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Normalized information distance (NID) uses the theoretical notion of Kolmogorov comple-
xity, which for practical purposes is approximated by the length of the compressed version
of the file involved, using a real-world compression program. This practical application is
called ‘normalized compression distance’ and it is trivially computable. It is a parameter-
free similarity measure based on compression, and is used in pattern recognition,
data mining, phylogeny, clustering, and classification. The complexity properties of its
theoretical precursor, the NID, have been open. We show that the NID is neither upper
semicomputable nor lower semicomputable.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The classical notion of Kolmogorov complexity [8] is an objective measure for the information in a single object, and
information distance measures the information between a pair of objects [2]. This last notion has spawned research in the
theoretical direction, among others [3,15–17,12,14]. Research in the practical direction has focused on the normalized infor-
mation distance (NID), also called the similarity metric, which arises by normalizing the information distance in a proper
manner. (The NID is defined by (2.1) below.) If we also approximate the Kolmogorov complexity through real-world com-
pressors [10,4,5], then we obtain the normalized compression distance (NCD). This is a parameter-free, feature-free, and
alignment-free similarity measure that has had great impact in applications. The NCD was preceded by a related nonopti-
mal distance [9]. In [7] another variant of the NCD has been tested on all major time-sequence databases used in all major
data-mining conferences against all other major methods used. The compression method turned out to be competitive in
general, and superior in heterogeneous data clustering and anomaly detection. There have been many applications in pattern
recognition, phylogeny, clustering, and classification, ranging from hurricane forecasting and music to genomics and analysis
of network traffic, see the many papers referencing [10,4,5] in Google Scholar. The NCD is trivially computable. In [10] it is
shown that its theoretical precursor, the NID, is a metric up to negligible discrepancies in the metric (in)equalities and that
it is always between 0 and 1. (For the subsequent computability notions see Section 2.)

The computability status of the NID has been open, see Remark VI.1 in [10] which asks whether the NID is upper
semicomputable, and (open) Exercise 8.4.4(c) in the textbook [11] which asks whether the NID is semicomputable at all.
We resolve this question by showing the following.

Theorem 1.1. Let x, y be strings and denote the NID between them by e(x, y).

(i) The function e is not lower semicomputable (Lemma 3.3).
(ii) The function e is not upper semicomputable (Lemma 4.1).

* Corresponding author at: CWI, Science Park 123, Amsterdam 1098 XG, Netherlands.
E-mail addresses: terwijn@math.ru.nl (S.A. Terwijn), leen@science.uva.nl (L. Torenvliet), Paul.Vitanyi@cwi.nl (P.M.B. Vitányi).

0022-0000/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2010.06.018



Author's personal copy

S.A. Terwijn et al. / Journal of Computer and System Sciences 77 (2011) 738–742 739

Item (i) implies that there is no pair of lower semicomputable functions g, δ such that g(x, y)+δ(x, y) = e(x, y). (If there
were such a pair, then e itself would be lower semicomputable.) Similarly, Item (ii) implies that there is no pair of upper
semicomputable functions g, δ such that g(x, y) + δ(x, y) = e(x, y). Therefore, the theorem implies

Corollary 1.2.

(i) The NID e(x, y) cannot be approximated by a semicomputable function g(x, y) to any computable precision δ(x, y).
(ii) The NID e(x, y) cannot be approximated by a computable function g(x, y) to any semicomputable precision δ(x, y).

How can this be reconciled with the above applicability of the NCD (an approximation of the NID through real-world
compressors)? It can be speculated upon but not proven that natural data do not contain complex mathematical regularities
such as π = 3.1415 . . . or a universal Turing machine computation. The regularities they do contain are of the sort detected
by a good compressor. In this view, the Kolmogorov complexity and the length of the result of a good compressor are not
that different for natural data.

2. Preliminaries

We write string to mean a finite binary string, and ε denotes the empty string. The length of a string x (the number of
bits in it) is denoted by |x|. Thus, |ε| = 0. Moreover, we identify strings with natural numbers by associating each string
with its index in the length-increasing lexicographic ordering

(ε,0), (0,1), (1,2), (00,3), (01,4), (10,5), (11,6), . . . .

Informally, the Kolmogorov complexity of a string is the length of the shortest string from which the original string can
be losslessly reconstructed by an effective general-purpose computer such as a particular universal Turing machine U , [8].
Hence it constitutes a lower bound on how far a lossless compression program can compress. In this paper we require
that the set of programs of U is prefix free (no program is a proper prefix of another program), that is, we deal with the
prefix Kolmogorov complexity. (But for the results in this paper it does not matter whether we use the plain Kolmogorov
complexity or the prefix Kolmogorov complexity.) We call U the reference universal Turing machine. Formally, the conditional
prefix Kolmogorov complexity K (x|y) is the length of the shortest input z such that the reference universal Turing machine U
on input z with auxiliary information y outputs x. The unconditional prefix Kolmogorov complexity K (x) is defined by K (x|ε).
For an introduction to the definitions and notions of Kolmogorov complexity (algorithmic information theory) see [11].

Let N and R denote the nonnegative integers and the real numbers, respectively. A function f : N → R is upper
semicomputable (or Π0

1 ) if it is defined by a rational-valued computable function φ(x,k) where x is a string and k is a non-
negative integer such that φ(x,k + 1) � φ(x,k) for every k and limk→∞ φ(x,k) = f (x). This means that f can be computably
approximated from above. A function f is lower semicomputable (or Σ0

1 ) if − f is upper semicomputable. A function is
called semicomputable (or Π0

1 ∪ Σ0
1 ) if it is either upper semicomputable or lower semicomputable or both. A function f

is computable (or recursive) if it is both upper semicomputable and lower semicomputable (or Π0
1 ∩ Σ0

1 ). Use 〈·〉 as a pair-
ing function over N to associate a unique natural number 〈x, y〉 with each pair (x, y) of natural numbers. An example is
〈x, y〉 defined by y + (x + y + 1)(x + y)/2. In this way we can extend the above definitions to functions of two nonnegative
integers, in particular to distance functions.

The information distance D(x, y) between strings x and y is defined as

D(x, y) = min
p

{|p|: U (p, x) = y ∧ U (p, y) = x
}
,

where U is the reference universal Turing machine above. Like the Kolmogorov complexity K , the distance function D is
upper semicomputable. Define

E(x, y) = max
{

K (x|y), K (y|x)}.
In [2] it is shown that the function E is upper semicomputable, D(x, y) = E(x, y)+ O (log E(x, y)), the function E is a metric
(more precisely, that it satisfies the metric (in)equalities up to a constant), and that E is minimal (up to a constant) among
all upper semicomputable distance functions D ′ satisfying the mild normalization conditions

∑
y: y �=x 2−D ′(x,y) � 1 and

∑
x: x�=y 2−D ′(x,y) � 1. (Here and elsewhere in this paper “log” denotes the binary logarithm.) It should be mentioned that

the minimality property was relaxed from the D ′ functions being metrics [2] to symmetric distances [10] to the present
form [11] without serious proof changes. The normalized information distance (NID) e is defined by

e(x, y) = E(x, y)

max{K (x), K (y)} . (2.1)

It is straightforward that 0 � e(x, y) � 1 up to some minor discrepancies for all x, y ∈ {0,1}∗ . Since e is the ratio between
two upper semicomputable functions, that is, between two Π0

1 functions, it is a �0
2 function. That is, e is computable

relative to the halting problem ∅′ . One would not expect any better bound in the arithmetic hierarchy. However, we can say
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this: Call a function f (x, y) computable in the limit if there exists a rational-valued computable function g(x, y, t) such that
limt→∞ g(x, y, t) = f (x, y). This is precisely the class of functions that are Turing-reducible to the halting set, and the NID
is in this class, Exercise 8.4.4(b) in [11] (a result due to [6]).

In the sequel we use time-bounded Kolmogorov complexity. Let x be a string of length n and t(n) a computable time
bound. Then K t denotes the time-bounded version of K defined by

K t(x|y) = min
p

{|p|: U ′(p, y) = x in at most t(n) steps
}
.

Here we use the two work-tape reference universal Turing machine U ′ suitable for time-bounded Kolmogorov complex-
ity [11]. The computation of U ′ is measured in terms of the output rather than the input, which is more natural in the
context of Kolmogorov complexity.

3. The NID is not lower semicomputable

Define the time-bounded version Et of E by

Et(x, y) = max
{

K t(x|y), K t(y|x)}. (3.1)

Lemma 3.1. For every length n and computable time bound t there are strings u and v of length n such that

• K (v) � n − c1 ,
• K (v|u) � n − c2 ,
• K (u|n) � c2 ,
• K t(u|v) � n − c1 logn − c2 ,

where c1 is a nonnegative constant independent of t,n, and c2 is a nonnegative constant depending on t but not on n.

Proof. Fix an integer n. There is a v of length n such that K (v|n) � n by simple counting (there are 2n strings of length
n and at most 2n − 1 programs of length less than n). If we have a program for v then we can turn it into a program for
v ignoring conditional information by adding a constant number of bits. Hence, K (v) + c � K (v|n) for some nonnegative
constant c. Therefore, for large enough nonnegative constant c1 we have

K (v) � n − c1.

Let t be a computable time bound and let the computable time bound t′ be large enough with respect to t so that the
arguments below hold. Use the reference universal Turing machine U ′ with input n to run all programs of length less than
n for t′(n) steps. Take the least string u of length n not occurring as an output among the halting programs. Since there are
at most 2n − 1 programs as above, and 2n strings of length n there is always such a string u. By construction K t′ (u|n) � n
and for a large enough constant c2 also

K (u|n) � c2,

where c2 depends on t′ (hence t) but not on n, u. Since u in the conditional only supplies c2 bits apart from its length n
we have

K (v|u) � K (v|n) − K (u|n) � n − c2.

This implies also that K t′ (v|u) � n − c2. Hence,

2n − c2 � K t′(u|n) + K t′(v|u).

Now we use the time-bounded symmetry of algorithmic information [13] (see also [11, Exercise 7.1.12]) where t is given and
t′ is chosen in the standard proof of the symmetry of algorithmic information [11, Section 2.8.2] (the original is due to L.A.
Levin and A.N. Kolmogorov in [18]), so that the statements below hold. (Recall also that for large enough f , K f (v|u,n) =
K f (v|u) and K f (u|v,n) = K f (u|v) since in the original formulas n is present in each term.) Then,

K t′(u|n) + K t′(v|u) − c1 logn � K t′(v, u|n),

with the constant c1 large enough and independent of t, t′,n, u, v . For an appropriate choice of t′ with respect to t it is easy
to see (the simple side of the time-bounded symmetry of algorithmic information) that

K t′(v, u|n) � K t(v|n) + K t(u|v).

Since K t(v|n) � K (v|n) � n we obtain K t(u|v) � n − c1 log n − c2. �
A similar but tighter result can be obtained from [1, Lemma 7.7].
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Lemma 3.2. For every length n and computable time bound t ( provided t(n) � cn for a large enough constant c), there exist strings v
and w of length n such that

• K (v) � n − c1 ,
• E(v, w) � c3 ,
• Et(v, w) � n − c1 logn − c3 ,

where the nonnegative constant c3 depends on t but not on n and the nonnegative constant c1 is independent of t,n.

Proof. Let strings u, v and constants c1, c2 be as in Lemma 3.1 using 2t instead of t , and the constants c′, c′′, c3 are large
enough for the proof below. By Lemma 3.1, we have K 2t(u|v) � n − c1 logn − c2 with c2 appropriate for the time bound 2t .
Define w by w = v ⊕ u where ⊕ denotes the bitwise XOR. Then,

E(v, w) � K (u|n) + c′ � c3,

where the nonnegative constant c3 depends on 2t (since u does) but not on n and the constant c′ is independent of t,n.
We also have u = v ⊕ w so that (with the time bound t(n) � cn for c a large enough constant independent of t,n)

n − c1 logn − c2 � K 2t(u|v)

� K t(w|v) + c′

� max{K t(v|w), K t(w|v)} + c′′

= Et(v, w) + c′′,
where the nonnegative constants c′, c′′ are independent of t,n. �
Lemma 3.3. The function e is not lower semicomputable.

Proof. Assume by way of contradiction that the lemma is false. Let ei be a lower semicomputable function approximation
of e such that ei+1(x, y) � ei(x, y) for all i and limi→∞ ei(x, y) = e(x, y). Let Ei be an upper semicomputable function
approximating E such that Ei+1(x, y) � Ei(x, y) for all i and limi→∞ Ei(x, y) = E(x, y). Finally, for x, y are strings of length
n let ix,y denote the least i such that

eix,y (x, y) �
Eix,y (x, y)

n + 2 logn + c
, (3.2)

where c is a large enough constant (independent of n, i) such that K (z) < n + 2 log n + c for every string z of length n (this
follows from the upper bound on K , see [11]). Since the function E is upper semicomputable and the function e is lower
semicomputable by the contradictory assumption such an ix,y exists. Define the function s by s(n) = maxx,y∈{0,1}n {ix,y}.

Claim 3.4. The function s(n) is total computable and Es(v, w)) � n − c1 log n − c3 for some strings v, w of length n and constants
c1, c3 in Lemma 3.2.

Proof. By the contradictory assumption e is lower semicomputable, and E is upper semicomputable since K (·|·) is. Recall
also that e(x, y) > E(x, y)/(n + 2 log n + c) for every pair x, y of strings of length n. Hence for every such pair (x, y) we can
compute ix,y < ∞. Since s(n) is the maximum of 22n computable integers, s(n) is computable as well and total. Then, the
claim follows from Lemma 3.2. (If s(n) happens to be too small to apply Lemma 3.2 we increase it total computably until it
is large enough.) �
Remark 3.5. The string v of length n as defined in the proof of Lemma 3.1 satisfies K (v|n) � n. Hence v is noncom-
putable [11]. Similarly this holds for w = v ⊕ u (defined in Lemma 3.2). But above we look for a function s(n) such that all
pairs x, y of strings of length n (including the noncomputable strings v, w) satisfy (3.2) with s(n) replacing ix,y . Since the
computable function s(n) does not depend on the particular strings x, y but only on their length n, we can use it as the
computable time bound t in Lemmas 3.1 and 3.2 to define strings u, v, w of length n.

For given strings x, y of length n, the value Eix,y (x, y) is not necessarily equal to Es(x, y). Since s(n) majorises the ix,y ’s
and E is upper semicomputable, we have Es(x, y) � Eix,y (x, y), for all pairs (x, y) of strings x, y of length n.

Since K (v) � n − c1 we have E(v, w) � e(v, w)(n − c1). By the contradictory assumption that e is lower semicomputable
we have e(v, w) � es(v, w). By (3.2) and the definition of s(n) we have

es(v, w) � Es(v, w)

n + 2 log n + c
.



Author's personal copy

742 S.A. Terwijn et al. / Journal of Computer and System Sciences 77 (2011) 738–742

Hence,

E(v, w) � Es(v, w)(n − c1)

n + 2 log n + c
.

But E(v, w) � c3 by Lemma 3.2 and Es(v, w) � n − c1 logn − c3 by Claim 3.4, which yields the required contradiction for
large enough n. �
4. The NID is not upper semicomputable

Lemma 4.1. The function e is not upper semicomputable.

Proof. It is easy to show that e(x, x) (and hence e(x, y) in general) is not upper semicomputable. For simplicity we use
e(x, x) = 1/K (x). Assume that the function 1/K (x) is upper semicomputable Then, K (x) is lower semicomputable. Since
K (x) is also upper semicomputable, it is computable. But this violates the known fact [11] that K (x) is noncomputable. �
5. Open problem

A subset of N is called n-computably enumerable (n-c.e.) if it is a Boolean combination of n computably enumerable
sets. Thus, the 1-c.e. sets are the computably enumerable sets, the 2-c.e. sets (also called d.c.e.) the differences of two c.e.
sets, and so on. The n-c.e. sets are referred to as the difference hierarchy over the c.e. sets. This is an effective analog of
a classical hierarchy from descriptive set theory. Note that a set is n-c.e. if it has a computable approximation that changes
at most n times.

We can extend the notion of n-c.e. set to a notion that measures the number of fluctuations of a function as fol-
lows: For every n � 1, call f : N → R n-approximable if there is a rational-valued computable approximation φ such that
limk→∞ φ(x,k) = f (x) and such that for every x, the number of k’s such that φ(x,k + 1) − φ(x,k) < 0 is bounded by n − 1.
That is, n − 1 is a bound on the number of fluctuations of the approximation. Note that the 1-approximable functions are
precisely the lower semicomputable (Σ0

1 ) ones (zero fluctuations). Also note that a set A ⊆ N is n-c.e. if and only if the
characteristic function of A is n-approximable.

Conjecture. For every n � 1, the normalized information distance e is not n-approximable.
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