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Abstract

The problem is to construct an optimal weight tree from the3
(

n

4

)

weighted quartet topologies

on n objects, where optimality means that the summed weight of the embedded quartet topologies is

optimal (so it can be the case that the optimal tree embeds allquartets as nonoptimal topologies). We

present a Monte Carlo heuristic, based on randomized hill climbing, for approximating the optimal

weight tree, given the quartet topology weights. The methodrepeatedly transforms a bifurcating tree,

with all objects involved as leaves, achieving a monotonic approximation to the exact single globally

optimal tree. The method has been extensively used for general hierarchical clustering of nontree-

like (non-phylogeny) data in various domains and across domains with heterogenous data, and is

implemented and available, as part of the CompLearn package. We compare performance and running

time with those of UPGMA, BioNJ, and NJ, as implemented in theSplitsTree package on genomic

data for which the latter are optimized.
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Algorithms/Similarity measures, Pattern matching–Applications,

Index Terms— hirarchical clustering, global optimization, Monte Carlo method, quartet method,
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I. INTRODUCTION

We present a quartet method for phylogenetic construction in biology, and more generally

for hierarchical clustering of nontree-like data in non-biological areas. It is a Monte Carlo

method, as opposed to deterministic methods like local search. Our method is based on a novel
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fast randomized hill-climbing heuristic of a new global optimization criterion. The algorithm

does not address the problem of how to obtain the quartet topology weights from sequence

data [22], [28], [30], but takes as input the weights of all quartet topologies and executes the

step of how to reconstruct the phylogeny from there. The algorithm produces a sequence of

candidate trees with the objects as leaves. Each such candidate tree is scored as to how well

the tree represents the information in the weighted quartettopologies on a scale of 0 to 1. If

a new candidate scores better than the previous best candidate, the former becomes the new

best candidate. The globally optimal tree has the highest score, so the algorithm monotonically

approximates the global optimum. The algorithm terminateson a given termination condition.

The performance is compared with that of other modern phylogeny methods, on artificial and

natural data sets. We compare performance and running time with those of UPGMA, BioNJ,

and NJ, as iplemented in the SplitsTree package. The method was developed as part of the

CompLearn software [8], and used in, among many others, [10], [11], [12]. We focussed on

a quartet method for tree reconstruction believing it to be more sensitive and objective than

other methods. Since the available quartet tree methods were too slow when they were exact

or global, and too inaccurate or uncertain when they were statistical incremental, we developed

a new approach.

A. Relation with Previous Work:

The Minimum Quartet Tree Cost (MQTC) problem below for whichwe give a new

computational heuristic is related to the Quartet Puzzlingproblem, [41]. There, the quartet

topologies are provided with a probability value, and for each quartet the topology with the

highest probability is selected (randomly, if there are more than one) as the maximum-likelihood

optimal topology. The goal is to find a bifurcating tree that embeds these optimal quartet

topologies. In the biological setting it is assumed that theobserved genomic data are the result

of an evolution in time, and hence can be represented as the leaves of an evolutionary tree.

Once we obtain a proper probabilistic evolutionary model toquantify the evolutionary relations

between the data we can search for the true tree. In a quartet method one determines the most

likely quartet topology under the given assumptions, and then searches for a tree that represents

as many of such topologies as is possible. If the theory and data were perfect then there was

a tree that represented precisely all most likely quartet topologies. Unfortunately, in real life

the theory is not perfect, there is reticulation and hence the data are network-like, the data are
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corrupted, and observation polutes and makes errors. Thus,one has to settle for embedding as

many most likely quartet topologies as possible, do error correction on the quartet topologies,

and so on. Hence in phylogeny, finding the best tree accordingto an optimization criterion may

not be the same thing as inferring the tree underlying the data set (which we tend to believe, but

usually cannot prove, to exist). Forn objects, there are(2n−5)!! = (2n−5)×(2n−3)×· · ·×3

unrooted bifurcating trees. Forn large, exhaustive search for the optimal tree turns out to be

NP–hard, see Section III-A, and hence infeasible in general. There are two main avenues that

have been taken:

(i) Incrementally grow the tree in random order by stepwise addition of objects in the locally

optimal way, repeat this for different object orders, and add agreement values on the branches,

like DNAML [18], or quartet puzzling [41]. These methods arefast, but a possible problem is

as follows. Suppose we have just 32 items. With quartet puzzling we incrementally construct

an quartet tree from a randomly ordered list of elements, where each next element is optimally

connected to the current tree comprising the previous elements. We repeat this process for,

say, 100 permutations. Subsequently, we look for percentage agreement of subtrees common to

all such trees. But the number of permutations is about2160, so why would the incrementally

locally optimal trees derived from 100 of them be a representative sample from which we can

conclude anything about the globally optimal tree?

(ii) Approximate the global optimum monotonically or compute it, using a geometric

algorithm or dynamic programming [3], linear programming [44], or semi-definite programming

[39]. These latter methods, other methods, as well as methods related to the MQT problem,

cannot handle more than 15–30 objects [44], [32], [34], [4],[39] directly, even while using farms

of desktops. To handle more objects one needs to construct a supertree from the constituent

quartet trees for subsets of the original data sets, [36], asin [32], [34].

B. This Work

In 2003 in [10], [11] we considered a new approach, like [44],and possibly predating it. Our

goal was to use a quartet method to obtain high-quality hierarchical clustering of data from

arbitrary (possibly heterogeneous) domains, not necessarily only biological phylogeny data.

We thus do not assume that there exists a true evolutionary tree, and our aim is not to just

embed as many optimal quartet topologies as is possible. Instead, forn objects we consider

all 3
(

n

4

)

possible quartet topologies, each with a given weight, and our goal is to find the tree
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such that the summed weights of the embedded quartet topologies is optimal. We develop a

simple randomized hill-climbing heuristic that monotonically approximates this optimum, and

a figure of merit that quantifies the quality of the best current candidate tree on a linear scale.

We give an explicit proof of NP–hardness of this problem (which was claimed but not proven

in previous literature) Moreover, if a PTAS for the problem exists, then P=NP. Given the NP–

hardness of phylogeny reconstruction in general relative to most commonly-used criteria as

well as the non-trivial algorithmic and run-time complexity of all previously-proposed quartet-

based heuristics, such a simple heuristic is potentially ofgreat use. We also give evidence that

the natural data sets we consider have qualities of smoothness so that the monotonic heuristic

obtains the global optimum in a feasible number of steps.

C. Materials and Methods

The data samples we used, here or in referred-to previous work, were obtained from standard

data bases accessible on the world-wide web, generated by ourselves, or obtained from research

groups in the field of investigation. The clustering heuristic generates a tree together with a

goodness score. The latter is called standardized benefit score or S(T ) value in the sequel.

Contrary to other phylogeny methods, we do not have agreement values on the branches:

we generate the best tree possible, globally balancing all requirements. Generating trees from

the same weighted quartet topologies many times resulted inthe same tree in case of high

S(T ) value, or a similar tree in case of moderately highS(T ) value, for every weighting we

used, even though the heuristic is randomized. That is, there is only one way to be right, but

increasingly many ways to be increasingly wrong which can all be realized by different runs of

the randomized algorithm. The quality of the results depends on how well the hierarchical tree

represents the information in the set of weighted quartet topologies. That quality is measured by

the S(T ) value, and is given with each experiment. In certain naturaldata sets, such as H5N1

genomic sequences, consistently highS(T ) values are returned even for large sets of objects of

100 or more nodes, [9]. In other discordant natural data setshowever, as treated in [10], [11],

theS(T ) value deteriorates more and more with increasing number of elements being put in the

same tree. The reason is that with increasing size of a discordant natural data set the projection

of the information in the cost function into a ternary tree gets necessarily increasingly distorted

because the underlying structure in the data is incommensurate with any tree shape whatsoever.

In this way, larger structures may induce additional “stress” in the mapping that is visible as
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lower and lowerS(T ) scores. A similar situation sometimes arises in using alignment cost in

genomic comparisons. Experience shows that in both cases the hierarchical clustering methods

seem to work best for small sets of data, up to 25 items, and to deteriorate for some (but not

all) larger sets, say 40 items or more. This deterioration isdirectly observable in theS(T )

score and degrades solutions in two common forms: tree instability when different or very

different solutions are returned on successive runs or tree“overlinearization” when some data

sets produce caterpillar-like structures only or predominantly. In case a large set of objects, say

100 objects, clusters with highS(T ) value this is evidence that the data are of themselves tree-

like, and the quartet-topology weights, or underlying distances, truely represent to similarity

relationships between the data.

II. THE QUARTET METHOD

Given a setN of n objects, we consider every set of four elements from our set of n

elements; there are
(

n

4

)

such sets. From each set{u, v, w, x} we construct a tree of arity 3,

which implies that the tree consists of two subtrees of two leaves each. Let us call such a

tree aquartet topology. The set of3
(

n

4

)

quartet topologies induced byN is denoted byQ.

We denote a partition{u, v}, {w, x} of {u, v, w, x} by uv|wx. There are three possibilities to

partition {u, v, w, x} into two subsets of two elements each: (i)uv|wx, (ii) uw|vx, and (iii)

ux|vw. In terms of the tree topologies: a vertical bar divides the two pairs of leaf nodes into

two disjoint subtrees (Figure 1).
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Fig. 1. The three possible quartet topologies for the set of leaf labelsu,v,w,x

For the moment we consider the classT of undirected trees of arity 3 withn ≥ 4 leaves,

labeled with the elements ofN . Such trees haven leaves andn− 2 internal nodes.
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Definition 2.1: For any given treeT from this class, and any set of four leaf labels

u, v, w, x ∈ N , we sayT is consistentwith uv|wx, or the quartet topologyuv|wx is embedded

in T , if and only if the path fromu to v does not cross the path fromw to x.

It is easy to see that precisely one of the three possible quartet topologies for any set of 4

labels is consistent for a given tree from the above class, and therefore a tree fromT contains

precisely
(

n

4

)

different quartet topologies. We may think of a large tree having many smaller

u

 

 

s

v

 

 

x

w

t

Fig. 2. An example tree consistent with quartet topologyuv|wx

quartet topologies embedded within its structure. Commonly the goal in the quartet method is

to find (or approximate as closely as possible) the tree that embeds the maximal number of

consistent (possibly weighted) quartet topologies from a given setP ⊆ Q of quartet topologies

[21] (Figure 2). Aweight functionW : P → R, with R the set of real numbers determines

the weights. The unweighted case is whenW (uv|wx) = 1 for all uv|wx ∈ P .

Definition 2.2: The (weighted)Maximum Quartet Consistency (MQC) optimizationproblem

is defined as follows:

GIVEN: N , P , andW .

QUESTION: FindT0 = maxT

∑

{W (uv|wx) : uv|wx ∈ P and uv|wx is consistent with

T}.

III. M INIMUM QUARTET TREE COST

The rationale for the MQC optimization problem is the assumption that there is exists a

tree T0 as desired in the classT under consideration, and our only problem is to find it.

This assumption reflects the genesis of the method in the phylogeny community. Under the
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assumption that biological species developed by evolutionin time, andN is a subset of the

now existing species, there is a phylogenyP (tree inT ) that represents that evolution. The set

of quartet topologies consistent with this tree, has one quartet topology per quartet which is

the true one. The quartet topologies inP are the ones which we assume to be among the true

quartet topologies, and weights are used to express our relative certainty about this assumption

concerning the individual quartet topologies inP .

However, the data may be corrupted so that this assumption isno longer true. In the general

case of hierarchical clustering we do not even have a priori knowledge that certain quartet

topologies are objectively true and must be embedded. Rather, we are in the position that we

can somehow assign a relative importance to the different quartet topologies. Our task is then to

balance the importance of embedding different quartet topologies against one another, leading

to a tree that represents the concerns as well as possible. Westart from a cost-assignment to

the quartet topologies: Given a setN of n objects, letQ be the set of quartet topologies, and

let C : Q → R be a cost functionassigning a real valued costC(uv|wx) to each quartet

uv|wx ∈ Q.

Definition 3.1: The cost CT of a treeT with a setN of leaves (external nodes of degree

1) is defined byCT =
∑

{u,v,w,x}⊆N{C(uv|wx) : T is consistent withuv|wx}—the sum of the

costs of all its consistent quartet topologies.

Definition 3.2: Given N andC, the Minimum Quartet Tree Cost (MQTC)is minT{CT : T

is a tree with the setN labeling its leaves}.

We normalize the problem of finding the MQTC as follows: Consider the list of all possible

quartet topologies for all four-tuples of labels under consideration. For each group of three

possible quartet topologies for a given set of four labelsu, v, w, x, calculate a best (minimal)

cost m(u, v, w, x) = min{C(uv|wx), C(uw|vx), C(ux|vw)}, and a worst (maximal) cost

M(u, v, w, x) = max{C(uv|wx), C(uw|vx), C(ux|vw)}. Summing all best quartet topologies

yields the best (minimal) costm =
∑

{u,v,w,x}⊆N m(u, v, w, x). Conversely, summing all worst

quartet topologies yields the worst (maximal) costM =
∑

{u,v,w,x}⊆N
M(u, v, w, x). For some

cost functions, these minimal and maximal values can not be attained by actual trees; however,

the scoreCT of every treeT will lie between these two values. In order to be able to compare

the scores of quartet trees for different numbers of objectsin a uniform way, we now rescale

the score linearly such that the worst score maps to 0, and thebest score maps to 1:

Definition 3.3: The normalized tree benefit scoreS(T ) is defined byS(T ) = (M −
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CT )/(M −m).

Our goal is to find a full tree with a maximum value ofS(T ), which is to say, the lowest

total cost. Now we can rephrase the MQTC problem in such a way that solutions of instances

of different sizes can be uniformly compared in terms of relative quality:

Definition 3.4: Definition of theMQTC optimization problem:

GIVEN: N andC.

QUESTION: Find a treeT0 with S(T0) = max{S(T ) : T is a tree with the setN labeling

its leaves}.

Definition 3.5: Definition of theMQTC decision problem:

GIVEN: N andC and a rational number0 ≤ k ≤ 1.

QUESTION: Is there a binary treeT with the setN labeling its leaves andS(T ) ≥ k.

A. Computational Hardness

The hardness of Quartet Puzzling is informally mentioned inthe literature [44], [32], [34],

but we provide explicit proofs. To express the notion of computational difficulty one uses the

notion of “nondeterministic polynomial time (NP)”. If a problem concerningn objects is NP–

hard this means that the best known algorithm for this (and a wide class of significant problems)

requires computation time at least exponential inn. That is, it is infeasible in practice. LetN

be a set ofn objects, letT be a tree of which then leaves are labeled by the objects, and let

Q be the set of quartet topologies andQT be the set of quartet topologies embedded inT .

Definition 3.6: The MQC decision problemis the following:

GIVEN: A set of quartet topologiesP ⊆ Q, and an integerk.

DECIDE: Is there a binary treeT such thatP
⋂

QT > k.

In [40] it is shown that the MQC decision problem is NP–hard. Sometimes this problem is

called theincompleteMQC decision problem. The less generalcomplete MQC decision problem

requiresP to contain precisely one quartet topology per quartet out ofN , and is proven to be

NP–hard as well in [4].

Theorem 3.7:(i) The MQTC decision problem is NP–hard.

(ii) The MQTC optimization problem is NP–hard.

Proof: (i) By reduction from the MQC decision problem. For every MQCdecision problem

one can define a corresponding MQTC decision problem that hasthe same solution: give the

quartet topologies inP cost 0 and the ones inQ − P cost 1. Consider the MQTC decision
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problem: is there a treeT with the setN labeling its leaves such thatCT <
(

4

)

− k? An

alternative equivalent formulation is: is there a treeT with the setN labeling its leaves such

that

S(T ) >
M −

(

n

4

)

+ k

M −m
?

Note that every treeT with the setN labeling its leaves has precisely one out of the three quartet

topologies of every of the
(

n

4

)

quartets embedded in it. Therefore, the costCT =
(

n

4

)

−|P
⋂

QT |.

If the answer to the above question is affirmative, then the number of quartet topologies inP

that are embedded in the tree exceedsk; if it is not then there is no tree such that the number

of quartet topologies inP embedded in it exceedsk. This way the MQC decision problem can

be reduced to the MQTC decision problem, which shows also thelatter to be NP–hard.

(ii) An algorithm for the MQTC optimization problem yields an algorithm for the MQTC

decision problem with the same running time up to a polynomial additive term: If the answer

to the MQTC optimization problem is a treeT0, then we determineS(T0) in O(n4) time. Let

k be the bound of the MQTC decision problem. IfS(T0) ≥ k then the answer to the decision

problem is “yes,” otherwise “no.”

The proof shows that negative complexity results for MQT carry over to MQTC. A polyno-

mial time approximation scheme (PTAS) is is a polynomial time approximation algorithm for

an optimization problem with a performance guaranty. It takes an instance of an optimization

problem and a parameterǫ > 0, and produces a solution of an optimization problem that is

optimal up to anǫ fraction. For example, for the MQC optimization problem as defined above, a

PTAS would produce a tree embedding at least(1−ǫ)|P | quartets fromP . The running time of

a PTAS is required to be polynomial in the size of the problem concerned for every fixedǫ, but

can be different for differentǫ. In [4] a PTAS for a restricted version of the MQC optimization

problem, namely the “complete” MQC optimization problem defined above, is exhibited. This

is a theoretical approximation that would run in something like n19. For general (what we have

called “incomplete”) MQC optimization it is shown that evensuch a theoretical algorithm does

not exist, unless P=NP.

Theorem 3.8:If a PTAS for the MQTC optimization problem exists, then P=NP.

Proof: The reduction in the proof of Theorem 3.7 yields a restrictedversion of the

MQTC optimization problem that is equivalent to the MQT optimization problem. There is an

isomorphism between every partial solution, including theoptimal solutions involved: For every

treeT with N labeling the leaves, the MQTC costCT =
(

n

4

)

−|P
⋂

QT | whereP
⋂

QT is the
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set of MQT consistent quartets. The reduction is also is poly-time approximation preserving,

since the reduction gives a linear time computable isomorphic version of the MQTC problem

instance for each MQT problem instance. Since [4] has shown that a PTAS for the MQT

optimization problem does not exist unless P=NP, it also holds for this restricted version of

the MQTC optimization problem that a PTAS does not exist unless P=NP, The full MQTC

optimization problem is at least as hard to approximate by a PTAS, from which the theorem

follows.

Is it possible that the bestS(T ) value is always one, that is, there always exists a tree that

embeds all quartets at minimum cost quartet topologies? Consider the casen = |N | = 4. Since

there is only one quartet, we can setT0 equal to the minimum cost quartet topology, and have

S(T0) = 1. A priori we cannot exclude the possibility that for everyN and C there always

is a treeT0 with S(T0) = 1. In that case, the MQTC optimization problem reduces to finding

that T0. However, the situation turns out to be more complex. Note first that the set of quartet

topologies uniquely determines a tree inT , [6].

Lemma 3.9:Let T, T ′ be different labeled trees inT and letQT , QT ′ be the sets of embedded

quartet topologies, respectively. Then,QT 6= QT ′ .

A complete setof quartet topologies onN is a set containing precisely one quartet topology

per quartet. There are3(n

4) such combinations, but only2(n

2) labeled undirected graphs on

n nodes (and therefore|T | ≤ 2(n

2
)). Hence, not every complete set of quartet topologies

corresponds to a tree inT . This already suggests that we can weight the quartet topologies

in such a way that the full combination of all quartet topologies at minimal costs does not

correspond to a tree inT , and henceS(T0) < 1 for T0 ∈ T realizing the MQTC optimum.

For an explicit example of this, we use that a complete set corresponding to a tree inT must

satisfy certain transitivity properties, [13], [14]:

Lemma 3.10:Let T be a tree in the considered class with leavesN , Q the set of quartet

topologies andQ0 ⊆ Q. ThenQ0 uniquely determinesT if

(i) Q0 contains precisely one quartet topology for every quartet,and

(ii) For all {a, b, c, d, e} ⊆ N , if ab|bc, ab|de ∈ Q thenab|ce ∈ Q, as well as ifab|cd, bc|de ∈

Q thenab|de ∈ Q.

Theorem 3.11:There areN (with n = |N | = 5) and a cost functionC such that, for every

T ∈ T , S(T ) does not exceed4/5.
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Proof: ConsiderN = {u, v, w, x, y} and C(uv|wx) = 1 − ǫ(ǫ > 0), C(uw|xv) =

C(ux|vw) = 0, C(xy|uv) = C(wy|uv) = C(uy|wx) = C(vy|wx) = 0, and C(ab|cd) = 1

for all remaining quartet topologiesab|cd ∈ Q. We see thatM = 5 − ǫ, m = 0. The

tree T0 = (y, ((u, v), (w, x))) has costCT0
= 1 − ǫ, since it embeds quartet topologies

uw|xv, xy|uv, wy|uv, uy|wx, vy|wx. We show thatT0 achieves the MQTC optimum.

Case 1:If a treeT 6= T0 embedsuv|wx, then it must by Item (i) of Lemma 3.10 also embed

a quartet topology containingy that has cost 1.

Case 2: If a tree T 6= T0 embedsuw|xv and xy|uv, then it must by Item (ii) of the

Lemma 3.10 also embeduw|xy, and hence have costCT ≥ 1. Similarly, all other remaining

cases of embedding a combination of a quartet topology not containing y of 0 cost with a

quartet topology containingy of 0 cost inT , imply an embedded quartet topology of cost 1

in T .

Altogether, the MQTC optimization problem is infeasible inpractice, and natural data can

have an optimalS(T ) < 1. In fact, it follows from the above analysis that to determine the

optimal S(T ) in general is NP–hard. If the deterministic approximation of this optimum to

within a given precision, can be done in polynomial time, then that implies the generally

disbelieved conjecture P=NP. Therefore, any practical approach to obtain or approximate the

MQTC optimum requires some type of heuristics, for example Monte Carlo methods.

IV. M ONTE CARLO HEURISTIC

Our algorithm is a Monte Carlo heuristic, essentially randomized hill-climbing, using

parallelized Genetic Programming, where undirected treesevolve in a random walk driven

by a prescribed fitness function. We are given a setN of n objects and a cost functionC.

Definition 4.1: We define asimple mutationon a labeled undirected ternary tree as one of

three possible transformations:

1) A leaf swap, which consists of randomly choosing two leaf nodes and swapping them.

2) A subtree swap, which consists of randomly choosing two internal nodes andswapping

the subtrees rooted at those nodes.

3) A subtree transfer, whereby a randomly chosen subtree (possibly a leaf) is detached and

reattached in another place, maintaining arity invariants.

Each of these simple mutations keeps the number of leaf nodesand internal nodes in the tree

invariant; only the structure and placements change.
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nodes (with 1 connecting edge) labeled with the names of the data items, andn− 2

non-leaf orinternal nodes labeled with the lowercase letter “k” followed by a unique

integer identifier. Each internal node has exactly three connecting edges.

Step 2: For this treeT , we calculate the summed total cost of all embedded quartet

topologies, and computeS(T ).

Step 3: The currently best known treevariableT0 is set toT : T0 ← T .

Step 4: Pick a numberk with probability p(k) = c/(k(log k)2) where 1/c =
∑∞

k=1 1/(k(log k)2).

Step 5: Compose ak-mutation by, for each of the constituent sequence ofk simple

mutations, choosing one of the three types listed above withequal probability. For

each of these simple mutations, we uniformly at random select leaves or internal

nodes, as appropriate.

Step 6: In order to search for a better tree, we simply apply thek-mutation constructed

in Step 5to T0 to obtainT , and then calculateS(T ). If S(T ) > S(T0), then replace

the current candidate inT0 by T (as the new best tree):T0 ← T .

Step 7: If S(T0) = 1 or a termination conditionto be discussed below holds, then

output the tree inT0 as the best tree and halt. Otherwise, go toStep 4.

Fig. 3. The Algorithm

Definition 4.2: A k-mutationis a sequence ofk simple mutations. Thus, a simple mutation

is a 1-mutation.

A. Algorithm

The algorithm is given in Figure 3. We comment on the different steps:

Comment on Step 2:A tree is consistent with precisely1
3

of all quartet topologies, one

for every quartet. A random tree is likely to be consistent with about 1

3
of the best quartet

topologies—but because of dependencies this figure is not precise.

Comment on Step 3:This T0 is used as the basis for further searching.

Comment on Step 4:This numberk is the number of simple mutations that we will perform in

the nextk-mutation. The probability distributionp(k) is easily generated by running a random
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fair bit generator and setk to the length of the first self-delimiting sequence generated. That

is, if x = x1 . . . xk ∈ {0, 1}k (|x| = k ≥ 1), then x̄ = 1k−10x, x′ = |x|x, and x′′ = |x′|x′.

Thus, the length|x′′| = k + log k + 2 log log k. The probability of generatingx′′ corresponding

to a givenx of lengthk by fair coin flips is2−|x′′| = 2−k−log k−2 log log k = 2−k/(k(log k)2). The

probability of generatingx′′ corresponding tosomex of lengthk is 2k times as large, that is,

1/(k(log k)2). In practice, we used a “shifted” fat tail distribution1/((k + 2)(log k + 2)2)

Comment on Step 5:Notice that trees which are close to the original tree (in terms of number

of simple mutation steps in between) are examined often, while trees that are far away from

the original tree will eventually be examined, but not very frequently.

Remark 4.3:We have chosenp(k) to be a “fat-tail” distribution, with the fattest tail

possible, to concentrate maximal probability also on the larger values ofk. That way, the

likelihood of getting trapped in local minima is minimized.In contrast, if one would choose

an exponential scheme, likeq(k) = ce−k, then the larger values ofk would arise so

scarcely that practically speaking the distinction between being absolutely trapped in a local

optimum, and the very low escape probability, would be insignificant. Considering positive-

valued probability mass functionsq : N → (0, 1], with N the natural numbers, as we do

here, we note that such a function (i)limk→∞ q(k) = 0, and (ii)
∑∞

k=1 q(k) = 1. Thus,

every function of the natural numbers that has strictly positive values and converges can be

normalized to such a probability mass function. For smooth analytic functions that can be

expressed a series of fractional powers and logarithms, theborderline between converging

and diverging is as follows:
∑

1/k,
∑

1/(k log k),
∑

1/(k log k log log k) and so on diverge,

while
∑

1/k2,
∑

1/(k(log k)2),
∑

1/(k log k(log log k)2) and so on converge. Therefore, the

maximal fat tail of a “smooth” functionf(x) with
∑

f(x) <∞ arises for functions at the edge

of the convergence family. The distributionp(k) = c/(k(log k)2) is as close to the edge as is

reasonable, and because the used codingx→ x′′ is a prefix code we have
∑

1/(k(log k)2) ≤ 1

by the Kraft Inequality (see for example [31]) and thereforec ≥ 1. Let us see what this means

for our algorithm using the chosen distributionp(k). For N = 64, say, we can change any tree

in T to any other tree inT with a 64-mutation. The probability of such a complex mutation

occurring is quite large with such a fat tail:1/(64 · 62) = 1/2304, that is, more than 40 times

in 100,000 generations. If we can get out of a local minimum with already a 32-mutation,

then this occurs with probability at least1/800, so 125 times, and with a 16-mutation with

probability at least1/196, so 510 times. ♦
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B. Performance

The main problem with hill-climbing algorithms is that theycan get stuck in a local optimum.

However, by randomly selecting a sequence of simple mutations, longer sequences with

decreasing probability, we essentially run a Metropolis Monte Carlo algorithm [33], reminiscent

of simulated annealing [24] at random temperatures. Since there is a nonzero probability for

every tree inT being transformed into every other tree inT , there is zero probability that we

get trapped forever in a local optimum that is not a global optimum. That is, trivially:

Lemma 4.4:(i) The algorithm approximates the MQTC optimal solution monotonically in

each run.

(ii) The algorithm without termination condition solves the MQTC optimization problem

eventually with probability 1 (but we do not in general know when the optimum has been

reached in a particular run).
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Fig. 4. Progress of a 60-item data set experiment over time

The main question therefore is the convergence speed of the algorithm on natural data, and

a termination criterion to terminate the algorithm when we have an acceptable approximation.

From the Theorem 3.8 we know that there is no polynomial approximation scheme for MQTC

optimization, and whether our scheme is expected polynomial time seems to require proving

that the involved Metropolis chain is rapidly mixing [42], anotoriously hard and generally

unsolved problem. In practice, in our experiments there is unanimous evidence that for the

natural data and the cost function we have used, convergenceis always fast. We have to

determine the cost of
(

n

4

)

quartets to determine eachS(T ) value. Hence, trivially,

Lemma 4.5:The algorithm in Figure 3 runs in timeΩ(n4).

Remark 4.6:If one constructs the quartet-topology costs from more basic quantities, such
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as the cost ofab|cd equals the sum of the distancesd(a, b)+d(c, d) for some distance measure

d(·, ·), then one can use the additional structure thus supplied to speed up the algorithm. In the

above case the algorithm could be sped up toO(n2), and we were able to analyze a 260-node

tree in about 3 hours cpu time reachingS(T ) ≈ 0.98. ♦

In experiments we found that for the same data set different runs consistently showed the same

behavior, for example Figure 4 for a 60-object computation.There theS(T ) value leveled off

at about 70,000 examined trees, and the termination condition was “no improvement in 5,000

trees.” Different random runs of the algorithm nearly always gave the same behavior, returning

a tree with the sameS(T ) value, albeit a different tree in most cases since hereS(T ) ≈ 0.865,

a relatively low value. That is, there are many ways to find a tree of optimalS(T ) value, and

apparently the algorithm never got trapped in a lower local optimum. For problems with high

S(T ) value, as we see later, the algorithm consistently returnedthe same tree. This situation

is perhaps similar to the behavior of the Simplex method in linear programming, that can be

shown to run in exponential time on a badly chosen problem instance, but in practice on natural

problems consistently runs in linear time.

Note that if a tree is ever found such thatS(T ) = 1, then we can stop because we can be

certain that this tree is optimal, as no tree could have a lower cost. In fact, this perfect tree

result is achieved in our artificial tree reconstruction experiment (Section IV-E) reliably for

18-node trees in a few minutes, and 32-node trees in a few hours. For real-world data,S(T )

reaches a maximum somewhat less than1, presumably reflecting distortion of the information

in the cost function data by the best possible tree representation, as noted above, or indicating

getting stuck in a local optimum or a search space too large tofind the global optimum. On

many typical problems of up to 40 objects this tree-search gives a tree withS(T ) ≥ 0.9 within

half an hour. For large numbers of objects, tree scoring itself can be slow: as this takes order

n4 computation steps. Current single computers can score a tree of this size in about a minute.

Additionally, the space of trees is large, so the algorithm may slow down substantially. For

larger experiments, we used the C program called partree (part of the CompLearn package

[8]) with MPI (Message Passing Interface, a common standardused on massively parallel

computers) on a cluster of workstations in parallel to find trees more rapidly. We can consider

the graph mapping the achievedS(T ) score as a function of the number of trees examined.

Progress occurs typically in a sigmoidal fashion towards a maximal value≤ 1, Figure 4.
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C. Termination Condition

The termination conditionis of two types and which type is used determines the number of

objects we can handle.

Simple termination condition:We simply run the algorithm until it seems no better trees are

being found in a reasonable amount of time. Here we typicallyterminate if no improvement

in S(T ) value is achieved within 100,000 examined trees. This criterion is simple enough to

enable us to hierarchically cluster data sets up to 80 objects in a few hours. This is way above

the 15–30 objects in the previous exact (non-incremental) methods (see Introduction).

Agreement termination condition:In this more sophisticated method we select a number

2 ≤ r ≤ 6 of runs, and we runr invocations of the algorithm in parallel. Each time anS(T )

value in runi = 1, . . . , r is increased in this process it is compared with theS(T ) values in

all the other runs. If they are all equal, then the candidate trees of the runs are compared. This

can be done by simply comparing the ordered lists of embeddedquartet topologies, in some

standard order, since the set of embedded quartet topologies uniquely determines the quartet

tree by [6]. If ther candidate trees are identical, then terminate with this quartet tree as output,

otherwise continue the algorithm.

This termination condition takes (for the same number of steps per run) aboutr times as

long as the simple termination condition. But the termination condition is much more rigorous,

provided we chooser appropriate to the numbern of objects being clustered. Since all the

runs are randomized independently at startup, it seems veryunlikely that with natural data all

of them get stuck in the same local optimum with the same quartet tree instance, provided the

numbern of objects being clustered is not too small. Forn = 5 and the number of invocations

r = 2, there is a reasonable probability that the two different runs by chance hit the same tree

in the same step. This phenomenon leads us to require more than two successive runs with

exact agreement before we may reach a final answer for smalln. In the case of4 ≤ n ≤ 5,

we require 6 dovetailed runs to agree precisely before termination. For6 ≤ n ≤ 9, r = 5. For

10 ≤ n ≤ 15, r = 4. For 16 ≤ n ≤ 17, r = 3. For all othern ≥ 18, r = 2. This yields a

reasonable tradeoff between speed and accuracy. These specifications ofr-values relative ton

are partially common sense, partially empirically derived.

It is clear that there is only one tree withS(T ) = 1 (if that is possible for the data), and

random trees (the majority of all possible quartet trees) have S(T ) ≈ 1/3 (above). This gives

evidence that the number of quartet trees with largeS(T ) values is much smaller than the
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number of trees with smallS(T ) values. It is furthermore evident that the precise relation

depends on the data set involved, and hence cannot be expressed by a general formula without

further assumptions on the data. However, we can safely state that small data sets, of say≤ 15

objects, that in our experience often lead toS(T ) values close to 1 have very few quartet trees

realizing the optimalS(T ) value. On the other hand, those large sets of 60 or more objects that

contain some inconsistency and thus lead to a low finalS(T ) value also tend to exhibit more

variation as one might expect. This suggests that in the agreement termination method each

run will get stuck in a different quartet tree of a similarS(T ) value, so termination with the

same tree is not possible. Experiments show that with the rigorous agreement termination we

can handle sets of up to 40 objects, and with the simple termination up to at least 80 objects

on a single computer or 100-200 objects using a cluster of computers in parallel. Basically

the algorithm evaluates all quartet topologies in each generated tree, which leads to anO(n4)

algorithm (per generation). The costs of the quartet topologies are often obtained (like in most

our examples) by addung the distance of the siblings, that is, for the quartet topologyab|cd

we assign a costd(a, b) + d(c, d). Hered(a, b) is the distance betweena and b. But now we

can use several improvements of the algorithm, since in thiscase the costs of different quartet

topologies depends on one another, leading to anO(n2) per generation algorithm. This way,

one can attack problems of up to 200 objects. Recently, [15] has used various other heuristics

different from the one presented here to obtain a method thatis both faster and yields better

results than the initial heuristic in this paper.

D. Tree Building Statistics

We used the CompLearn package, [8], to analyze a “10-mammals” example with zlib

compression yielding a10× 10 distance matrix, similar to the examples in Section VI-B. The

algorithm starts with four randomly initialized trees. It tries to improve each one randomly and

finishes when they match. Thus, every run produces an output tree, a maximum score associated

with this tree, and has examined some total number of trees,T , before it finished. Figure 5

shows a graph displaying a histogram ofT over one thousand runs of the distance matrix.

Thex-axis represents a number of trees examined in a single run ofthe program, measured in

thousands of trees and binned in 1000-wide histogram bars. The maximum number is about

12000 trees examined. The graph suggests a Poisson distribution. About2/3rd of the trials take

less than 4000 trees. In the thousand trials above, 994 endedwith the optimalS(T ) = 0.999514.
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Fig. 5. Histogram of run-time number of trees examined before termination.

The remaining six runs returned 5 cases of the second-highest score,S(T ) = 0.995198 and

one case ofS(T ) = 0.992222. It is important to realize that outcome stability is dependent on

input matrix particulars.

Another interesting distribution is the mutation stepsize. Recall that the mutation length is

drawn from a shifted fat-tail distribution. But if we restrict our attention to just the mutations

that improve theS(T ) value, then we may examine these statistics to look for evidence of

a modification to this distribution due to, for example, the presence of very many isolated

areas that have only long-distance ways to escape. Figure 6 shows the histogram of successful
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Fig. 6. Histogram comparing distributions ofk-mutations per run.

mutation lengths (that is, number of simple mutations composing a single kept complex

mutation) and rejected lengths (both normalized) which shows that this is not the case. Here

thex-axis is the number of mutation steps and they-axis is the normalized proportion of times

that step size occurred. This gives good empirical evidencethat in this case, at least, we have

a relatively easy search space, without large gaps.
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E. Controlled Experiments

With natural data sets, say genomic data, one may have the preconception (or prejudice)

that primates should be clustered together, rodents shouldbe clustered together, and so should

ferungulates. However, the genome of a marsupial may resemble the genome of a rodent more

than that of a monotreme, or vice versa—the very question onewants to resolve. Thus, natural

data sets may have ambiguous, conflicting, or counterintuitive outcomes. In other words, the

experiments on natural data sets have the drawback of not having an objective clear “correct”

answer that can function as a benchmark for assessing our experimental outcomes, but only

intuitive or traditional preconceptions. We discuss experiments that show that our program

indeed does what it is supposed to do—at least in artificial situations where we know in

advance what the correct answer is.

V. THE COMPLEARN TOOLKIT

Recall that the quartet method of phylogeny assembly consists of three parts: (i) extracting

a distance matrix from the data, (ii) extracting the quartettopology costs from the distance

matrix, and (iii) constructing a quartet tree from the quartet topologies and associated costs.

The CompLearn Toolkit [8] uses the heuristic introduced in this paper for item (iii). We now

discuss what CompLearn uses for items (ii) and (i). In our experiments it is most realistic to

derive the quartet topology costs from a distance matrix. For simplicity, we choose to define

the cost of a quartet topologyas the sum of the distances between each pair of neighbors; that

is,

C(uv|wx) = d(u, v) + d(w, x),

whered is chosen as the compression distance NCD below.

A. Compression-based Distance

To be able to make unbiased comparisons between phylogeny reconstruction algorithms that

take distance matrices as input, we use a new compression-based distance, called NCD . This

metric distance was co-developed by us in [28], [29], [30], as a normalized version of the

“information metric” of [31], [1]. The mathematics used is based on Kolmogorov complexity

theory [31], which is approximated using real-world compression software. Roughly speaking,

two objects are deemed close if we can significantly “compress” one given the information

in the other, the idea being that if two pieces are more similar, then we can more succinctly
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describe one given the other. LetZ(x) denote the binary length of the filex compressed with

compressorZ (for example ”gzip”, ”bzip2”, or ”PPMZ”). Thenormalized compression distance

(NCD) is defined as

NCD(x, y) =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)}
,

which is actually a family of distances parameterized with the compressorZ. The betterZ

is, the better the results are, [11]. Precursors of the NCD using phylogeny reconstruction

methods from standard Biological packages have been applied to, among others, alignment-

free whole genome phylogeny, [28], [29], [30], chain letterphylogeny [2], constructing language

trees [30], plagiarism detection [7]. The NCD method is alsoused for general clustering and

classification of natural data in arbitrary domains, for clustering of heterogeneous data, and

for anomaly detection across domains [11]. It is in fact a parameter-free, feature-free, data-

mining tool. It has been experimentally tested on all time sequence data used in all the major

data-mining conferences in the last decade [23]. Comparingthe compression method with all

major methods used in those conferences they established clear superiority of the compression

method for clustering heterogeneous data, and for anomaly detection, and competitiveness

in clustering domain data. The NCD method turns out to be robust under change of the

underlying compressor-types: statistical (PPMZ), Lempel-Ziv based dictionary (gzip), block

based (bzip2), or special purpose (Gencompress). While there may be more appropriate special-

purpose distance measures for biological phylogeny, incorporating decades of research, the

NCD is a robust objective platform to test the unbiased performance of the competing phylogeny

reconstruction algorithms.

B. Previous Experiments

Oblivious to the problem area concerned, simply using the distances according to the NCD

above and the derived quartet topology costs, the quartet heuristic described in this paper

fully automatically clusters the objects concerned. The method has been released in the public

domain as open-source software: The CompLearn Toolkit [8] is a suite of simple utilities

that one can use to apply compression techniques to the process of discovering and learning

patterns in completely different domains, and hierarchically cluster them using the new quartet

method described in this paper. In fact, this method is so general that it requires no background

knowledge about any particular subject area. There are no domain-specific parameters to set,

and only a handful of general settings.
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Using the CompLearn package, in [11] we studied hypotheses concerning mammalian

evolution, by reconstructing the phylogeny from the mitochondrial genomes of 24 species.

These were downloaded from the GenBank Database on the world-wide web. In another

experiment, we used the mitochondrial genomes of molds and yeasts. We clustered the SARS

virus after its sequenced genome was made publicly available, in relation to potential similar

virii. The NCD distance matrix was computed using the compressor bzip2. The relations with

S(T ) = 0.988 were very similar to the definitive tree based on medical-macrobio-genomics

analysis, appearing later in the New England Journal of Medicine, [25]. In [9], 100 different

H5N1 sample genomes were downloaded from the NCBI/NIH database online, to analyze the

geographical spreading of the Bird Flu H5N1 Virus in a large example.

In general hierarchical clustering, we constructed language trees, cluster both Russian authors

in Russian, Russian authors in English translation, English authors, handwritten digits given

as two-dimensional ocr data, and astronomical data. We alsotested gross classification of files

based on heterogeneous data of markedly different file types: genomes, novel excerpts, music

files in MIDI format, Linux x86 ELF executables, and compiledJava class files. The program

correctly classifies each of the different types of files together with like near like. No features

of any specific domain of application are used. We believe that there is no other method known

that can cluster data that is so heterogeneous this reliably. This is borne out by the massive

experiments with the method in [23]. In [10] we used MIDI datato cluster classical music,

distinguish between genres like pop, rock, and classical, and do music classification. In [43],

the CompLearn package was used to analyze network traffic andto cluster computer worms

and virusses. CompLearn was used to analyze medical clinical data in clustering fetal heart rate

tracings [16]. Other applications by different authors arein software metrics and obfuscation,

web page authorship, topic and domain identification, protein sequence/structure classification,

phylogenetic reconstruction, hurricane risk assessment,ortholog detection, and other topics.

Using code-word lengths obtained from the page-hit counts returned by Google from the web,

we obtain a semantic distance betweennamesfor objects (rather than the objects themselves)

using the NCD formula and viewing Google as a compressor. Using the CompLearn package,

this has been useful for data mining, text comprehension, classification, and translation, [12].

In [9], relations between Nobel Laureates in literature, aswell as among Euro-Parlamentarians

were determined.
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VI. COMPARING AGAINST SPLITSTREE

We compare the performance of our method as implemented in the CompLearn pack-

age against that of a leading application to compute phylogenetic trees, a program called

SplitsTree [20]. We chose SplitsTree version 4.6 for comparison and selected three tree

reconstruction methods to benchmark: NJ, BioNJ, and UPGMA.To make comparison possible,

we require a tree reconstruction implementation that takesa distance matrix as input. This

requirement ruled out some other possiblities, and motivated our choice. To score the quality

of the produced trees we used theS(T ) values, where the quartet topology costs were derived

from the distance matrix concerned, Section V. The UPGMA method consistently performed

worse than the other two methods; in several trials it failedto produce an answer at all (throwing

an unhandled Java Exception), which may be due to an implementation problem. Therefore,

attention was focussed on the other two methods. NJ [37] and BioNJ [19] are neighbor-joining

type methods. In all tested cases they produced the same trees, therefore we will treat them as

the same in this discussion.

A. Testing on Artificial Data

We first test whether the quartet-based tree construction heuristic and the SplitsTree methods

are trustworthy. We generated 100 random samples of an unrooted binary treeT with 32 leaves

as follows: We started with a tree made in linear fashion witheach node connected to one leaf

node, a prior kernel node, and a successive kernel node. The ends have two leaf nodes instead.

This starting tree was then mutated 1000 times using randomly generated instantiations of the

complex mutation operation defined earlier. Next, we derived a a metric from the scrambled

tree by defining the distance between two nodes as follows: Given the length of the path from

a to b, in an integer number of edges, asL(a, b), let

d(a, b) =
L(a, b) + 1

32
,

except whena = b, in which cased(a, b) = 0. It is easy to verify that this simple formula

always gives a number between 0 and 1, is monotonic with path length, and is the resulting

matrix is symmetric. Given only the32 × 32 matrix of these normalized distances, our

quartet method exactly reconstructed the original tree onehundred times out of one hundred

random trials. SplitsTree NJ and BioNJ also reconstructed each of these correctly, however

UPGMA was unable to cope with this test. It appears there is a mismatch of assumptions in
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Amia calva Bowfin fish Melanogrammus aeglefinusHaddock

Anguilla japonica Japanese eel Metaseiulus occidentalis Western predatory mite

Anopheles funestus Mosquito Neolamprologus brichard Lyretail cichlid fish

Arctoscopus japonicus Sailfin sandfish Nephila clavata Orb web spider

Asterias amurensis Northern Pacific seastar Oreochromis mossambicus Mozambique tilapia fish

Astronotus ocellatus Tiger oscar Oscarella carmela Sponge

Cervus nippon taiouanus Formosan sika deer Phacochoerus africanus Warthog

Cobitis sinensis Siberian spiny loach fish Plasmodium knowlesi Primate malaria parasite

Diphyllobothrium latum Broad tapeworm Plasmodium vivax Tersian malaria parasite

Drosophila melanogaster Fruit fly Polypterus ornatipinnis Ornate bichir fish

Engraulis japonicus Japanese anchovy Psephurus gladius Chinese paddlefish

Gavia stellata Red throated diver Pterodroma brevirostris Kerguelen petrel

Gymnogobius petschiliensisFloating goby fish Savalia savaglia Encrusting anemone

Gymnothorax kidako Moray eel Schistosoma haematobium Vesical blood fluke

Hexamermis agrotis Roundworm Nematode Schistosoma spindale Cattle fluke

Hexatrygon bickelli Sixgill stingray Synodus variegatus Variegated lizardfish

Homo sapiens Human Theragra finnmarchica Norwegian pollock fish

Hynobius arisanensis Arisian salamander Tigriopus californicus Tidepool copepod

Hynobius formosanus Formosa salamander Tropheus duboisi White spotted cichlid fish

Lepeophtheirus salmonis Sea lice

Fig. 7. Listing of scientific and corresponding common namesof 41 (out of 45) species used. The remaining four are dogs,

with common breed names Chinese Crested, Irish Setter, Old English Sheepdog, Saint Bernard. There are no scientific names

distinguishing them, as far as we know.

this experimental ensemble and the UPGMA preconditions, orthere may be an error in the

SplitsTree implementation. The running time of CompLearn was about 3 hours per example,

SplitsTree was much faster with a few seconds per example.

B. Testing on Natural Data

In the biological setting the data are (parts of) genomes of currently existing species, and

the purpose is to reconstruct the evolutionary tree that ledto those species. Thus, the species

are labels of the leaves, and the tree is traditionally binary branching with each branching

representing a split in lineages. The internal nodes and theroot of the tree correspond with
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extinct species (possibly a still existing species in a leafdirectly connected to the internal node).

The root of the tree is commonly determined by adding an object that is known to be less

related to all other objects than the original objects are with respect to each other. Where the

unrelated object joins the tree is where we put the root. In these settings, the direction from the

root to the leaves represents an evolution in time, and the assumption is that there is a true tree

we have to discover. However, we can also use the method for hierarchical clustering, resulting

an unrooted ternary tree. The interpretation is that objects in a given subtree are pairwise closer

(more similar) to each other than any of those objects is withrespect to any object in a disjoint

subtree. To evaluate the quality of tree reconstruction fornatural genomic data, we downloaded

45 mitochondrial gene sequences, Figure 7, and randomly selected 100 subsets of 32 species

each. We used CompLearn with PPMD to compute NCD matrices foreach of the 100 trials

and fed these matrices (as Nexus files) to both CompLearn and SplitsTree. CompLearn took

substantially longer than SplitsTree; for these trials it took about 10 hours per tree but usually

produced trees with a higher S(T) score than SplitsTree taking about 10 seconds. In all but one

case, CompLearn performed better than the best method from SplitsTree and the results are

shown in the histogram Figure 8. CompLearn had an averageS(T ) of 0.99487068. SplitsTree
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Fig. 8. Histogram showing CompLearn S(T) advantage over SplitsTree S(T)

achieved the bestS(T ) with both NJ and BioNJ at 0.99243944. At this high level the absolute

magnitude of the difference is small, yet it can still imply significant changes in the structure

of the tree. Figure 9 and Figure 10 depict one example showingboth BioNJ and CompLearn
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BioNJ tree score S(T) = 0.984490
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Fig. 9. BioNJ tree from SplitsTree

trees applied to the same input matrix from one of the naturaldata test cases described above.

In this case there are important differences in placement ofat least two species;Hexatrygon

bickelli andSynodus variegatus. Although we can not know for sure the true maximum value

that can be attained forS(T ) given an arbitrary distance matrix, we can still define a useful

quantity

R(T ) = 1.0− S(T )

and termR(T ) the room for improvementfor tree T , especially in cases like the present

one when we know that the optimalS(T ) is close to 1. We may then defineRC(T ) to

be CompLearn’sR(T ) for a given trial, whereasRB(T ) is the SplitsTree BioNJ room for

improvement on a given trial. We can compute the decibel reduction db(T ) in room for
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Fig. 10. CompLearn tree for comparison with previous Figure

improvement due to CompLearn’s answer with the formula

db(T ) = 10 log10

RB(T )

RC(T )

Note that the room for improvement ratiodb(T ) represents also a conservative estimate of the

true improvement ratio in real error terms because the true maximum score of any distance

matrix is less than or equal to 1. Using theS(Topt) value of the real optimal treeTopt instead of 1

would only make the ratio more extreme. We plot the decibel error reduction in Figure 11, using

different binning than the earlier figure. We can see that more than 1/3 of the time CompLearn

achieves at least a 2dB reduction in room for improvement as compared to SplitsTree BioNJ.
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[1] C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi, and W. Zurek. Information Distance,IEEE Transactions on Information

Theory, 44:4(1998), 1407–1423.

[2] C.H. Bennett, M. Li, B. Ma, Chain letters and evolutionary histories,Scientific American, June 2003, 76–81.

[3] A. Ben-Dor, B. Chor, D. Graur, R. Ophir, D. Pelleg, Constructing phylogenies from quartets: Elucidation of eutherian

superordinal relationships,J. Computational Biology, 5:3(1998), 377–390.

[4] V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham, Quartetcleaning: improved algorithms and simulations. Algorithms–

Proc. 7th European Symp. (ESA99), LNCS vol. 1643, Springer Verlag, Berlin, (1999), 313-324.

[5] D. Bryant, V. Berry, P. Kearney, M. Li, T. Jiang, T. Wareham and H. Zhang. A practical algorithm for recovering the

best supported edges of an evolutionary tree.Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, January 9–11,

2000, San Francisco, California, USA, 287–296, 2000.

[6] P. Buneman, The recovery of trees from measures of dissimilarity. Pp. 387–395 in: F. Hodson, D. Kenadall, P. Tautu

(Eds.), Proc. of the Anlo-Romanian conference, The Royal Society of London and the Academy of the Socialist Republic

of Romania, The University Press, Edinburgh, Scottland, UK.

[7] X. Chen, B. Francia, M. Li, B. McKinnon, A. Seker, Shared information and program plagiarism detection,IEEE Trans.

Inform. Th., 50:7(2004), 1545–1551.

[8] R. Cilibrasi, The CompLearn Toolkit, 2003, http://www.complearn.org/ .

[9] R. Cilibrasi, Statistical Inference Through Data Compression, PhD Thesis, ILLC DS-2007-01, University of Amsterdam,

2007. http://cilibrar.com/projsup/thesis.pdf

[10] R. Cilibrasi, P.M.B. Vitanyi, R. de Wolf, Algorithmic clustering of music based on string compression,Computer Music

J., 28:4(2004), 49-67.

27



[11] R. Cilibrasi, P.M.B. Vitanyi, Clustering by compression, IEEE Trans. Information Theory, 51:4(2005), 1523- 1545.

[12] R.L. Cilibrasi, P.M.B. Vitanyi, The Google SimilarityDistance, IEEE Trans. Knowledge and Data Engineering,

19:3(2007), 370-383.

[13] H. Colonius, H.H. Schulze, Trees constructed from empirical relations,Braunschweiger Berichte as dem Institut fuer

Psychologie, 1(1977).

[14] H. Colonius, H.-H. Schulze, Tree structures for proximity data. British Journal of Mathematical and Statistical

Psychology, 34(1981), 167-180.

[15] , S. Consoli, K. Darby-Dowman, G. Geleijnse, J. Korst and S. Pauws, Heuristic approaches for the quartet method of

hierarchical clustering, Submitted to:IEEE Trans. Knowledge Data Engin..

[16] C. Costa Santos, J. Bernardes, P.M.B. Vitanyi, L. Antunes, Clustering fetal heart rate tracings by compression,Proc.

19th IEEE Symp. Computer-Based Medical Systems, 2006, 685-690

[17] R.O. Duda, P.E. Hart, D.G. Stork,Pattern Classification, 2nd Edition, Wiley Interscience, 2001.

[18] Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach.J. Molecular Evolution

17(1981), 368–376.

[19] Gascuel O., BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol.

Evol., 14:685-695.

[20] D. H. Huson and D. Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Mol. Biol. Evol., 23(2):254-

267, 2006.

[21] T. Jiang, P. Kearney, and M. Li. A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from

Quartet Topologies and its Application.SIAM J. Computing, 30:6(2000), 1942–1961.

[22] P.E. Kearney, Ordinal quartet method,2nd Int’nl Conf. Comput. Molecular Biology, 1998, 125-134.

[23] E. Keogh, S. Lonardi, and C.A. Rtanamahatana, Toward parameter-free data mining, In:Proc. 10th ACM SIGKDD Intn’l

Conf. Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22—25, 2004, 206–215.

[24] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi,Science220 (1983) 671-680.

[25] T.G. Ksiazek, et.al., A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome,New England J. Medicine,

Published at www.nejm.org April 10, 2003 (10.1056/NEJMoa030781).

[26] J.R. Koza, Hierarchical genetic algorithms operatingon populations of computer programs,Proc. 11th Intn’l Joint Conf.

Artificial Intell. (IJCAI’89), Morgan-Kaufmann, 1989, 768–774.

[27] P.S. Laplace,A philosophical essay on probabilities, 1819. English translation, Dover, 1951.

[28] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-based sequence distance and its

application to whole mitochondrial genome phylogeny,Bioinformatics, 17:2(2001), 149–154.
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