieux”’)
Sonata No. 29 (“Hammerklavier”)
Romance No. 1
Ftir Elise
Buxtehude (8) Preludes and Fugues, BuxWV 139, 143, 144, and 163
Toccata and Fugue, BuxWV 165
Fugue, BuxWV 174
Passacaglia, BuxWV 161
Canzonetta, BuxWV 168
Chopin (10) Préludes Op. 28: 1, 15, 22, and 24
Etudes Op. 10, Nos. 1, 2, and 3
Nocturnes Nos. 1 and 2
Sonata No. 2, third movement

Debussy (5) Suite Bergamasque, four movements
Children’s Corner Suite ("’ Gradus ad Parnassum”’)
Haydn (7) Sonatas No. 27, 28, 37, and 38

Sonata No. 40, movements 1 and 2
Andante and Variations
Mozart (10) Sonatas No. 1,2, 3, 4, 6, and 19
Rondo from Sonata No. 16
Fantasias KV397, KV475
Variations on “Ah, vous dirais-je madam”’

BachWTK2(E,P}{1,2] (s)
BachGold{Aria,V1,V2} (m)
BachKdF{1,2} (m)
BachInvenl (m)
BeetSon8m1
BeetSon14m(1,2,3}
BeetSon21m?2
BeetSon23

BeetSon26

BeetSon29
BeetRomancel
BeetFurElise
BuxtPF{139,143,144,163)
BuxtTF165

BuxtFugl74
BuxtPassal6l
BuxtCanz168
ChopPrel{1,15,22,24] (s)
ChopEtu{l1,2,3} (m)
ChopNoct{1,2} (m)
ChopSon2m3 (m)
DebusBerg({1,2,3,4} (s)
DebusChCorl (m)
HaydnSon{27,28,37,38} (m)
HaydnSon40m{1,2} (m)
HaydnAndaVari (m)
MozSon(1,2,3,4,6,19)
MozSonl6Rondo
MozFantK{397,475}
MozVarsDirais

(m) = presence in the medium set; (s) = presence in the small and medium sets.
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Table 2. The Twelve Jazz Pieces Used

Table 3. The Twelve Rock Pieces Used

John Coltrane

Miles Davis

George Gershwin
Dizzy Gillespie
Thelonious Monk
Charlie Parker

“Blue Trane”
“Giant Steps”’
“Lazy Bird”
“Impressions’’
““Milestones”
“Seven Steps to Heaven
““Solar”’

“So What”’
““Summertime”’
“Night in Tunisia”
“Round Midnight”’
“Yardbird Suite”

17

The Beatles
Eric Clapton
Dire Straits
Led Zeppelin
Metallica
Jimi Hendrix

The Police

Rush

“Eleanor Rigby”’
““Michelle”
““Cocaine”’

“Layla”

““Money for Nothing”’
“Stairway to Heaven”
//Onell

HHeY ]'Oe!/

““Voodoo Chile”
““Every Breath You Take
“Message in a Bottle
IIYYZ”

1
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