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Abstract

The problem is to construct an optimal weight tree from ﬂﬁg) weighted quartet topologies
on n objects, where optimality means that the summed weight®fethbedded quartet topologies is
optimal (so it can be the case that the optimal tree embedpiattets as nonoptimal topologies). We
present a Monte Carlo heuristic, based on randomized fifibthg, for approximating the optimal
weight tree, given the quartet topology weights. The mettepeatedly transforms a bifurcating tree,
with all objects involved as leaves, achieving a monotopjgraximation to the exact single globally
optimal tree. The method has been extensively used for geh@rarchical clustering of nontree-
like (non-phylogeny) data in various domains and acrossaillesnwith heterogenous data, and is
implemented and available, as part of the CompLearn packdgeompare performance and running
time with those of UPGMA, BioNJ, and NJ, as implemented in 8pditsTree package on genomic
data for which the latter are optimized.
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Algorithms/Similarity measures, Pattern matching—Aggtions,

Index Terms— hirarchical clustering, global optimization, Monte Garhethod, quartet method,

randomized hill-climbing,

I. INTRODUCTION

We present a quartet method for phylogenetic constructiobiology, and more generally
for hierarchical clustering of nontree-like data in nowlbgical areas. It is a Monte Carlo

method, as opposed to deterministic methods like locatke@ur method is based on a novel
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does not address the problem of how to obtain the quarteidgpaveights from sequence
data [22], [28], [30], but takes as input the weights of alagat topologies and executes the
step of how to reconstruct the phylogeny from there. Therélyo produces a sequence of
candidate trees with the objects as leaves. Each such etedrée is scored as to how well
the tree represents the information in the weighted quéotsilogies on a scale of 0 to 1. If
a new candidate scores better than the previous best cémdida former becomes the new
best candidate. The globally optimal tree has the highestesso the algorithm monotonically
approximates the global optimum. The algorithm terminates given termination condition.
The performance is compared with that of other modern pleriggnethods, on artificial and
natural data sets. We compare performance and running tithetose of UPGMA, BioNJ,
and NJ, as iplemented in the SplitsTree package. The metlasddeveloped as part of the
CompLearn software [8], and used in, among many others, [1Q], [12]. We focussed on
a quartet method for tree reconstruction believing it to b@ersensitive and objective than
other methods. Since the available quartet tree methods teerslow when they were exact
or global, and too inaccurate or uncertain when they wetestal incremental, we developed

a new approach.

A. Relation with Previous Work:

The Minimum Quartet Tree Cost (MQTC) problem below for whiale give a new
computational heuristic is related to the Quartet Puzzjpngblem, [41]. There, the quartet
topologies are provided with a probability value, and focleguartet the topology with the
highest probability is selected (randomly, if there are etbian one) as the maximum-likelihood
optimal topology. The goal is to find a bifurcating tree thatbeds these optimal quartet
topologies. In the biological setting it is assumed thatdbheerved genomic data are the result
of an evolution in time, and hence can be represented as &éredeof an evolutionary tree.
Once we obtain a proper probabilistic evolutionary modejuantify the evolutionary relations
between the data we can search for the true tree. In a quagtbbthone determines the most
likely quartet topology under the given assumptions, aeth bearches for a tree that represents
as many of such topologies as is possible. If the theory atal ware perfect then there was
a tree that represented precisely all most likely quartgbltmgies. Unfortunately, in real life

the theory is not perfect, there is reticulation and heneedidta are network-like, the data are
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many most likely quartet topologies as possible, do errorection on the quartet topologies,
and so on. Hence in phylogeny, finding the best tree accotdiag optimization criterion may
not be the same thing as inferring the tree underlying the skett (which we tend to believe, but
usually cannot prove, to exist). Farobjects, there ar@n —5)!! = (2n—5) x (2n—3) x---x 3
unrooted bifurcating trees. Far large, exhaustive search for the optimal tree turns out to be
NP-hard, see Section IlI-A, and hence infeasible in gené@tadre are two main avenues that
have been taken:

(i) Incrementally grow the tree in random order by stepwidditon of objects in the locally
optimal way, repeat this for different object orders, and agreement values on the branches,
like DNAML [18], or quartet puzzling [41]. These methods dast, but a possible problem is
as follows. Suppose we have just 32 items. With quartet jugzle incrementally construct
an quartet tree from a randomly ordered list of elements rgvkach next element is optimally
connected to the current tree comprising the previous el&sn&Ve repeat this process for,
say, 100 permutations. Subsequently, we look for percersggeement of subtrees common to
all such trees. But the number of permutations is altft so why would the incrementally
locally optimal trees derived from 100 of them be a represterg sample from which we can
conclude anything about the globally optimal tree?

(i) Approximate the global optimum monotonically or conteuit, using a geometric
algorithm or dynamic programming [3], linear programmidg], or semi-definite programming
[39]. These latter methods, other methods, as well as mstheldted to the MQT problem,
cannot handle more than 15-30 objects [44], [32], [34],[[39] directly, even while using farms
of desktops. To handle more objects one needs to construgpexteee from the constituent
guartet trees for subsets of the original data sets, [36ih §32], [34].

B. This Work

In 2003 in [10], [11] we considered a new approach, like [@4ld possibly predating it. Our
goal was to use a quartet method to obtain high-quality hebreal clustering of data from
arbitrary (possibly heterogeneous) domains, not nedgssarly biological phylogeny data.
We thus do not assume that there exists a true evolutionaey &md our aim is not to just
embed as many optimal quartet topologies as is possibleeddsforn objects we consider
all 3(2) possible quartet topologies, each with a given weight, amdgoal is to find the tree
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simple randomized hill-climbing heuristic that monotaalg approximates this optimum, and
a figure of merit that quantifies the quality of the best cureandidate tree on a linear scale.
We give an explicit proof of NP—hardness of this problem @hhivas claimed but not proven
in previous literature) Moreover, if a PTAS for the problerists, then P=NP. Given the NP—
hardness of phylogeny reconstruction in general relativenbst commonly-used criteria as
well as the non-trivial algorithmic and run-time complgxdf all previously-proposed quartet-
based heuristics, such a simple heuristic is potentiallgreit use. We also give evidence that
the natural data sets we consider have qualities of smosghstthat the monotonic heuristic

obtains the global optimum in a feasible number of steps.

C. Materials and Methods

The data samples we used, here or in referred-to previous were obtained from standard
data bases accessible on the world-wide web, generatedrbglees, or obtained from research
groups in the field of investigation. The clustering heurigfenerates a tree together with a
goodness score. The latter is called standardized benefi¢ ¢ S(7") value in the sequel.
Contrary to other phylogeny methods, we do not have agreenanes on the branches:
we generate the best tree possible, globally balancingegllirements. Generating trees from
the same weighted quartet topologies many times resulteieirsame tree in case of high
S(T) value, or a similar tree in case of moderately higt¥") value, for every weighting we
used, even though the heuristic is randomized. That isetiseonly one way to be right, but
increasingly many ways to be increasingly wrong which cabealrealized by different runs of
the randomized algorithm. The quality of the results depemtdhow well the hierarchical tree
represents the information in the set of weighted quargsiltmgies. That quality is measured by
the S(7") value, and is given with each experiment. In certain natdash sets, such as H5N1
genomic sequences, consistently higflT") values are returned even for large sets of objects of
100 or more nodes, [9]. In other discordant natural datalssisever, as treated in [10], [11],
the S(T") value deteriorates more and more with increasing numbeeafents being put in the
same tree. The reason is that with increasing size of a dianbnatural data set the projection
of the information in the cost function into a ternary treg¢sgeecessarily increasingly distorted
because the underlying structure in the data is incommateswith any tree shape whatsoever.

In this way, larger structures may induce additional “stta@as the mapping that is visible as
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genomic comparisons. Experience shows that in both caedsi¢harchical clustering methods
seem to work best for small sets of data, up to 25 items, ancteridrate for some (but not
all) larger sets, say 40 items or more. This deterioratiodiiectly observable in the(T)
score and degrades solutions in two common forms: treehbifisgawhen different or very
different solutions are returned on successive runs or“‘teerlinearization” when some data
sets produce caterpillar-like structures only or pred@nily. In case a large set of objects, say
100 objects, clusters with high(7") value this is evidence that the data are of themselves tree-
like, and the quartet-topology weights, or underlying anstes, truely represent to similarity

relationships between the data.

Il. THE QUARTET METHOD

Given a setN of n objects, we consider every set of four elements from our $et o
elements; there ar(ag‘) such sets. From each sgt, v, w,x} we construct a tree of arity 3,
which implies that the tree consists of two subtrees of twavds each. Let us call such a
tree aquartet topology The set of3(Z) quartet topologies induced hy is denoted byQ).
We denote a partitiodu, v}, {w, x} of {u,v,w,x} by uv|wz. There are three possibilities to
partition {u, v, w, x} into two subsets of two elements each: «i)|wz, (i) uw|vz, and (iii)
uz|vw. In terms of the tree topologies: a vertical bar divides the pairs of leaf nodes into

two disjoint subtrees (Figure 1).

Fig. 1. The three possible quartet topologies for the seeaf labelsu,v,w,x

For the moment we consider the cldgsof undirected trees of arity 3 with > 4 leaves,

labeled with the elements df. Such trees have leaves and: — 2 internal nodes.
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u,v,w,r € N, we sayT is consistenwith uv|wz, or the quartet topologyv|wz is embedded
in 7', if and only if the path fromu to v does not cross the path from to x.

It is easy to see that precisely one of the three possibletejunpologies for any set of 4
labels is consistent for a given tree from the above clags tlagrefore a tree frorf contains

precisely (Z) different quartet topologies. We may think of a large tregiig many smaller

Fig. 2. An example tree consistent with quartet topolegywz

guartet topologies embedded within its structure. Commtm goal in the quartet method is
to find (or approximate as closely as possible) the tree timdteels the maximal number of
consistent (possibly weighted) quartet topologies fronivargsetP C () of quartet topologies
[21] (Figure 2). Aweight functioniV : P — R, with R the set of real numbers determines
the weights. The unweighted case is whHéifuv|wz) = 1 for all uv|wz € P.

Definition 2.2: The (weightedMaximum Quartet Consistency (MQC) optimizatpmoblem
is defined as follows:

GIVEN: N, P, andWV.

QUESTION: FindTy = maxr Y {W (w|wz) : wwlwz € P and uv|wz is consistent with
T}.

[II. MINIMUM QUARTET TREE COST

The rationale for the MQC optimization problem is the asstiompthat there is exists a
tree Ty as desired in the clas® under consideration, and our only problem is to find it.

This assumption reflects the genesis of the method in theogagly community. Under the
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now existing species, there is a phyloganytree in7) that represents that evolution. The set
of quartet topologies consistent with this tree, has onetguéopology per quartet which is
the true one. The quartet topologiesihare the ones which we assume to be among the true
guartet topologies, and weights are used to express otiveetrtainty about this assumption
concerning the individual quartet topologies iin

However, the data may be corrupted so that this assumptiono isnger true. In the general
case of hierarchical clustering we do not even have a prioowkedge that certain quartet
topologies are objectively true and must be embedded. Ratlegeare in the position that we
can somehow assign a relative importance to the differesttgutopologies. Our task is then to
balance the importance of embedding different quartetlogpes against one another, leading
to a tree that represents the concerns as well as possiblstaefrom a cost-assignment to
the quartet topologies: Given a s&t of n objects, let() be the set of quartet topologies, and
let C' : @ — R be acost functionassigning a real valued coét(uv|wzx) to each quartet
wlwz € Q.

Definition 3.1: The cost C'r of a treeT with a set/NV of leaves (external nodes of degree
1) is defined byCr =~ , sy {C (uv|wz) : T'is consistent withiw|wz}—the sum of the
costs of all its consistent quartet topologies.

Definition 3.2: Given N and C, the Minimum Quartet Tree Cost (MQTGQ3 miny{Cr : T
is a tree with the selv labeling its leaves

We normalize the problem of finding the MQTC as follows: Calesithe list of all possible
guartet topologies for all four-tuples of labels under ¢desation. For each group of three
possible quartet topologies for a given set of four lahels, w, x, calculate a best (minimal)
cost m(u,v,w,x) = min{C(uwv|wz),C(vwlvx), C(uzjvw)}, and a worst (maximal) cost
M (u,v,w, z) = max{C(uwv|wz), C(uvw|vx), C(uz|vw)}. Summing all best quartet topologies
yields the best (minimal) cost = >, , , .1cn M (u, v, w, z). Conversely, summing all worst
guartet topologies yields the worst (maximal) cost= Z{M’w,x}gN M (u,v,w,z). For some
cost functions, these minimal and maximal values can notta@ad by actual trees; however,
the scoreC'r of every tre€l” will lie between these two values. In order to be able to campa
the scores of quartet trees for different numbers of objects uniform way, we now rescale
the score linearly such that the worst score maps to 0, antdblescore maps to 1:

Definition 3.3: The normalized tree benefit scor8(7T") is defined byS(T) = (M —
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Our goal is to find a full tree with a maximum value §f7), which is to say, the lowest
total cost. Now we can rephrase the MQTC problem in such a Wwalydolutions of instances
of different sizes can be uniformly compared in terms oftredaquality:

Definition 3.4: Definition of theMQTC optimization problem

GIVEN: N and(C.

QUESTION: Find a tredy with S(7,) = max{S(T) : T is a tree with the seilv labeling
its leaves.

Definition 3.5: Definition of theMQTC decision problem

GIVEN: N andC and a rational number < k < 1.

QUESTION: Is there a binary tré€ with the setN labeling its leaves and(7") > k.

A. Computational Hardness

The hardness of Quartet Puzzling is informally mentionethim literature [44], [32], [34],
but we provide explicit proofs. To express the notion of catagonal difficulty one uses the
notion of “nondeterministic polynomial time (NP)”. If a goem concerning: objects is NP—
hard this means that the best known algorithm for this (antte wlass of significant problems)
requires computation time at least exponentiakirirhat is, it is infeasible in practice. LéY
be a set ofn objects, letl" be a tree of which the leaves are labeled by the objects, and let
@ be the set of quartet topologies afg- be the set of quartet topologies embedded’in

Definition 3.6: The MQC decision problenns the following:

GIVEN: A set of quartet topologie® C @, and an integek.

DECIDE: Is there a binary tre& such thatP (" Q7 > k.

In [40] it is shown that the MQC decision problem is NP—hardm®&times this problem is
called thencompleteMQC decision problem. The less generamplete MQC decision problem
requiresP to contain precisely one quartet topology per quartet ouvpaind is proven to be
NP-hard as well in [4].

Theorem 3.7:(i) The MQTC decision problem is NP-hard.

(i) The MQTC optimization problem is NP-hard.

Proof: (i) By reduction from the MQC decision problem. For every M@€xision problem
one can define a corresponding MQTC decision problem thatheasame solution: give the

guartet topologies inP cost 0 and the ones i) — P cost 1. Consider the MQTC decision
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alternative equivalent formulation is: is there a tfBavith the setN labeling its leaves such
that Y (n) L
S(T) > M——4m?

Note that every treg&' with the setV labeling its leaves has precisely one out of the three quarte
topologies of every of théz) quartets embedded in it. Therefore, the cGst= (Z) —|PNQr|
If the answer to the above question is affirmative, then thaber of quartet topologies i
that are embedded in the tree exceggd it is not then there is no tree such that the number
of quartet topologies i embedded in it exceeds This way the MQC decision problem can
be reduced to the MQTC decision problem, which shows alsdatiter to be NP—hard.

(i) An algorithm for the MQTC optimization problem yieldshalgorithm for the MQTC
decision problem with the same running time up to a polynbeuditive term: If the answer
to the MQTC optimization problem is a trég, then we determin&(T;) in O(n*) time. Let
k be the bound of the MQTC decision problem.SIf7y) > k then the answer to the decision
problem is “yes,” otherwise “no.” [ |

The proof shows that negative complexity results for MQTrawver to MQTC. A polyno-
mial time approximation scheme (PTAS) is is a polynomialetiapproximation algorithm for
an optimization problem with a performance guaranty. letakn instance of an optimization
problem and a parameter> 0, and produces a solution of an optimization problem that is
optimal up to ar¥ fraction. For example, for the MQC optimization problem a$ined above, a
PTAS would produce a tree embedding at Idast ¢)| P| quartets fromP. The running time of
a PTAS is required to be polynomial in the size of the problemcerned for every fixed, but
can be different for different. In [4] a PTAS for a restricted version of the MQC optimizatio
problem, namely the “complete” MQC optimization problenfided above, is exhibited. This
is a theoretical approximation that would run in somethikg h'°. For general (what we have
called “incomplete”) MQC optimization it is shown that evench a theoretical algorithm does
not exist, unless P=NP.

Theorem 3.8:If a PTAS for the MQTC optimization problem exists, then P=NP

Proof: The reduction in the proof of Theorem 3.7 yields a restrictedgsion of the

MQTC optimization problem that is equivalent to the MQT opization problem. There is an
isomorphism between every partial solution, includingdp&mal solutions involved: For every
treeT with NV labeling the leaves, the MQTC caSt = () — [P\ Qr| where P Qr is the

9
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since the reduction gives a linear time computable isonmonpérsion of the MQTC problem
instance for each MQT problem instance. Since [4] has shdwh & PTAS for the MQT
optimization problem does not exist unless P=NP, it alsa@$idor this restricted version of
the MQTC optimization problem that a PTAS does not exist ssIB=NP, The full MQTC
optimization problem is at least as hard to approximate byfAS? from which the theorem
follows. [ ]

Is it possible that the best(7") value is always one, that is, there always exists a tree that
embeds all quartets at minimum cost quartet topologies3i@enthe case = |N| = 4. Since
there is only one quartet, we can dgtequal to the minimum cost quartet topology, and have
S(Ty) = 1. A priori we cannot exclude the possibility that for eveky and C' there always
is a treeTy with S(T,) = 1. In that case, the MQTC optimization problem reduces to figdi
that 7,. However, the situation turns out to be more complex. Not firat the set of quartet
topologies uniquely determines a tree7n [6].

Lemma 3.9:Let T, T" be different labeled trees ih and letQ+, Q7 be the sets of embedded
guartet topologies, respectively. Thepy #~ Q.

A complete sebf quartet topologies oV is a set containing precisely one quartet topology
per quartet. There ara(’) such combinations, but only(g) labeled undirected graphs on
n nodes (and therefor&Z | < 2(3)). Hence, not every complete set of quartet topologies
corresponds to a tree . This already suggests that we can weight the quartet tgpEso
in such a way that the full combination of all quartet topaésgat minimal costs does not
correspond to a tree iff, and henceS(Ty) < 1 for Ty € 7T realizing the MQTC optimum.
For an explicit example of this, we use that a complete saesponding to a tree if must
satisfy certain transitivity properties, [13], [14]:

Lemma 3.10:Let T be a tree in the considered class with leayes() the set of quartet
topologies and), C Q. Then@, uniquely determine§ if

(i) Qo contains precisely one quartet topology for every quaged

(i) For all {a,b,c,d,e} C N, if ablbc, ablde € @ thenab|ce € Q, as well as ifab|cd, be|de €
Q thenab|de € Q.

Theorem 3.11:There areN (with n = |N| = 5) and a cost functior’ such that, for every
T €7, S(T) does not exceed/5.

10



C(uzfvw) = 0, C(zy|luw) = C(wyluv) = C(uy|wz) = C(vy|lwz) = 0, and C(ablcd) = 1
for all remaining quartet topologiesb|cd € Q. We see thatM = 5 — ¢, m = 0. The
tree Ty = (y,((u,v),(w,x))) has costCr, = 1 — ¢, since it embeds quartet topologies
uw|zv, zy|uw, wy|uv, uy|wz, vy|lwz. We show thatl; achieves the MQTC optimum.

Case lif a treeT # T, embedsuv|wz, then it must by Item (i) of Lemma 3.10 also embed
a quartet topology containing that has cost 1.

Case 2:If a tree T" # T, embedsuw|zv and zy|uv, then it must by Item (ii) of the
Lemma 3.10 also embedw|zy, and hence have cost; > 1. Similarly, all other remaining
cases of embedding a combination of a quartet topology niotaging y of O cost with a
guartet topology containing of O cost inT’, imply an embedded quartet topology of cost 1
inT. [ |

Altogether, the MQTC optimization problem is infeasiblepractice, and natural data can
have an optimalS(7) < 1. In fact, it follows from the above analysis that to deterenthe
optimal S(T') in general is NP-hard. If the deterministic approximatidnttos optimum to
within a given precision, can be done in polynomial time,nthtbat implies the generally
disbelieved conjecture P=NP. Therefore, any practicat@gh to obtain or approximate the

MQTC optimum requires some type of heuristics, for examplenté¢ Carlo methods.

IV. MONTE CARLO HEURISTIC

Our algorithm is a Monte Carlo heuristic, essentially ramded hill-climbing, using
parallelized Genetic Programming, where undirected teadve in a random walk driven
by a prescribed fitness function. We are given a/$edf n objects and a cost functiof.

Definition 4.1: We define asimple mutatioron a labeled undirected ternary tree as one of
three possible transformations:

1) A leaf swap which consists of randomly choosing two leaf nodes and pwgpthem.

2) A subtree swapwhich consists of randomly choosing two internal nodes swdpping

the subtrees rooted at those nodes.

3) A subtree transferwhereby a randomly chosen subtree (possibly a leaf) ishethand

reattached in another place, maintaining arity invariants
Each of these simple mutations keeps the number of leaf rma®snternal nodes in the tree

invariant; only the structure and placements change.

11



nodes (with 1 connecting edge) labeled with the names of &i@ iklems, ant — 2
non-leaf orinternal nodes labeled with the lowercase letter “k” followed by aqu®
integer identifier. Each internal node has exactly threeneoting edges.

Step 2: For this treel’, we calculate the summed total cost of all embedded quartet
topologies, and comput&(7).

Step 3: The currently best known treeariableT; is set to7: Ty « T.

Step 4: Pick a numberk with probability p(k) = c¢/(k(logk)?) where 1/c =
S0, 1/ (K(log k)2).

Step 5: Compose &-mutation by, for each of the constituent sequencé sfmple
mutations, choosing one of the three types listed above aqgtal probability. For
each of these simple mutations, we uniformly at random sd&aves or internal
nodes, as appropriate.

Step 6: In order to search for a better tree, we simply applyAfrautation constructed
in Step 5to 7 to obtain7’, and then calculat&'(T). If S(T") > S(Ty), then replace
the current candidate iy by 7' (as the new best treeJy «— T.

Step 7: If S(7p) = 1 or atermination conditionto be discussed below holds, then

output the tree il as the best tree and halt. Otherwise, g&tep 4

Fig. 3. The Algorithm

Definition 4.2: A k-mutationis a sequence of simple mutations. Thus, a simple mutation

is a 1-mutation.

A. Algorithm

The algorithm is given in Figure 3. We comment on the différsteps:

Comment on Step 2A tree is consistent with precisely of all quartet topologies, one
for every quartet. A random tree is likely to be consistenlhvﬂbout% of the best quartet
topologies—but because of dependencies this figure is eaiga.

Comment on Step Jhis 7T is used as the basis for further searching.

Comment on Step Zhis numbert is the number of simple mutations that we will perform in

the nextk-mutation. The probability distributiop(k) is easily generated by running a random

12



is, if 2 = x1...2 € {0,1}F (Jz| = k > 1), thenz = 1" 10z, 2/ = |z|z, andz” = |2/|2’.
Thus, the lengthz”| = k + log k + 21log log k. The probability of generating” corresponding
to a givenz of lengthk by fair coin flips is2~1#"l = 2-k~-logk=2loglogk — 2=k /(L (log k)?). The
probability of generating:” corresponding t@omez of lengthk is 2% times as large, that is,
1/(k(logk)?). In practice, we used a “shifted” fat tail distributidrf ((k + 2)(log k + 2)?)

Comment on Step Botice that trees which are close to the original tree (imgeof number
of simple mutation steps in between) are examined oftenlevitees that are far away from
the original tree will eventually be examined, but not vemgguently.

Remark 4.3:We have choserp(k) to be a “fat-tail” distribution, with the fattest tail
possible, to concentrate maximal probability also on thrgeavalues ofk. That way, the
likelihood of getting trapped in local minima is minimizekh contrast, if one would choose
an exponential scheme, like(k) = ce™*, then the larger values of would arise so
scarcely that practically speaking the distinction betwbeing absolutely trapped in a local
optimum, and the very low escape probability, would be indigant. Considering positive-
valued probability mass functiong : N' — (0, 1], with N the natural numbers, as we do
here, we note that such a function {ijn;_..q(k) = 0, and (i) >",~, ¢(k) = 1. Thus,
every function of the natural numbers that has strictly {pesivalues and converges can be
normalized to such a probability mass function. For smoathlydic functions that can be
expressed a series of fractional powers and logarithmsbtnderline between converging
and diverging is as followsy_ 1/k,> 1/(klogk), > 1/(klogkloglogk) and so on diverge,
while >"1/k% 3" 1/(k(logk)?),>_1/(klog k(loglog k)?) and so on converge. Therefore, the
maximal fat tail of a “smooth” functiorf (z) with > f(z) < oo arises for functions at the edge
of the convergence family. The distributigiik) = ¢/(k(log k)?) is as close to the edge as is
reasonable, and because the used codingz” is a prefix code we have 1/(k(logk)?) <1
by the Kraft Inequality (see for example [31]) and therefore 1. Let us see what this means
for our algorithm using the chosen distributip(k). For N = 64, say, we can change any tree
in 7 to any other tree iy with a 64-mutation. The probability of such a complex mutati
occurring is quite large with such a fat tail/ (64 - 6?) = 1/2304, that is, more than 40 times
in 100,000 generations. If we can get out of a local minimurthvalready a 32-mutation,
then this occurs with probability at leasf800, so 125 times, and with a 16-mutation with
probability at leastl /196, so 510 times. &
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The main problem with hill-climbing algorithms is that thegn get stuck in a local optimum.
However, by randomly selecting a sequence of simple muistitonger sequences with
decreasing probability, we essentially run a MetropolisécCarlo algorithm [33], reminiscent
of simulated annealing [24] at random temperatures. Sineeetis a nonzero probability for
every tree in7 being transformed into every other treedn there is zero probability that we
get trapped forever in a local optimum that is not a globalropm. That is, trivially:

Lemma 4.4:(i) The algorithm approximates the MQTC optimal solutionmatonically in
each run.

(i) The algorithm without termination condition solvesettMQTC optimization problem
eventually with probability 1 (but we do not in general knovihem the optimum has been

reached in a particular run).

T gnupdar +

L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000
Total trees examined

Fig. 4. Progress of a 60-item data set experiment over time

The main question therefore is the convergence speed ofilgbeéthm on natural data, and
a termination criterion to terminate the algorithm when veeéhan acceptable approximation.
From the Theorem 3.8 we know that there is no polynomial appration scheme for MQTC
optimization, and whether our scheme is expected polynotini@ seems to require proving
that the involved Metropolis chain is rapidly mixing [42], reotoriously hard and generally
unsolved problem. In practice, in our experiments therenanimous evidence that for the
natural data and the cost function we have used, convergsna&vays fast. We have to
determine the cost of}) quartets to determine eaci{T') value. Hence, trivially,

Lemma 4.5:The algorithm in Figure 3 runs in tim@(n*).

Remark 4.6:1f one constructs the quartet-topology costs from moredgaantities, such

14
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d(-,-), then one can use the additional structure thus suppliedegedsup the algorithm. In the
above case the algorithm could be sped upte?), and we were able to analyze a 260-node
tree in about 3 hours cpu time reachifgl’) ~ 0.98. O

In experiments we found that for the same data set differam consistently showed the same
behavior, for example Figure 4 for a 60-object computatiimere theS(7") value leveled off
at about 70,000 examined trees, and the termination conditas “no improvement in 5,000
trees.” Different random runs of the algorithm nearly alwagave the same behavior, returning
a tree with the sam#&(7') value, albeit a different tree in most cases since &f€) ~ 0.865,

a relatively low value. That is, there are many ways to findea wf optimalS(7") value, and
apparently the algorithm never got trapped in a lower logdinoum. For problems with high
S(T) value, as we see later, the algorithm consistently retuthedsame tree. This situation
is perhaps similar to the behavior of the Simplex method nedr programming, that can be
shown to run in exponential time on a badly chosen problemamnt®, but in practice on natural
problems consistently runs in linear time.

Note that if a tree is ever found such th#¢7") = 1, then we can stop because we can be
certain that this tree is optimal, as no tree could have afdasst. In fact, this perfect tree
result is achieved in our artificial tree reconstruction exxpent (Section IV-E) reliably for
18-node trees in a few minutes, and 32-node trees in a fewsh&or real-world dataS(7")
reaches a maximum somewhat less thapresumably reflecting distortion of the information
in the cost function data by the best possible tree reprasent as noted above, or indicating
getting stuck in a local optimum or a search space too largentbthe global optimum. On
many typical problems of up to 40 objects this tree-searehgga tree withS(7) > 0.9 within
half an hour. For large numbers of objects, tree scorindfitsa be slow: as this takes order
n* computation steps. Current single computers can score afrihis size in about a minute.
Additionally, the space of trees is large, so the algorithaymslow down substantially. For
larger experiments, we used the C program called partred ¢gpahe CompLearn package
[8]) with MPI (Message Passing Interface, a common standaet on massively parallel
computers) on a cluster of workstations in parallel to firees more rapidly. We can consider
the graph mapping the achievétdT’) score as a function of the number of trees examined.

Progress occurs typically in a sigmoidal fashion towardsaximal value< 1, Figure 4.
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The termination conditions of two types and which type is used determines the number of
objects we can handle.

Simple termination conditioritVe simply run the algorithm until it seems no better trees are
being found in a reasonable amount of time. Here we typidaltgninate if no improvement
in S(T") value is achieved within 100,000 examined trees. This raviteis simple enough to
enable us to hierarchically cluster data sets up to 80 abjach few hours. This is way above
the 15-30 objects in the previous exact (non-incrementathods (see Introduction).

Agreement termination conditiorin this more sophisticated method we select a number
2 <r <6 of runs, and we run invocations of the algorithm in parallel. Each time &(iI")
value in runi = 1,...,r is increased in this process it is compared with &) values in
all the other runs. If they are all equal, then the candidaest of the runs are compared. This
can be done by simply comparing the ordered lists of embeddedet topologies, in some
standard order, since the set of embedded quartet topelogiguely determines the quartet
tree by [6]. If ther candidate trees are identical, then terminate with thistqu&ree as output,
otherwise continue the algorithm.

This termination condition takes (for the same number opsteer run) about times as
long as the simple termination condition. But the termimattondition is much more rigorous,
provided we choose appropriate to the number of objects being clustered. Since all the
runs are randomized independently at startup, it seemsuwrdiely that with natural data all
of them get stuck in the same local optimum with the same quaee instance, provided the
numbern of objects being clustered is not too small. oe 5 and the number of invocations
r = 2, there is a reasonable probability that the two differemisrby chance hit the same tree
in the same step. This phenomenon leads us to require manetwltasuccessive runs with
exact agreement before we may reach a final answer for smati the case oft < n <5,
we require 6 dovetailed runs to agree precisely before teatian. For6 < n <9, r = 5. For
10 < n <15, r=4.For16 <n < 17, r = 3. For all othern > 18, r = 2. This yields a
reasonable tradeoff between speed and accuracy. Thesécspiens ofr-values relative to
are partially common sense, partially empirically derived

It is clear that there is only one tree witf(7") = 1 (if that is possible for the data), and
random trees (the majority of all possible quartet treesehg7") ~ 1/3 (above). This gives

evidence that the number of quartet trees with lasgé’) values is much smaller than the
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depends on the data set involved, and hence cannot be exghi®ss general formula without
further assumptions on the data. However, we can safely 8tat small data sets, of say15
objects, that in our experience often leadSt@") values close to 1 have very few quartet trees
realizing the optimalS(7") value. On the other hand, those large sets of 60 or more shijext
contain some inconsistency and thus lead to a low fii{dl) value also tend to exhibit more
variation as one might expect. This suggests that in theeaggat termination method each
run will get stuck in a different quartet tree of a simild(7") value, so termination with the
same tree is not possible. Experiments show that with theraig agreement termination we
can handle sets of up to 40 objects, and with the simple tetiom up to at least 80 objects
on a single computer or 100-200 objects using a cluster ofpcbens in parallel. Basically
the algorithm evaluates all quartet topologies in each ig¢ee tree, which leads to an(n*)
algorithm (per generation). The costs of the quartet togpekare often obtained (like in most
our examples) by addung the distance of the siblings, thdbisthe quartet topology:b|cd
we assign a cosi(a, b) + d(c, d). Hered(a,b) is the distance betweenandb. But now we
can use several improvements of the algorithm, since incdse the costs of different quartet
topologies depends on one another, leading t@an?) per generation algorithm. This way,
one can attack problems of up to 200 objects. Recently, [&S]used various other heuristics
different from the one presented here to obtain a methodishiadth faster and yields better

results than the initial heuristic in this paper.

D. Tree Building Statistics

We used the CompLearn package, [8], to analyze a “10-mamineample with zlib
compression yielding a0 x 10 distance matrix, similar to the examples in Section VI-BeTh
algorithm starts with four randomly initialized trees.ries to improve each one randomly and
finishes when they match. Thus, every run produces an oug®jtd maximum score associated
with this tree, and has examined some total number of tfBegefore it finished. Figure 5
shows a graph displaying a histogram ‘Bfover one thousand runs of the distance matrix.
The x-axis represents a number of trees examined in a single rtleegfrogram, measured in
thousands of trees and binned in 1000-wide histogram bdrs.nfaximum number is about
12000 trees examined. The graph suggests a Poisson disinib&bout2/3rd of the trials take
less than 4000 trees. In the thousand trials above, 994 emitiethe optimalS(7) = 0.999514.
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Fig. 5. Histogram of run-time number of trees examined keetermination.

The remaining six runs returned 5 cases of the second-higlcese, S(7) = 0.995198 and
one case of (7)) = 0.992222. It is important to realize that outcome stability is depemidon
input matrix particulars.

Another interesting distribution is the mutation stepsiecall that the mutation length is
drawn from a shifted fat-tail distribution. But if we resriour attention to just the mutations
that improve theS(T") value, then we may examine these statistics to look for exieeof
a modification to this distribution due to, for example, thegence of very many isolated

areas that have only long-distance ways to escape. Figunevéssthe histogram of successful

S
i e SO SO,

Fig. 6. Histogram comparing distributions bfmutations per run.

mutation lengths (that is, number of simple mutations cosmgp a single kept complex

mutation) and rejected lengths (both normalized) whichaghthat this is not the case. Here
the z-axis is the number of mutation steps and thaxis is the normalized proportion of times
that step size occurred. This gives good empirical evidénaein this case, at least, we have

a relatively easy search space, without large gaps.
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With natural data sets, say genomic data, one may have tloerpgreption (or prejudice)
that primates should be clustered together, rodents shimutdustered together, and so should
ferungulates. However, the genome of a marsupial may resetimd genome of a rodent more
than that of a monotreme, or vice versa—the very questionnamgs to resolve. Thus, natural
data sets may have ambiguous, conflicting, or counterimudutcomes. In other words, the
experiments on natural data sets have the drawback of naighanm objective clear “correct”
answer that can function as a benchmark for assessing oerimental outcomes, but only
intuitive or traditional preconceptions. We discuss ekpents that show that our program
indeed does what it is supposed to do—at least in artifickalasons where we know in

advance what the correct answer is.

V. THE COMPLEARN TOOLKIT

Recall that the quartet method of phylogeny assembly ctnefsthree parts: (i) extracting
a distance matrix from the data, (ii) extracting the quartgology costs from the distance
matrix, and (iii) constructing a quartet tree from the geaitbpologies and associated costs.
The CompLearn Toolkit [8] uses the heuristic introducedhis paper for item (iii). We now
discuss what CompLearn uses for items (ii) and (i). In oureexpents it is most realistic to
derive the quartet topology costs from a distance matrix. dimplicity, we choose to define
the cost of a quartet topologgs the sum of the distances between each pair of neighbats; th
is,

C(uvwz) = d(u,v) + d(w, ),

whered is chosen as the compression distance NCD below.

A. Compression-based Distance

To be able to make unbiased comparisons between phylogeagsteuction algorithms that
take distance matrices as input, we use a hew compresssaatloistance, called NCD . This
metric distance was co-developed by us in [28], [29], [3%,aanormalized version of the
“information metric” of [31], [1]. The mathematics used iaded on Kolmogorov complexity
theory [31], which is approximated using real-world congsien software. Roughly speaking,
two objects are deemed close if we can significantly “congiresie given the information

in the other, the idea being that if two pieces are more simiteen we can more succinctly
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compresso¥ (for example "gzip”, "bzip2”, or "PPMZ”). Thenormalized compression distance

(NCD) is defined as
Z(xy) —min{Z(x), Z(y)}
max{Z(x), Z(y)}

which is actually a family of distances parameterized witb tompresso¥.. The betterZ

NCD(x,y) =

is, the better the results are, [11]. Precursors of the NCibguphylogeny reconstruction
methods from standard Biological packages have been @pfadieamong others, alignment-
free whole genome phylogeny, [28], [29], [30], chain leftaylogeny [2], constructing language
trees [30], plagiarism detection [7]. The NCD method is ailsed for general clustering and
classification of natural data in arbitrary domains, forstdwing of heterogeneous data, and
for anomaly detection across domains [11]. It is in fact aapaater-free, feature-free, data-
mining tool. It has been experimentally tested on all timgussice data used in all the major
data-mining conferences in the last decade [23]. Compdhagcompression method with all
major methods used in those conferences they establisbadstiperiority of the compression
method for clustering heterogeneous data, and for anometigction, and competitiveness
in clustering domain data. The NCD method turns out to be sblwnder change of the
underlying compressor-types: statistical (PPMZ), Lenfiel based dictionary (gzip), block
based (bzip2), or special purpose (Gencompress). White thay be more appropriate special-
purpose distance measures for biological phylogeny, parating decades of research, the
NCD is a robust objective platform to test the unbiased perémce of the competing phylogeny

reconstruction algorithms.

B. Previous Experiments

Oblivious to the problem area concerned, simply using tséadces according to the NCD
above and the derived quartet topology costs, the quartatistie described in this paper
fully automatically clusters the objects concerned. Théhoa has been released in the public
domain as open-source software: The CompLearn Toolkit $8& isuite of simple utilities
that one can use to apply compression techniques to the ggr@tediscovering and learning
patterns in completely different domains, and hierardhicduster them using the new quartet
method described in this paper. In fact, this method is segnhat it requires no background
knowledge about any particular subject area. There are nwamespecific parameters to set,

and only a handful of general settings.
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evolution, by reconstructing the phylogeny from the mitmatirial genomes of 24 species.
These were downloaded from the GenBank Database on the -wal&l web. In another
experiment, we used the mitochondrial genomes of molds aadty. We clustered the SARS
virus after its sequenced genome was made publicly avaijlablrelation to potential similar
virii. The NCD distance matrix was computed using the corspoe bzip2. The relations with
S(T) = 0.988 were very similar to the definitive tree based on medicalvolaio-genomics
analysis, appearing later in the New England Journal of Medj [25]. In [9], 100 different
H5N1 sample genomes were downloaded from the NCBI/NIH dealonline, to analyze the
geographical spreading of the Bird Flu H5N1 Virus in a largareple.

In general hierarchical clustering, we constructed laggueees, cluster both Russian authors
in Russian, Russian authors in English translation, Ehglisthors, handwritten digits given
as two-dimensional ocr data, and astronomical data. Wetasted gross classification of files
based on heterogeneous data of markedly different file tyggsomes, novel excerpts, music
files in MIDI format, Linux x86 ELF executables, and compiléava class files. The program
correctly classifies each of the different types of files tbgewith like near like. No features
of any specific domain of application are used. We believettiexe is no other method known
that can cluster data that is so heterogeneous this reli@big is borne out by the massive
experiments with the method in [23]. In [10] we used MIDI da&tacluster classical music,
distinguish between genres like pop, rock, and classical,do music classification. In [43],
the CompLearn package was used to analyze network traffidcactister computer worms
and virusses. CompLearn was used to analyze medical dlaata in clustering fetal heart rate
tracings [16]. Other applications by different authors ereoftware metrics and obfuscation,
web page authorship, topic and domain identification, pmatequence/structure classification,
phylogenetic reconstruction, hurricane risk assessnwetitplog detection, and other topics.
Using code-word lengths obtained from the page-hit cowtigrmed by Google from the web,
we obtain a semantic distance betwewmmesfor objects (rather than the objects themselves)
using the NCD formula and viewing Google as a compressondJgie CompLearn package,
this has been useful for data mining, text comprehensi@ssdication, and translation, [12].
In [9], relations between Nobel Laureates in literaturewal as among Euro-Parlamentarians

were determined.

21



We compare the performance of our method as implementedanCibmpLearn pack-
age against that of a leading application to compute phylege trees, a program called
SplitsTree [20]. We chose SplitsTree version 4.6 for conspar and selected three tree
reconstruction methods to benchmark: NJ, BioNJ, and UPGMAmake comparison possible,
we require a tree reconstruction implementation that takeistance matrix as input. This
requirement ruled out some other possiblities, and ma&d/aur choice. To score the quality
of the produced trees we used thET") values, where the quartet topology costs were derived
from the distance matrix concerned, Section V. The UPGMAhwoetconsistently performed
worse than the other two methods; in several trials it faiéeproduce an answer at all (throwing
an unhandled Java Exception), which may be due to an impleti@m problem. Therefore,
attention was focussed on the other two methods. NJ [37] aoNB[19] are neighbor-joining
type methods. In all tested cases they produced the sans tineeefore we will treat them as

the same in this discussion.

A. Testing on Artificial Data

We first test whether the quartet-based tree constructiondtie and the SplitsTree methods
are trustworthy. We generated 100 random samples of an teardmary tre€l” with 32 leaves
as follows: We started with a tree made in linear fashion walth node connected to one leaf
node, a prior kernel node, and a successive kernel node.rnidsehave two leaf nodes instead.
This starting tree was then mutated 1000 times using randgenerated instantiations of the
complex mutation operation defined earlier. Next, we derigea metric from the scrambled
tree by defining the distance between two nodes as followserGine length of the path from
a to b, in an integer number of edges, &éa,b), let

L(a,b) +1
32 ’

except wheru = b, in which cased(a,b) = 0. It is easy to verify that this simple formula

d(a,b) =

always gives a number between 0 and 1, is monotonic with atbth, and is the resulting

matrix is symmetric. Given only th&2 x 32 matrix of these normalized distances, our
guartet method exactly reconstructed the original tree lnnedred times out of one hundred
random trials. SplitsTree NJ and BioNJ also reconstructezh eof these correctly, however

UPGMA was unable to cope with this test. It appears there igsmatch of assumptions in
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Amia calva

Anguilla japonica
Anopheles funestus
Arctoscopus japonicus
Asterias amurensis
Astronotus ocellatus
Cervus nippon taiouanus
Cobitis sinensis
Diphyllobothrium latum
Drosophila melanogaster
Engraulis japonicus
Gavia stellata
Gymnogobius petschiliensi
Gymnothorax kidako
Hexamermis agrotis
Hexatrygon bickelli
Homo sapiens

Hynobius arisanensis

Hynobius formosanus

Lepeophtheirus salmonis

Bowfin fish
Japanese eel
Mosquito
Sailfin sandfish
Northern Pacific seastat
Tiger oscar
Formosan sika deer
Siberian spiny loach fisk
Broad tapeworm
Fruit fly
Japanese anchovy
Red throated diver

s Floating goby fish
Moray eel
Roundworm Nematode
Sixgill stingray
Human
Arisian salamander
Formosa salamander

Sea lice

Melanogrammus aeglefinu
Metaseiulus occidentalis
Neolamprologus brichard
Nephila clavata
Oreochromis mossambicu
Oscarella carmela
Phacochoerus africanus
Plasmodium knowlesi
Plasmodium vivax
Polypterus ornatipinnis
Psephurus gladius
Pterodroma brevirostris
Savalia savaglia
Schistosoma haematobiun
Schistosoma spindale
Synodus variegatus
Theragra finnmarchica
Tigriopus californicus

Tropheus duboisi

sHaddock
Western predatory mite
Lyretail cichlid fish
Orb web spider

s Mozambique tilapia fish
Sponge
Warthog
Primate malaria parasite
Tersian malaria parasite
Ornate bichir fish
Chinese paddlefish
Kerguelen petrel
Encrusting anemone

n Vesical blood fluke
Cattle fluke
Variegated lizardfish
Norwegian pollock fish
Tidepool copepod
White spotted cichlid fish

Fig. 7. Listing of scientific and corresponding common namiedl (out of 45) species used. The remaining four are dogs,

with common breed names Chinese Crested, Irish Setter, @tisE Sheepdog, Saint Bernard. There are no scientific aame

distinguishing them, as far as we know.

this experimental ensemble and the UPGMA preconditionghere may be an error in the

SplitsTree implementation. The running time of CompLeawas\vabout 3 hours per example,

SplitsTree was much faster with a few seconds per example.

B. Testing on Natural Data

In the biological setting the data are (parts of) genomesuofeatly existing species, and

the purpose is to reconstruct the evolutionary tree thatdeithose species. Thus, the species

are labels of the leaves, and the tree is traditionally lyifamanching with each branching

representing a split in lineages. The internal nodes anddbeof the tree correspond with
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The root of the tree is commonly determined by adding an oljjemt is known to be less
related to all other objects than the original objects arén wespect to each other. Where the
unrelated object joins the tree is where we put the root. ésdhsettings, the direction from the
root to the leaves represents an evolution in time, and thenagtion is that there is a true tree
we have to discover. However, we can also use the methoddaarchical clustering, resulting
an unrooted ternary tree. The interpretation is that objeca given subtree are pairwise closer
(more similar) to each other than any of those objects is v@fipect to any object in a disjoint
subtree. To evaluate the quality of tree reconstructiométural genomic data, we downloaded
45 mitochondrial gene sequences, Figure 7, and randomdgteel 100 subsets of 32 species
each. We used CompLearn with PPMD to compute NCD matricegdoh of the 100 trials
and fed these matrices (as Nexus files) to both CompLearn phidTee. CompLearn took
substantially longer than SplitsTree; for these trial®oak about 10 hours per tree but usually
produced trees with a higher S(T) score than SplitsTre@gaitbout 10 seconds. In all but one
case, CompLearn performed better than the best method fpitsee and the results are
shown in the histogram Figure 8. CompLearn had an avetd@g of 0.99487068. SplitsTree

3% T T T T

T T T T
CompLearn S(T) less BioNJ S(T) ——1

0

5+

20r

percent

15F

10

0 1 1 1 1 1 1 1 1
-0.001 0 0001 0002 0003 0004 0005 0006 0007  0.008
S(T) difference

Fig. 8. Histogram showing CompLearn S(T) advantage oveitsSpée S(T)

achieved the best(7") with both NJ and BioNJ at 0.99243944. At this high level thealbte
magnitude of the difference is small, yet it can still implgrgficant changes in the structure

of the tree. Figure 9 and Figure 10 depict one example sholatly BioNJ and CompLearn
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BioNJ tree score S(T) = 0.984490

Fig. 9. BioNJ tree from SplitsTree

trees applied to the same input matrix from one of the natdla#d test cases described above.
In this case there are important differences in placemerat ¢éast two speciediexatrygon
bickelli and Synodus variegatu\lthough we can not know for sure the true maximum value
that can be attained fo$(7") given an arbitrary distance matrix, we can still define a wisef
guantity

R(T)=1.0-5(T)

and term R(T') the room for improvemenfor tree 7', especially in cases like the present
one when we know that the optimal(7") is close to 1. We may then definB-(T") to
be CompLearn'sR(7T") for a given trial, whereasz(7) is the SplitsTree BioNJ room for

improvement on a given trial. We can compute the decibel atolu db(T") in room for
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Fig. 10. CompLearn tree for comparison with previous Figure

improvement due to CompLearn’s answer with the formula

db(T') = 101log, Z%ETT;

Note that the room for improvement rati(7") represents also a conservative estimate of the
true improvement ratio in real error terms because the tragimmum score of any distance
matrix is less than or equal to 1. Using thé7,,;) value of the real optimal tre€,,; instead of 1
would only make the ratio more extreme. We plot the decib@reeduction in Figure 11, using
different binning than the earlier figure. We can see thatemban 1/3 of the time CompLearn

achieves at least a 2dB reduction in room for improvemenboaspared to SplitsTree BioNJ.
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Fig. 11. Decibel error reduction from CompLearn
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