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Quantum Kolmogorov Complexity Based on
Classical Descriptions

Paul M. B. Vitanyi

~ Abstract—We develop a theory of the algorithmic information ~ assumes that every complex vector of unit length represents a
in bits contained in an individual pure quantum state. This extends  realizable pure quantum state [17]. There arises the question of
classical Kolmogorov complexity to the quantum domain retaining how to design the equipment that prepares such a pure state.

classical descriptions. Quantum Kolmogorov complexity coincides While th fi | tates i finite-di
with the classical Kolmogorov complexity on the classical domain. lie there are continuously many pure states in a tnite-di-

Quantum Kolmogorov complexity is upper-bounded and can be ef- mensional complex vector space—corresponding to all vectors
fectively approximated from above under certain conditions. With ~ of unit length—we can finitely describe only a countable subset.

high probability, a quantum object is incompressible. Upper and  |mposing effectiveness on such descriptions leads to construc-
lower bounds of the quantum complexity of multiple copies of in- tive procedures. The most general such procedures satisfying

dividual pure quantum states are derived and may shed some light = . I d loaical orincipl f effecti
on the no-cloning properties of quantum states. In the quantum universally agreea-upon logical principies ot elfectiveness are

situation complexity is not subadditive. We discuss some relations quantum Turing machines, [3]. To define quantum Kolmogorov
with “no-cloning” and “approximate cloning” properties. complexity by way of quantum Turing machines leaves essen-
Index Terms—Algorithmic information theory (quantum), tially two options:

classical descriptions of quant_um states, information theory 1) we want to describe every quantum Superposition exacﬂy;
(quantum), Kolmogorov complexity (quantum), qguantum cloning. or

2) we want to take into account the number of bits per qubits
I. INTRODUCTION in the specification as well the accuracy of the quantum

UANTUM information theory, the quantum-mechanical ~ State produced.
Q analog of classical information theory [6], is experiWe have to deal with the following three problems.
encing a renaissance [2] due to the rising interest in the « There are continuously many quantum Turing machines.
notion of quantum computation and the possibility of realizing
a quantum computer [16]. While Kolmogorov complexity _ _ o
[12] is the accepted absolute measure of information content ® There are continuously many qubit descriptions.
in an individual classical finite object, a similar absolute There are uncountably many quantum Turing machines only if
notion is needed for the information content of iadividual we allow arbitrary real rotations in the definition of machines.
pure quantumstate. One motivation is to extend probabilistidhen, a quantum Turing machine can only be universal in the
guantum information theory to Kolmogorov’'s absolute indisense that it can approximate the computation of an arbitrary
vidual notion. Another reason is to try and duplicate the succesachine, [3]. In descriptions using universal quantum Turing
of classical Kolmogorov complexity as a general proof methadachines we would have to account for the closeness of ap-
in applications ranging from combinatorics to the analysis gfoximation, the number of steps required to get this precision,
algorithms, and from pattern recognition to learning theo@nd the like. In contrast, if we fix the rotation of all contem-
[13]. We propose a theory of quantum Kolmogorov complexitplated machines to a single primitive rotatiémith cos 6 = 2
based on classical descriptions and derive the results giveraimsin = % then there are only countably many Turing ma-
the abstract. A preliminary partial version appeared as [19]. chines and the universal machine simulates the others exactly
What are the problems and choices to be made developinflh Every quantum Turing machine computation, using arbi-
theory of quantum Kolmogorov complexity? Quantum theoryary real rotations to obtain a target pure quantum state, can be
approximated to every precision by machines with fixed rota-
Manuscript received April 13, 2000; revised February 8, 2001. This workwéis,on ¢ but in general cannot be simulated exactly—just as in the
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nology, Tokyo, Japan, as Gaikoku-Jin Kenkyuin at INCOCSAT, and appearaftyhow, but arbitrarily close approximations are possible by
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prepare a quantum state requires a physical apparatus that “cbm= — log P(x) to z—irrespective of the regularities in. For
putes” this quantum state from classical specifications. Sinegkample, with the uniform distributioR(z) = 2~ on the set
such specifications have effective descriptions, every quantarin-bit source words, the Shannon—-Fano codeword length of
state that can be prepared can be described effectively in de-all-zero source word equals the codeword length of a truly ir-
scriptions consisting of classical bits. Descriptions consisting idgular source word. The Shannon—Fano code gives an expected
arbitrary pure quantum states allows noncomputable (or hardctmdeword length close to the entropy, and, by Shannon’s Noise-
compute) information to be hidden in the bits of the amplitudekess Coding Theorem, it possesses the optimal expected code-
In Definition 4, we call a pure quantum statieectly computable word length. But the Shannon—Fano code is not optimal for in-

if there is a (classical) program such that the universal quantutividual elements: it does not take advantage of the regularity in
Turing machine computes that state from the program and thesme elements to encode those shorter. In contrast, one can view
halts in an appropriate fashion. In a computational setting, vee Kolmogorov complexitys(x) as the codeword length of the
naturally require that directly computable pure quantum statglsortest program* for x, the set of shortest programs consti-
can be prepared. By repeating the preparation we can obtaintating the Shannon—Fano code of the so-called “universal dis-
bitrarily many copies of the pure quantum state. tribution” m(x) = 2=%(®)_ The code consisting of the shortest

If descriptions are not effective then we are not going to uggograms has the remarkable property that it achieves i) an ex-
them in our algorithms except possibly on inputs from an “urpected code length that is about optimal since it is close to the
prepared” origin. Every quantum state used in a quantum coentropyand, simultaneouslyi) every individual object is coded
putation arises from some classical preparation or is possilaly short as is effectively possible, that is, squeezing out all reg-
captured from some unknown origin. If the latter is the caselarity. In this sense, the set of shortest programs constitutes the
then we can consume it as conditional side information or aptimal effective Shannon—Fano code, induced by the optimal
oracle. effective distribution (the universal distribution).

Restricting ourselves to an effective enumeration of quantumQuantum Computing\We summarize some basic definitions
Turing machines and classical descriptions to describe by apAppendix Il in order to establish notations and briefly review
proximation continuously many pure quantum states is rentire notion of a quantum Turing machine computation. See also
niscent of the construction of continuously many real numbettse survey [2] on quantum information theory. More details can
from Cauchy sequences of rational numbers, the rationals bebegfound in the textbook [16]. Loosely speaking, as random-
effectively enumerable. ized computation is a generalization of deterministic computa-

Kolmogorov Complexity:We summarize some basic defini-tion, so is quantum computation a generalization of randomized
tions in Appendix | (see also [20]) in order to establish notatiom®mputation. Realizing a mathematical random source to drive a
and recall the notion of shortest effective descriptions. More dexndom computation is, in its ideal form, presumably impossible
tails can be found in the textbook [13]. Shortest effective déer impossible to certify) in practice. Thus, in applications an al-
scriptions are “effective” in the sense that they are prograngorithmic random number generator is used. Strictly speaking,
we can compute the described objects from them. Unfortunatéhys invalidates the analysis based on mathematical randomized
[12], there is no algorithm that computes the shortest prograramputation. As John von Neumann [15], [22] put it: “Any one
and then halts, that is, there is no general method to computewWi® considers arithmetical methods of producing random digits
length of a shortest description (the Kolmogorov complexity$, of course, in a state of sin. For, as has been pointed out several
from the object being described. This obviously impedes actuahes, there is no such thing as arandom number—there are only
use. Instead, one needs to consider computable approximatioeshods to produce random numbers, and a strict arithmetical
to shortest descriptions, for example, by restricting the alloyrocedure is of course not such a method.” In practice, ran-
able approximation time. Apart from computability and approxdomized computations reasonably satisfy theoretical analysis.
imability, there is another property of descriptions that is impota the quantum computation setting, the practical problem is
tantto us. A set of descriptionspsefix-freeif no descriptionis a thatthe ideal coherent superposition cannot really be maintained
proper prefix of another description. Such a set is callpefix  during computation but deteriorates—it decoheres. In our anal-
code Since a code message consists of concatenated codewoysis, we abstract from that problem and one hopes that in prac-
we have to parse it into its constituent codewords to retrietiee anti-decoherence techniques will suffice to approximate the
the encoded source message. If the codmiguely decodable idealized performance sufficiently.
then every code message can be decoded in only one way. Thé/e view a quantum Turing machine as a generalization of
importance of prefix codes stems from the fact that i) they atlee classic probabilistic (that is, randomized) Turing machine.
uniquely decodable from left to right without backing up, and iif he probabilistic Turing machine computation follows multiple
for every uniquely decodable code there is a prefix code with themputation paths in parallel, each path with a certain associ-
same length codewords. Therefore, we can restrict ourselveated probability. The quantum Turing machine computation fol-
prefix codes. In our setting, we require the set of programs to lmsvs multiple computation paths in parallel, but now every path
prefix-free and hence to be a prefix code for the objects beihgs an associated complex probability amplitude. If it is pos-
described. It is well known that with every prefix code thersible to reach the same state via different paths, then in the prob-
corresponds a probability distributid? - ) such that the prefix abilistic case the probability of observing that state is simply
code is a Shannon—Fano cédbat assigns prefix code lengththe sum of the path probabilities. In the quantum case, it is

the squared norm of the summed path probability amplitudes.
1in what follows, 1og” denotes the binary logarithm. Since the probability amplitudes can be of opposite sign, the
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observation probability can vanish; if the path probability anas in [19].) An advantage of qubit complexity is that the upper
plitudes are of equal sign then the observation probability chound on the complexity of a pure quantum state is immedi-
get boosted since it is theguareof the sum norm. While this ately given by the number of qubits involved in the literal de-
generalizes the probabilistic aspect, and boosts the computasoription of that pure quantum state. Let us denote the resulting
power through the phenomenon of interference between paradjabit complexity of a pure quantum stdig by K Q(|¢)).

computation paths, there are extra restrictigissa-visproba- While it is clear that (just as with the previous approach) the
bilistic computation in that the quantum evolution must be un@gubit complexity is not computable, it is unlikely that one can
tary. approximate the qubit complexity from above by a computable

Quantum Kolmogorov ComplexityWe define the Kol- process in some meaningful sense. In particular, the dovetailing
mogorov complexity of a pure quantum state as the length aproach we used in our approach now does not seem applicable
the shortest two-part code consisting of a classical programdoe to the noncountability of the potentential qubit program can-
compute an approximate pure quantum state and the negatiidates. The quantitative incompressibility properties are much
log-fidelity of the approximation to the target quantum statdike the classical case (this is important for future applications).
We show that the resulting quantum Kolmogorov complexityhere are some interesting exceptions in case of objects con-
coincides with the classical self-delimiting complexity on theisting of multiple copies related to the “no-cloning” property
domain of classical objects; and that certain properties that wequantum objects, [21], [7]. Qubit complexity does not satisfy
love and cherish in the classical Kolmogorov complexity arthe subadditive property, and a certain version of it (bounded fi-
shared by the new quantum Kolmogorov complexity: quantudelity) is bounded above by the von Neumann entropy.
Kolmogorov complexity of am-qubit object is upper-bounded Density Matrices:In classical algorithmic information
by about2n; it is not computable but can under certain condtheory it turns out that the negative logarithm of the “largest”
tions be approximated from above by a computable procepspbability distribution effectively approximable from below—
and with high probability a quantum object is incompressibl¢ghe universal distribution—coincides with the self-delimiting
We may call this quantum Kolmogorov complexity thé Kolmogorov complexity. In [8], Gacs defines two notions of
complexityof a pure quantum stat) (using Dirac’s “ket” complexities based on the negative logarithm of the “largest”
notation) and denote it by{(|¢)). From now on, we will density matrix.. effectively approximable from below. There

denote by< an inequality to within an additive constant, an@'ise two different complexities df) based on whether we

by £ the situation when bot& andi hold. For example, we take the logarithm inside as
will show that, forn-qubit stateg¢), the complexity satisfies Kg(|¢)) = —(¢|log | )

+ . .
K(|¢)n) <2n. For certain restricted pure quantum states, -

. S .~ Or outside as
guantum Kolmogorov complexity satisfies the subadditive

property KG(|¢)) = —log(g|u|¢).

K(|p, ¥)) z K(|6) + K(0) | |6)). It turns out thatK g(|¢)) b KG(|¢)). This approach serves to
compare the two approaches above. It was shown/lgdis))

But, in general, quantum Kolmogorov complexitynistsubad- is Within a factor of four ofi(|¢)); that K G(|¢)) essentially is
ditive. Although “cloning” of nonorthogonal states is forbidder lower bound o Q(|¢#)), and an oracle version df (7 is es-
in the quantum setting [21], [74 copies of the same quantumsentially an upper boilnd on qubit complexit§Q. Since qubit
state have combined complexity that can be considerable lowwemplexity is trivially <n and it was shown that bit complexity
thanm times the complexity of a single copy. In fact, quanturis typically close t@®n, at first glance, this leaves the possibility
Kolmogorov complexity appears to enable us to express and pidwat the two complexities are within a factor of two of each other.
tially quantify “nonclonability” and “approximate clonability” This turns out not to be the case since it was shown that the
of individual pure quantum states. K g complexity can for some arguments be much smaller than

Related Work: In the classical situation there are several varthe K G complexity, so that the bit complexity is in these cases
ants of Kolmogorov complexity that are very meaningful iralso much smaller than the qubit complexity. As [8] states: this
their respective settings: plain Kolmogorov complexity, prefiis due to the permissive way the bit complexity deals with ap-
complexity, monotone complexity, uniform complexity, negaproximation. The von Neumann entropy of a computable den-
tive logarithm of universal measure, and so on [13]. It is, thersity matrix is within an additive constant (the complexity of the
fore, not surprising that in the more complicated situation @rogram computing the density matrix) of a notion of average
guantum information several different choices of complexityomplexity. The drawback of density-matrix-based complexity
can be meaningful and unavoidable in different settings. Fagthat we seem to have lost the direct relation with a meaningful
lowing the preliminary version [19] of this work there have beemterpretation in terms of description length: a crucial aspect of
alternative proposals. classical Kolmogorov complexity in most applications [13].

Qubit Descriptions: The most straightforward way to de- Real Descriptions:A version of guantum Kolmogorov com-
fine a notion of quantum Kolmogorov complexity is to consideplexity briefly considered in [19] uses computable real parame-
the shortest effective qubit description of a pure quantum stégées to describe the pure quantum state with complex probability
which is studied in [4]. (Thigjubit complexitycan also be for- amplitudes. This requires two reals per complex probability am-
mulated in terms of the conditional version of bit complexitplitude, that is, form qubits one requireg™*! real numbers in
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the worst case. A real number is computable if there is a fixednsidering output entangled with the remainder of the machine
program that outputs consecutive bits of the binary expansioomplicates formulas and calculations. Correspondingly, we re-
of the number forever. Since every computable real number n&tyict our consideration to outputs that form a tensor product
require a separate program, a computabtgibit pure state may with the remainder of the machine, with the understanding that
require2”! finite programs. Mosh-qubit pure states have pa-the same results hold with about the same proofs if we choose
rameters that are noncomputable and increased precision ti# other option—except in the case of Theorem 4 item ii), see
require increasingly long programs. For example, if the parartie pertinent caveat there. Note that the Kolmogorov complexity
eters are recursively enumerable (the positions of ftfie in  based on entangled output tapes is at most (and conceivably less
the binary expansion is a recursively enumerable set), thethan) the Kolmogorov complexity based on unentangled output
log k length program per parameter, to achiévbit precision tapes.
per r_ecurswely enumerable real, is sufficient and for SOME ré-p s ition 1 Define theoutputQ(p, ) of a quantum Turing
cursively enumerable reals also necessary. In certain contexts, . . . . o
o ; machine@ with classical programp and auxiliary inputy as
where the approximation of the real parameters is a central ¢ ”é pure quantum state) resulting from¢ computing until it
cern, such considerations may be useful. While this approge

does not allow the development of a clean theory in the sense ﬁts with outqu) on its output tape. Moreovqrzm does not
. . . . change after halting, and it is unentangled with the remainder
the previous approaches, it can be directly developed in ter

o o : of ('s configuration. We writel)(p, ) < oo. If there is no
of algorithmic thermodynamics—an extension of KOlmOgorO¥UCh|¢> then Q(p, v) is undefined and we writ)(p, ) —

complexity to randomness of infinite sequences (such as bln%gl By definition, the input tape is read-only from left-to-right

expansions O.f ree.mll numbers) in terms of coarse-graining apd Qithout backing up: therefore, the settadlting programsP,, =
quential Martin-Lof tests, analogous to the classical case in [

. : ): Q(p, y) < oo} is prefix-free no program inP, is a proper
[13]. But this is outside the scope of the present paper. prefix of another program i®,. Put differently, the Turing ma-
chine scans all of a halting programbut never scans the bit
following the last bit ofp: it is self-delimiting

IIl. QUANTUM TURING MACHINE MODEL i . . .
We fix the rotation of all contemplated machines to a single

We assume the notation and definitions in Appendixes | afgimitive rotationd with cosf = 2 andsinf = %. There

Il. Our model of computation is a quantum Turing machinare only countably many such Turing machines. Using a stan-
equipped with an input tape that is one-way infinite with thelard ordering, we fix2,, ¢, ... as a standard enumeration of
classical input (the program) in binary left adjusted from the bguantum Turing machines using only rotatiénBy [1], there
ginning. We require that the input tape is read-only from left-tdS @ universal machin& in this enumeration that simulates the
right without backing up. This automatically yields a propertgthers exactly

we require in the sequel. The set of halting programs is prefix- ‘

free. Additionally, the machine contains a one-way infinite work U(1'0p, y) = Qi(p, v),  foralli, p, y.

tape containing qubits, a one-way infinite auxiliary tape con-

taining qubits, and a one-way infinite output tape containingnstead of the many-bit encodiné for i we can use a shorter
qubits. Initially, the input tape contains a classical binary preelf-delimiting code like’ in Appendix 1.) As noted in the In-
gramp, and all (qu)bits of the work tape, auxiliary tape, antfoduction, every quantum Turing machine computation using
output tape qubits are setf@). In case the Turing machine hasarbitrary real rotations can be approximated to arbitrary preci-
an auxiliary input (classical or quantum), then initially the leftsion by machines with fixed rotatighbut in general cannot be
most qubits of the auxiliary tape contain this input. A quantuisimulated exactly.

Turing machine with classical programand auxiliary inpuy Remark 1: There are two possible interpretations for the

computes until it halts with outpu(p, ) on its output tape or computation relation)(p, ) = |z). In the narrow interpreta-

it computes forever. Halting is a more complicated matter hefe . ; .
: : . . . tion we require that? with p on the input tape ang on the
than in the classical case since quantum Turing machines arere- |. . . .
. . . conditional tape halts withz) on the output tape. In the wide
versible, which means that there must be an ongoing evolution i : g
i . : . . Interpretation we can define pure quantum states by requiring
with nonrepeating configurations. There are various ways to rt%ht for every precision parametier> 0 the computation of)
solve this problem [3] and we do not discuss this matter further. yp P b

We only consider quantum Turing machines that do not modi jth p on the input tape angion the cpndnpnal tape, W'“? on
: : special new tape where the precision is to be supplied, halts
the output tape after halting. Another—related—problem is that ) 2 P

. JWith |2) on the output tape ani{z|z"}||* > 1 — 1/2"*. Such
after halting the quantum state on the output tape may be “en- “ . A

. ; a notion of “computable” or “recursive” pure quantum states
tangled” with the quantum state of the remainder of the ma- . . S : N "
. . X - IS similar to Turing’s notion of “computable numbers.” In the
chine, that is, the input tape, the finite control, the work tap(fz mainder of this section we use the narrow interpretation
and the auxiliary tape. This has the effect that the output state P '

viewed in isolation may not be a pure quantum state but a mix-Remark 2: As remarked in [8], the notion of a quantum com-
ture of pure quantum states. This problem does not arise if thater is not essential to the theory here or in [4], [8]. Since the
output and the remainder of the machine form a tensor prodecmputation time of the machine is not limited in the theory of
so that the output is unentangled with the remainder. The resulescription complexity as developed here, a quantum computer
in this paper are invariant under these different assumptions, bah be simulated by a classical computer to every desired degree
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of precision. We can rephrase everything in terms of the standéfrthe basis hagx) as one of the basis vectors, then we can
enumeration of1, 73, ... of classical Turing machines. Let consider |z} as a random variable that assumes valuge
with probability ||(z|z)||*>. The Shannon—-Fano codeword for

Nl |z) in the probabilistic ensembléB, (||{c;|2)||?):) is based
|z) = Z aile) (N =2") on the probability||(z|z)||? of |z}, given|z), and has length
=0 [—log||{z|~)||*]. Considering a canonical method of con-
structing an orthonormal bast$ = |eo), ..., |en—1) from a

be ann-qubit state. We can writ€(p) = if T either outputs ~. .
d (p) = ) P given basis vector, we can choao8esuch that

i) algebraic definitions of the coefficients ¢&) (in case N
these are algebraic); or K(B) = min{K(le;))}.
ii) a sequence of approximations x, ..., an—_1 &) for
k =1,2,...whereq, ; is an algebraic approximation
of o; to within 27,

The Shannon—Fano code is appropriate for our purpose since
it is optimal in that it achieves the least expected codeword
length—the expectation taken over the probability of the source
words—up to 1 bit by Shannon’s Noiseless Coding Theorem.
As in the classical case, the quantum Kolmogorov complexity
The complex quantityz|z) is the inner product of vectors is an integral number.
(x| and|z). Since pure quantum statgs, |z) have unitlength ~ The main property required to be able to develop a mean-
I{z|2)|| = |cosé|, whered is the angle between vectogs) ingful theory is that our definition satisfies a so-calledari-
and|z). The quantity||(z|2)||?, thefidelity betweer|z) and|z), ~ance Theoren(see also Appendix ). Below we usé&™ to de-
is a measure of how “close” or “confusable” the vectprs note a special type of universal (quantum) Turing machine rather
and|z) are. It is the probability of outcomle:) being measured than a unitary matrix.
from st_ate|z>. Essentia_\lly, we projegt) on outcomg) using Theorem 1 (Invariance)There is a universal maching
projection|x) (x| resulting in(z|7) ). such that. for all machine, there is a constant, (the length
Definition 2: The(self-delimiting) complexitgf |z) with re-  of the description of the index @ in the enumeration), such
spect to quantum Turing machidewith v as conditional input that for all quantum statgs) and all auxiliary inputg we have
given for free is
Ky (

I1l. CLASSICAL DESCRIPTIONS OFPURE QUANTUM STATES

z)ly) < Ko(lx)ly) + cq-

: . 27. _
Ko(lx)ly) = H;m{l(p) + [ log [[{z|2)[[7]: Q(p, v) = |2)} Proof: Assume that the program that minimizes the
(1) right-hand side of (1) iz and the computeft) is |z)
wherel(p) is the number of bits in the programauxiliary y is )
an input (possibly quantum) state, gl is the target state that Ko(lx)|y) = Upo) + [—log ||(z0|z)|"]-
one is trying to describe. . . . .
Note that|>} is the quantum state produced by the comput;:lr—here 'S a universal quantum Turing machinén the S‘a”dafd

. . enumeration?y, @, ... such that for every quantum Turing
tion Q(p, y), and, therefore, give®y andy, completely deter- . . . . -~
mined byp. Therefore, we obtain the minimum of the right-hanénaChme.Q in the enumeratlpn there is a self-delimiting program
side of the equality by minimizing overonly. We call the|z) 15 (the |Edex ?r:gg gnd U(ZQP’_‘U) . Ig(pér%i)clzcl)e:raltlhzi)s’ ryw:];ls
that minimizes the right-hand side tbgectly computed parf (p, ) = |2) . (LQp’. y) W ). In p o

1) while [— log || (2]z)||2] is theapproximation part for pg such thaty with auxiliary inputy halts with output ).

Quantum Kolmogorov complexity is the sum of two terms?m £7 with auxiliary inputy halts on inpthPO also Wit.h output
the first term is the integral length of a binary program, and tﬁ§°>' Consequently, the progragthat minimizes the right-hand

second term, the minlog probability term, corresponds to t ((IDe?28;52;:;;5;ug;;:gitegi;foe?e,r?tnf?ocan;pi;iéggiqésy):|u>
length of the corresponding codeword in the Shannon—Fano P y £
2)ly) =Uq) + [~ log||(ulz)[*]

code associated with that probability distribution, see, for ex- Ku(
<I(iqpo) + [~ log [|{zo|)[|*].

ample, [6], and is thus also expressed in an integral number of

bits. Let us consider this relation more closely. For a quantum

state |z) the quantity P(z) = ||(z|z)||* is the probability compining the two displayed inequalities, and setiigg =

that the state passes a test foy, andvice versa The term I(i), proves the theorem. O
[—log||{z]x)||*] can be viewed as the codeword length to o _ _ o
redescribe|z), given |z) and an orthonormal basis with) The key point is not that the universal Turing machine viewed
as one of the basis vectors, using the Shannon—Fano préffx@ description method does necessarily give the shortest de-
code. This works as follows. Writdf = 2. For every state Scription in each case, but that no other effective description
|z) in (2")-dimensional Hilbert space with basis vector§ethod canimprove on it infinitely often by more than a fixed

B = {leo), ..., lex—1)} we have constant. Foeverypair U, U’ of universal Turing machines as
in the proof of Theorem 1, there is a fixed constant;, de-
N-1 pending only orl/ andl/’, such that for allz), v we have

Z eil2)* = 1.

|Ku (|2)|y) — Ku(|7)|y)| < cvvr-
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To see this, substitute’ for ¢ in Theorem 1, and, conversely, the distribution concerned. In our setting we would like
substitute/’ for U andU for @@ in Theorem 1, and combine the to know the relation of the expected-qubit quantum
two resulting inequalities. While the complexities accordingto  Kolmogorov complexity, the expectation taken over a

U andU’ are not exactly equal, they aegual up to a fixed con- computable (semi-)measure over the continuously many
stantfor all |z) andy. Therefore, one or the other fixed choice n-qubit states, with von Neumann entropy. Perhaps
of reference universal machitiéyields resulting complexities the continuous set can be restricted to a representative
that are in a fixed constant envelope from each other for all ar-  discrete set. We have no results along these lines. One
guments. problem may be that in the quantum situation there can

Programmers are generally aware that programs for symbolic be many different mixtures of pure quantum states that
manipulation tend to be shorter when they are expressed in the give rise to the same density matrix, and thus have the
LISP programming language than if they are expressed in For- same von Neumann entropy. It is possible that the average
tran, while for numerical calculations the opposite is the case. Kolmogorov complexities of different mixtures with the
Or is it? The Invariance Theorem in fact shows that to express same density matrix (or density matrices with the same
an algorithm succinctly in a program, it does not matter which  eigenvalues) are also different (and, therefore, not all
programming language we use—up to a fixed additive constant of them can be equal to the single fixed von Neumann
(representing the length of compiling programs from either lan-  entropy which depends only on the eigenvalues). In
guage into the other language) that depends only on the two pro- contrast, in the approach of [8], using semicomputable
gramming languages compared. For further discussion of effec- semi-density matrices, as discussed in the Introduction,
tive optimality and invariance see [13]. equality of “averagemin-log universal density” to the
von Neumann entropy (up to the Kolmogorov complexity
of the semicomputable density itself) follows simply and
similarly to the classical case. However, in this approach
the interpretation ofthin-log universal density” in terms

Definition 3: We fix once and for all aeference universal
quantum Turing machind/ and define thequantum Kol-
mogorov complexitas

K(|z) |y) = Ku(|z) |y) of length qf d(_escriptions of.one form or_the other is quite
K(|2)) = Ku(j2) |o) problematic (in cc_)ntrast_ Wlt.h the classical case) and we
thus lose the main motivation of quantum Kolmogorov
wheree denotes the absence of conditional information. complexity.

The definition is continuous. If two quantum st_a_tes are Ve - consistency With Classical Complexity

close then their quantum Kolmogorov complexities are very o

close. Furthermore, since we can approximate every (puré2U" Proposal would not be useful if it were the case that
quantum) statdz) to arbitrary closeness, [3], in particular,forad're‘:tly computable object the gomplex_|ty is Ies_s than the
for every constant > 0 we can compute a (pure quantum)shortest program to cpmpute that objegt: ThIS would |mply that
state|z) such that|(z|z)[|? > 1 — . One can view this as the the cc_>d§ co_rrespopdmg to the probab|llsgc compo.nent in the
probability of obtaining the possibly noncomputable outcorfi€SCription is possibly shorter than the difference in program
lz) when executing projectiofiz){z| on |2) and measuring lengths for programs for an approximation of the object and

outcomel). For this definition to be useful it should satisfythe object itself. This would penalize definite description com-
the following conditions. pared to probabilistic description and, in case of classical ob-

jects, would make quantum Kolmogorov complexity less than
« The complexity of a pure state that can be directly congiassical Kolmogorov complexity.

puted should be the length of the shortest program that ) _ )
computes that state. (If the complexity is less, this may Theorem 2 (Consistency).et U be the reference universal

lead to discontinuities when we restrict quantum KoldU&ntum Turing machine and lt) be a basis vector in a di-

mogorov complexity to the domain of classical objects.).reCtly computable orthonormal bagisgiven classical auxiliary

. . . ‘inputy: there is a prograrp such that/(p, i) = |z). Then
. ThequantumKolmogorovcomplexnyofaclassmalobjecltpuy 'S a prograp su (p, 9) = [2)

should equal the classical Kolmogorov complexity of that K(|z)|y) = min{l(p): U(p, y) = |z)}
object (up to a constant additive term). p

» The quantum Kolmogorov complexity of a quantum ob- +
. o to=K(B|y).
ject should have an upper bound. (This is necessary for i
. ) . Proof: Let|z) be such that
the complexity to be approximable from above, even if

the quantum object is available in as many copies as Wg((m ly) = min{l(q) + [~ log | (z|)||2]: Ulg, v) = |2)}.
require.) ) q T :

* Most objects should be “incompressible” in terms of penote the program that minimizes the right-hand side by
quantum Kolmogorov complexity. gmin and the progranp that minimizes the expression in the
 In the classical case, the average self-delimiting Kostatement of the theorem ;..
mogorov complexity of the discrete set of albit strings A dovetaileccomputation is a method related to Cantor’s cel-
under some distribution equals the Shannon entropy aprated diagonalization method: run all programs alternatingly
to an additive constant depending on the complexity @f such away that every program eventually makes progress. On
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a list of programs;, po, ... one divides the overall computa-Hence there is am such that||{c;|z)||> > 1/N. Letp be a

tion into stages: = 1, 2, .. .. In stagek of the overall compu- iK(i|n)-bit program to construct a basis statg) given n.
tation, one executes thigh computation step of every programThenl(p) % Then
Ph—i+1 fori = 1, ..., k.

By runningU on all binary strings (candidate programs) si- K(j2)n) < I(p) — log(1/N) Yo O

multaneously in a dovetailed fashion, one can enumerate all
objects that are directly computable, givgnin order of their
halting programs. Assume thitis also given & (5|y) length
programb to computel3—that is, enumerate the basis vector:
in B. This way,qmin cOMputegz), the progranb computess.
Now since the vectors d8 are mutually orthogonal

Remark 5: This upper bound is sharp since Gacs [8] has re-
gently shown that there are state$ with

K(|z)|n) Ton- 2logn.

> I = 1. c Computabil
fy=r . Computability

In the classical case, Kolmogorov complexity is not com-
Pnu_table but can be approximated from above by a computable
process. The noncloning property prevents us from perfectly
copying an unknown pure quantum state given to us [21], [7].
Therefore, an approximation from above that requires checking
every output state against the target state destroys the latter. It
is possible to prepare approximate copies from the target state,
but the more copies one prepares the less they approximate the
Efr'get state [10], and this deterioration appears on the surface to
prevent use in our application below. To sidestep the fragility of
the pure quantum target state, we simply require that it is an out-

Since|z) is one of the basis vectors we havdog ||(z|z)||? is
the length of a prefix code (the Shannon—Fano code) to co
pute|z) from |2} and 5. Denoting this code by, we have that
the concatenation,,,;,,br is a program to compute:): parse it
into g, b, andr using the self-delimiting property Gfyin
andb. Use gy, to compute|z) and useb to compute3, de-
termine the probabilitie§(z|c)||? for all basis vectorse) in 3.
Determine the Shannon—Fano codewords for all the basis v
tors from these probabilities. Sineés the codeword fofz) we
can now decodér). Therefore,

) + come, in as many copies as we require, in a measurement that
l min — log Z|Z 2 >1 min/ — KB ) . . . ey -

(@imin) + [=Log [ (2]} [71 > Upin) (Bl) we have available. Another caveat with respect to item ii) in the
which was what we had to prove. O theorem below is that, since the approximation algorithm in the

Corollary 1: On classical objects (that is, the natural numQroofdoes not discriminate between entangled output states and
ary - . ) o unentangled output states, we approximate the quantum Kol-
bers or finite binary strings that_are qll d_lrectly compL_JtabIe) thr%ogorov complexity by a directly computed part that is pos-
quantum Kolmogorov complex_lty_qommdes up to a fixed ac]!O“s'ibly a mixture rather than a pure state. Thus, the approximated
tional constant with the self-delimiting Kolmogorov complexity .
incek (B| )iOfor the standard classical bagis= {0, 1} value may bg that of_quan_tum Kolmogorov complexity bgseq
sincek (Bn) = . : . o I on computations halting with entangled output states, which is
(We assume that t'he |nform<'a.t|on about the dimensionality of t%nceivably less than that of unentangled outputs. This is the
Hilbert space is given conditionally.) only result in this paper that depends on that distinction.
Remark 3: Fixed additional constants are no problem since Theorem 4 (Computability)Let ) be the pure quantum
the complexity also varies by fixed additional constants due 19,

. . X ; ate we want to describe.
the choice of reference universal Turing machine. . ) .
i) The quantum Kolmogorov complexit (|)) is not com-

Remark 4: The original plain complexity defined by Kol- putable.
mogorov [13]is based on Turing machines where the inputis de
limited by distinguished markers. A similar proof used to com-
pare quantum Kolmogorov complexity with the plain (not self-
delimiting) Kolmogorov complexity on classical objects shows
that they coincide, but only up to a logarithmic additive term.

ii) If we can repeatedly execute the projectifr) (x| and
perform a measurement with outcome), then the
quantum Kolmogorov complexityk'(|«)) can be ap-
proximated from above by a computable process with
arbitrarily small probability of error of giving a too
small value.

Proof: The uncomputability followsa fortiori from the
classical case. The semicomputability follows because we have
established an upper bound on the quantum Kolmogorov com-
Theorem 3 (Upper Bound)For all n-qubit quantum states plexity, and we can simply enumerate all halting classical pro-

B. Upper Bound on Complexity

A priori, in the worst cas& (|«)|n) is possiblyco. We show
that the worst case has2a upper bound.

|z} we haveK (|z)|n) Zon. grams up to that Iength _by running their computations dove-
Proof: Write N = 2. For every statéz) in (27)-dimen- tailed fashion. The idea is as follows. Let the target state be
sional Hilbert space with basis vectos), ..., [exy_1) we |z) of n qubits. ThenK(|aZ>|n)z2n. (The unconditional case
have K(|z)) is similar with 2n replaced by2(n+logn).) We want
N_1 to identify a programe* such thatp = z* minimizesi(p) —
Z l[{eslz)|)? = 1. log ||{(x|U(p, n)}||> among all candidate programs. To identify

o it in the limit, for some fixedk satisfying (3) below for given
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n, «, ¢, repeat the computation of every halting programith We have shown that quantum Kolmogorov complexity co-

I(p) L9 at leastk times and perform the assumed projectio}FCid?S with classical Kolmogorov complexity on cla_ssical ob-
and measurement. For every halting prograrin the dove- Jects in Theorem 2. In the proof, we demonstrated in fact that
tailing process we estimate the probability: ||(z|U (p, n))||? the quantum Kolmogorov complexity is the Iength of the clas-
from the fractiorvn,/k: the fraction ofm positive outcomes out Sical program that directly computes the classical objects. By
of k measurements. The probability that the estimaé is off the standard counting argument, Appendix |, the standard or-
from the real valug by more than amgq is given by Chernoff’s thonormal basis—consisting of altbit strings—of the 2™)-di-

bound: for0 < « < 1 mensional Hilbert spack y (N = 27) has atleas2” (1 —27°)
- , basis vectorge;) that satisfyK(|e;}|n) > n — ¢. But what
P(|m — qk| > eqk) < 27 /3, (2) about nonclassical orthonormal bases? They may not satisfy the

standard counting argument. Since there are continuously many
pure quantum states and the range of quantum Kolmogorov
. - 7 complexity has only countably many values, there are integer
didate grogranp_satlsfles (2) with its owry or 1 — q2 There values that are the Kolmogorov complexities of continuously
are O(2*") candidate programg and hence als®(2°") out-
comesl/ with halting computations. We use this esti many pure guantum states.

(p, 1) 9 pu ' . In particular, since the quantum Kolmogorov complexity of
mate to upper-bound the probability of err@er For givenk,

. + .
the probability thasomehalting candidate programsatisfies N 7-qubit state is<2n, the set of directly computable pure
Im — gk| > eqk is at most with n-qubit states has cardinality < 227+9(). They divide the

set of unit vectors irH{ -, the surface of thé/-dimensional ball
a< > 2e < Ik/3, with unit radius in Hilbert space, intd-many(N — 1)-dimen-
U(p,n)<oo sional connected surfaces, calficheseach consisting of one
directly computable pure-qubit state|x) together with those
puren-qubit stategy) of which |z} is the directly computed
part (Definition 2). In every patch, ali} with the samé|{x|y}||
(1-e)g< m <(1+e)q have both the same complexity and the same directly comput_ed
k part, and for every fixed patch and every fixed value of approxi-
for every halting prograrp. It is convenient to restrict attention mation part occurring in the patch, there are continuously many
to the case that alf's are large. Without loss of generality, if |v) with identical directly computed parts and approximation

This means that the probability that the deviatien/k — ¢
exceeds:q vanishes exponentially with growing Every can-

The probability thahohalting program does so is at ledst «.
That is, with probability at least — « we have

g < 3 then considet — g instead ofg. Then parts.A priori it is possible that this is the case for two distinct
basis vectors in a nonclassical orthonormal bases, which implies
log c Lon - (’kloge)/6. (3) thatthe standard counting argument cannot be used to show the
incompressibility of basis vectors of nonclassical orthonormal
The approximation algorithm is as follows. bases.

Step 0:  Set the required degree of approximaticn 1/2
and the number of trials to achieve the required
probability of errorc.

Step 1: Dovetail the running of all candidate programs un
the next halting program is enumerated. Repeat t
computation of the new halting prograltimes.

Step 2: Ifthere is more than one prograimat achieves the
current minimum, then choose the program with the noett
least length (and hence the least number of success- m< Yy 2=
full observations). Ify is the selected program with =0
m successes out df trials then set the current ap-programs of length less than— c. Hence, there are at most

Lemma 1:There is a particular (possibly nonclassical)
orthonormal basis of thg2")-dimensional Hilbert space
~, such that at leas2”(1 — 27¢) basis vectorge;) satisfy

%( eYn) 2 n—ec
Proof: Every orthonormal basis &f v has2™ basis vec-
tors and there are at most

proximation of K (|z)) to m programs of length< n — ¢ available to approximate the
m basis vectors. We construct an orthonormal basis satisfying
l(p) —log m the lemma. The set of directly computed pure quantum states
|zo), ---, |tm—1) Span amn’-dimensional subspacd with

. . . 0/,
This exceeds the proper value of the approxmgh%/ < m in the (2")-dimensional Hilbert spac#/y such that
based on the realinstead ofn/k by at most 1 bit Hy = Ad AL, HereAL is a(2" — m’)-dimensional subspace

_ forall e < 1. of H such that every vector in it is perpendicular to every
Step 3:  Goto Step 1. D vector inA. We can write every elemeht) € Hy as
D. Incompressibility m'—1 2" /=1
Definition 4: A pure quantum statér) is computableif Do alad+ Y Ailb)

K(|z)) < oo. Hence, all finite-dimensional pure quantum =0 =0

states are computable. We call a pure quantum sta¢etly where thea;)’s form an orthonormal basis of and the|b;)’s
computabléf there is a progranp such that/(p) = |z). form an orthonormal basis oA so that thele;)’s and|;)’s
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form an orthonormal basi& for 7. For every statgr;) € A, the textbooks [17] and [16], prevent cloning an unknown pure
directly computed by a prograni;, givenn, and basis vector state|z) perfectly to obtairjz})|z): that is,
|b;) € A+ we have||(z;]b;}||*> = 0. Therefore, the assumption

+ +
that|z,) is the directly computed part ¢5;) implies K(|z)) <K(|z}|z)) < 2K(|z}).

o, y There is a considerable literature on the possibility of approx-
K([bi)[n) > U(z}) — log ||z |b:)| imate cloning to obtaimn imperfect copies from an unknown

=ococ(0 < j<m,0<i<2"—m'). pure state, see for example [10]. Generally speaking, the more

gubits are involved in the original copy and the more clones

which is impossible. Hence, the directly computed partidfn one wants to obtain, the more the fidelity of the obtained
and has length- n — c. This proves the lemma. Ll clones deteriorates with respect to the original copy. This
Theorem 5 (Incompressibility)The uniform probability stands to reason since high-fidelity cloning would enable
both superluminal signal transmission [11] and extraction of

Pr{|z): I(|z)) = n, K(|z)|n) > n —c} > 1 —1/2°. essentially unbounded information concerning the probability

amplitude from the original qubits. The approximate cloning

Proof: The theorem follows immediately from a generalpossibility suggests that in our setting the approximation

ization of Lemma 1 to arbitrary orthonormal bases as followspenalty induced by the second—fidelity—term of Definition 2

Claim 1: Every orthonormal basigo), ..., |e2=_1) Of the may be lenient insofar that the complexity of multiple copies
(2™)-dimensional Hilbert spacg/y has at lease™(1 — 27¢) increases sublinearly with the number of copies. Even apart
basis vectorse;) that satisfyK (|e;)|n) > n — c. from this, them-fold tensor productz)®™ of |x) with itself

Proof: Use the notation of the proof of Lemma 1. L&t lives in a small-dimensional symmetric subspace with the
be a set initially containing the programs of length less thassult thatK(|z)“™) can be considerably belowK (|z}).
n — ¢, and letB be a set initially containing the set of basisThis effect was first noticed in the context of qubit complexity
vectors|e;) with K (Je;)|n) < n — ¢. Assume to the contrary [4], and it similarly holds for theK'g and K G complexities in
that|B| > 2"~ °. Then at least two basis vectors, day) and [8]. Define
le1), and some pure quantum stitg directly computed from .
a < (n — ¢)-length program satisfy (l2)=™)
= max{K(|z)*™): |x) is a puren-qubit quantum state

K(le))n) = K —log |[{e;|=)]|? 4
(les)In) (i) + [=log l(eif) ] @ and writeN =2". The following theorem states that thefold

with |z} being the directly computed part of bdih), i = 0, 1. COpy of every n-qubit pure quantum state has complexity
This means thak (|z)|n) < n — ¢ — 1 since not bothe,) and  at most abouttlog (*7~"), and there isa pure quantum
le1) can be equal tdx). Hence, for every directly computedstate for which the complexity of the:-fold copy achieves
pure quantum state of complexity— ¢ — 1 there is at most log ("2 ).

one basis state, sgy), of the same complexity (in fact, only thegrem 6 (Multiples):Assume the above terminology.
if that basis state is identical with the directly computed state).

Now eliminate every directly computed pure quantum sfate log m+N— 1) < Kt (|z)®™)

of complexityn — c— 1 from the setd, and the basis state) as N

above (if it exists) fromB. We are now left with B| > 2n—¢~1 + mA+N—1

basis states of which the directly computed parts are included in <4 {K(m)—i-log < )}

Awith |4] < 2n=¢~1 -1 with every element int of complexity

< n — ¢ — 2. Repeating the same argument, we end up with ) (m+N-1

|B| > 1 basis vectors of which the directly computed parts are T 2log {K(m)ﬂog < )} ’

elements of the empty set, which is impossible. oo Proof. Recall the Kg and KG complexities of pure

Remark 6: Theorem 3 states an upper bound 2f on quantum states [8] mentioned in the Introduction. Denote
K(|z)|n). This leaves a relatively large gap with the loweby Kg*(|z)®™) and KG*(|z)®™) the maximal values of
bound ofn established here. But, as stated earlier, Gacs [8] h&g(|z)“™) and KG(|z)“™) over all n qubit states|z),
shown that there are states with K (|z)|n) Ton 2logn; respectively. All of the following was shown in [8] (the notation
in fact, most states satisfy this. The proof appears to supp8fabove angh) an arbitrary state, for example) ™)
about the same incompressibility results as in this section, with m4+N—1

. + ®m + . +
n replaced by2n — 2logn. The proof follows [5], analyzing ~ KG (|)"™) <K(m) + log
coverings of thé2™)-dimensional ball of unit radius.
A @m m+N -1
Kg™(|e)=™) = log

E. Multiple Copies

For classical complexity we hav&(z, z) £ K(z), since a Kq(ly)) <KG(|y))
classical program to compute can be used twice; indeed, it K i Tuk 2loe K
can be used many times. In the quantum world things are not so 9(l)) <K(Jy) < 4K g(|y) + 2oz Kg(Jy)-
easy: the no-cloning property mentioned earlier, see [21], [7], Bombining these inequalities gives the theorem. O
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The theorem gives a measure of how “clonabtedividual This holds even ifz) is directly computable but is given in
n-qubit pure quantum states are—rather than indicatingthe the conditional in the form of an unknown pure quantum state.
eragesuccess of a fixed cloning algorithm for altlqubit pure The lemma quantifies the “no-cloning” property of an individual
guantum states, as in the approximate and probabilistic clonipgre quantum statgr). Given |z) and the task to obtaim
algorithms referred to above. In particular, it gives an uppeopies of|z), we require at Ieas}th of the information to ob-
bound on the nonclonability of every individual pure quanturtain m — 1 copies of|x)—everything in the sense of quantum
state, and, moreover, it tells us that there exist individual pukelmogorov complexity (1). However, ifz) is directly com-
gquantum states that are quite nonclonable. One can view thigagable and the conditional is a classical program to compute
an application of quantum Kolmogorov complexity. The differthis directly computable state, then that program can be used
enceK T (|z)®™) — K*(]z)) expresses the amount of extra inever and over again, just like in the case of classical objects.
formation required for copies of z) over that of one copy—in

our particular meaning of (1). Lemma 2: For every directly computable pure quantum state

|z} computed by a classical programand everymn

F. Conditional Complexity and Cloning K(|z)®™|p, m) 0. (7
In Definition 2, the conditional complexitys(|z)|y) is the L

minimum sum of the length of a classical program to compu% Subadditivity _ _

|2) plus the negative logarithm of the probability of outcop ~ LetN = 2" andM = 2. Recall the following notation. If

when executing projectiolr) (x| on |z) and measuring, givep ) IS @ pure quantum state {@")-dimensional Hilbert space of

as input on an auxiliary input tape. In cagis a classical object, /(|+)) = n qubits, andy) is a pure quantum state {@™)-di-

a finite binary string, there is no problem with this definitionmensional Hilbert space &f|y)) = m qubits, then

The situation is more complicated if instead of a classigél |z} @ |y = |2}y) = |=, v)

we consider the pure quantum stafeas input on an auxiliary js 3 pure quantum state in tiéAZ-dimensional Hilbert space

“quantum” input tape. In the quantum situation, the notion Qlonsisting of the tensor product of the two initial spaces con-
inputs consisting of pure quantum states is subject to very Sgsting ofl(|z, ) = n + m qubits.

cial rules. _ In the classical Kolmogorov complexity case we have
First, if we are given an unknown pure quantum stajeas + +
input it can be used only once, that is, it is irrevocably con- K(x) <K(x, y) <K(zly) + K(y)

sumed and lost in the computation. It cannot be perfectly copitaf every pair of individual finite binary stringsz and y

or cloned without destroying the original as discussed abo\#)e analog of the similar familiar relation that holds among
This means that there is a profound difference between rep@gtropies—a stochastic notion—in Shannon’s information
senting a directly computable pure quantum state on the ausileory). The second inequality is tisabadditivityproperty of

iary tape as a classical program or giving it literally. Given aglassical Kolmogorov complexity. Obviously, in the quantum
a classical program, we can prepare and use arbitrarily magtting alsoK (|z, v)) ;K(|ﬂ?>) for every pair of individual
copies of it. Given as an (unknown) pure quantum state in Ssure quantum stateis:), |y). Below, we shall show that the
perposition, it can be used as perfect input to a computatigibadditive property doesot hold for quantum Kolmogorov
only once. Thus, the manner in which the conditional infozomplexity. But in the restricted case of directly computable
mation is provided may make a big difference. A classical prgure quantum states in simple orthonormal bases quantum

gram for computing a directly computable quantum state carriggimogorov complexityis subadditive, just like classical
more informationthan the directly computable quantum statRolmogorov complexity.

itself—much like a shortest program for a classical object car- ) .

fies more information than the object itself. In the latter case, -€mma 3: For directly computablgz), |y) both of which

it consists of partial information about the halting problem. IR€!ONg to (possibly different) orthonormal bases of Kolmogorov
the quantum case of a directly computable pure state we h&PsPIexityO(1) we have

the additional information that the state is directly computable K(|z), [v) 2 K(|z)] ) + K(|y))

andin case of a shortest classical program additional mformap to an additive constant term.

tion about the halting problem. Thus, for classical objectege Proof: By Theorem 2, there is a program to compute

haveK (z™|x) = K(m) in contrast to the following. ly) with I(p) = K(|y)) and, by a similar argument as was used
Theorem 7 (Cloning):For every pure quantum state) and N the proof of Theorem 2, a programy..... to computez) from
everym, we have ly) with I(p,—.) = K(|z)| |y}) up to additive constants. Upg
+ to construct two copies df/y andp, ... to constructz) from

K(|z)2™] |x)) < K (Jz)®™ 1), (5) one of the copies dfy). The separation between these concate-

nated binary programs is taken care of by the self-delimiting
property of the subprograms. An additional constant term takes
care of the couple aP(1)-bit programs that are required. O

Moreover, for every, there exists an-qubit pure quantum state
|z}, such that for everyn, we have

®m y 1 Rm—1
K ()™ [ ) > g K () )- ©) In the classical case, we have equality in the lemma (up to
Proof. Equation (5) is obvious. Equation (6) follows froman additive logarithmic term). The proof of the remaining in-
Theorem 6. O equality, as given in the classical case, see [13], does not hold



2474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

for the quantum case. It would require a decision procedure thiabnormal bases of which it is a basis element can be (and usu-
establishes equality between two pure quantum states withally is in view of the incompressibility theorems) at leasfor
error. It is unknown to the author whether some approximatmiform at random chosen states—or every other complexity
decision rule would give some result along the required lines.betweer andn by choice ofiz). This gives a rigorous quan-
We additionally note the following. tification of the quantum cloning fact that if we have full infor-
mation to reproduce the basis of which the unknamdividual
pure quantum statg) is a basis element, then the quantum Kol-
mogorov complexity of that element is about zero—that is, we
can reproduce it at will.
It is easy to see that for the general case of pure states, an al-
ternative demonstration of why the subadditivity property fails,
In contrast, quantum Kolmogorov complexity of arbitrary inean be given by way of the “noncloning” property of Theorem 6.
dividual pure quantum states dramaticdtiyls to be subaddi-
tive.

Lemma 4: For all directly computable pure staties and|y)
we haveK (|z), |v)) < K(|y)) —log||{x|y}||* up to an additive
logarithmic term.

Proof: K(|x)||y)) < —log||{z|y)||* by the proof of The-
orem 2. Then, the lemma follows by Lemma 3. O

Lemma 5: There are infinitely manyn andn such that there
are puren-qubit stategz) for which

Theorem 8 (Non-Subadditivity)There are pure quantum K(|z)@™) > K(|a:>®’"/2| |$>®m/2) +K(|x>®"’/2)
stategz), |y) of every lengthn such that

+
where “>" is meant in the sense of£.”
K(jz, y)) > K(j2)) > K(j2)]|y) + K (ly))- © > IS meantin the sense oft

Proof: Only the second inequality is nonobvious. Let N_1 1
1 log <k+ ) — k(n —logk+loge) — = logk + O(1)
—5(100---0) + ) 4 2

) V2 for n — oo with k& fixed. Substitution in Theorem 6 shows
and letz be a maximally complex classicatbit state. Then, that there exists a state) such that (up to lower order additive
—log|[(y|x)|I*> = 1. Hence theO(1)-bit program approxi- terms) K (|z)“*) > kn and K (|z)®*/®) < ikn. So writing
mating |+) by observing inputy), and outputting the resulting (again up to lower order additive terms)

outcome, demonstrate&’(|a:>||y))§0. Furthermore,|y) is K120 £ K (1) OR/ 2] 10 OR/2Y 4 R (1) /2
approximated by|00 - --0) with —log|[(00---0Jy)|]? = 1. (I )i (|$>®k/2||x> )+ K(jz) )
Thus, =K(|x)""7)
+
+ <K () ) ) 4 K ()
K(|y)) < logn + 2loglogn
(ly)) < log glog - K)o
(the log-term is due to the specification of the length of zK(|a:>®k/8||x>®k/8)+K(|x>®k/8)

|00 - - - 0, and thelog log term is due to the requirement of self-

o . . + £ K(|z)®k/3)
delimiting coding). The lemma follows sind€(|z)) >n. O
we obtainkn < %kn up to an additive lower order term, which,

Note that the witness states in the proof have + o+

with &, n > 0, can only hold fork =n =0. Hence, for large
x + . o .
K(|z)| ) + K(|y)) < logn + 2log logn. enoughk andn, one of the< inequalities in the above chain
If we add the length in the qubit state in the conditional, thenmust be false. O

the upper bound reduces 00, while the left-hand side in the

lemma stay$ n. In the light of Theorem 2 (with substituted
in the conditional), this result indicates that statein the proof,
although obviously directly computable, is not directly com- Itis useful to summarize the relevant parts and definitions of
putable as an element from an orthonormal basis of low comlassical Kolmogorov complexity; see also [20], and the text-
plexity. Every orthonormal basis, of which |y) is a basis ele- book [13]. The Kolmogorov complexity [12] of a finite object
ment, has complexity z is the length of the shortest effective binary description .of
K(BJn) ; n — K(lg)[n) e Letz, y, z € N, whereN denotes the natural numbers and we

identify A" and{0, 1}* according to the correspondence
The “no-cloning” or “approximate cloning” theorems in [21], (0, €), (1, 0), (2, 1), (3, 00), (4, 01), ... .

[7], [10], [11], [16], [17] essentially show the following. F)er_Here,e denotes thempty wordwith no letters. Théengthl(x)

fect cloning is only possible if we measure according to an” "< the number of bits in the binary string For example
orthonormal basis of which one of the basis elements is tﬁ 10) = 3 andi(e) = 0 '
pure quantum state to be measured. Then, the measured p [Iehe emphasis is on binary sequences only for convenience;

quantum state can be reproduced at will. Approximate Clomrc])%servations in every finite or countably infinite alphabet can be

considers how to optimize measurements so that for a random . " N
. ; SO0 encoded in a way that is “theory neutral.

pure quantum state (possibly from a restricted set) the repro-

duced clone has on average optimal fidility with the original. 2Use the following formula [13, p. 10]

Here we see that while the complexity(|y)|n) of the orig- log (tbz> — blog % +(a—b)log 1 “ 4o

+ —log
inal stately) in the proof above i€ 0, the complexity of an or-

APPENDIX |
CLASSICAL KOLMOGOROV COMPLEXITY

a—b 2 T bla—0b)
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A binary stringy is aproper prefixof a binary stringe if we  that are in a fixed constant envelope from each other for all ar-
can writex = yz for 2 # . Aset{z, y, ...} C {0, 1}* is guments.
prefix-freeif for every pair of distinct elements in the set neither
is a proper prefix of the other. A prefix-free set is also called a
prefix code Each binary string = zy22---x, has a speC|aI b
type of prefix code, called self-delimiting code y

Definition 5: We fix U as ourreference universal computer
hd define theonditional Kolmogorov complexityf = giveny

Clzly) = min {I(p): U((p, v)) = «}.

T = lzix12202 - Ty, pe{0,1}*
where -z, = 0if z, = 1 and -z, = 1 otherwise. This The unconditional Kolmogorov complexity af is defined by

takes care of all strings of length > 1. The empty string: Cla) = Clale).

is encoded by = 0. This code is self-delimiting because we The Kolmogorov complexity’(z) of x is the length of the
can determine where the codewardends by reading it from shortest binary program from whiehis computed. Though de-
left to right without backing up. Using this code, we define théined in terms of a particular machine model, the Kolmogorov
standard self-delimiting code farto bez’ = I(x)z. Itis easy complexity is machine-independent up to an additive constant

to check thal(z) = 2n + 1 andl(z') = n + 2logn + 1. and acquires an asymptotically universal and absolute character
Let (-, -) be a standard one-one mapping frdfmx A to A/,  through Church’s thesis, from the ability of universal machines
for technical reasons chosen such that to simulate one another and execute every effective process. The
Kolmogorov complexity of an object can be viewed as an abso-
I{{x, y)) = l{y) + O(x)). lute and objective quantification of the amount of information
in it. This leads to a theory ofbsoluteinformation contents
An example is(z,y) = I(z)zy. This can be iterated to of individual objects in contrast to classic information theory
(- ), ) which deals withaverageinformationto communicat@bjects

Let Ty, 1>, ... be a standard enumeration of all Turing maproduced by aandom sourcé13].
chines, and lep;, ¢2, ... be the enumeration of corresponding Incompressibility: Since there is a Turing machine, s&y,
functions which are computed by the respective Turing mérat computes the identity functidfi(z|y) = = for all y, it
chines. That is]; computesp;. These functions are thgartial ~ follows thatC(z|y) <I(z)+c for fixed ¢ < 2logi+1 and allz.
recursivefunctions orcomputablefunctions. Theconditional Itis easy to see that there are also strings that can be described
complexityof = giveny with respect to a Turing machir€is by programs much shorter than themselves. For instance, the
function defined byf(1) = 2 and f(i) = 2/0-D fors > 1
Cr(zly) = &%1111 U@):T(p, ) ==} grows very fast,f(k) is a “stack” of k twos. Yet, for every
! k, it is clear thatf(k) has complexity at mosE C(k). What
about incompressibility? For evenythere are™ binary strings
of lengthn, but only 3"~ Loi = on _ ] descriptions in bi-
nary string format of length less than Therefore, there is at
least one binary string: of lengthn such thatC(z) > n.
We call such stringihncompressibleThe same argument holds
for conditional complexity: since for every lengththere are
at most2™ — 1 binary programs of lengtk: n, for every bi-
nary stringy there is a binary string: of length» such that
C(z|y) > n. “Randomness deficiency” measures how far the
object falls short of the maximum possible Kolmogorov com-
UG, o) 1) = T(lp, u) plexity. For every constart we say a string: is hasrandom-
P A ness deficiencgt mosté if C(x) > I(z) — §. Strings that are
incompressible (say, with small randomness deficiency) are pat-
ternless, since a pattern could be used to reduce the description
For everypair U, U’ of universal Turing machines for whichlength. Intuitively, we think of such patternless sequences as
the theorem holds, there is a fixed constent,-, depending being random, and we use “random sequence” synonymously

Theorem 9 (Invariance):There is a universal Turing ma-
chine U, such that for all machin€®, there is a constantr
(the length of a self-delimiting description of the indexioin
the enumeration), such that for allandy we have

Culzly) < Cr(zly) +er.

Proof: Choose a universal Turing machiiié that ex-
presses its universality in the following manner:

for all ¢ and{(p, v).

only onV andU’, such that for allz, ¥ we have with “incompressible sequence.” (It is possible to give a rig-
orous formalization of the intuitive notion of a random sequence
|Cu(xly) — Cor(zly)| < cu v as a sequence that passes all effective tests for randomness, see,

for example, [13].)
To see this, substituté’ for 7" in the theorem, and, conversely, Since there are few short programs, there can be only few ob-
substitute’ for U andU for 7" in the theorem, and combine thejects of low complexity: the number of strings of lengththat
two resulting inequalities. While the complexities according tbave randomness deficiency at mégs at leasg™ — 27 —° 4 1.
U andlJ’ are not exactly equal, they aegual up to a fixed con- Hence, there is at least one string of lengttvith randomness
stantfor all z andy. Therefore, one or the other fixed choicaleficiency0, at least one-half of all strings of length have
of reference universal machidéyields resulting complexities randomness deficiendy, at least three-fourths of all strings of
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lengthn have randomness deficiengy and at least theél — is aprefix code That is, if=* andy™ are codewords far andy,
1/2°)th part of all2™ strings of length» have randomness de-respectively, withe # y, thenz* is not a prefix ofy*.
ficiency at most. Let(-) be a standard invertible effective one-to-one encoding

from NV x A to prefix-free recursive subset &f. For example,
we can setz, y) = z’y’. We insist on a prefix-free subset and
recursiveness because we want a universal Turing machine to be
able to read an image undgy from left-to-right and determine
where it ends. LeP;, P, ... be a standard enumeration of all
1 prefix machines, and let;, ¢-, ... be the enumeration of cor-
N = Z 9 —on _ 1 responding functions that are computétl:computesp;. It is

1=0

Lemma 6: Leté be a positive integer. For every fixgdevery
setS of cardinalitym has at least(1 — 27%) + 1 elementse
with C(z|y) > |logm| — 6.

Proof: There are

easy to see that (up to the prefix-free encoding) these functions
are exactly theartial recursivefunctions orcomputabldunc-
binary strings of length less than A fortiori there are at most tions. Theconditional complexitpf « giveny with respect to a
N elements ofS that can be computed by binary programs d¥refix machiner is
length less tham, giveny. This implies that at least. — NV

elements of cannot be computed by binary programs of length Kp(zly) = pelgglll}*{l(P)i P({p, y)) ==}
less tham, giveny. Substituting: by |logm | — & together with ’
Definition 5 yields the lemma. LI Choose a universal prefix machibé&?’ that expresses its uni-

If we are givenS as an explicit table then we can simply enu\_/ersallty in the following manner:

merate its elements (in, say, lexicographical order) using a fixed
program not depending af or i. Such a fixed program can be
given in O(1) bits. Hence we can upper-bound the complexi%r all i andp

UP{{i, p), v)) = Pi({p, v))

y. Proving the Invariance Theorem for prefix

+
asC(z|S, y) < log|5]. ~machines proceeds by the same reasoning as before. Then, we
Incompressibility Method:One reason to formulate a notioncan define the following.

of quantum Kolmogorov complexity, apart from its interpreta- o . .
tion as the information in an individual quantum state, is the fol- Definition 6: Fix aU P> as above as oueference universal
lowing. We hope to duplicate the success of the classical versifigfix computerand define theonditional prefix complexitgf
as a proof method, the incompressibility method, in the theory &19iveny by

computation and combinatorics [13]. In a typical proof using the )

incompressibility method, one first chooses an incompressible K(zly) = pe%uf}*{l(p): UP((p, y)) = }-

object from the class under discussion. The argument invariably 7

says that if a desired property does not hold, then in contrddte unconditional Kolmogorov complexity af is defined by
with the assumption, the object can be compressed. This yieldéz) = K(z|e).

the reguwed COI’]'[I’{?IdIC'[IOH. Since most objects are almost incomy, v thatk (z]y) can be slightly larger tha6(z|y), but for
pressible, the desired property usually also holds for almost aﬁn

; - all . v we have

objects, and hence on average. The hope is that one can use the’ *

guantum Kolmogorov complexity to show, for example, lower
bounds on the complexity of quantum computations.

Prefix Kolmogorov Complexityfor technical reasons we i o
also need a variant of complexity, so-called prefix complexitf:®" €x@mple, the incompressibility laws hold also #6¢x) but
slightly different form. The nice thing abol () is that we

associated with Turing machines for which the set of progra , ~K(z) LS T . .
resulting in a halting computation is prefix-free. We can realiZf" Interpreg as a probability distribution sinc& (z) is

this by equipping the Turing machine with a read-only inpdjf'® /éngth of a shortest prefix-free program forBy the fun-
tape which is read from left-to-right without backing up, gam_ental Kraft's inequality, see for example [6], [;3],we know
separate read/write work tape, an auxiliary read-only input ta;gat 'f_lllf b, ... are the codeword Ie_ngths of a“pre.ﬁx code,_ thgn
and a write-only output tape that is written from left-to-righ~= 27% < 1.This leads to the notion of the “universal distri-

= o K(s . \ - .
without backing up. All tapes are one-way infinite. Such Turin u'_tlon m(z) n 2 _ 1) that assigns h'g_h probability to S|m_p_le
machines are callegrefix machinessince the set of halting OPJ€Cts (thatis, with low prefix complexity) and low probability

programs for such a machine forms a prefix-free set. Taking t[,%complex objects (that s, with high prefix complexity)—a rig-
universal prefix machin& we can define the prefix complexity orous form of Occam’s Razor.
analogously with the plain Kolmogorov complexity. Let be

Claly) < K (xly) < Claly) + 2log Claly).

the shortest program far that is enumerated first in a fixed APPENDIX ||

general enumeration process (say, by dovetailing the running of QUANTUM TURING MACHINES

all candidate programs) of all programs for which the referencewe base quantum Kolmogorov complexity on quantum
universal prefix machine computes Then, the set Turing machines. The simplest way to explain the idea of

guantum computation is perhaps by way of probabilistic
{z":U(z") =2,z €{0,1}"} (randomized) computation. This we explain here. Then, the
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definition of the quantum (prefix) Turing machine is given irchine finds that the formula is satisfiable with probability at least

the main text in Section II. k/2™—since there aré distinct computation paths leading to
_ a satisfiable assignment.
A. Notation Now suppose the probabilistic machine is hidden in a black
For everyN, the finite-dimensional Hilbert spack , has box and the computation proceeds without us knowing the
a canonical basily), ..., |ex—1). Assume that the canonicaloutcomes of the coin flips. Suppose that aftercoin flips

basis of Hy is also the beginning of the canonical basis offe open part of the black box and observe the bit which
Hy 1. The m-fold tensor productz’™; H of a Hilbert space denotes the truth assignment for variable(5 < m). Before
H is denoted byH“™, we opened the black box alf™ initial truth assignments to
A pure quantum statg represented as a unit length vector ivariablesz,, ..., =,,, were still equally possible, each with
such a Hilbert space is denoted @sand the corresponding ele-probability 1/2™. After we observed the state of variabtg,
ment of the dual space (the conjugate transpose) is writtgh assay0, the probability space of possibilities has collapsed to the
or {¢|. The inner product ofg| and|v) is written in physics truth assignments which consist of all binary vectors withia
notation as{¢[x) and in mathematics notation ag. The the fifth position, each of which has probability renormalized
“bra-ket” notation is due to Dirac and is the standard quanturie-1/2™~*.
mechanics notation. The “brgz| denotes a row vector with i
complex entries, and “ketlz) is the column vector consisting ©: Quantum Computation
of the conjugate transpose ¢f| (columns interchanged with A quantum Turing machine can be viewed as a generalization
rows and the imaginary part of the entries negated, thatisl  of the probabilistic Turing machine. Consider the same compu-
is replaced by—+/—1). tation tree. In the probabilistic computation, there is a proba-
Of special importance is the two-dimensional Hilbert spadsility p;, > 0 associated with each nodéstate of the system),
C?, whereC is the set of complex real numbers, g0y, |1) is  suchthad_ p; = 1, summed over the nodes at the same level. In
its canonical orthonormal basis. An elementd3fis called a a quantum-mechanical computation there is a “probability am-
qubit (quantum bit in analogy with an element{d, 1} which plitude” «; associated with each basis stateof the system.
is called abit for “binary digit”). To generalize this to strings of Ignore for the moment the quantum equivalent of the proba-
n qubits, we consider the quantum state sgatavith N = 2.  bilistic coin flip to produce the computation tree. Consider the
The basis vectors, ..., en—; Of this space are parameterizedsimple case (corresponding to the probabilistic example of the
by binary strings of length, so thate, is shorthand foeg...,  states of the nodes at theth level of the computation tree)
andey_; is shorthand foe;...;. Mathematically?? is decom- where: runs through the classical valueshrough2™ — 1, in
posed into a tensor productetopies ofC?, written agC?)©",  the quantum case represented by the orthonormal hasjisbit
and ann-qubit statga; - - - a,) in bra-ket notation can also bestates|00 - - - 0) through|11---1). Then, the nodes at levet
written as the tensor produlet; ) @ - - -@|a., ), or in shorthand as are in a superposition

|a1) - - - |ar), astring ofn qubits, the qubits being distinguished )
by position. ) = Z ov;i)
{0, 1}
B. Probabilistic Computation with the probability amplitudes satisfying
Consider the well-known probabilistic Turing machine s
which is just like an ordinary Turing machine, except that at [Z} il = 1.
ic{0,1}™

each step the machine can make a probabilistic move which
consists in flipping a (say fair) coin and depending on the out- The amplitudes «; are complex numbers satisfying
come changing its state to either one of two alternatives. THiS||«;||* =1, where ifa; = a + by/—1 then||o;|| = Va2 + 82,
means that at each such probabilistic move the computatioraoid the summation is taken over all distinct states of the
the machine splits into two distinct further computations eadbservable at a particular instant. We say “distinct” states since
with probability . Ignoring the deterministic computationthe guantum-mechanical calculus dictates that equal states
steps, a computation involving coin flips can be viewed as are grouped together:. If stal¢) of probability amplitudec
a binary computation tree of depth with 2™ leaves, where equals stat&)) of probability amplitude?, then their combined
the set of nodes at level < m corresponds to the possiblecontribution in the sum igla + 3||?. The computation steps
state of the system after coin flips, every state occurring are governed by a matrik/ which represents the program
with probability 1/2*. For convenience, we can label the edgdseing executed. Such a program has to satisfy the following
connecting a state directly with a state; with the probability constraints. Denote the set of possible configurations of the
that a stater changes into statg in a single coin flip (in this Turing machine byX, where X is the set ofm-bits column
example all edges are Iabele§”). vectors (the basis states) for simplicity. Thdi, maps the

For instance, given an arbitrary Boolean formula containirgplumn vectorr = (o )»c x to Ua. Herea is a(2™)-element
m variables, a probabilistic machine can flip its ceintimes complex vector of amplitudes of the quantum superposition of
to generate each of th&"* possible truth assignments at theéhe 2™ basis states before the step, did the same after the
m-level nodes, and subsequently check in each node deternsitep concerned. The special property whicmeeds to satisfy
istically whether the local assignment makes the formula trueitf quantum mechanics is that it imitary, that is,UTU = I
there aret distinct such assignments then the probabilistic mahere! is the identity matrix and’* is the conjugate transpose
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of U (as with the bra-ket, “conjugate” means that gi-1's  path in the complete binary computation tree of dembas%,
are replaced by-v/—1's and “transpose” means that the rowsnd the states at the four leaves of the tree Wgrg1}, |0}, |1},
and columns are interchanged). In other wotdss unitary iff resulting in a total probability of observir@) being%, and the

Ut =u-t. total probability of observingl) being$ as well.
The unitary constraint on the evolution of the computation The quantum principle involved in the above example is
enforces two facts. calledinterference similar to the related light phenomenon in

the seminal “two-slit experiment.” If we put a screen with a
single small enough hole between a light source and a target,
Z I(Uta).||? =1 then we observe a gradually dimming illumination of the
seX target screen, the brightest spot being colinear with the light
source and the hole. If we put a screen witlo small holes
o ) in between, then we observe a diffraction pattern of bright and
2) A quan_tlfm computation is reversible (replabe by yark stripes due to interference. Namely, the light hits every
Ut =U~1). In particular this means that a computationysint on the screen via two different routes (through the two

U'ag = ay is undone by running the computation stepgiterent holes). If the two routes differ by an even number of

1) If U%q = o andU? = UU* ! then

for all ¢ (discretizing time for convenience).

wise in reverseU" oy = . half wavelengths, then the wave amplitudes at the target are
The quantum version of a single classical bit is a superpoddded, resulting in twice the amplitude and a bright spot, and if
tion of the two basis states they differ by an odd number of half wavelengths then the wave
amplitudes are in opposite phase and are subtracted resulting
1) = a|0) + (1) in zero and a dark spot. Similarly, with quantum computation,

if the quantum state i) = «|x) + Sly), then forx = y

5 o : :
where||«||*+1|3]|* = 1. Such a statg)) is called a quantum bit we have a probability of observing) of [|a + S||2, rather

or qubit It consists in part of the basis stafé and in part of the R . o
basis statél). The states are denoted by the column vectors E_HQHQ + 18117 Wh|ICh'fI: W_0U|(3 haVz b}ee_n in alpfcr)]bablr]s'ﬂc
the appropriate complex probability amplitudes. For the ba & |on'..For examp ?' : T V2 and / _l_ﬁ t gn the
states the vector notations g8 = (é) (that is,a = 1 and p_robablllt_y of observingz) is 0 rgther than_§_, and with the
B =0)and[1) = (%) (thatis,e = 0 and3 = 1). We also write S9N of 3 inverted we observgr) with probability 1.

|4} as the column vectap = ().

Physically, for example, the stat¢) can be the state of a
polarized photon, and the basis states are either horizontal off quantum algorithm corresponds to a unitary transforma-
vertical polarization, respectively. Upon measuring accordirign U thatis built up from elementary unitary transformations,
to the basis states, that is, passing the photon through a medf¥@ry one of which only acts on one or two qubits. The al-
that is polarized either in the horizontal or vertical orientatioOrithm appliesU to an initial classical state containing the
the photon is observed with probabiliti|[2 or probability nPUt and 'Fhen makes a final measurement to extract t_he output
118112, respectively. Consider a sample computation on a one-B@m the final quantum state. The algorithm is “efficient” if

D. Quantum Algorithmics

computer executing the unitary operator the number of elementary c_)perations is “small,_" which usually
means at most polynomial in the length of the input. Quantum
S = 1 < 1 1) ) (8) computers can do everything a classical computer can do prob-
v2i-1 1 abilistically—and more.
It is easy to verify, using common matrix calculation, that We are now in the position to explain the quantum equivalent
of a probabilistic coin flip as promised in Appendix II-C. This
1 1 1 1 . L . .
510y = —|0) — —|1) S|1y = —|0) + —=|1) is a main trick enhancing the power of quantum computation. A
) 2 V2 ) 2 V2 sequence of fair coin flips “corresponds” to a sequengg, of
57|0) =0|0) — 1[1) = —[1)  S7[1) = 1]0) +0[1) =[0). 1 one-qubit unitary operations, the Hadamard transform
If we observe the computer in stat80), then the probability - 1 /1 1
of observing stat¢0) is (%)2 = 1, and the probability to ob- T2\l -1
H 12 1 H
serve|l) is (——z)" = 3. However, if we observe the com-q, the syccessive bits of a registerobits originally in the

puter in states?|0), then the probability of observing staf®  al-zero statéy) = |00 - - - 0). The result is a superposition
is 0, and the probability to observg) is 1. Similarly, if we

observe the computer in stagé1), then the probability of ob- Hyl) = Z 27"z)
serving state0) is (%)2 = 1, and the probability to observe z€{o,1}»

1) is (%)2 = . If we observe the computer in sta88|1), of all the2™ possible states of the register, each with amplitude
then the probability of observing stai@) is 1, and the prob- 27"/2 (and hence probability of being observedof").

ability to observe1) is 0. Therefore, the operatdf inverts a ~ The Hadamard transform is ubiquitous in quantum com-
bit when it is applied twice in a row, and hence has acquired thating; its single-fold action is similar to that of the transform
charming namequare root of “not”. In contrast, with the analo- S of (8) with the roles of 0” and “1” partly interchanged.
gous probabilistic calculation, flipping a coin two times in arown contrast toS?, that implements the logical “not,” we have
we would have found that the probability of each computatiod? = I with I the identity matrix.
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Subsequent to application &f,,, the computation proceedsearlier publication. The author wishes to thank H. Buhrman, R.
in parallel along the exponentially many computation patt@leve, W. van Dam, P. Gacs, B. Terhal, J. Tromp, R. de Wolf,
in quantum coherent superposition. A sequence of trickand a referee for discussions and comments on quantum Kol-
further unitary operations, for example the “quantum Fourienogorov complexity.

transform,” and observations serves to exploit interference (and
so-called entanglement) phenomena to effect a high probability
of eventually observing outcomes that allow us to determinem
the desired result, and suppressing the undesired spurious
outcomes. [2]
One principle that is used in many quantum algorithms is as,
follows. If A is a classical algorithm for computing some func-
tion £, possibly evenirreversible likf(x) =z (mod 2),then 4
we can turnitinto a unitary transformation which maps classical (5]
state|x, 0) to |z, f(x)). Note that we can apply to a super-

position of all2™ inputs simultaneously [6]
(7]

A 2—n/2 Z |$a 0> = 2—n/2 Z |$a f(.’IZ')> [8]

In some sense this state contains the results of compjiting [9]
all possible inputs:, but we have only applied once to obtain (101

it. This effect together with the interference phenomenon is re=
sponsible for one of the advantages of quantum over classical]
randomized computing and is callgdantum parallelism

This leaves the question of how the input to a computation £l
provided and how the output is obtained. Generally, we restrigu3]
ourselves to the case where the quantum computer has a clas-
sical input. If the inputz hask bits, and the number of qubits
used by the computationis> & (input plus work space), then [15]
we pad the input with nonsignificafts and start the quantum
computation in an initial state (which must bedf) |z0---0y.  12®!
When the computation finishes the resulting state is a unit vectqr7)
inC™N, sayy ", i), wherei runs througH0, 1}™ and the prob-
ability amplitudesy;'s satisfy ", ||o;||* = 1. The output is ob-
tained by performing a measurement with the basis vectors as
possible outcomes. The observed output is probabilistic: we o019l
serve basis vectdf), that is, then-bit string4, with probability
[

(18]

[20]
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