
444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

Approximation of the Two-Part MDL Code
Pieter Adriaans and Paul M. B. Vitányi

Abstract—Approximation of the optimal two-part minimum de-
scription length (MDL) code for given data, through successive
monotonically length-decreasing two-part MDL codes, has the fol-
lowing properties: i) computation of each step may take arbitrarily
long; ii) we may not know when we reach the optimum, or whether
we will reach the optimum at all; iii) the sequence of models gen-
erated may not monotonically improve the goodness of fit; but iv)
the model associated with the optimum has (almost) the best good-
ness of fit. To express the practically interesting goodness of fit of
individual models for individual data sets we have to rely on Kol-
mogorov complexity.

Index Terms—Approximation, Kolmogorov complexity, min-
imum description length (MDL), MDL code, model fitness, model
selection, structure functions.

I. INTRODUCTION

I N machine learning, pure applications of minimum descrip-
tion length (MDL) are rare, partly because of the difficul-

ties one encounters trying to define an adequate model code and
data-to-model code, and partly because of the operational diffi-
culties that are poorly understood. We analyze aspects of both
the power and the perils of MDL precisely and formally. Let us
first resurrect a familiar problem from our childhood to illustrate
some of the issues involved.

The process of solving a jigsaw puzzle involves an incre-
mental reduction of entropy, and this serves to illustrate the anal-
ogous features of the learning problems which are the main is-
sues of this work. Initially, when the pieces come out of the box
they have a completely random ordering. Gradually we combine
pieces, thus reducing the entropy and increasing the order until
the puzzle is solved. In this last stage we have found a max-
imal ordering. Suppose that Alice and Bob both start to solve
two versions of the same puzzle, but that they follow different
strategies. Initially, Alice sorts all pieces according to color, and
Bob starts by sorting the pieces according to shape. (For the
sake of argument we assume that the puzzle has no recogniz-
able edge pieces.) The crucial insight, shared by experienced
puzzle aficionados, is that Alice’s strategy is efficient whereas
Bob’s strategy is not and is in fact even worse than a random

Manuscript received December 19, 2006; revised May 30, 2008. Current ver-
sion published December 24, 2008. The work of P. Adriaans was supported in
part by Perot Enterprises Netherlands and Syllogic. The work of P. Vitányi was
supported in part by the BSIK Project BRICKS of the Dutch Government and
NWO and by the EU NoE PASCAL (Pattern Analysis, Statistical Modeling, and
Computational Learning). The material in this paper was presented in part at
the IEEE International Symposium on Information Theory, Nice, France, June
2007.

P. Adriaans is with Computer Science Department, University of Amsterdam,
Amsterdam 1098 VA, The Netherlands (e-mail: pieter.adriaans@ps.net).

P. Vitányi is with the CWI, 1098 SJ Amsterdam, The Netherlands (e-mail:
Paul.Vitanyi@cwi.nl).

Communicated by P. L. Bartlett, Associate Editor for Pattern Recognition,
Statistical Learning and Inference.

Digital Object Identifier 10.1109/TIT.2008.2008152

strategy. Alice’s strategy is efficient, since the probability that
pieces with about the same color match is much greater than
the unconditional probability of a match. On the other hand, the
information about the shape of the pieces can only be used in
a relatively late stage of the puzzle process. Bob’s effort in the
beginning is a waste of time, because he must reorder the pieces
before he can proceed to solve the puzzle. This example shows
that if the solution of a problem depends on finding a maximal
reduction of entropy this does not mean that every reduction of
entropy brings us closer to the solution. Consequently, reduc-
tion of entropy is not in all cases a good strategy.

A. Entropy Versus Kolmogorov Complexity

Above we use “entropy” in the often used, but inaccurate,
sense of “measure of unorderedness of an individual arrange-
ment.” However, entropy is a measure of uncertainty associ-
ated with a random variable, here a set of arrangements each
of which has a certain probability of occurring. The entropy
of every individual arrangement is by definition zero. To cir-
cumvent this problem, often the notion of “empirical entropy”
is used, where certain features like letter frequencies of the in-
dividual object are analyzed, and the entropy is taken with re-
spect to the set of all objects having the same features. The re-
sult obviously depends on the choice of what features to use:
no features gives maximal entropy and all features (determining
the individual object uniquely) gives entropy zero again. Unless
one has knowledge of the characteristics of a definite random
variable producing the object as a typical outcome, this proce-
dure gives arbitrary and presumably meaningless, results. This
conundrum arises since classical information theory deals with
random variables and the communication of information. It does
not deal with the information (and the complexity thereof) in
an individual object independent of an existing (or nonexisting)
random variable producing it. To capture the latter notion pre-
cisely one has to use “Kolmogorov complexity” instead of “en-
tropy,” and we will do so in our treatment. For now, the “Kol-
mogorov complexity” of a file is the number of bits in the ulti-
mately compressed version of the file from which the original
can still be losslessly extracted by a fixed general-purpose de-
compression program.

B. Learning by MDL

Transferring the jigsaw puzzling insights to the general case
of learning algorithms using the MDL principle [10], [2], [11],
we observe that although it may be true that the maximal com-
pression yields the best solution, it may still not be true that
every incremental compression brings us closer to the solution.
Moreover, in the case of many MDL problems there is a com-
plicating issue in the fact that the maximal compression cannot
be computed.

0018-9448/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 445

More formally, in constrained model selection the model is
taken from a given model class. Using two-part MDL codes for
the given data, we assume that the shortest two-part code for
the data, consisting of the model code and the data-to-model
code, yields the best model for the data. To obtain the shortest
code, a natural way is to approximate it by a process of finding
ever shorter candidate two-part codes. Since we start with a fi-
nite two-part code, and with every new candidate two-part code
we decrease the code length, eventually we must achieve the
shortest two-part code (assuming that we search through all
two-part codes for the data). Unfortunately, there are two prob-
lems: i) the computation to find the next shorter two-part code
may be very long, and we may not know how long; and ii) we
may not know when we have reached the shortest two-part code:
with each candidate two-part code there is the possibility that
further computation may yield yet a shorter one. But because of
item i) we cannot a priori bound the length of that computation.
There is also the possibility that the algorithm will never yield
the shortest two-part code because it considers only part of the
search space or gets trapped in a nonoptimal two-part code.

C. Results

We show that for some MDL algorithms the sequence of ever
shorter two-part codes for the data converges in a finite number
of steps to the best model. However, for every MDL algorithm,
the intermediate models may not convergence monotonically in
goodness. In fact, in the sequence of candidate two-part codes
converging to a (globally or locally) shortest, it is possible that
the models involved oscillate between being good and bad. Con-
vergence is only monotone if the model-code parts in the succes-
sive two-part codes are always the shortest (most compressed)
codes for the models involved. But this property cannot be guar-
anteed by any effective method.

It is very difficult, if not impossible, to formalize the goodness
of fit of an individual model for individual data in the classic sta-
tistics setting, which is probabilistic. Therefore, it is impossible
to express the practically important issue above in those terms.
Fortunately, new developments in the theory of Kolmogorov
complexity [6], [15] make it possible to rigorously analyze the
questions involved, possibly involving noncomputable quanti-
ties. But it is better to have a definite statement in a theory than
having no definite statement at all. Moreover, for certain algo-
rithms (like Algorithm Optimal MDL in Theorem 2) we can
guarantee that they satisfy the conditions required, even though
these are possibly noncomputable. In Section II, we review the
necessary notions from [15], both in order for the paper to be
self-contained and for the definitions and notations to be ex-
tended from the previously used singleton data to multiple data
samples. Theorem 1 shows that the use of MDL will be approx-
imately invariant under recoding of the data. The next two sec-
tions contain the main results: Definition 4 defines the notion
of an MDL algorithm. Theorem 2 shows that there exists such
an MDL algorithm that in the (finite) limit results in an optimal
model. The next statements are about MDL algorithms in gen-
eral, also the ones that do not necessarily result in an optimal
MDL code. Theorem 3 states a sufficient condition for improve-
ment of the randomness deficiency (goodness of fit) of two con-
secutive length-decreasing MDL codes. This extends Lemma

V.2 of [15] (which assumes all programs are shortest) and cor-
rects the proof concerned. The theory is applied and illustrated
in Section V: Theorem 4 shows by example that a minor vi-
olation of the sufficiency condition in Theorem 3 can result in
worsening of the randomness deficiency (goodness of fit) of two
consecutive length-decreasing MDL codes. The special case of
learning deterministic finite automatons (DFAs) from positive
examples is treated in Section VI. The main result shows, for
a concrete and computable MDL code, that a decrease in the
length of the two-part MDL code does not imply a better model
fit (see Section VI-C) unless there is a sufficiently large decrease
as that required in Theorem 3 (see Remark 12).

II. DATA AND MODEL

Let , where denotes the natural numbers and
we identify and according to the correspondence

Here denotes the empty word. The length of is the number
of bits in the binary string , not to be confused with the cardi-
nality of a finite set . For example, and ,
while and . Below we will use the
natural numbers and the binary strings interchangeably. Defi-
nitions, notations, and facts we use about prefix codes, self-de-
limiting codes, and Kolmogorov complexity, can be found in [9]
and are briefly reviewed in Appendix A.

The emphasis is on binary sequences only for convenience;
observations in any alphabet can be encoded in binary in a way
that is theory neutral. Therefore, we consider only data in

. In a typical statistical inference situation we are given
a subset of , the data sample, and are required to infer a
model for the data sample. Instead of we will consider

for some fixed but arbitrarily large .

Definition 1: A data sample is a subset of . For
technical convenience we want a model for to contain
information about the cardinality of . A model has the form

, where and . We
can think of as the th binary string in . Denote the
cardinalities by lower case letters

where we assume that . If , then the
ubiquitous error term in the paper can be replaced by

. If is a data sample and is a model for
then , and we write
or .

Denote the complexity of a finite set by —the length
(number of bits) of the shortest binary program from which
the reference universal prefix machine computes a lexico-
graphic listing of the elements of and then halts. That is, if

, the elements given in lexicographic order,
then . The shortest pro-
gram , or, if there is more than one such shortest program, the
first one that halts in a standard dovetailed running of all pro-
grams, is denoted by .

The conditional complexity of is the
length (number of bits) of the shortest binary program from

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

which the reference universal prefix machine from input
(given as a list of elements) outputs as a lexicographically
ordered list of elements and halts. We have

(1)

The upper bound follows by considering a self-delimiting code
of given (including the number of elements in), con-
sisting of a bit long index of in the lexicographic
ordering of the number of ways to choose elements from

. This code is called the data-to-model code.
Its length quantifies the maximal “typicality,” or “randomness,”
any data sample of elements can have with respect to model

with .

Definition 2: The lack of typicality of with respect to is
measured by the amount by which falls short of the
length of the data-to-model code. The randomness deficiency of

with respect to is defined by

(2)

for , and otherwise.

The randomness deficiency can be a little smaller than , but
not more than a constant. If the randomness deficiency is not
much greater than , then there are no simple special properties
that single out from the majority of data samples of cardi-
nality to be drawn from . This is not just
terminology: If is small enough, then satisfies all
properties of low Kolmogorov complexity that hold for the ma-
jority of subsets of cardinality of . To be precise: A prop-
erty represented by is a subset of , and we say that
satisfies property if is a subset of .

Lemma 1: Let be natural numbers, and let
, and let be a

simple function of the natural numbers to the real numbers, that
is, is a constant, for example, is or .

i) If is a property satisfied by all with
, then holds for a fraction of at least

of the subsets of .
ii) Let be a property that holds for a fraction of at least

of the subsets of . There
is a constant , such that holds for every with

.
Proof:

i) By assumption, all data samples with

(3)

satisfy . There are only

programs of length smaller than , so there
are at most that many that do not satisfy (3).

There are sets that satisfy , and hence a
fraction of at least of them satisfy (3).

ii) Suppose does not hold for a data sample
and the randomness deficiency (2) satisfies

. Then we can reconstruct from
a description of , and ’s index in an effective enu-
meration of all subsets of of cardinality for which

does not hold. There are at most such data
samples by assumption, and therefore there are constants

such that

Hence, by the assumption on the randomness deficiency
of , we find , which contradicts
the necessary nonnegativity of if we choose

.

The minimal randomness deficiency function of the data
sample is defined by

(4)

where we set . The smaller is, the more
can be considered as a typical data sample from . This

means that a set for which incurs minimal randomness de-
ficiency, in the model class of contemplated sets of given max-
imal Kolmogorov complexity, is a “best fitting” model for in
that model class—a most likely explanation, and can be
viewed as a constrained best fit estimator.

A. Minimum Description Length Estimator

The length of the minimal two-part code for with model
consist of the model cost plus the length of the

index of in the enumeration of choices of elements out of
(and). Here we take the index of
as having the maximal number of bits in a choice of elements
of , that is, bits. Consider the model class of ’s of
given maximal Kolmogorov complexity . The MDL function
or constrained MDL estimator is

(5)

where is the
total length of two-part code of with help of the model .
This function is the celebrated optimal two-part MDL
code length as a function of , with the model class restricted
to models of code length at most . The functions and
are examples of Kolmogorov’s structure functions, [6], [15].

Indeed, consider the following two-part code for :
the first part is a shortest self-delimiting program for and
the second part is bit long index of in the lexico-
graphic ordering of all choices of elements from . Since

determines , this code is self-delimiting and we ob-
tain the two-part code, where the constant is the length
of an additional program that reconstructs from its two-part
code. Trivially, . For those ’s that have

, the associated model in at

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 447

most bits (witness for) is called a sufficient statistic
for .

Lemma 2: If is a sufficient statistic for , then the ran-
domness deficiency of in is , that is, is a typical
data sample for , and is a model of best fit for .

Proof: If is a sufficient statistic for , then
. The left-hand side of the latter equa-

tion is a two-part description of using the model and
as data-to-model code the index of in the enumeration of the
number of choices of elements from in bits. This
left-hand side equals the right-hand side which is the shortest
one-part code of in bits. Therefore

The first and second inequalities are straightforward, the third
inequality states that given we can describe in a
self-delimiting manner in bits, and the final
equality follows by the sufficiency property. This sequence of
(in)equalities implies that .

Remark 1 (Sufficient But Not Typical): Note that the data
sample can have randomness deficiency about , and hence
be a typical element for models , while is not a sufficient
statistic. A sufficient statistic for has the additional prop-
erty, apart from being a model of best fit, that

and therefore by (8) in Appendix A we have
: the sufficient statistic is a model of best

fit that is almost completely determined by , a shortest pro-
gram for .

Remark 2 (Minimal Sufficient Statistic): The sufficient
statistic associated with with the least is called the
minimal sufficient statistic.

Remark 3 (Probability Models): Reference [15] and this
paper analyze a canonical setting where the models are finite
sets. We can generalize the treatment to the case where the
models are the computable probability mass functions. The
computability requirement does not seem very restrictive.
We cover most, if not all, probability mass functions ever
considered, provided they have computable parameters. In
the case of multiple data, we consider probability mass func-
tions that map subsets into such that

. For every , we define
. For data with we obtain

and
is a computable probability mass function with .
The general model class of computable probability mass
functions is equivalent to the finite set model class, up to an
additive logarithmic term. This result for multiple
data generalizes the corresponding result for singleton data in
[13], [15]. Since the other results in [15] such as (6) and those
in Appendix B, generalized to multiple data, hold only up to
the same additive logarithmic term anyway, they carry over to
the probability models.

The generality of the results are at the same time a re-
striction. In classical statistics one is commonly interested
in model classes that are partially poorer and partially richer
than the ones we consider. For example, the class of Bernoulli
processes, or -state Markov chains, is poorer than the class of
computable probability mass functions of moderate maximal
Kolmogorov complexity , in that the latter class may contain
functions that require far more complex computations than the
rigid syntax of the classical classes allows. Indeed, the class
of computable probability mass functions of even moderate
complexity allows implementation of a function mimicking
a universal Turing machine computation. On the other hand,
even the simple Bernoulli process can be equipped with a
noncomputable real bias in , and hence the generated
probability mass function over trials is not a computable
function. This incomparability of the algorithmic model classes
studied here and the traditional statistical model classes, means
that the current results cannot be directly transplanted to the
traditional setting. They should be regarded as pristine truths
that hold in a platonic world that can be used as guideline to
develop analogues in model classes that are of more traditional
concern, as in [11].

B. Essence of Model Selection

The first parameter we are interested in is the sim-
plicity of the model explaining the data sample

. The second parameter is how typical the data is
with respect to , expressed by the randomness deficiency

. The third parameter is
how short the two part code of the
data sample using theory with is. The second
part consists of the full-length index, ignoring saving in code
length using possible nontypicality of in (such as being
the first elements in the enumeration of).
These parameters induce a partial order on the contemplated
set of models. We write , if scores equal or less
than in all three parameters. If this is the case, then we may
say that is at least as good as as an explanation for
(although the converse need not necessarily hold, in the sense
that it is possible that is at least as good a model for
as without scoring better than in all three parameters
simultaneously).

The algorithmic statistical properties of a data sample are
fully represented by the set of all triples

with , together with a component-wise order relation on
the elements of those triples. The complete characterization of
this set follows from the results in [15], provided we generalize
the singleton case treated there to the multiple data case required
here.

In that reference it is shown that if we minimize the length of
a two-part code for an individual data sample, the two-part code
consisting of a model description and a data-to-model code over
the class of all computable models of at most a given complexity,
then the following is the case. With certainty and not only with
high probability as in the classical case this process selects an

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

individual model that in a rigorous sense is (almost) the best
explanation for the individual data sample that occurs among
the contemplated models. (In modern versions of MDL, [4], [2],
[11], one selects the model that minimizes just the data-to-model
code length (ignoring the model code length), or minimax and
mixture MDLs. These are not treated here.) These results are
exposed in the proof and analysis of the equality

(6)

which holds within negligible additive terms, in ar-
gument and value. We give the precise statement in (9) in Ap-
pendix B.

Remark 4: Every model (set) that witnesses the value
, also witnesses the value (but not vice versa). The

functions and can assume all possible shapes over their
full domain of definition (up to additive logarithmic precision in
both argument and value). We summarize these matters in Ap-
pendix B.

C. Computability

How difficult is it to compute the functions and the
minimal sufficient statistic? To express the properties appropri-
ately we require the notion of functions that are not computable,
but can be approximated monotonically by a computable func-
tion.

Definition 3: A function is upper semicom-
putable if there is a Turing machine computing a total func-
tion such that and

. This means that can be computably approximated from
above. If is upper semicomputable, then is lower semi-
computable. A function is called semicomputable if it is either
upper semicomputable or lower semicomputable. If is both
upper and lower semicomputable, then we call computable
(or recursive if the domain is integer or rational).

To put matters in perspective: even if a function is com-
putable, the most feasible type identified above, this does not
mean much in practice. Functions such as of which the
computation terminates in computation time of (say
measured in flops), are among the easily computable ones. But
for , even a computer performing an unrealistic teraflop
per second, requires seconds. This is more
than years. It is out of the question to perform such
computations. Thus, the fact that a function or problem solution
is computable gives no insight into how feasible it is. But there
are worse functions and problems possible: For example, the
ones that are semicomputable but not computable. Or worse
yet, functions that are not even semicomputable.

Semicomputability gives no knowledge of convergence guar-
antees: even though the limit value is monotonically approxi-
mated, at no stage in the process do we know how close we are
to the limit value. In Section III, the indirect method of Algo-
rithm Optimal MDL shows that the function (the MDL es-
timator) can be monotonically approximated in the upper semi-
computable sense. But in [15] it was shown for singleton data
samples, and therefore a fortiori for multiple data samples ,
the fitness function (the direct method of Remark 6) cannot

be monotonically approximated in that sense, nor in the lower
semicomputable sense, in both cases not even up to any relevant
precision. Let us formulate this a little more precisely:

The functions have a finite domain for a given
and hence can be given as a table—so formally speaking they

are computable. But this evades the issue: there is no algorithm
that computes these functions for given and . Considering
them as two-argument functions the following was shown (and
the claimed precision quantified).

• The function is upper semicomputable but not com-
putable up to any reasonable precision.

• There is no algorithm that given and finds .
• The function is neither upper nor lower semi-

computable, not even to any reasonable precision. To put
’s computability properties in perspective, clearly

we can compute it given an oracle for the halting problem.
The halting problem is the problem whether an ar-
bitrary Turing machine started on an initially all-
tape will eventually terminate or compute forever.
This problem was shown to be undecidable by A. M.
Turing in 1937, see for example [9]. An oracle for
the halting problem will, when asked, tell whether
a given Turing machine computation will or will
not terminate. Such a device is assumed in order to
determine theoretical degrees of (non)computability,
and is deemed not to exist.

But using such an oracle gives us power beyond effec-
tive (semi)computability and therefore brings us outside
the concerns of this paper.

• There is no algorithm that given and finds a min-
imal sufficient statistic for up to any reasonable preci-
sion.

D. Invariance Under Recoding of Data

In what sense are the functions invariant under recoding of the
data? If the functions and give us the stochastic proper-
ties of the data , then we would not expect those properties
to change under recoding of the data into another format. For
convenience, let us look at a singleton example. Suppose we
recode by a shortest program for it. Since is
incompressible, it is a typical element of the set of all strings
of length , and hence, drops to the Kol-
mogorov complexity already for some , so
almost immediately (and it stays within logarithmic distance of
that line henceforth). That is, up to logarithmic
additive terms in argument and value, irrespective of the (pos-
sibly quite different) shape of . Since the Kolmogorov com-
plexity function is not recursive [5], the recoding
function is also not recursive. Moreover, while is
one-to-one and total it is not onto. But it is the partiality of the in-
verse function (not all strings are shortest programs) that causes
the collapse of the structure function. If one restricts the finite
sets containing to be subsets of , then the
resulting function is within a logarithmic strip around .
The coding function is upper semicomputable and determin-
istic. (One can consider other codes, using more powerful com-
putability assumptions or probabilistic codes, but that is outside

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 449

the scope of this paper.) However, the structure function is in-
variant under “proper” recoding of the data.

Theorem 1: Let be a recursive permutation of the set of
finite binary strings in (one-to-one, total, and onto), and
extend to subsets . Then, is “close” to
in the sense that the graph of is situated within a strip of
width around the graph of .

Proof: The functions are nonincreasing. Let
be a witness of . Then, satis-
fies and . Hence,

. Let be a wit-
ness of . Then, satisfies

and . Hence

(since).

III. APPROXIMATING THE MDL CODE

Given , the data to explain, and the model class
consisting of all models for that have complexity
at most . This is the maximum complexity of an explanation
we allow. As usual, we denote (possibly indexed
like) and . We search for programs of
length at most that print a finite set . Such pairs
are possible explanations. The best explanation is defined to be
the for which is minimal, that is,

. Since the function is not computable, there is no
algorithm that halts with the best explanation. To overcome this
problem we minimize the randomness deficiency by minimizing
the MDL code length, justified by (6), and thus maximize the
fitness of the model for this data sample. Since (6) holds only up
to a small error, we should more properly say “almost minimize
the randomness deficiency” and “almost maximize the fitness of
the model.”

Definition 4: An algorithm is an MDL algorithm if the fol-
lowing holds. Let be a data sample consisting of separated
words of length in bits for ; if

, then use the description length
bits and the same upper bound on in the next

sentence. Given inputs and ,
algorithm written as produces a finite sequence of
pairs , such that every is a
binary program of length at most that prints a finite set
with and for
every .

Remark 5: It follows that for all .
Note that an MDL algorithm may consider only a proper subset
of all binary programs of length at most . In particular, the final

may be greater than the optimal MDL code of
length . This
happens when a program printing with and

is not in the subset of binary programs considered
by the algorithm, or the algorithm gets trapped in a suboptimal
solution.

The next theorem gives an MDL algorithm that always finds
the optimal MDL code and, moreover, the model in question is
shown to be an approximately best fitting model for .

Theorem 2: There exists an MDL algorithm which given
and satisfies , such that

.
Proof: We exhibit such an MDL algorithm:

Algorithm Optimal MDL
Step 1. Let be the data sample. Run all binary programs

of length at most in lexicographic
length-increasing order in a dovetailed style. The
computation proceeds by stages and in
each stage the overall computation executes step

of the particular subcomputation of , for
every such that .

Step 2. At every computation step , consider all pairs
such that program has printed the set by
time . We assume that there is a first elementary
computation step such that there is such a pair.
Let a best explanation at computation step

be a pair that minimizes the sum
among all the pairs .

Step 3. We only change the best explanation of
computation step to at computation
step , if .

In this MDL algorithm the best explanation changes
from time to time due to the appearance of a strictly better expla-
nation. Since no pair can be elected as best explanation
twice, and there are only finitely many pairs, from some moment
onward the explanation which is declared best does not
change anymore. Therefore, the limit exists. The model

is a witness set of . The lemma follows by (6) and Re-
mark 4.

Thus, if we continue to approximate the two-part MDL code
contemplating every relevant model, then we will eventually
reach the optimal two-part code whose associated model is ap-
proximately the best explanation. That is the good news. The
bad news is that we do not know when we have reached this
optimal solution. The functions and , and their witness
sets, cannot be computed within any reasonable accuracy, Sec-
tion II-C. Hence, there does not exist a criterion we could use to
terminate the approximation somewhere close to the optimum.

In the practice of the real-world MDL, in the process of
finding the optimal two-part MDL code, or indeed a suboptimal
two-part MDL code, we often have to be satisfied with running
times that are much less than the time to stabilization of the
best explanation. For such small , the model has a weak
guarantee of goodness, since we know that

because and, there-
fore, (ignoring additive
constants). That is, the randomness deficiency of in plus

is less than the known value . Theorem 2

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

implies that algorithm MDL gives not only some guarantee of
goodness during the approximation process (see Section II-C),
but also that, in the limit, that guarantee approaches the value of
its lower bound, that is, . Thus, in the limit,
Algorithm Optimal MDL will yield an explanation that is only
a little worse than the best explanation.

Remark 6: (Direct Method) Use the same dovetailing
process as in Algorithm Optimal MDL, with the following
addition. At every elementary computation step , select a

for which is minimal among all
programs that up to this time have printed a set .
Here is the approximation of from above
defined by : the reference universal prefix
machine outputs on input in at most steps .
Hence, is an approximation from below
to . Let denote the best explanation after
steps. We only change the best explanation at computation step
, if .

This time, the same explanation can be chosen as the best one
twice. However, from some time onward, the best explana-
tion does not change anymore. In the approximation
process, the model has no guarantee of goodness at all:
Since is not semicomputable up to any significant pre-
cision, Section II-C, we cannot know a significant upper bound
neither for nor for . Hence, we
must prefer the indirect method of Algorithm Optimal MDL,
approximating a witness set for , instead of the direct
one of approximating a witness set for .

IV. DOES SHORTER MDL CODE IMPLY BETTER MODEL?

In practice, we often must terminate an MDL algorithm as in
Definition 4 prematurely. A natural assumption is that the longer
we approximate the optimal two-part MDL code the better the
resulting model explains the data. Thus, it is tempting to simply
assume that in the approximation every next shorter two-part
MDL code also yields a better model. However, this is not true.
To give an example that shows where things go wrong it is eas-
iest to first give the conditions under which premature search
termination is all right. Suppose we replace the currently best
explanation in an MDL algorithm with explanation

only if is not just less than
, but less by more than the excess of over .

Then, it turns out that every time we change the explanation we
improve its goodness.

Theorem 3: Let be a data sample with
. Let and be sequential (not necessary

consecutive) candidate best explanations produced by an MDL
algorithm . If

then .
Proof: For every pair of sets we have

with and

The first inequality uses the trivial
and the nontrivial

which follows by (8), and the second in-
equality uses the general property that .
By the assumption in the theorem

It suffices to show that

to prove the theorem. Note that and are in
this order sequential candidate best explanations in the algo-
rithm, and every candidate best explanation may appear only
once. Hence, to identify we only need to know the
MDL algorithm , the maximal complexity of the contem-
plated models, the data sample , the candidate explanation

, and the number of candidate best explanations in be-
tween and . To identify from we only
require bits. The program can be found from and
the length , as the first program computing of length

in the process of running the algorithm . Since is
an MDL algorithm we have ,
and . Therefore

where is the number of bits we need to encode the description
of the MDL algorithm, the descriptions of the constituent parts
self-delimitingly, and the description of a program to reconstruct

from . Since , we find

where the last inequality follows from and being
an integer.

Remark 7: We need an MDL algorithm in order to restrict
the sequence of possible candidate models examined to at most

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 451

with rather than all of the
possible models satisfying .

Remark 8: In the sequence of
candidate best explanations produced by an MDL algo-
rithm, is actually better than , if
the improvement in the two-part MDL code length is the
given logarithmic term in excess of the unknown, and in
general noncomputable . On the one hand, if

, and

then is a better explanation for data sample than , in
the sense that

On the other hand, if is large, then may be
a much worse explanation than . Then, it is possible that
we improve the two-part MDL code length by giving a worse
model using, however, a such that

while .

V. SHORTER MDL CODE MAY NOT BE BETTER

Assume that we want to infer a language, given a single posi-
tive example (element of the language). The positive example is

with for . We
restrict the question to inferring a language consisting of a set of
elements of the same length as the positive example, that is, we
infer a subset of . We can view this as inferring the slice

of the (possibly infinite) target language consisting of all
words of length in the target language. We identify the sin-
gleton data sample with its constituent data string . For the
models, we always have with .
For simplicity, we delete the cardinality indicator since it
is always and write .

Every can be represented by its characteristic
sequence with if the th element of

is in , and otherwise. Conversely, every string of
bits is the characteristic sequence of a subset of . Most
of these subsets are “random” in the sense that they cannot be
represented concisely: their characteristic sequence is incom-
pressible. Now choose some integer . Simple counting tells us
that there are only binary strings of length .
Thus, the number of possible binary programs of length
is at most . This in turn implies (since every pro-
gram describes at best one such set) that the number of subsets

with is at most .
Therefore, the number of subsets with

is greater than

Now if is significantly greater than , then it is im-
possible to learn from . This follows already from the fact
that

by (8) (note that). That is,
we need more than extra bits of dedicated in-
formation to deduce from . Almost all sets in have
so high complexity that no effective procedure can infer this set
from a single example. This holds in particular for every (even
moderately) random set.

Thus, to infer such a subset , given a sample
datum , using the MDL principle is clearly out of the
question. The datum can be literally described in bits by
the trivial MDL code with literal at self-delimiting
model cost at most bits and data-to-model cost

. It can be concluded that the only sets that can
possibly be inferred from (using MDL or any other effective
deterministic procedure) are those that have

. Such sets are extremely rare: only an at most

fraction of all subsets of has that small prefix com-
plexity. This negligible fraction of possibly learnable sets shows
that such sets are very nonrandom; they are simple in the sense
that their characteristic sequences have great regularity (other-
wise the Kolmogorov complexity could not be this small). But
this is all right: we do not want to learn random, meaningless,
languages, but only languages that have meaning. “Meaning” is
necessarily expressed in terms of regularity.

Even if we can learn the target model by an MDL algorithm
in the limit, by selecting a sequence of models that decrease the
MDL code with each next model, it can still be the case that a
later model in this sequence is a worse model than a preceding
one. Theorem 3 showed conditions that prevent this from hap-
pening. We now show that if those conditions are not satisfied,
it can indeed happen.

Theorem 4: There is a datum with explana-
tions and such that

but . That is, is
much worse fitting than . There is an MDL algorithm
generating and as best explanations with

.

Remark 9: Note that the condition of Theorem 3 is different
from the first inequality in Theorem 4 since the former required
an extra term in the right-hand side.

Proof: Fix datum of length which can be divided in
with of equal length (say is a multiple of) with

and (with the last four equalities holding up to
additive terms). Additionally, take sufficiently large
so that .

Define and an MDL algorithm that
examines the sequence of models , with

. The algorithm starts with candidate model
and switches from the current candidate to candidate

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

452 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

, if that model gives a shorter MDL code than the
current candidate.

Now and , so
the MDL code length .
Our MDL algorithm uses a compressor that does not compress

all the way to length , but codes self-delimitingly at
bits, that is, it compresses by 10%. Thus, the MDL code

length is for every
contemplated model . The next equalities
hold again up to additive terms.

• The MDL code length of the initial candidate model is
. The randomness deficiency

. The last equality holds since clearly
.

• For the contemplated model we obtain the fol-
lowing. The MDL code length for model is

. The randomness deficiency
.

• For the contemplated model we obtain the fol-
lowing. The MDL code length is . The
randomness deficiency is

.
Thus, our MDL algorithm initializes with candidate model
, then switches to candidate since this model decreases

the MDL code length by . Indeed, is a much better
model than , since it decreases the randomness deficiency
by a whopping . Subsequently, however, the MDL process
switches to candidate model since it decreases the MDL
code length greatly again, by . But is a much worse
model than the previous candidate , since it increases the
randomness deficiency again greatly by .

Remark 10: By Theorem 3 we know that if in the process
of MDL estimation by a sequence of significantly decreasing
MDL codes a candidate model is represented by its shortest
program, then the following candidate model which improves
the MDL code is actually a model of at least as good fit as the
preceding one. Thus, if in the example used in the preceding
proof we encode the models at shortest code length, we obtain
MDL code lengths for for ,
and for . Hence, the MDL
estimator using shortest model code length changes candidate
model for , improving the MDL code length by
and the randomness deficiency by . However, and correctly,
it does not change candidate model for , since
that would increase the MDL code length by . It thus pre-
vents, correctly, the increase of the randomness deficiency by

. Thus, by the cited theorem, the oscillating randomness de-
ficiency in the MDL estimation process in the proof above can
only arise in cases where the consecutive candidate models are
not coded at minimum cost while the corresponding two-part
MDL code lengths are decreasing.

VI. INFERRING A GRAMMAR (DFA) FROM POSITIVE EXAMPLES

Assume that we want to infer a language, given a set of
positive examples (elements of the language) . For con-
venience, we restrict the question to inferring a language

with . We can view this

as inferring the slice (corresponding to) of the target
language consisting of all words of length in the target
language. Since consists of a subset of positive examples
of , we have . To infer a language from a set
of positive examples is, of course, a much more
natural situation than to infer a language from a singleton
as in the previous section. Note that the complexity of a
singleton of length cannot exceed , while the
complexity of a language of which is an element can rise to

. In the multiple data sample, setting can
rise to , just as can. That is, the description
of takes bits and the description of the characteristic
sequence of a subset of may take bits, everything
self-delimitingly. So contrary to the singleton datum case, in
principle models of every possible model complexity can be
inferred depending on the data at hand. An obvious example
is . Note that the cardinality of plays a role
here, since the complexity with
equality for certain . A traditional and well-studied problem
in this setting is to infer a grammar from a language example.

The field of grammar induction studies among other things
a class of algorithms that aims at constructing a grammar by
means of incremental compression of the data set represented
by the digraph of a deterministic finite automaton (DFA) ac-
cepting the data set. This digraph can be seen as a model for the
data set. Every word in the data set is represented as a path in the
digraph with the symbols either on the edges or on the nodes.
The learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering
of the nodes in the graph. None of these algorithms explicitly
makes an estimate of the data-to-model code. Instead, they use
heuristics to guide the model reduction. After a certain number
of computational steps, a proposal for a grammar can be con-
structed from the current state of the compressed graph. Exam-
ples of such algorithms are SP [17], [16], EMILE [1], ADIOS
[14], and a number of DFA induction algorithms, such as “Evi-
dence Driven State Merging” (EDSM), [7], [18]. Related com-
pression-based theories and applications appear in [8], [3]. Our
results (above and below) do not imply that compression algo-
rithms improving the MDL code of DFAs can never work on
real life data sets. There is considerable empirical evidence that
there are situations in which they do work. In those cases, spe-
cific properties of a restricted class of languages or data sets
must be involved.

Our results are applicable to the common digraph simplifi-
cation techniques used in grammar inference. The results hold
equally for algorithms that use just positive examples, just neg-
ative examples, or both, using any technique (not just digraph
simplification).

Definition 5: A DFA , where is a finite
set of input symbols, is a finite set of states,
is the transition function, is the initial state, and
is a set of final states.

The DFA is started in the initial state . If it is in state
and receives input symbol it changes its state to

. If the machine after zero or more input symbols,
say , is driven to a state then it is said to accept

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 453

the word , otherwise, it rejects the word . The
language accepted by is is accepted by .
We denote .

We can effectively enumerate the DFAs as in lexi-
cographic length-increasing order. This enumeration we call the
standard enumeration.

The first thing we need to do is to show that all laws that hold
for finite-set models also hold for DFA models, so all theorems,
lemmas, and remarks above, both positive and negative, apply.
To do so, we show that for every data sample and a
contemplated finite set model for it, there is an almost equivalent
DFA.

Lemma 3: Let and
. For every , there is a DFA with

such that (which im-
plies), and

.
Proof: Since is a finite set of binary strings, there is

a DFA that accepts it, by elementary formal language theory.
Define DFA such that is the first DFA in the standard enu-
meration for which . (Note that we can infer
from both and .) Hence, and

. Trivially,
and , since may
have information about beyond . This implies

, so that
.

Lemma 4 is the converse of Lemma 3: for every data sample
and a contemplated DFA model for it, there is a finite set

model for that has no worse complexity, randomness defi-
ciency, and worst case data-to-model code for , up to additive
logarithmic precision.

Lemma 4: Use the terminology of Lemma 3. For every
, there is a model such

that
(which implies), and

.
Proof: Choose . Then,

and both and
. Since also

, since may have information about
beyond , we have .

A. MDL Estimation

To analyze the MDL estimation for DFAs, given a data
sample, we first fix details of the code. For the model
code, the coding of the DFA, we encode as follows. Let

with and . By
renaming of the states we can always take care that are
the last states of . There are different possibilities for

possibilities for , and possibilities for . Altogether, for
every choice of there are distinct DFAs, some of
which may accept the same languages.

Small Model Cost but Difficult to Decode: We can enu-
merate the DFAs by setting and for every con-

sider all partitions to two positive integer summands,
and for every particular choice of considering every choice
of final states, transition function, and initial state. This way
we obtain a standard enumeration of all DFAs, and
given the index of a DFA , we can retrieve the particular
DFA concerned, and for every we can find .

Larger Model Cost but Easy to Decode: We encode a DFA
with states and symbols self-delimitingly by the following.
• The encoding of the number of symbols in self-delimiting

format in bits.
• The encoding of the number of states in self-delimiting

format in bits.
• The encoding of the set of final states by indicating that

all states numbered are final states,
by just giving in bits.

• The encoding of the initial state by giving its index in
the states , in bits.

• The encoding of the transition function in lexicographic
order of in bits per transition, which takes

bits altogether.
Altogether, this encodes in a self-delimiting format in

bits. Thus, we reckon the model cost of
a -DFA as bits. This
cost has the advantage that it is easy to decode and that
is an easy function of . We will assume this model cost.

Data-to-Model Cost: Given a DFA model , the word length
in bits which we simplify to bits, and

the size of the data sample , we can describe by
its index in the set of choices out of items, that is,
up to rounding upwards, bits. For this can
be estimated by ,
where
is Shannon’s entropy function. For or we set the
data-to-model cost to , for we set it
to (ignoring the possible saving of a
term), and for we set it to the cost of .
This reasoning brings us to the following MDL cost of a data
sample for DFA model .

Definition 6: The MDL code length of a data sample of
strings of length , given , for a DFA model such that

denoting , is given by

If is not given, we write .

B. Randomness Deficiency Estimation

Given data sample and DFA with
, we can estimate the randomness deficiency. Again, use

and . By (2), the randomness deficiency is

Then, substituting the estimate for from the previous
section, up to logarithmic additive terms

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

454 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

Thus, by finding a computable upper bound for ,
we can obtain a computable lower bound on the randomness
deficiency that expresses the fitness of a DFA
model with respect to data sample .

C. Less MDL Code Length Does Not Mean Better Model

The task of finding the smallest DFA consistent with a set
of positive examples is trivial. This is the universal DFA ac-
cepting every example (all of). Clearly, such a universal
DFA will in many cases have a poor generalization error and
randomness deficiency. As we have seen, optimal randomness
deficiency implies an optimal fitting model to the data sample.
It is to be expected that the best fitting model gives the best gen-
eralization error in the case that the future data are as typical to
this model as the data sample is. We show that the randomness
deficiency behaves independently of the MDL code, in the sense
that the randomness deficiency can either grow or shrink with a
reduction of the length of the MDL code.

We show this by example. Let the set be a sample set con-
sisting of 50% of all binary strings of length with an even
number of ’s. Note, that the number of strings with an even
number of ’s equals the number of strings with an odd number
of ’s, so . Initialize with a DFA such that

. We can obtain directly from , so we have
, and since we have

, so that altogether , while

, since
. (The first equality follows since we can obtain from .

We obtain a negative constant randomness deficiency which we
take to be as good as randomness deficiency. All arguments
hold up to an additive term anyway.) Without loss of gen-
erality, we can assume that the MDL algorithm involved works
by splitting or merging nodes of the digraphs of the produced
sequence of candidate DFAs. But the argument works for every
MDL algorithm, whatever technique it uses.

Initialize: Assume that we start our MDL estimation with the
trivial DFA that literally encodes all elements of as
a binary directed tree with nodes. Then,

, which yields

The last approximate equality holds since , and hence,
and . Since the random-

ness deficiency , it follows that is a best
fitting model for . Indeed, it represents all conceivable prop-
erties of since it literally encodes . However, does not
achieve the optimal MDL code.

Better MDL Estimation: In a later MDL estimation we im-
prove the MDL code by inferring the parity DFA with two
states that checks the parity of ’s in a sequence. Then

We now consider two different instantiations of , denoted as
and . The first one is regular data, and the second one is

random data.
Case 1, regular data: Suppose consisting of the

lexicographic first 50% of all -bit strings with an even number
of occurrences of ’s. Then and

In this case, even though DFA has a much better MDL code
than DFA , it has nonetheless a much worse fit since its ran-
domness deficiency is far greater.

Case 2, random data: Suppose is equal to , where
is a random subset consisting of 50% of the -bit strings with
even number of occurrences of ’s. Then,

, and

In this case, DFA has a much better MDL code than DFA ,
and it has equally good fit since both randomness deficiencies
are about .

Remark 11: We conclude that improved MDL estimation of
DFAs for multiple data samples does not necessarily result in
better models, but can do so nonetheless.

Remark 12 (Shortest Model Cost): By Theorem 3, we know
that if, in the process of MDL estimation by a sequence of
significantly decreasing MDL codes, a candidate DFA is rep-
resented by its shortest program, then the following candidate
DFA which improves the MDL estimation is actually a model
of at least as good fit as the preceding one. Let us look at an ex-
ample: Suppose we start with DFA that accepts all strings in

. In this case, we have and

Here

since . Suppose the subsequent candidate DFA is the
parity machine . Then

since . Since
, we have , and

. Therefore, the improved
MDL cost from model to model is accompanied by
an improved model fitness since the randomness deficiency
decreases as well. This is forced by Theorem 3, since both DFA

and DFA have . That is, the
DFAs are represented and penalized according to their shortest
programs (a fortiori of length) and therefore improved
MDL estimation increases the fitness of the successive DFA
models significantly.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 455

APPENDIX

A. Preliminaries

1) Self-Delimiting Code: A binary string is a proper prefix
of a binary string if we can write for . A set

is prefix-free if for every pair of distinct
elements in the set neither is a proper prefix of the other. A
prefix-free set is also called a prefix code and its elements are
called codewords. As an example of a prefix code, encode the
source word by the codeword

This prefix-free code is called self-delimiting, because there is
fixed computer program associated with this code that can deter-
mine where the codeword ends by reading it from left to right
without backing up. This way, a composite code message can
be parsed in its constituent codewords in one pass, by the com-
puter program. Since we use the natural numbers and the binary
strings interchangeably, the notation where is ostensibly
an integer means the length in bits of the self-delimiting code of
the th binary string. On the other hand, the notation where

is ostensibly a binary string means the self-delimiting code of
the length of the binary string . Using this code, we define
the standard self-delimiting code for to be . It is
easy to check that and . Let

denote a standard invertible effective one-to-one code from
to a subset of . For example, we can set

or . We can iterate this process to define ,
and so on.

2) Kolmogorov Complexity: For precise definitions, no-
tation, and results see the textbook [9]. Informally, the Kol-
mogorov complexity, or algorithmic entropy, of a string

is the length (number of bits) of a shortest binary program
(string) to compute on a fixed reference universal computer
(such as a particular universal Turing machine). Intuitively,

represents the minimal amount of information required
to generate by any effective process. The conditional Kol-
mogorov complexity of relative to is defined
similarly as the length of a shortest program to compute , if

is furnished as an auxiliary input to the computation. For
technical reasons, we use a variant of complexity, the so-called
prefix complexity, which is associated with Turing machines
for which the set of programs resulting in a halting computation
is prefix-free. We realize prefix complexity by considering a
special type of Turing machine with a one-way input tape, a
separate work tape, and a one-way output tape. Such Turing
machines are called prefix Turing machines. If a machine
halts with output after having scanned all of on the input
tape, but not further, then and we call a program
for . It is easy to see that is a
prefix code.

Let be a standard enumeration of all prefix
Turing machines with a binary input tape, for example, the
lexicographic length-increasing ordered syntactic prefix Turing
machine descriptions, and let be the enumeration of
corresponding functions that are computed by the respective
Turing machines (computes). These functions are the par-
tial recursive functions or computable functions (of effectively

prefix-free encoded arguments). The prefix (Kolmogorov)
complexity of is the length of the shortest binary program
from which is computed. For the development of the theory
we require the Turing machines to use auxiliary (also called
conditional) information, by equipping the machine with a
special read-only auxiliary tape containing this information at
the outset.

One of the main achievements of the theory of computa-
tion is that the enumeration contains a machine, say

, that is computationally universal in that it can simulate
the computation of every machine in the enumeration when pro-
vided with its index: for all . We
fix one such machine and designate it as the reference universal
prefix Turing machine.

Definition 7: Using this universal machine we define the
prefix (Kolmogorov) complexity

(7)

the conditional version of the prefix Kolmogorov complexity of
given (as auxiliary information). The unconditional version

is set to .

In this paper we use the prefix complexity variant of
Kolmogorov complexity only for convenience; the plain Kol-
mogorov complexity without the prefix property would do just
as well. The functions and , though defined in
terms of a particular machine model, are machine independent
up to an additive constant and acquire an asymptotically uni-
versal and absolute character through Church’s thesis, that is,
from the ability of universal machines to simulate one another
and execute any effective process. The Kolmogorov complexity
of an individual object was introduced by Kolmogorov [5]
as an absolute and objective quantification of the amount of
information in it. The information theory of Shannon [12], on
the other hand, deals with average information to communicate
objects produced by a random source. Since the former theory
is much more precise, it is surprising that analogues of theo-
rems in information theory hold for Kolmogorov complexity,
be it in somewhat weaker form. An example is the remarkable
symmetry of information property. Let denote the shortest
prefix-free program for a finite string , or, if there are more
than one of these, then is the first one halting in a fixed
standard enumeration of all halting programs. It follows that

. Denote . Then

(8)

3) Precision: It is customary in this area to use “additive con-
stant ” or equivalently “additive term” to mean a constant,
accounting for the length of a fixed binary program, independent
from every variable or parameter in the expression in which it
occurs.

B. Structure Functions and Model Selection

We summarize a selection of the results in [15]. There, the
data sample is a singleton set . The results extend to the
multiple data sample case in the straightforward way.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

456 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

i) The MDL code length with and
can assume essentially every possible relevant

shape as a function of the maximal model com-
plexity that is allowed up to an additive
term in argument and value. (Actually, we can take this
term as , but since this is cum-
bersome we use the larger term. The differ-
ence becomes large for .) These ’s are
all integer-valued nonincreasing functions such that is
defined on where , such that

and . This is Theorem IV.4 in [15]
for singleton data . There, is contained in a strip of
width around . For multiple data ,
a similar theorem holds up to an additive term
in both argument and value, that is, the strip around in
which is situated now has width . (The strip
idea is made precise in (9) below for (6), for another re-
sult.) As a consequence, so-called “nonstochastic” data

for which stabilizes on only for large
are common.

ii) A model achieving the MDL code length , essen-
tially achieves the best possible fit . This is The-
orem IV.8 in [15] for singleton data and (6) in this paper
for multiple data. The precise form is

(9)

with and for
. If , then the

term becomes .
iii) As a consequence of i) and ii), the best fit function

can assume essentially every possible relevant shape as a
function of the contemplated maximally allowed model
complexity .

From the proof of Item ii), we see that, given the data
sample , for every finite set , of complexity
at most and minimizing , we have

. Ignoring terms,
at every complexity level , every best model at this level
witnessing is also a best one with respect to typicality
(6). This explains why it is worthwhile to find shortest two-part
descriptions for the given data sample : this is the
single known way to find an with respect to which is
as typical as possible at model complexity level . Note that the
set is not enumerable
so we are not able to generate such ’s directly, [15].

The converse is not true: not every model (a finite set) wit-
nessing also witnesses . For example, let

with a string of length with . Let

(we ignore the set giving the data
sample cardinality since is a singleton set), where is a string
of length such that and let .
Then both witness but

while .

REFERENCES

[1] P. Adriaans and M. Vervoort, “The EMILE 4.1 grammar induction
toolbox,” in Proc. 6th Int. Colloq. Grammatical Inference (Lecture
Notes in Computer Science). Berlin, Germany: Springer-Verlag,
2002, vol. 2484, pp. 293–295.

[2] A. R. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Trans. Inf. Theory, vol. 44, no.
6, pp. 2743–2760, Oct. 1998.

[3] N. Chater and P. M. B. Vitanyi, ““Ideal learning” of natural language:
Positive results about learning from positive evidence,” J. Math. Psy-
chol., vol. 51, no. 3, pp. 135–163, 2007.

[4] P. D. Grünwald, The Minimum Description Length Principle. Cam-
bridge, MA: MIT Press, 2007.

[5] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Probl. Inf. Transm., vol. 1, no. 1, pp. 1–7, 1965.

[6] A. N. Kolmogorov, “Complexity of algorithms and objective definition
of,” presented at the Moscow Math. Soc. Meet. 4/16/1974, Abstract
Available in Uspekhi Mat. Nauk., vol. 29, no. 4, p. 155, 1974; English
translation in [15].

[7] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the Ab-
badingo One DFA learning competition and a new evidence-driven
state merging algorithm,” in Proc. 4th Int. Colloq. Grammatical
Inference (Lecture Notes in Computer Sccience). Berlin, Germany:
Springer-Verlag, 1998, vol. 1433, pp. 1–12.

[8] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity
metric,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3250–3264, Dec.
2004.

[9] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity
and Its Applications, 3rd ed. New York: Springer-Verlag, 2008.

[10] J. J. Rissanen, “A universal prior for integers and estimation by min-
imum description length,” Ann. Statist., vol. 11, no. 2, pp. 416–431,
1983.

[11] J. J. Rissanen, Information and Complexity in Statistical Modeling.
New York: Springer-Verlag, 2007.

[12] C. E. Shannon, “The mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, pp. 379–423, 623-656, 1948.

[13] A. Kh. Shen, “The concept of ��� ��-stochasticity in the Kolmogorov
sense, and its properties,” Sovi. Math. –Dokl., vol. 28, no. 1, pp.
295–299, 1983.

[14] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised
learning of natural languages,” Proc. Nat. Acad. Sci., vol. 102, no. 33,
pp. 11629–11634, 2005.

[15] N. K. Vereshchagin and P. M. B. Vitányi, “Kolmogorov’s structure
functions and model selection,” IEEE Trans. Inf. Theory, vol. 50, no.
12, pp. 3265–3290, Dec. 2004.

[16] J. G. Wolff, “Computing as compression: An overview of the SP theory
and system,” New Generation Comput., vol. 13, no. 2, pp. 187–214,
1995.

[17] J. G. Wolff, “Information compression by multiple alignment, unifica-
tion and search as a unifying principle in computing and cognition,”
Artificial Intelligence Rev., vol. 19, no. 3, pp. 193–230, 2003.

[18] “Papers,” in ECML Workshop on Learning Context-Free Grammars,
Ruder Boskovic Institute, Zagreb, Croatia, 2003; 7th Eur. Conf. Princi-
ples Pract. Knowl. Discov. Databases, ser. Lecture Notes in Computer
Sceince. Berlin, Germany: Springer-Verlag, 2003, vol. 2838.

Pieter Adriaans received the Ph.D. from the University of Amsterdam, Ams-
terdam, The Netherlands, in 1992.

He and his business partner, Dolf Zantinge, founded the software developer
Syllogic B.V. in 1989, and sold the company to Perot Systems Corporation in
1997. Since 1997, he has been Professor of Computer Science at the Univer-
sity of Amsterdam. He is adviser of Robosail Systems, a company that man-
ufactures and sells self-learning autopilots, as well as senior research adviser
for Perot Systems Corporation. He has worked on learning, grammar induction,
philosophy of information, and information and art. He holds several patents
on adaptive systems management and on a method for automatic composition
of music using grammar induction techniques. He acted as project leader for

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

ADRIAANS AND VITÁNYI: APPROXIMATION OF THE TWO-PART MDL CODE 457

various large international research and development projects: among others,
the development of distributed database management software in cooperation
with IBM and Prognostic and Health management for the Joint Strike Fighter.
He wrote papers and books on topics related to both computer science and phi-
losophy, including a book on systems analysis and books on client/server and
distributed databases as well as data mining. He composes and plays rock music
and is an avid painter. In 2006 he had an overview exhibition showing the har-
vest of forty years of painting.

Dr. Adriaans serves as Editor of the Handbook of Philosophy of Information,
a project of Elseviers Science Publishers, and is a member of the ICGI (Inter-
national Conference on Grammar Induction) steering committee.

Paul M. B. Vitányi received the Ph.D. degree from the Free University of Am-
sterdam, Amsterdam, The Netherlands, in 1978.

He is a Fellow at the National Research Institute for Mathematics and Com-
puter Science (CWI), Amsterdam, The Netherlands, and a Professor of Com-
puter Science at the University of Amsterdam. He has worked on cellular au-
tomata, computational complexity, distributed and parallel computing, machine
learning and prediction, physics of computation, Kolmogorov complexity, in-
formation theory, and quantum computing, publishing about 200 research pa-
pers and some books. Together with Ming Li they pioneered applications of
Kolmogorov complexity and coauthored An Introduction to Kolmogorov Com-
plexity and its Applications (New York: Springer-Verlag, 1993 (2nd ed. 1997,
3rd ed. 2008), parts of which have been translated into Chinese, Russian, and
Japanese.

Dr. Vitányi was knighted in 2007. He has served on the editorial boards of
Distributed Computing (until 2003), and serves on the editorial boards of Infor-
mation Processing Letters, Theory of Computing Systems, Parallel Processing
Letters, International Journal of Foundations of Computer Science, Journal of
Computer and Systems Sciences (Guest Editor), and elsewhere.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 11:41 from IEEE Xplore. Restrictions apply.

