
Distrib. Comput. (1998) 11: 113–124

c© Springer-Verlag 1998

Randomized naming using wait-free shared variables?

Alessandro Panconesi??,1, Marina Papatriantafilou ???,2, Philippas Tsigas†,2, Paul Vitányi‡,3

1 BRICS, Department of Computer Science, University of Aarhus, Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark; (e-mail:ale@brics.dk)
2 Computing Science Department, Chalmers University of Technology, S-412 96 Göteborg, Sweden
(e-mail: {tsigas, ptrianta }@cs.chalmers.se)
3 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (e-mail:paulv@cwi.nl)

Received: September 1994 / Accepted: January 1998

Summary. A naming protocol assigns unique names (keys)
to every process out of a set of communicating processes.
We construct a randomized wait-free naming protocol us-
ing wait-free atomic read/write registers (shared variables)
as process intercommunication primitives. Each process has
its own private register and can read all others. The ad-
dresses/names each one uses for the others are possibly dif-
ferent: Processesp and q address the register of processr
in a way not known to each other. Forn processes and
ε > 0, the protocol uses a name space of size (1 +ε)n and
O(n logn log logn) running time (read/writes to shared bits)
with probability at least 1−o(1), andO(n log2 n) overall ex-
pected running time. The protocol is based on the wait-free
implementation of a novelα-Test&SetOnceobject that ran-
domly and fast selects a winner from a set ofq contenders
with probability at leastα in the face of the strongest pos-
sible adaptive adversary.

Key words: Naming problem – Symmetry breaking – Unique
process ID – Asynchronous distributed protocols – Fault-
tolerance – Shared memory – Wait-free read/write registers
– Atomicity – Test-and-set objects – Randomized algorithms
– Adaptive adversary

1 Introduction

A naming protocol concurrently executed by each process
out of a subset ofn processes selects for the host process a
uniquename from a common name space. The name space
should be small, preferably of sizen. The processes may or

? This work was performed during a stay of AP, MP, and PT at CWI,
Amsterdam.

?? Supported by an ERCIM Fellowship.
??? Partially supported by a NUFFIC Fellowship and the European Union
through ALCOM ESPRIT Project Nr. 7141.

† Partially supported by NWO through NFI Project ALADDIN under
contract number NF 62-376 and by the European Union through ALCOM
ESPRIT Project Nr. 7141.

‡ Partially supported by NWO through NFI Project ALADDIN under
contract number NF 62-376 and by the European Union through Neuro-
COLT ESPRIT Working Group Nr. 8556.

may not have a name to start with. If they do, the result-
ing variant of the naming problem is called therenaming
problem.

In a distributed or concurrent system, distinct names are
useful and sometimes mandatory in a variety of situations
including mutual exclusion, resource allocation, leader elec-
tion and choice coordination. In such cases a naming pro-
tocol can be put to good use. When processes are created
and terminated dynamically—a common occurrence in dis-
tributed and concurrent systems—the name space may grow
while the number of processes remains bounded. A renaming
procedure is used to size down the name space. Examples
of network protocols that crash on duplicate names or per-
form more efficiently for small name ranges are found in
[23] and [26]. A naming protocol is also useful in allocation
of identical resources with a name as a permit to a resource.
Since our algorithms are wait-free (see below) they are also
highly fault-tolerant. Managing the assignment of resources
to competing processes corresponds to a repetitive variant of
the naming problem [6]. In the sequel we also write “key”
for “name” and “key range” for “name space.”

Interprocess Communication.We use interprocess commu-
nication through shared memory and allow arbitrarily initial-
ized shared memory (dirty memory model) as in [19]. Shared
memory primitives such as wait-free atomic read/write reg-
isters [17, 18] are widely used in the theory of distributed
algorithms [12]. A deterministic protocol executed byn pro-
cesses iswait-free if there is a finite functionf such that
every non-faulty process terminates its protocol executing a
number≤ f (n) of steps regardless of the other processes
execution speeds (or crash failures). In other words, a wait-
free solution is (n − 1)-resilient to process crash failures. A
randomizedprotocol is wait-free iff (n) upper bounds the
expectationof the number of steps, where the expectation
is taken over all randomized system executions against the
worst-case adversary in the class of adversaries considered
(in our results the adaptive adversaries). Our constructions
below use single-writer multi-reader wait-free atomic regis-
ters as constructed in [25, 18] and used in [7, 8, 15]. We
also write “shared variable” for “register.”

Anonymous Communication Model.Every register can be
written by exactly one process and can be read by all other

114

processes—this way the writing process can send messages
to the other processes. If the processes use a common index
scheme for other processes registers (an initial consistent
numbering among the processes as it is called in [7, 8, 15]),
then optimal naming is trivial by having every process rank
its own number among the other values and choose that
rank-number as its key. To make the problem nontrivial,
every process has its own private register and can read all
other registers but the processes use possibly different index
schemes. That is, processesp andq each address a register
owned by processr in a possibly different way not known to
each other. This may happen in large dynamically changing
systems where the consistency requirement is difficult or
impossible to maintain [19] or in cryptographical systems
where consistency is to be avoided. In this model we cannot
use the consensus protocols of [4, 5, 14] or the test-and-set
implementation outlined in [2].

Symmetric Shared Memory.Another way to prevent trivial
ranking is using the symmetric shared memory model. A
shared memory issymmetricif it consists of a set of identical
processes communicating through a pool of shared variables
each of which is read and written by all processes [16, 10].

Complexity Measures.The computational complexity of dis-
tributed deterministic algorithms using shared memory is
commonly expressed in number and type of intercommu-
nication primitives required and the maximum number of
sequential read/writes by any single process in a system ex-
ecution. Local computation is usually ignored. We use wait-
free atomic read/write registers as primitives. Such primi-
tives must be ultimately implemented wait-free from single-
reader single-writer wait-free atomic read/write bits (that in
turn are implementable from mathematical versions of hard-
ware “flip-flops” [17]). The most efficient such implemen-
tations use [18] to reduce a multiuser multivalue register to
single-reader single-writer multivalue registers, and [17] to
reduce the latter to single-reader single-writer bits. To stan-
dardize complexity and to make comparisons to other algo-
rithms unambiguous we express time- and space complexity
in terms of read/writes to the elementary shared bits.

Randomization.The algorithms executed by each process are
randomized by having the process flip coins (access a private
random number generator). In our randomized algorithms
the answers are always correct—each process always gets a
unique key—but with small probability the protocol takes a
long time to finish. We use the customary assumption that the
coin flip and subsequent write to shared memory are separate
atomic actions. To express the computational complexity of
our algorithms we use (i) the worst-case complexity with
probability 1−o(1), or (ii) the expected complexity, over all
system executions and with respect to the randomization by
the processes and the worst-case scheduling strategy of an
adaptive adversary.

Previous Work.The agreement problem in the deterministic
model of computation (shared memory or message passing)
is unsolvable in the presence of faults [11, 13, 20]. Surpris-
ingly, [6] showed that therenamingproblem, which requires
a nontrivial form of interprocess “agreement,” is solvable in
the message passing model. Their solution ist-resilient—up
to t crash failures are tolerated—and uses a name space of

size onlyn+t, but it takes exponential time (inn). This pro-
tocol was later transformed in [7] to two solutions for the
asynchronous, shared memory model that are wait-free and
achieve running times of (n + 1)4n andn2 + 1 and key range
sizes of 2n − 1 and (n2 + n)/2, respectively. Recently, [9]
demonstrated a wait-free long-lived shared memory imple-
mentation for renamingk out of n processes, usingO(k3)
steps and achieving key range sizeO(k2). For a determinis-
tic, wait-free solution in the asynchronous, shared memory
model a key range of size 2n − 1 is necessary [15].

The above results use asymmetric shared memory in the
form of single-writer multi-reader wait-free atomic read/write
registers and each “step” reads or writes one such register.
Moreover, the global address of each register is known to
all.

There is a plethora of other work on the naming prob-
lem using shared memory cited in [19, 16, 10]. We discuss
what is relevant to this paper. In [16] it is shown that us-
ing boundedsymmetric shared memory, both a determin-
istic solution and a randomized wait-free solution against
an adaptiveadversary (Appendix A) are impossible. They
give a wait-free randomizedunboundedsymmetric shared
memory solution against a fair adaptive adversary with a
key range of sizen and a logarithmic expected number of
rounds—time units during which every process makes at
least one step—assuming logn-bit registers. They show that
unbounded memory is also necessary against an adaptive ad-
versary. They also give anO(logn) expected time solution
with key range sizen against a fairobliviousadversary using
O(n) shared memory consisting of logn-bit registers. Inde-
pendently, [10] gave a randomized solution in the bounded
symmetric memory model with key range sizen running in
expectedO(n6) time against a fair oblivious adversary using
O(n4) shared atomic multiwriter, multireader bits.

To summarize: For asynchronous bounded shared mem-
ory, in theasymmetriccase deterministic wait-free solutions
are expensive (in terms of achievable key range) and in the
symmetriccase both deterministic wait-free solutions and
randomized wait-free solutions assuming an adaptive adver-
sary are impossible. The remaining case is treated below.

Present Results.We show that randomization can yield wait-
free, inexpensive solutions in terms of time, space, and key
range for asynchronous asymmetric bounded shared memory
models (single-writer multi-reader wait-free atomic shared
registers). We use the anonymous communication model
were processes have no initial names (equivalently, have
no global consistent indexing of the other processors). Our
construction requires several algorithms that in the end give
a randomized wait-free naming algorithm. We assume the
adaptive adversary (the strongest adversary).

Our first algorithm is the implementation of an
α-Test&SetOnceobject: a one-shot test-and-set that guar-
antees that among theq ≤ n competing processes invoking
it, there will be a unique winner with probabilityα, whereα
is a parameter that can be chosen arbitrarily close to 1. The
object is safe; that is, at most one process can be a winner.
When invoked byq (out of n) processes, it usesO(logq)
1-writer n-reader shared bits per process. The running time
is O(n logq) read/writes on such bits. These properties are
shown in Theorem 1. In our applications we typically have

115

q = O(logn) with high probability. Using more complex
primitives, the object can be implemented by: (a) usingn
copies of 1-writern-readerO(log logq)-bit read/write regis-
ters with running time ofO(n logq) read/writes on these
registers, or (b) a singlen-writer n-reader 1-writer-per-
componentn-component composite register with log logn-
bit components (snapshot memory [3, 1]) with running time
O(logq) read/writes per process on the composite register.

The second algorithm is a wait-free naming algorithm,
Segment , usingα-Test&SetOnceobjects. Given anyε >
0, Segment uses a name space of size (1 +ε)n, wheren
is the number of processes. The protocol is always correct
in the sense that all non-faulty processes receive distinct
names. The running time is a random variable whose value
is O(n logn log logn) bit operations with high probability.
By “high probability” we mean that the probability that the
running time exceeds the above value iso(1), a quantity that
tends to 0 asn grows, Lemma 3. In fact, we prove that the
maximum running timeamong all non-crashing processes is
O(n logn log logn) bit operations with probability 1− o(1).
It is still possible that the expectation of the running time
over all coin flip sequences is infinite. Our next Theorem 2
shows that with a minor modification a proof similar to that
of Lemma 3 demonstrates that the expected running time
of the modified protocols of the involved processes can be
bounded byO(n log2 n) and henceSegment is “wait-free.”

The paper is organized as follows. Section 2 and Ap-
pendix A spell out our assumptions and our model of compu-
tation. Appendix B shows that the simple approach doesn’t
work and motivates the introduction of theα-Test&SetOnce
object in Sect. 3. This object is used in Sect. 4 to obtain the
naming protocol.

2 Preliminaries

Processes are sequentially executed finite programs with
bounded local variables communicating through single-
writer, multi-reader bounded wait-free atomic registers
(shared variables). The latter are a common model for inter-
process communication through shared memory as discussed
briefly in Sect. 1. For details see [17, 18] and for use and
motivation in distributed protocols see [7, 8, 15].

2.1 Shared Registers, anonymous communication, atomicity

Every read/write register isownedby one process. Only the
owner of a register can write it, while all the other processes
can read it. In onestepa process can either: (i) read the value
of a register, (ii) write a value to one of its own registers,
or (iii) possibly flip a local coin (invoke a random number
generator that returns a random bit), followed by some local
computation. The communication isanonymous: While each
process has its own private register and can read all others,
the addresses/names each one uses for the others are possibly
different: Processesp and q each address the register of
processr in a way not known to each other.

We require the system to beatomic: every step of a pro-
cess can be thought to take place in an indivisible instance
of time and in every indivisible time instance at most one

step by one process is executed. The atomicity requirement
induces in each actual system execution total orders on the
set of all of the steps by the different processes, on the set of
steps of every individual process, and on the set of read/write
operations executed on each individual register. Thestateof
the system gives for each process: the contents of the pro-
gram counter, the contents of the local variables, and the
contents of the owned shared registers. Since processes exe-
cute sequential programs, in each state every process has at
most a single step to be executed next. Such steps areen-
abled in that state. There is anadversaryscheduling demon
that in each state decides which enabled step is executed
next, and thus determines the sequence of steps of the sys-
tem execution. There are two main types of adversaries: the
oblivious adversary that uses a fixed schedule independent
of the system execution, and the much strongeradaptivead-
versary that dynamically adapts the schedule based on the
past initial segment of the system execution. Our results hold
against the adaptive adversary—the strongest adversary pos-
sible.

The computational complexity of a randomized dis-
tributed algorithm in an adversarial setting and the corre-
sponding notion of wait-freeness require careful definitions.
To not distract the reader we delegated the rigorous novel
formulation of adversaries as restricted measures over the
set of system executions to the Appendix A. We believe it
is interesting in its own right and will be useful elsewhere.

For now we assume that the notions of system execution,
wait-freeness, adaptive adversary, and expected complexity
are familiar. Arandomizeddistributed algorithm iswait-free
if the expected number of read/writes to shared memory by
every participating process is bounded by a finite function
f (n), wheren is the number of processes. The expectation
is taken over the probability measure over all randomized
system executions against the worst-case adaptive adversary.

2.2 Obvious strategy doesn’t work

In Appendix B we analyze a naming strategy that first comes
to mind and show it doesn’t work out in the sense thatf (n)
bounding the expected number of read/writes to shared mem-
ory is at least exponential. Namely, as soon as there is more
than one process claiming a key the adversary can make
all such processes fail. This problem can be resolved by a
test-and-set mechanism that ensures a winner among a set of
claiming processes. However, existing constructions such as
[2] require all processes to have a consistent numbering—
the model is not anonymous. As pointed out in the intro-
duction, this would render the naming problem trivial: just
rank the numbering and choose your rank as a key, see also
[7, 8, 15]. To resolve this problem we introduce a probabilis-
tic α-Test&SetOnceobject that selects a winner with high
probability and doesn’t require a consistent initial number-
ing among the processes.

3 Probabilistic α-Test&SetOnceobject

An α-Test&SetOnceobject shared byn processes is a prob-
abilistic, wait-free object with the following functionality:

116

For every 0≤ α < 1 we can construct the object such that
when it is concurrently invoked by any subset of the user
processes it selects a winner with probability≥ α. If there
areq ≤ n processes competing for the same object, then the
maximum number of shared bit accesses performed by any
process has expectationO(n logq). Typically, q := O(logn)
so that the expectation isO(n log logn).

The object is based on the following property of the
geometric distribution. Suppose there areq random variables
Xi identically and geometrically distributed, Pr[Xi = k] =
(1 − p)pk. Then, with “good probability” there will be a
unique maximum,Xi > Xj for somei and allj /= i.

3.1 Synchronous algorithm

Considern processes numbered 1 throughn and an∞ × n
matrix A = (ai,j) (1 ≤ i ≤ ∞, 1 ≤ j ≤ n). Processes
p1, p2, . . . , pq (q ≤ n) enter the competition which is ex-
pressed by initially settinga1,pi

:= 1 for 1 ≤ i ≤ q and
filling the remainder ofA with zero entries. The game is di-
vided into roundsk := 1, 2, In each round, every process
that is still in the game independently flips an identical coin
with probability s of success ands − 1 of failure. In each
roundk, every processpi with ak,pi = 1 flips its coin. Ifpi’s
coin flip is successful then itsteps forward(setsak+1,pi := 1)
else itbacks-off(resetsal,pi := 0 (1 ≤ l ≤ k) and exits). In
each round there are three mutually-exclusive possible out-
comes: (i) exactly one process steps forward and all others
back-off—the process is declared thewinner and the game
ends; (ii) all processes back-off, in which case the game
ends with no winner; (iii) more than one process steps for-
ward, in which case the game continues, until one of the two
aforementioned events occurs.

Let f (q) denote the probability that the game ends with
a winner for an initial numberq of competing processes.
The exact behavior off (q) seems hard to analyze. Fortu-
nately, the next lemma gives an easy proof of a statement
that is good enough for our purposes. We definef (0) = 0
andf (1) = 1.

Lemma 1 Let 0 < s < 1. Then

(i) f (2) = 2s/(1 + s) and
(ii) for all q ≥ 2, f (q) ≥ f (2).

Proof. Suppose that after the first coin flip,k out of q initial
processes step forward. Since the number of rows available
for the game is unbounded, the probability of having a win-
ner at this point is exactlyf (k). Let X be a random variable
denoting the number of processes that step forward. Then,
the probability of the game ending with a winner is:

f (q) =
q∑

k=0

f (k) Pr[X = k]

Recalling thatf (0) = 0 andf (1) = 1, this equation can be
rewritten as:

f (q) = Pr[X = 1] + f (q) Pr[X = q] +
q−1∑
k=2

f (k) Pr[X = k] (1)

The probability of having exactlyk out of q processes step-
ping forward to the next row is given by

Pr[X = k] =

(
q

k

)
sk(1 − s)q−k (2)

For the caseq = 2, these two equations give

f (2) = s2f (2) + 2s(1 − s) (3)

which implies the first part of the lemma.
We prove the second part of the lemma by induction.

The base case,f (2) ≥ f (2), is trivial. For the inductive
step, assume thatf (k) ≥ f (2) for all 2 ≤ k < q. Using (1)
and (2), it follows from the induction hypothesis that

f (q) =
Pr[X =1] +

∑q−1
k=2 f (k) Pr[X =k]

1 − Pr[X =q]

≥ Pr[X =1] + f (2)
∑q−1

k=2 Pr[X =k]
1 − Pr[X =q]

=
Pr[X =1] + f (2)(1− Pr[X =0] − Pr[X =1] − Pr[X =q])

1 − Pr[X =q]
≥ f (2).

The last inequality is equivalent to

Pr[X = 1] − f (2)(Pr[X = 0] + Pr[X = 1]) ≥ 0

which can be verified using (2) and (3). �

The next lemma shows that, with high probability, the game
ends very quickly with a winner.

Lemma 2 Let 1 ≤ q ≤ n. Then, the probability that there is
a winner withinr rows is at leastf (2) − nsr.

Proof. Let Wr be the event that there is a winner withinr
rows. Then forq = 1 Pr[Wr] = 1. For other values ofq

Pr[Wr] = Pr[there is a winner]

− Pr[there is a winner afterr rows]

≥ f (q) − Pr[some process makes it for

at leastr rows]

≥ f (2) − qsr

≥ f (2) − nsr.

�

An important corollary of this lemma is that, by choosing
s and r appropriately, the probability of having a winner
within O(logq) rows can be set arbitrarily close to 1. In other
words, infinitely many rows are not needed (but simplify the
analysis). If we want a probability of success ofα = 1 − ε
we need to satisfy

2s

1 + s
− nsr ≥ 1 − ε.

By settings = 1− ε/2 the number of rows needed would be
only r ≈ (2/ε) log(n/ε). For instance, forα = .9 we would
needr ≈ 20(logn + 4) and for α = .99 we would need
r ≈ 200(logn + 7).

117

3.2 Asynchronous implementation

Let the entries of matrixA correspond to the states of 1-
writer n-reader bits and let there be onlyr rows, soA is an
r × n matrix. Thej-th bit of each array can be written only
by processj but can be read by all processes.

Definition 1 When a process steps forward from rowk − 1
to row k it first sets its private bit at rowk to 1 and then
reads the other bits of rowk. If they are all0 the process is
said to belucky at rowk.

Even though in an asynchronous system a process cannot
determine whether it reached a certain row alone or whether
slower processes will eventually reach the same row, it suf-
fices that it can determine whether it is lucky: the geometric
distribution ensures that a process that has not backed-off
after many rows (sayk ≈ logn) is, with high probability,
the only one left. Trivially, to be lucky at rowk (1 ≤ k ≤ r)
is necessary to be a winner and, as we will show, to be lucky
at row r is sufficient to be a winner.

Theorem 1 For every0 < s < 1, theα-TasOnce protocol
implements aα-Test&SetOnce object that selects a unique
winner among a set of invoking processes with probabil-
ity at leastα := 2s/(1 + s) − o(1) (provided no processes
crash) and never selects more than one winner. The object
can be invoked repeatedly until the key is assigned, provided
no crashes occur. If the object is invoked byq out of n
processes the invocation usesO(n logq) 1-writer n-reader
atomic single bit registers and has worst case running time
of O(n logq) read/writes of the shared bits.

Proof. In Fig. 1 every processp owns an array of atomic
bits denoted bya[1..r, p]—one bit for each row of the game.
The i-th row a[i, 1..n] has one bita[i, p] owned by process
p (1 ≤ p ≤ n). Initially, in line 1 of Fig. 1, the process
checks whether the object is currently occupied byother
processes trying to grab the key or whether initial memory
is dirty (possibly by a previous competition). If so, then
it exits reporting a failure by way of line 9. Line 9 resets
all bits a[i, p] (1 ≤ i ≤ r) owned by the process to 0 to
clean its “own” possibly dirty memory for future tries. (Of
course, this needs to be done only once at the start of each
process and we can add a line of code to this effect.) Lines 2
through 8 implement the following algorithm: Determine if
you are lucky at the current row. If yes, then step forward
with probability 1, otherwise with probabilitys. The value of
s is the same for all processes. A processwins if it is lucky
at rowr, otherwise itfails. We will show below that at most
one process can win and hence that the protocol is safe.
Before exiting by reporting a failure, the protocol “cleans
up” its private bit array (line 9). This is done to make the
object reusable if no process wins and no crashes occur so
that eventually every non faulty process gets a name.

From a probabilistic point of view it is immaterial
whether the coins are flipped synchronously or asynchro-
nously. Because the coin flips are independent, the rate
at which processes back off remains essentially unchanged
which is the key to the probabilistic analysis of the asyn-
chronous process. Another main ingredient in the proof is a
simple upper bound on the number of lucky processes per

row. Notice also that if a process is actually the winner at
some row—all other processes backed off—from then on it
will step from one row to the next with probability 1.

The relevant properties of the protocol are: Liveness: ev-
ery non faulty process executes the protocol for a bounded
number of steps, regardless of other processes speeds or
crash failures; safety: at most one process wins; and, if the
number of rows isO(logq) then the probability that among
q ≤ n competing processes there is a winner isα—a pa-
rameter that can be set arbitrarily close to 1.1

Claim 1 (Liveness). α-TasOnce is wait-free and uses at
most 2n(r + 1) + r read/writes to 1-writer,n-reader shared
bits.

Proof. A processp invoking the protocol either backs off
immediately, executing at most 2n+r steps, or joins the com-
petitition. Then, it either will win executing at most 2n(r+1)
steps or back off and lose executing at most 2n(r + 1) + r
steps. �

In the remainder of the section we consider a system
of q ≤ n processes executing the protocol of Fig. 1, and
executions for this system such that no crashes occur and
show that in this case a process gets a key—and hence it is
captured—with probabilityα.

Claim 2. Let B be the set of processes that back off during
an execution and letb := |B|. For each row, the number of
lucky processes is at mostb + 1 and at most one of them is
outsideB.

Proof. A process which does not exit right away after exe-
cuting line 1 is called acompetingprocess. For every row
row (1 ≤ row ≤ r), every still competing processp first
setsa[row, p] := 1 by executingWRITE(a[row, p], 1) in
line 3 of the protocol, and subsequently reads the other bits
in the row by executing the loop of line 4. Suppose by way
of contradiction that two processesp and p′ do not back
off and both are lucky at rowrow. We can assume that
p executes itsWRITE(a[row, p], 1) beforep′ executes its
WRITE(a[row, p′], 1). Sincep andp′ are not backing off,
these bits will stay 1. But the order of atomic events is

WRITE(a[row, p], 1) < WRITE(a[row, p′], 1)

< READ(a[row, p′])

which contradicts thatp′ is lucky becausea[row, p] = 1 by
the timep′ reads it. �

Consequently, among the processes that do not back off,
at most one can be lucky at a certain row. As for the pro-
cesses which do back off, all of them could be lucky. Con-
sider for instance processesb1, b2 and b3 standing at row
row and suppose that the adversary freezes the first two. It
is possible forb3 to step ahead and to be lucky at rowrow+1
and that eventuallyb3 and all other processes ahead ofb1

1 In the case of crashes we need not bother to estimate the probability.
This is because the adversary is forced to “sacrifice” processes: for every
invokation either some process crashes or one process wins the game with
probability α ≈ 1. Given enough objects, all non-faulty processes will
sooner or later get a key. The problem, discussed below, is how to make
this happen fast for all processes using as few objects as possible.

118

{Shared Declarations}
param r: int ; {number of rows for the game =O(logq)}
param s: in (0, 1) ;
var a[1, 1], . . . , a[r, n] shared array of boolean; {a[1..r, p] is owned by processp }

procedure α-TasOnce(p): boolean ; {p is the invoking process}
var i, row: int ;
var tmp[1..n]: array of boolean ;
begin
1: for i ∈ {1..n} do

tmp[i] := READ(a[1, i]) ;
if tmp[i] = 1 then row := r; goto L2 fi {game started/memory dirty}

od ;
2: row := 0 ; {join the game}
3 (L1): row := row + 1 ; WRITE(a[row, p], 1) ; {step forward}
4: for i ∈ {1..n} − {p} do tmp[i] := READ(a[row, i]) ; od ; {check contention at row}
5: if tmp(i) = 0 for all i /= p then {if alone at row}
6: if row = r then return (Success) else gotoL1 fi

else
7: if row = r then goto L2
8: else goto(L1,L2) with probability (s, 1 − s) fi ;
9 (L2): while row > 0 do WRITE(a[row, p], 0)) ; row := row − 1 od ; {back-off}
10: return (Failure)
end

Fig. 1. Protocolα-TasOnce for q out of n pro-
cesses (p is the invoking process)

andb2 back off. Doing this they all reinitialize their bits to
zero (line 9 of the protocol in Fig. 1). Afterwards,b2 could
be unfrozen by the adversary and be lucky at rowrow + 1
and back off later. And so on.

Claim 3 (Safety). At most one process can win.

Proof. A process that is lucky at rowr will not back-off.
In particular it will not clean up its row of bits (line 9 of
the protocol). Hence, having two lucky processes at rowr
contradicts Claim 2. �

Claim 4. Consider the set of executions such that no process
crashes occur and such that the bits of theα-Test&SetOnce
object are initialized correctly to 0. Then, the success prob-
ability of α-TasOnce with q ≤ n invoking processes is at
least

α :=
2s

1 + s
− (n + q) sr.

Proof. Intuitively, the aim of the adversary is to prevent a
process from winning. We will bound the probability that
the adversary succeeds by increasing its power. Since we
assume that no crashes occur, there are only two ways for
the adversary to prevent a win from occurring: Either two or
more processes reach rowr or all processes back off prior
to row r. We make “two copies” of the game and allow
the adversary to play both. That is, we consider two objects,
each invoked by the same number of processes; in one game
the adversary will try to maximize the probability that the
first of the two “spoiling” events occurs and in the other it
tries to maximize the probability of the second “spoiling”
event. The adversary succeeds if it wins at least one of the
two games. Clearly, this is an upper bound on the probability
that it succeeds by playing just one game.

Consider the first case and focus on the subsetC of
processes that do not back-off. The adversary can bring one
processp to row r with probability 1. What is the probability
that anotherprocessp′ ∈ C reaches rowr? (Processes not

in C do not reach rowr by definition.) By Claim 2, at each
row at most one process inC can be lucky. Thereforep′
reaches rowr only if there is a sequence of coin tosses that
brings some processp1 from row 1 to row 2, another process
p2 from row 2 to row 3, and so on. These processes might
be the same or different but, in any case, the probability of
these consecutive successes issr. Hence the probability that
the adversary spoils the game in this case is

Pr[somepi /= p reaches rowr] ≤
∑

i

Pr[pi reaches rowr]

= q Pr[p′ reaches rowr] = qsr.

Consider now the other case. Since we assume that no
crashes occur, all participating processes must toss their
coins until they either back off or reach rowr. How long
it takes is immaterial because the coin flips are indepen-
dent. Since we are interested in the probability that they all
back off before rowr it is disadvantageous for the adversary
to have some of the processes stepping forward with prob-
ability 1. Indeed, these probability 1 events only increase
the number of forward steps of some processes. Hence, the
probability of having no winner can be bounded as in the
synchronous game, namely by 1− f (2) + nsr. �

Settingr := logq the theorem is proven. �

The analysis above uses 1-writern-reader 1-bit registers
as intercommunication primitives. Of course, if we use more
complex primitives then the complexity figures decrease.

Corollary 1 For every0 < s < 1, there is an implementa-
tion of anα-Test&SetOnce object that succeeds with proba-
bility at leastα := 2s/(1 + s) − o(1) (provided no processes
crash) and invoked byq out of n processes it usesn copies
of 1-writer n-readerO(log logq)-bit shared read/write vari-
ables and its running time isO(n logq) read/writes of shared
variables.

119

Proof. We can replace each arraya[1..r, p] of α-TasOnce
by a single O(log logq)-bit variable which is used as a
counter which counts up tor = c logq, and simplify the
protocol in the obvious way. �

In [3] the notion of “composite register” or “snap-
shot object” is constructed from multi-user wait-free atomic
read/write registers. Acomposite registeris useful to ob-
tain a “snapshot” of the states of a set (or all) shared
variables in a system. It is a wait-free read/write register
R = (R1, . . . , Rm) where eachRi can be written by some
process (without changingRj (j /= i)) and each process
can atomically read all of (R1, . . . , Rm). Since the atomic
accesses are linearly ordered by definition each read by a
process gives it a snapshot of the contents of all shared vari-
ablesR1, . . . , Rm.

Corollary 2 For every0 < s < 1, there is an implementa-
tion of anα-Test&SetOnce object, that succeeds with proba-
bility at leastα := 2s/(1 + s) − o(1) (provided no processes
crash) and forq out ofn processes it uses a singlen-writer n-
reader1-writer-per-componentn-component composite reg-
ister with log logn-bit components and its running time is
O(logq) read/writes on the composite register.

Proof. The array of counters of the previous corollary can
be replaced by a composite register, akasnapshot object,
as defined in [3, 1]. This improves the complexity figures
and would simplify the protocol, given the availability of a
snapshot object implementation. �

4 A wait-free naming protocol

We base our wait-free randomized naming protocol on the
α-Test&SetOnceobject. There aren competing processes
p1, . . . , pn and the key space consists ofm α-Test&SetOnce
objects—one for each key.

4.1 Simple but too hard to analyze strategy

At first glance a simple strategy (as in Appendix B) may
suffice: Each process repeatedly invokes an object selected
uniformly at random, until it succeeds in getting a key (and
no other process can get that key). On average, we expect
αm objects to fire correctly in the sense that they assign
their key to one of the invoking processes. By choosing
m := n/(αβ) to take care of random fluctuations, we can
ensure that every process eventually gets a key.

The running time of this simple strategy seems hard to
analyze. At any point in time, there will be a set of still com-
peting processes to be matched with a set of available keys.
The number of available objects determines the probability
of getting a key (the randomly selected object must at least
be available). In turn, this probability determines the num-
ber of rounds needed for the slowest process before it gets a
key. The problem is that the number of empty objects at any
given round depends on what the adversary does; processes
can be stopped or let go to occupy an object. It is not clear
to us how to frame all possible adversarial strategies.

4.2 Trickier but easy to analyze strategySegment

By imposing just a little bit of structure on the way the
objects can be invoked it is possible to come up with a
simple and efficient protocolSegment amenable to a clean
analysis. Set

m :=
n

αβ
,

whereα is the reliability of theα-Test&SetOnceobject and
β is a parameter which will take care of random fluctua-
tions. We will show below thatβ ≈ (1− 2ε) for some other
parameterε to be determined later, whereε can be taken
arbitrarily small (but must be fixed). Therefore, by setting
α = 1− ε, we havem ≈ (1 + 3ε)n. We divide the key space
into segments, each of length

ls = c ln n

where c is a constant to be specified later and “ln” de-
notes the natural logarithm. We think of each segment as
a ring of objects, where thei-th and the (i + ls)-th ob-
jects in a segment are the same. The protocol is shown in
Fig. 2 and is as follows. Each process selects a random key
start ∈ {1, . . . , m}; this automatically determines a seg-
ment whose initial position we denote byl. The processes
will then start invoking keys by “walking” around the seg-
ment, that is, a process will first try to get a key by invoking
theα-Test&SetOnceobject corresponding to its first random
choicestart; then, if necessary, it will invoke the next (mod-
ulo ls) object in the ring, and so on, until it gets back to the
starting pointstart. As we shall see, with high probability,
every process will get a key before reaching this point. In
the extremely unlikely event that some process will not find
a key in its segment, the whole key range is scanned repeat-
edly until a key is found (Phase 2 of the protocol). This will
ensure that all processes eventually get a name.

Lemma 3 For every 0 < α, β < 1, protocol Segment
solves the naming problem forn processes usingm = n/(αβ)
α-Test&SetOnce objects. The protocol is safe and correct.
With probability 1 − o(1) the running time isO(n logn log
logn) read/writes to 1-writer,n-reader shared atomic bits.

Proof. We show that, with high probability, all processes
in a segment will becaptured—they will find their key or
crash inside the segment. Therefore, everyα-Test&SetOnce
object is invokedO(ls) = O(logn) times with high proba-
bility as well. Consequently, we can apply Theorem 1 with
q := O(logn). For non-faulty processes this means that they
will find the key within the segment. First, we show that the
processes distribute evenly among the segments. Let

Ps = (# processes in segments).

Then,

Pr[processp selectss] =
ls
m

= cαβ
ln n

n

and

µs := E[Ps] =
∑

p

Pr[processp selectss] = cαβ ln n

120

param n: int ; {number of processes}
param ε: real ; {specify key-range}
var m, ls: shared int ; { key rangem := d(1 + 3ε)ne}

{ segment sizels := bc · ln nc}
procedure nameSegment(): int ∈ {0..m} ;
var start, key, l: int ∈ {0..m} ;
var succeed: boolean ;
begin

start := random ∈ {1..m} ;
l := bstart/lscls + 1 ; {beginning of segment}
key := start ; succeed := 0 ;
repeat {Phase 1: try to get key within segment}

key := ((key + 1) modls) + l ;
succeed := (α-TasOncekey(p) = Success) {Compete for key}

until succeed = 1 or key = start ;
while succeed = 0 do {Phase 2: linear search}

key := (key + 1) modm ;
succeed := (α-TasOncekey(p) = Success)

od ;
return (key)

end

Fig. 2. ProtocolSegment for processp

Since the segments are chosen independently we can invoke
the Chernoff-bounds to estimate the tails of the Binomial
distribution in the following form (see for example [22]):

Pr[|Ps − µs| > εµs] ≤ 2e−ε2µs/3 = 2n−ε2cαβ/3

By setting

c ≥ 6
αβε2

(4)

we can ensure that

Pr[Ps > (1 + ε)µs, for somes] ≤
∑

s

Pr[Ps > (1 + ε)µs]

≤ 2nn−ε2cαβ/3 <
2
n

(5)

so that the probability thatsomesegment receives more that
(1 + ε)µs processes is≤ 2/n = o(1).

We also need to ensure that every segment captures all
of its processes. Here we need to take care of the adversary.
Basically the problem is as follows. Whenever an object is
invoked, the adversary may or may not crash a process dur-
ing its object invocation; when this happens we say that the
object iscorrupt. Consider the case when one process walks
around the whole segment without finding a key. When this
happens all objects in the segment are invoked. Ifa is the
number of corrupt objects then each of the (ls − a)-many
non-corrupt objects succeeds with probabilityα indepen-
dently of other objects. In other words, we are considering
ls −a Bernoulli trials with probability of success equal toα,
where “success” means that some of the invoking processes
is given a key. Notice that for small values ofls − a large
deviations from the mean are more likely. Therefore, it is
advantageous for the adversary to crash processes, thereby
corrupting objects, in the hope that some of the segments
will not capture all of its processes (while our aim is to en-
sure that all segments will capture their processes). We now
show that with an appropriate choice of the constantc this
almost surely never happens.

With the above notation, and recalling our definition of
captured, the expected number of captured processes is at
least

a + α(ls − a).

“At least” because for each corrupt object the adversary must
crash at least one process. By the Chernoff bounds, the true
number of captured processes is at least

a + (1 − ε)α(ls − a).

with probability at least

1 − 2 exp
{−ε2α(ls − a)/3

}
.

We know that with high probability each segment has at
mostPs = (1 +ε)cαβ ln n processes. A straightforward com-
putation shows thatPs ≤ a+(1−ε)α(ls −a) for everya ≥ 0
as long as

β =
1 − ε

1 + ε
≈ 1 − 2ε.

What is left to verify is that, no matter howa is chosen by
the adversary, all segments capture their processes with high
probability. To this end, notice thata ≤ Ps and therefore
ls − a ≥ ls − Ps, which implies that the probability that a
segment fails to capture its processes is at most

2 exp
{−ε2α(ls − Ps)/3

}
a bound which is independent of the adversary. A straight-
forward computation shows that this exceptional probability
is at most 2/n2 provided that

c ≥ 6
(2 − ε)αε3

Since there arem/ls < n segments, the probability that
some segment fails is≤ 2/n = o(1). Together with Equa-
tion 5, this gives that with probability 1− o(1) each pro-
cess finds a key withinO(logn) object invocations. (Sim-
ilarly, every object is invokedO(ls) = O(logn) times
with probability 1 − o(1).) By Theorem 1 every object

121

invocation has running timeO(n log logn) reads/writes to
1-writer, n-reader 1-bit atomic registers. Thus, themax-
imum running timeamong all non-crashing processes is
O(n logn log logn) bit operations with probability 1− o(1).

But is the protocol safe: does every process obtain a dis-
tinct key under every circumstance? If a process fails to find
a key in its segment it scans the whole key space until a key
is found. We saw in Sect. 3 that theα-Test&SetOnceobjects
are safe, they never give the key to more than one process.
Since there are more objects than processes and non-corrupt
objects can be invoked repeatedly until they assign the key,
sooner or later every correct process will find a key (with
probability 1). The lemma is proven. �

Lemma 3 does not imply that the average running time
over all coin flip sequences of outcomes used by the pro-
cesses involved (the expected running time) isO(n logn log
logn) bit operations—the expected running time may still
be infinite. This expectation has to be bounded to meet our
definition of “wait-freeness” in Appendix A.

To achieve a boundedexpectedrunning time we need to
use O(n logn) bit operations per object invocation, rather
than O(n log logn). To see the problem, recall that Theo-
rem 1 states that the object succeeds with probabilityα,
providedO(n logq) bits are used, whereq is the number of
competing processes. Ifq = Θ(n) thenO(n logn) bits must
be used (or otherwise the bound given by Lemma 2 becomes
worthless). Although a very unlikely event, it is entirely pos-
sible that linearly many processes fail in their segment and
start scanning the whole key space. In such cases, the av-
erage running time will be high because it would take an
exponentially long time before each of the scanning pro-
cesses gets a key. But if we are willing to useO(n logn)
bits per α-Test&SetOnceobject, the average running time
will still be only O(n log2 n) bit operations.

Theorem 2 For every0 < α, β < 1, protocol Segment
solves the naming problem forn processes usingm = n/αβ
α-Test&SetOnce objects. The protocol is wait-free, safe and
correct. The expected running time isO(n log2 n) read/writes
to 1-writer, n-reader shared atomic bits.

Proof. As we saw in the proof of Lemma 3, the probability
that a process has to resort to scanning the whole key space
is o(1). If we denote bya the total number of corrupt keys,
then by the time the process has scanned the whole space
there have beenm−a > 3εn non corrupt objects, each firing
independently with probabilityα. Then, with probability at
least

1 − 2 exp{−δ2αεn}
(a bound independent ofa) at least (1−δ)α(m−a) ≥ n−a
object are assigned a key, implying that each of them − a
correct processes receives a (unique) key. Definepkn :=
2 exp{−δ2αεkn/3}. Then, with probability at mostp2n a
second scan is needed, and so on. The average running time,
in bit operations, is at most

O(n log2 n)(1 − o(1)) + o(1)n
∑
k>0

k

pkn
= O(n log2 n).

It is clear that the above together with Claim 3 and
Claim 1 imply that protocolSegment is a wait-free so-
lution for the process naming problem even in the average
sense. The theorem is proven. �

Remark 1. In practice the protocol will be much faster for
most of the keys, because the expected number of processes
per object after the first random object is selected isn/m <
1. Also, a very large fraction of the processes will need just
one invocation to get a key; well-known results on martin-
gale inequalities state that whenn processes select a random
key out ofm keys, the fraction of keys chosen by some pro-
cess is very nearlyn(1− e−m/n) > n(1−1/e). Hence, with
high probability, very nearlyαn(1− 1/e) processes will get
a key after just one invocation of anα-Test&SetOnceobject.

Remark 2. Similar results hold if we implement the
α-Test&SetOnceobject with 1-writern-readerO(log logn)-
bit shared read/write variables orn-writer n-reader 1-writer-
per-component n-component composite registers with
log logn-bit components (as in Corollaries 1, 2).

We thank the referees for their constructive comments which resulted in a
substantial improvement of the presentation.

References

1. Afek Y, Attiya H, Dolev D, Gafni E, Merritt M, Shavit N: Atomic
snapshots of shared memory.J Assoc Comput Mach40:873–890 (1993)

2. Afek Y, Gafni E, Tromp J, Vit́anyi PMB: Wait-free test-and-set InPro-
ceedings of the 6th International Workshop on Distributed Algorithms,
vol. 647, pp 85–94,Lect Notes Comput Sci, Springer, Berlin Heidelberg
New York, 1992

3. Anderson J, Composite registers.Distrib Comput6:141–154 (1993)
4. Aspnes J, Herlihy M: Fast Randomized Consensus Using Shared Mem-

ory. J Algorithms11:441–461 (1990)
5. Aspnes J, Waarts O: Randomized Consensus in ExpectedO(n log2 n)

Operations Per Processor, pp 137–146, InProceedings of FOCS 1992
6. Attiya H, Bar-Noy A, Dolev D, Peleg D, Reischuk R: Renaming in an

Asynchronous Environment.J Assoc Comput Mach37:524–548 (1990)
7. Bar-Noy A, Dolev D: Shared Memory vs. Message-passing in an Asyn-

chronous Distributed Environment. InProceedings of the 8th ACM
Symposium on Principles of Distributed Computing, 1989, pp 307–318

8. Borowsky E, Gafni E: Immediate Atomic Snapshots and Fast Renam-
ing. In Proceedings of the 12th ACM Symposium on Principles of Dis-
tributed Computing, 1993, pp 41–52

9. Buhrman H, Garay JA, Hoepman JH, Moir M: Long-Lived Renaming
Made Fast, InProceedings of the 14th ACM Symposium on Principles
of Distributed Computing, 1995, pp 194–203

10. Ĕgeciŏglu O, Singh AK: Naming Symmetric Processes Using Shared
Variables.Distrib Comput8:1–18 (1994)

11. Fischer MJ, Lynch NA, Paterson MS: Impossibility of Distributed Con-
sensus with One Faulty Processor.J Assoc Comput Mach32:374–382
(1985)

12. Lynch NA: Distributed Algorithms, Morgan Kaufmann, 1996
13. Herlihy M: Wait-free synchronization.ACM Trans Progr Lang Syst

13:124–149 (1991)
14. Herlihy M: Randomized Wait-Free Concurrent Objects. InProc. 10th

ACM Symp. Principles Distrib Comput1991, pp 11–21
15. Herlihy M, Shavit N: The Asynchronous Computability Theorem for

t-Resilient Tasks. InProc. 25th ACM Symp Theory of Computing1993,
pp 111–120

16. Kutten S, Ostrovsky R, Patt-Shamir B: The Las-Vegas Processor Iden-
tity Problem (How and When to Be Unique). InProc. 2nd Israel Symp
Theor Comput Syst, IEEE Computer Society Press 1993

122

17. Lamport L: On Interprocess Communication.Distrib Comput1:86–101
(1986)

18. Li M, Tromp J, Vit́anyi PMB: How to Share Concurrent Wait-free
Variables,J Assoc Comput Mach43:723–746 (1996)

19. Lipton RJ, Park A: Solving the processor identity problem inO(n)
space,Inform Process Lett36(1990), 91–94

20. Loui MC, Abu-Amara HH: Memory Requirements for Agreement
Among Unreliable Asynchronous Processes.Advances in Computer
Research, Vol. 4, JAI Press, Inc. 1987, pp 163–183

21. McDiarmid C: On the method of bounded differences. In Siemons J
(ed) Surveys in Combinatorics, London Math. Society Lecture Note
Series141, 1989, pp 148–188

22. Motwani R, Raghavan P:Randomized Algorithms, Cambridge Univer-
sity Press 1995

23. Rabin MO: The Choice Coordination Problem.Acta Informatica
17:121–134 (1982)

24. Saks M, Shavit N, Woll H: Optimal Time Randomized Consensus-
Making Resilient Algorithms Fast in Practice. InProc SIAM-ACM
Symp Data-Struct and Algor1991, pp 351–362

25. Singh AK, Anderson JH, Gouda MG: The Elusive Atomic Register
Revisited,J Assoc Comput Mach41:311–339 (1994)

26. Tanenbaum A:Computer Networks. Prentice-Hall, Englewood Cliffs,
NJ, 1981

27. Tromp J: How to Construct an Atomic Variable. InProc 3rd Int’l
Workshop Distribut Algor, Lect Notes Comput Sci, Vol. 392, Springer,
Berlin Heidelberg New York, 1989, pp 492–302

28. Tromp J, Vit́anyi P: Randomized Wait-Free Test-and-Set, CWI Tech.
Report CS-R9113, Amsterdam, March 1991, submitted

Appendix A: System execution, adversary, computational
complexity

A systemexecutionis an infinite sequenceE := c0s1c1 . . .
of alternating stepssi and statesci satisfying that eachsi

is enabled in stateci−1 and ci is the configuration of the
system after the execution ofsi, for all i > 0. Technically,
when a process halts it enters infinitely many times a distin-
guishedidle statec∞ through an idle steps∞. All registers
are initialized to zero contents in the unique start statec0.
If we initialize with “dirty shared memory” then all regis-
ters can have arbitrary initial contents. The set of all system
executions is denoted byΩ.

An adversary is best explained by identifying it with
a conditional probability density functionA(sici|Ei−1)
where Ei−1 := c0s1 . . . ci−1 is an initial segment ofE ,
step si is enabled in stateci−1, and ci is the state result-
ing from executing stepsi in stateci−1, for i > 0. Now
A(sici|Ei−1) is the probability that the initial execution
segmentEi = Ei−1sici is realized given thatEi−1 has hap-
pened. If the adversary is randomized itself then we have∑

s

∑
cs

A(scs|Ei−1) = 1 with the summation taken over
the different enabled stepss in stateci−1 and the statescs

that can result from steps: a single state ifs is not random-
ized and more states ifs is a randomized step (a coin flip).
If the adversary is deterministic then it chooses determinis-
tically a steps and

∑
cs

A(scs|Ei−1) = 1.
Starting fromE0 := c0 the adversary induces a measure

A over all legal system executionsE defined byA(E) :=
limi→∞ A(Ei) 2 whereA(Ei) := A(sici|Ei−1)A(Ei−1)

2 With Ei denoting a finite initial segment of an execution andΩ the set
of all infinite executionsE , the traditional notation is “A(ΓEi

)” instead
of “A(Ei)” where cylinder ΓEi

= {E ∈ S : E starts withEi}. We use
“A(Ei)” for convenience.

and Ei = Ei−1sici, for i > 0. The adversary is “adaptive”
since it schedules the process executing the next step based
on the complete knowledge of the initial segment of the sys-
tem execution including the random outcomes of past coin
flips. It can arbitrarily delay processes or evencrashthem by
not executing enabled steps of particular processes. Below
we express the strongest adversary (adaptive, with infinite
computing power, and so on) as a probability measure on
the set of executions as in [28]. Without loss of generality
we assume that the only randomized steps the protocols use
are fair coin flips.

Definition 2 Assume the above notation. An adaptive adver-
sary is a probability measureA on Ω satisfying:

1. A(E0) = 1, whereE0 is the initial execution segment;
2. A(Ei) =

∑
s,c A(Eisc), where the summation is over

enabled stepss in stateci and the state(s)c resulting from
executing steps in stateci;

3. A(Eisch) = A(Eisct), for each coin-flip steps with
ch is the state resulting fromci when the outcome ofs
is “heads” andct is the state resulting fromci when the
outcome ofs is “tails.”.

The first two conditions—already implied by the notion
of probability measure—are included for completeness. The
third condition ensures that the adversary has no control over
the outcome of a fair coin flip: both outcomes are equally
likely. This definition is readily generalized to biased coins
and multi-branch decisions. Now that adversaries have been
defined, we can define the expected lengthE(Ei, j) of pro-
cesspj ’s final execution following a finite initial execution
segmentEi. Let E be an infinite execution starting withEi.
Let lEi,j(E) be the number of non-idle steps of processpj

following Ei in E .

Definition 3 Assume the above notation. Define

E(Ei, j) =
∞∑
k=1

k · A({E ∈ S : lEi,j(E) = k})
A(Ei)

.

Since the summation includes the casek = ∞ the expected
length is infinite if (but not necessarily only if) the set of in-
finite histories in which an operation execution has infinitely
many events, has positive measure. The normalization w.r.t.
Ei gives the adversary a free choice of ‘starting’ configu-
ration. The running time of a deterministic protocol is the
maximum number of non-idle steps, taken over all legal ex-
ecutions, executed by a non faulty process.

Definition 4 An implementation of a concurrent object
shared betweenn processes is wait-free, if there is a finite
boundf (n) such that for all adversariesA and for allEi, j,
the expected lengthE(Ei, j) ≤ f (n).

Appendix B: Simple approach does not work

A related observation was made with respect to the sym-
metric communication model in [10]. In our case we use the
Method of Bounded Differences (MOBD) [21]. Suppose we
haven independent random variablesXi each taking values
in a finite setAi and letY = f (X1, . . . , Xn) be a measurable

123

param n: int ; {number of processes}
param c: real ∈ (0, 1) ; {specifies key range}
var m: shared int ; { key rangem := bn(1 + c)c}
var b[1..m, 1], . . . , b[1..m, n] shared array of boolean;

{eachb[1..m, p] is owned by processp}
procedure alone (key): boolean ; {key = candidate name}
begin

WRITE(b[key, p], 1) ;
for i ∈ {1..n} do

if READ(b[key, i])=1 then WRITE(b[key, p], 0); return (Failure) fi {not alone}
od ;
return (Success) ; {alone}

end
procedure simp-name (): int ∈ {0..m} ;
begin

repeat key := random ∈ {1..m} until alone (key) = 1; return (key)
end Fig. 3. A simple approach to naming: protocol for

processp

function. If, for all vectorsA and B differing only in the
i-th coordinate,

|f (A) − f (B)| ≤ ci

then

Pr
[|Y − µ| > εµ

] ≤ 2e−2ε2µ2/
∑

i
c2

i (6)

whereµ = E[Y]. We will use this in a ball-and-bin scenario,
whereXi denotes the bin where balli ends up andY will
measure things such as the number of bins with exactlyk
balls, the number of bins with at leastk balls, and the like.
In these cases, it easy to see thatci = 1 for all i and the
bound becomes

Pr
[|Y − µ| > εµ

] ≤ 2e−2ε2µ2/n.

We haven processes and a name space of sizem =
(1+c)n (0 ≤ c ≤ 1). For a naming algorithm to be good, we
want bothc and the running time to be as small as possible.

The most obvious naming algorithm works as follows:
Every process chooses uniformly and independently aten-
tative random key and checks whether it is the only process
claiming that key. If so, the process secures the key. Other-
wise, it tries another random key, and so on.

To check whether a process is the only claimant for a
key we use the following mechanism. For each keyk there
is an arrayb[k, 1..n] where bit b[k, p] is owned by process
p (1 ≤ p ≤ n). All bits can be read by all processes. Upon
choosing a specific key valuek, a process sets its own bit
b[k, p] to 1 and subsequently reads the other bits of the
arrayb[k, 1..n] to see whether it is the only claimant, Fig. 3.
If a process was alone aSuccess is returned, otherwise a
Failure. Notice that the bitb[k, p] is reset to 0 in case of
failure so that a process can try again.

It is easy to verify that this solution is safe in the sense
that no two processes ever get the same key. It is more
difficult to see that its running time is unsatisfactory: for
c < 1 there are adversarial strategies that force some pro-
cess to take exponentially many steps with high probabil-
ity. The problem is that the adversary knows the keyk
chosen by a processp before p executes its subsequent
WRITE(b[k, p], 1) step. Therefore, the adversary can post-
pone the execution of this step until some other processq

chooses the same keyk. At this point, the adversary sched-
ules the steps ofp andq such that both of them don’t secure
key k.

Adversarial strategy.If step WRITE(b[key, p], 1) is en-
abled for processp but the adversary delays execution then
we say thatp is frozen. If a p has chosenk but has not
yet executedWRITE(b[k, p], 1) we say that the process is
claimingk. Let λ = 1/(1 + c) so thatn = λm, and fix some
ε < λ.

The adversary schedules all processes in turn to perform
their first random choices. Define event A as “at leastεn keys
are chosen by exactly two processes.” A standard application
of the MOBD above shows that the probability that A does
not occur is at moste−c1n, wherec1 is a constant depending
only on ε and λ. The adversary selectsεn such keys and
freezes the setF1 of corresponding processes. The adversary
schedules the operations of the remaining processes until
each of them claims one of the remaining keys and no such
key is claimed by more than one such process. (If more than
one process claims one of these keys the adversary schedules
events such that all but one of them back off and try again
until they are unique claimants for other keys.) At this point,
there are at least (1− 2ε)n = (1 − 2ε)λm keys that are
claimed by a unique process. Call these thered keys. Now
the processes inF1 are unfrozen. The adversary schedules
their operations so that their first attempts fail and all of
them do a second tentative random key choice. Define event
B as “εn red keys are claimed by exactly one process inF1”
and letF2 be the set of processes claiming those keys (each
such key is now claimed by exactly two processes). Then
|F2| = |F1| and the adversary can repeat the scenario withF2
substituted forF1. A tedious, but standard, application of the
MOBD shows that the probability that B does not occur is at
moste−c2n, where, again,c2 is a constant depending only on
ε andλ. Therefore, with high probability the adversary will
be able to force some process to try an exponential number
of keys.

124

Alesandro Panconesireceived a PhD in Computer Science from Cornell
University in 1993. Thereafter he went back to Europe where he worked
in many different countries. From 1993 to 1995 he was an ERCIM post-
doctoral fellow at CWI in Amsterdam, NTH-SINTEF in Trondheim, and
SICS-KTH in Stockholm. From 1995 to 1997 he was at the Freie Univer-
sität and Humboldt Universität in Berlin as an Alexander von Humboldt
fellow. After a brief interlude at KTH in Stockohlm he joined BRICS, at
the University of Aarhus, in the Summer of 1997.

Marina Papatriantafilou is a faculty member at the Department of Com-
puting Science, Chalmers University of Technology and Göteborg Univer-
sity, Sweden. She received her BSc and PhD degrees from the Department
of Computer Engineering and Informatics, University of Patras, Greece;
she has also worked at the CWI (National Research Institute for Mathe-
matics and Computer Science in the Netherlands), Amsterdam and at the
MPII (Max-Planck Institute for Computer Science), Saarbrücken, Germany.
She is interested in research on distributed and multiprocessor computing,
including synchronization, communication/coordination, networking, effi-
ciency, scalability and fault-tolerance issues.

Philippas Tsigas received a BSc in Mathematics from the University of
Patras, Greece and a PhD in Computer Engineering and Informatics from
the same University. Philippas spent a year at the CWI, Amsterdam and
three years at the MPI for Computer Science, Saarbrücken, Germany. Re-
cently he joined the faculty of the Department of Computing Science at
Chalmers University of Technology and Göteborg University, Sweden. His
research interests include communication/coordination in asynchronous sys-
tems, fault-tolerance, mobile computing.

Paul M.B. Vitanyi received a Ph.D. from the Free University of Amsterdam
in 1978. He currently holds positions at the national CWI research institute
in Amsterdam and at the University of Amsterdam where he is professor of
computer science. He has worked on cellular automata, computational com-
plexity, distributed and parallel computing, machine learning and prediction,
physics of computation, and description complexity. Together with Ming Li
of the University of Waterloo, since 1984 he pioneered applications of Kol-
mogorov complexity in computer science, mathematics, physics, machine
learning, information theory, and introduced the subject in the working
toolkit of researchers in many countries.

