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ABSTRACT

Known implementations of concurrent wait-free atomic shared mul-
tiwriter variables use Θ(n) control bits per subvariable. It has been shown
that implementations of sequential time-stamp systems require Ω(n) con-
trol bits per subvariable. We exhibit a sequential wait-free atomic shared
multiwriter variable construction using log n control bits per subvariable.
There arises the question of the optimality of concurrent implementations
of the same, and of weak time-stamp systems. We also show that our solu-
tions are self-stabilizing.
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1. Introduction

In [La] it is shown how an atomic variable---one whose accesses appear to be
indivisible---shared between one writer and one reader, acting asynchronously and
without waiting, can be constructed from lower level hardware rather than just assuming
its existence. Multi-user atomic variables of that type have been constructed: [VA] using
unbounded tags, and [LV], [Sc] using bounded tags.

Usually, with asynchronous readers and writers, atomicity of operations is simply
assumed or enforced by synchronization primitives like semaphores. However, active
serialization of asynchronous concurrent actions always implies waiting by one action for
another. In contrast, our aim is to realize the maximum amount of parallellism inherent in
concurrent systems by avoiding waiting altogether in our algorithms. In such a setting,
serializability is not actively enforced, rather it is the result of a pre-established harmony
in the way the executions of the algorithm by the various processors interact. Any one of
the references, say [La], [VA], [AKKV], describes the problem area in some detail.

The point of departure is the solution of the following problem. (We keep the dis-
cussion informal). A flip-flop is a Boolean variable that can be read (tested) by one pro-
cessor and written (set, reset, or changed) by another. Suppose, one is given atomic flip-
flops as building blocks, and is asked to implement an atomic variable with range 0 to
n −1, that can be written by one processor and read by another one. Of course, log2n
flip-flops suffice to hold such a value. It is stipulated that the two processors are asyn-
chronous and do not wait for one another. Suppose the writer gets stuck after it has writ-
ten half the bits of the new value. If the reader executes a read while the writer is stuck,
it obtains a value that consists of half the new value and half the old one. Obviously, this
violates atomicity. Such atomic variables, correctly implemented [Pe], [La], serve as the
building blocks for our constructions.

All constructions [LV, Sc] for implementing wait-free atomic variables which can
be read and written by all n users, use Θ(n) bits of control information (time-stamps) per
building block, be it 1-writer 1-reader subvariables as defined above [LV], or 1-writer n-
reader (equivalent, multireader) subvariables as the construction in [Sc]. Following [IL],
recent work [DS] aims at providing a general method for replacing unbounded time-
stamps by bounded time-stamps in concurrent systems of multi-reader variables. Appli-
cation to a multi-writer variable uses Θ(n) bits of control information per multireader
subvariable.

Is the linear tag-size optimal? In [IL], an Ω(n) lower bound is proved for the tag-
size for sequential binary comparison algorithms. Let us explain what this means in the
current context. An algorithm is sequential, if it contains no overlapping operation exe-
cutions. The algorithms considered above are concurrent, they allow overlapping. A
lower bound proven for a sequential restriction of an algorithm holds a fortiori for the
concurrent version. In our context binary comparison means that a user can determine
hhhhhhhhhhhhhhh
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the (apparent) atomic order between every two writes. However, it does not need to do so
- we need only to be able to determine the latest write from a set of writes, and we do not
care about the relative order among the remaining writes. In fact, the lower bound pro-
ven in [IL] is not relevant for the multiwriter problem, since we exhibit an log n upper
bound for a sequential solution below. There arises the following open question.

Question. Can the Θ(n) control bit implementation of concurrent wait-free atomic
multiwriter variable be improved in terms of using less control bits per subvariable?

2. Informal Preliminaries

We briefly discuss the used concepts and assume acquaintance with the published litera-
ture, say [VA], [IL], [LV], [DS], for the formal definitions. A concurrent system consists
of a collection of sequential processes that communicate through shared data structures.
The most basic such data structure is a shared variable. A user of such a variable V can
start an action a (read or write) at any time when it is not engaged in another action, by
invoking an ‘‘execute a’’ command on V, which finishes at some later time, possibly
returning the value read. The semantics can be expressed in terms of a local value v of a
process P and the global value contained in V. In absence of any other concurrent action
the result of process P writing its local value v to V is that V:=v is executed, and the result
of a process reading the global V is that v:=V is executed.

An implementation of V consists of a set of protocols, one for each user process, and
a set of single-reader subvariables X,Y, ...,Z. An operation execution a by user process P
on V consists of an execution of the associated protocol in which it applies some transfor-
mations on the subvariables X,Y, ...,Z, followed by returning a result to P. An implemen-
tation is wait-free if the number of subvariable accesses in an operation execution is
bounded by a constant, which depends only on the number of users.

To emphasize the distinction between actions at a higher level, and those at a lower
level, the word operation execution, or shortly action, is used for the former, and subac-
tion is used for the latter.

Linearizability or atomicity is defined in terms of equivalence with a sequential sys-
tem in which actions are mediated by a sequential scheduler that permits only one opera-
tion at a time to execute on any variable. A shared variable is atomic, if each read and
write of it actually happens, or appears to take effect, instantaneously at some point
between its invocation and response, irrespective of its actual duration.

3. Weak Time-Stamp System

We generalize the time-stamp system defined in [IL], removing all restrictions.
This discussion assumes some knowledge of [IL].* A sequential weak time-stamp sys-
tem of order n is <G, f >, where G is a set of nodes (or just numbers) and f is a (possibly
partial) symmetric function from G n to G such that the following n pebble game can be
hhhhhhhhhhhhhhh
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infinitely played on G,

g Initially all n pebbles are on an initial set of nodes.

g At each step, the adversary chooses a pebble and the pebbler has to move this peb-
ble to a node v such that, with the remaining pebbles on nodes v 1 , ..,vn −1 , we have
f ({v, v 1 , . . . ,vn − 1}) = v.

We call f the labeling function. Obviously the new time-stamp system has most nice
properties of the old time-stamp system of [IL]. However in [IL] it was proved that
2n − 1 nodes are needed for the sequential [IL]-time-stamp system of order n.

Theorem 1. There is a sequential weak time-stamp system of order n, using n 2

nodes.

Proof. The set of nodes G consists of {1,..,n} × {1,..,n}. We exhibit the appropriate
function f. The function f will always put pebble i on an element of {1, .., n}×{i}. Ini-
tially, pebble i is on node (1, i), 1 ≤ i ≤ n. Suppose the pebbles are at nodes
(i 1 ,1), . . . , (in , n). If the adversary chooses pebble j, then it has to be moved to node
(m, j) such that

j ≡ (m +
k = 1,k ≠ j

Σ
n

ik) mod n. (1)

That is, f is defined as

f ({(m, j), (i 1 , 1), ..,(i j −1 , j −1), (i j +1, j +1),..,(in , n)}) = (m, j) ,

with m given by Equation (1). The effect is that the sum modulo n of the first coordinates,
indicates a second coordinate which identifies the pebble which has just been moved. `

The labeling function in the proof has the advantage of being transparant and shows
that the nodes can be described in 2 log n bits for a sequential weak time-stamp system,
rather than n bits as required in a sequential [IL]-time-stamp system. This suffices to
illustrate the exponential difference between the two. But clearly f in the proof is not
optimal. In fact, it has been recently shown that n 2 in the theorem can be improved to
2n − 1 [CS].

4. A Sequential Multiwriter Algorithm Using n Tags

The following modification of the unbounded time-stamp algorithm in [VA], assuming
the operation executions do not overlap, needs only log n bits to encode a (sequential)
weak time-stamp system of order n. This is an application of the Theorem 1 above. (We
use n 2 nodes since the nodes are (time-stamp , index) pairs, where the numbers of time-
stamps and indices are both n.) The variable V can be read and written by users
u 1, u 2 , . . . , un . It is implemented in subvariables Ri, j , 1≤ i, j ≤ n, where Ri, j can be writ-
ten by user ui and read by user uj . The tags (= time-stamps in this case) are just 1,...,n
and are initialized with value 1.

About the same algorithm works with multireader variables as building blocks.
Namely, use R 1 , . . . , Rn as subvariables, where Ri is written by user ui aand read by all
users. Replace lines R1 and W1 by ‘‘Read R 1 , . . . , Rn’’, and replace line W3 by ‘‘Write
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ui reads value: /* value := V*/

R1) Read R 1,i , ..,Rn,i .

R2) Compute m = (Σj
tag@R j,i) mod n.

R3) value := value@Rm,i .

ui writes newvalue (1≤i ≤n): /* V := newvalue*/

W1) Read R 1,i , ..,Rn,i .

W2) Compute m such that i = (m +Σj ≠ i
tag@R j,i) mod n.

W3) Write tag :=m and value := newvalue to Ri, 1 , ..,Ri,n .

Figure. Sequential multiwriter algorithm using n tags.

tag := m and value := newvalue to Ri’’.

Theorem 2. The algorithm implements a sequential wait-free atomic n-writer n-
reader variable from n 2 subvariables, each of which is an atomic 1-writer 1-reader vari-
able.

Proof. In a sequential system, where the actions do not overlap, correctness is not
an issue because of concurrency, but because of communication. In our setting, user ui

communicates with user uj through Ri, j and R j,i . The system is sequential is equivalent
to requiring there is a total precedence order on the operation executions in a system run.
Since only the writes write, atomicity is ensured if a read returns the value written by the
last preceding write. Since a writer selects its tag according to line W2, and a reader
returns the value according to line R2, this is the case. The protocols consist of at most
2n subvariable accesses, hence the implementation is wait-free. `

This algorithm is partly related to the elegant 2-writer algorithm in [Bl]. The version
with multireader subvariables was the first try at a concurrent multiwriter protocol by the
second author in Februari ’86. But the algorithm is not a concurrent atomic multiwriter
variable by the following scenario for three writers and one reader: Initially, all writers
have tag = 1, initializing the situation such that Writer 3 wrote last.

1. Reader starts to read and reads Writer 1’s tag (= 1); and Writer 2’s tag (= 1);

2. Writer 2 writes and sets tag := 0;

3. Writer 3 writes and sets tag := 2;

4. Reader reads Writer 3’s tag (= 2), and returns the value held by Writer 1. (But
Writer 1 has not written at all!)

5. Self-Stabilizing Property

Suppose all users in a network run the same program. A state consists of a vector of all
values of the local variables, the shared variables, and the value of the program counter
of the program execution, for each user. Each entry of the vector has its associated
domain of values. The cartesian product of all these domains is called the state space.
Clearly, from a fixed initial state a subset of the state space is reacheable by the system.



- 6 -

For most algorithms, there will be a subset of the state space which is correct, and its
complement which is forbidden. The set of reacheable states should be a subset of the
set of correct states. For instance, in mutual exclusion algorithms, states with two users
in the critical zone are forbidden.

An algorithm is self-stabilizing, if started in any state of the state space, the system
will move to a correct state within a finite number of steps.

Self-stability is a robustness property which guaranties that, whatever disturbance
happens, if there is a long enough disturbance-free interval, the system will converge
back to correct operation. This notion is due to Dijkstra [Dij]. Recent work is [BP].

If we take the sequential multiwriter construction, where the tag t of user ui is
always (implicitly) the pair (t,i), then whatever way we start the users in their protocols
with whatever values of the local and global variables, the following happens. Let the
system be started in an arbitrary state at time zero. Let S be the first system state reached
when all users have executed at least one complete write. Let user uj do the first write
after the system reached state S. Subsequent to termination of this write execution by uj ,
the system state will be correct. Namely, at the start of this write execution all program
counters are zero (the system is sequential), each row Ri, 1 , ..,Ri,n contains the same value
in each of its subvariable elements (all users ui , i = 1,..,n, have executed a complete
write), and the value of no local variable will ever be used again. After user uj has
finished its write execution, the sum of the values in R 1,i , ..,Rn,i modulo n equals j, for
i = 1,..,n.

This argument is generalized in the obvious way to the weak timestamp system con-
structed. Viz., wherever the pebbles are placed on nodes in the graph, if a pebble is
moved then it moves to a node (t, j) determined as follows. Prior to the move no pebble is
on a node (., j). The sum of the second coordinates of the pebbles which are not moved
and t, equals j mod n.

The reader may wonder that the multiwriter register had to do n +1 writes to be sta-
bilized again. This is because there we used 1-writer 1-reader variables. Time stamp sys-
tems use multireader variables. Collapsing the rows of the multiwriter subvariable matrix
Ri, j to multireader variables Ri , the system stabilizes after only a single complete write.
To get the system in its sequential mode again, this write must be executed after all pro-
gram counters have been at zero at least once.

6. Conclusion

The current state of knowledge about optimality of time-stamp systems and multiwriter
variables is the following. We consider implementations in terms of atomic multireader
subvariables. For concurrent (and hence for sequential) [IL]-time-stamp systems, the
upper bound per subvariable is Θ(n) control bits, according to [DS]. For sequential (and
hence for concurrent) [IL]-time-stamp systems, the lower bound per subvariable is n con-
trol bits by [IL]. For sequential weak time-stamp systems the analogous upper bound per
multiwriter subvariable is 2 log n by the argument we gave, and log n + 1 by [CS], while
the lower bound is again, trivially, log n. But for concurrent weak time-stamp systems,
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defined in analogy with concurent [IL]-time-stamp systems in [DS], the cited upper
bound of Θ(n) control bits per subvariable must a fortiori also hold, while the best lower
bound known is the trivial log n control bits per subvariable. This is the case which is
relevant (rather, equivalent) to wait-free atomic multiwriter variable implementation.
And it is here that the gap between upper bound and lower bound is wide open, while in
all other cases it is essentially closed.
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for register atomicity’’, In: Proc. 8th Conf. Found. Software Techn. & Theoret. Comp.
Sci., Lecture Notes in Computer Science, Vol. 338, pp. 286-303, Springer Verlag, 1988.

[Bl] B. Bloom, ‘‘Constructing Two-writer Atomic Registers,’’ IEEE Transactions on
Computers, 37(1988), pp. 249-259

[BP] J. Burns and J. Pachel, ‘‘Uniform Self-Stabilizing Rings’’, ACM TOPLAS (1989),
330-344.

[CS] R. Cori, E. Sopana, ‘‘Some combinatorial aspects of time-stamp systems’’,
Manuscript, Labri, Universite Bordeaux 1, France, June 1990.

[DS] D. Dolev and N. Shavit, ‘‘Bounded concurrent time-stamp systems are constructi-
ble, Extended Abstract’’, 21th ACM Symp. on Theory of Computing, 1989, 454-466.

[Dij] E.W. Dijkstra, ‘‘Self-stabilizing systems in spite of distributed control’’, CACM,
17:11(1974), 643-644.

[IL] A. Israeli and M. Li, ‘‘Bounded Time-Stamps’’, Proc. 28th IEEE Symp. on Founda-
tions of Computer Science, 1987, pp. 371-382.
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