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Analysis of Sorting Algorithms by
Kolmogorov Complexity

(A Survey)

PAUL VITÁNYI∗

Recently, many results on the computational complexity of sorting algorithms
were obtained using Kolmogorov complexity (the incompressibility method). Es-
pecially, the usually hard average-case analysis is ammenable to this method.
Here we survey such results about Bubblesort, Heapsort, Shellsort, Dobosiewicz-
sort, Shakersort, and sorting with stacks and queues in sequential or parallel
mode. Especially in the case of Shellsort the uses of Kolmogorov complexity sur-
prisingly easily resolved problems that had stayed open for a long time despite
strenuous attacks.

1. Introduction

We survey recent results in the analysis of sorting algorithms using a new
technical tool: the incompressibility method based on Kolmogorov complex-
ity. Complementing approaches such as the counting method and the prob-
abilistic method, the new method is especially suited for the average-case
analysis of algorithms and machine models, whereas average-case analysis is
usually more difficult than worst-case analysis using the traditional meth-
ods. Obviously, the results described can be obtained using other proof
methods – all true provable statements must be provable from the axioms
of mathematics by the inference methods of mathematics. The question is
whether a particular proof method facilitates and guides the proving effort.
The following examples make clear that thinking in terms of coding and the
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incompressibility method suggests simple proofs that resolve long-standing
open problems. A survey of the use of the incompressibility method in com-
binatorics, computational complexity, and the analysis of algorithms is [16]
Chapter 6, and other recent work is [2, 15].

We give some definitions to establish notation. For introduction, details,
and proofs, see [16]. We write string to mean a finite binary string. Other
finite objects can be encoded into strings in natural ways. The set of strings
is denoted by {0, 1}∗. Let x, y, z ∈ N , where N denotes the set of natural
numbers. Identify N and {0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . . .

Here ε denotes the empty word with no letters. The length of x is the
number of bits in the binary string x and is denoted by l(x). For example,
l(010) = 3 and l(ε) = 0. The emphasis is on binary sequences only for
convenience; observations in every alphabet can be so encoded in a way
that is ‘theory neutral.’

Self-delimiting Codes: A binary string y is a proper prefix of a binary
string x if we can write x = yz for z 6= ε. A set {x, y, . . .} ⊆ {0, 1}∗ is prefix-
free if for every pair of distinct elements in the set neither is a proper prefix
of the other. A prefix-free set is also called a prefix code. Each binary string
x = x1x2 . . . xn has a special type of prefix code, called a self-delimiting
code,

x̄ = 1n0x1x2 . . . xn.

This code is self-delimiting because we can effectively determine where the
code word x̄ ends by reading it from left to right without backing up. Using
this code we define the standard self-delimiting code for x to be x′ = l(x)x.
It is easy to check that l(x̄) = 2n + 1 and l(x′) = n + 2 log n + 1.

Let 〈·, ·〉 be a standard one-one mapping from N ×N to N , for technical
reasons chosen such that l

(〈x, y〉) = l(y) + l(x) + 2l
(
l(x)

)
+ 1, for example

〈x, y〉 = x′y = 1l(l(x))0l(x)xy.

Kolmogorov Complexity: Informally, the Kolmogorov complexity, or al-
gorithmic entropy, C(x) of a string x is the length (number of bits) of a
shortest binary program (string) to compute x on a fixed reference univer-
sal computer (such as a particular universal Turing machine). Intuitively,
C(x) represents the minimal amount of information required to generate
x by any effective process, [10]. The conditional Kolmogorov complexity
C(x | y) of x relative to y is defined similarly as the length of a shortest
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program to compute x, if y is furnished as an auxiliary input to the com-
putation. The functions C(·) and C(· | ·), though defined in terms of a
particular machine model, are machine-independent up to an additive con-
stant (depending on the particular enumeration of Turing machines and
the particular reference universal Turing machine selected). They acquire
an asymptotically universal and absolute character through Church’s the-
sis, and from the ability of universal machines to simulate one another and
execute any effective process, see for example [16]. Formally:

Definition 1. Let T0, T1, . . . be a standard enumeration of all Turing ma-
chines. Choose a universal Turing machine U that expresses its universality
in the following manner:

U(
〈〈i, p〉, y〉

) = Ti

(〈p, y〉)

for all i and 〈p, y〉, where p denotes a Turing program for Ti and y an
auxiliary input. We fix U as our reference universal computer and define
the conditional Kolmogorov complexity of x given y by

C(x | y) = min
q∈{0,1}∗

{l(q) : U
(〈q, y〉) = x},

for every q (for example q = 〈i, p〉 above) and auxiliary input y. The
unconditional Kolmogorov complexity of x is defined by C(x) = C(x | ε).
For convenience we write C(x, y) for C

(〈x, y〉) , and C(x | y, z) for C
(
x |

〈y, z〉) .

Incompressibility: First we show that the Kolmogorov complexity of
a string cannot be significantly more than its length. Since there is a
Turing machine, say Ti, that computes the identity function Ti(x) ≡ x,
and by definition of universality of U we have U

(〈i, p〉) = Ti(p). Hence,
C(x) ≤ l(x) + c for fixed c ≤ 2 log i + 1 and all x. 1 2

It is easy to see that there are also strings that can be described by
programs much shorter than themselves. For instance, the function defined
by f(1) = 2 and f(i) = 2f(i−1) for i > 1 grows very fast, f(k) is a “stack”
of k twos. It is clear that for every k it is the case that f(k) has complexity
at most C(k) + O(1).

1“2 log i” and not “log i” since we need to encode i in such a way that U can determine
the end of the encoding. One way to do that is to use the code 1l(l(i))0l(i)i which has
length 2l(l(i)) + l(i) + 1 < 2 log i bits.

2In what follows, “log” denotes the binary logarithm. “brc” is the greatest integer q
such that q ≤ r.



212 P. Vitányi

What about incompressibility? For every n there are 2n binary strings
of lengths n, but only

∑n−1
i=0 2i = 2n−1 descriptions in binary string format

of lengths less than n. Therefore, there is at least one binary string x of
length n such that C(x) ≥ n. We call such strings incompressible. The
same argument holds for conditional complexity: since for every length n
there are at most 2n − 1 binary programs of lengths < n, for every binary
string y there is a binary string x of length n such that C(x | y) ≥ n.
Strings that are incompressible are patternless, since a pattern could be used
to reduce the description length. Intuitively, we think of such patternless
sequences as being random, and we use “random sequence” synonymously
with “incompressible sequence.” There is also a formal justification for
this equivalence, which does not need to concern us here. Since there are
few short programs, there can be only few objects of low complexity: the
number of strings of length n that are compressible by at most δ bits is at
least 2n − 2n−δ + 1.

Lemma 1. Let δ be a positive integer. For every fixed y, every set S of
cardinality m has at least m

(
1 − 2−δ

)
+ 1 elements x with C(x | y) ≥

blog mc − δ.

Proof. There are N =
∑n−1

i=0 2i = 2n − 1 binary strings of length less than
n. A fortiori there are at most N elements of S that can be computed by
binary programs of length less than n, given y. This implies that at least
m−N elements of S cannot be computed by binary programs of length less
than n, given y. Substituting n by blog mc − δ together with Definition 1
yields the lemma.

Lemma 2. If A is a set, then for every y every element x ∈ A has complexity
C(x | A, y) ≤ log |A|+ O(1).

Proof. A string x ∈ A can be described by first describing A in O(1) bits
and then giving the index of x in the enumeration order of A.

As an example, set S =
{

x : l(x) = n
}

. Then is |S| = 2n. Since
C(x) ≤ n + c for some fixed c and all x in S, Lemma 1 demonstrates that
this trivial estimate is quite sharp. If we are given S as an explicit table then
we can simply enumerate its elements (in, say, lexicographical order) using a
fixed program not depending on S or y. Such a fixed program can be given
in O(1) bits. Hence the complexity satisfies C(x | S, y) ≤ log |S|+ O(1).
Incompressibility Method: In a typical proof using the incompressibility
method, one first chooses an incompressible object from the class under
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discussion. The argument invariably says that if a desired property does not
hold, then in contrast with the assumption, the object can be compressed
significantly. This yields the required contradiction. Since most objects are
almost incompressible, the desired property usually also holds for almost
all objects, and hence on average. Below, we demonstrate the utility of the
incompressibility method to obtain simple and elegant proofs.

Average-case Complexity: For many algorithms, it is difficult to analyze
the average-case complexity. Generally speaking, the difficulty comes from
the fact that one has to analyze the time complexity for all inputs of a
given length and then compute the average. This is a difficult task. Using
the incompressibility method, we choose just one input – a representative
input. Via Kolmogorov complexity, we can show that the time complexity of
this input is in fact the average-case complexity of all inputs of this length.
Constructing such a “representative input” is impossible, but we know it
exists and this is sufficient.

In average-case analysis, the incompressibility method has an advantage
over a probabilistic approach. In the latter approach, one deals with ex-
pectations or variances over some ensemble of objects. Using Kolmogorov
complexity, we can reason about an incompressible individual object. Be-
cause it is incompressible it has all simple statistical properties with cer-
tainty, rather than having them hold with some (high) probability as in a
probabilistic analysis. This fact greatly simplifies the resulting analysis.

2. Bubblesort

A simple introductory example of the application of the incompressibility
method is the average-case analysis of Bubblesort. The classical approach
can be found in [11]. It is well-known that Bubblesort uses Θ(n2) compar-
isons/exchanges on the average. We present a very simple proof of this fact.
The proof is based on the following intuitive idea: There are n! different per-
mutations. Given the sorting process (the insertion paths in the right order)
one can recover the correct permutation from the sorted list. Hence one re-
quires n! pairwise different sorting processes. This gives a lower bound on
the minimum of the maximal length of a process. We formulate the proof
in the crisp format of incompressibility. In Bubblesort we make passes from
left to right over the permutation to be sorted and always move the cur-
rently largest element right by exchanges between it and the right-adjacent
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element – if that one is smaller. We make at most n− 1 passes, since after
moving all but one element in the correct place the single remaining ele-
ment must be also in its correct place (it takes two elements to be wrongly
placed). The total number of exchanges is obviously at most n2, so we only
need to consider the lower bound. Let B be a Bubblesort algorithm. For a
permutation π of the elements 1, . . . , n, we can describe the total number
of exchanges by M :=

∑n−1
i=1 mi where mi is the initial distance of element

n − i to its final position. Note that in every pass more than one element
may “bubble” right but that means simply that in the future passes of the
sorting process an equal number of exchanges will be saved for the element
to reach its final position. That is, every element executes a number of
exchanges going right that equals precisely the initial distance between its
start position to its final position. It is clear that M ≤ n2 for all permuta-
tions. Given m1, . . . , mn−1, in that order, we can reconstruct the original
permutation from the final sorted list. Since choosing a elements from a
list of b + a elements divides the remainder in a sequence of a + 1 possibly
empty sublists, there are

B(M) =
(

M + n− 2
n− 2

)

possibilities to partition M into n − 1 ordered non-negative summands.
Therefore, we can describe π by M, n, an index of log B(M) bits to describe
m1, . . . , mn−1 among all partitions of M , and an program P that recon-
structs π from these parameters and the final sorted list 1, . . . , n. Consider
permutations π satisfying C

(
π | n,B(M), P

) ≥ log n! − log n. Then by
Lemma 2 at least a (1 − 1/n)th fraction of all permutations of n elements
have that high complexity. Under this complexity condition on π, we also
have M ≥ n. (If M < n then C

(
π | n,B(M), P

)
= O(n).) Since the de-

scription of π we have constructed is effective, its length must be at least
C(π | n, B, P ). Encoding M self-delimiting, in order to be able to separate
M from B(M) in a concatenation of the binary descriptions, we therefore
find log M +2 log log M +log B(M) ≥ n log n−O(log n). Substitute a good
estimate for log B(M) (the formula used later in the Shellsort example,
Section 4) divide by n, and discard the terms that vanish with n, assum-
ing 2 < n ≤ M ≤ n2, yields log

(
1 + M/(n − 2)

) ≥ log n + O(1). By
the above, this holds for at least an (1 − 1/n)th fraction of all permuta-
tions, and hence gives us an Ω(n2) lower bound on the expected number of
comparisons/exchanges.
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3. Heapsort

Heapsort is a widely used sorting algorithm. One reason for its prominence
is that its running time is guaranteed to be of order n log n, and it does not
require extra memory space. The method was first discovered by J. W. J.
Williams, [29], and subsequently improved by R. W. Floyd [4] (see [11]).
Only recently has one succeeded in giving a precise analysis of its average-
case performance [23]. I. Munro has suggested a remarkably simple solution
using incompressibility [18] initially reported in [16].

A “heap” can be visualized as a complete directed binary tree with
possibly some rightmost nodes being removed from the deepest level. The
tree has n nodes, each of which is labeled with a different key, taken from
a linearly ordered domain. The largest key k1 is at the root (on top of the
heap), and each other node is labeled with a key that is less than the key
of its father.

Definition 2. Let keys be elements of N . An array of keys k1, . . . , kn is a
heap if they are partially ordered such that

kbj/2c ≥ kj for 1 ≤ bj/2c < j ≤ n.

Thus, k1 ≥ k2, k1 ≥ k3, k2 ≥ k4, and so on. We consider “in place”
sorting of n keys in an array A[1 . . . n] without use of additional memory.
Heapsort {Initially, A[1 . . . n] contains n keys. After sorting is completed,

the keys in A will be ordered as A[1] < A[2] < · · · < A[n].}
Heapify: {Regard A as a tree: the root is in A[1]; the two sons of A[i] are

at A[2i] and A[2i+1], when 2i, 2i+1 ≤ n. We convert the tree in A to
a heap.} Repeat for i = bn/2c, bn/2c−1, . . . , 1: {the subtree rooted
at A[i] is now almost a heap except for A[i]} push the key, say k, at
A[i] down the tree (determine which of the two sons of A[i] possesses
the greatest key, say k′ in son A[2i+ j] with j equals 0 or 1); if k′ > k
then put k in A[2i+j] and repeat this process pushing k′ at A[2i+j]
down the tree until the process reaches a node that does not have a
son whose key is greater than the key now at the father node.

Sort: Repeat for i = n, n − 1, . . . , 2: {A[1 . . . i] contains the remaining
heap and A[i + 1 . . . n] contains the already sorted list ki+1, . . . , kn of
largest elements. By definition, the element on top of the heap in A[1]
must be ki.} switch the key ki in A[1] with the key k in A[i], extending
the sorted list to A[i . . . n]. Rearrange A[1 . . . i− 1] to a heap with the
largest element at A[1].
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It is well known that the Heapify step can be performed in O(n) time.
It is also known that the Sort step takes no more than O(n log n) time. We
analyze the precise average-case complexity of the Sort step. There are two
ways of rearranging the heap: Williams’s method and Floyd’s method.

Williams’s Method: {Initially, A[1] = k.}
Repeat compare the keys of k’s two direct descendants; if m is the larger

of the two then compare k and m; if k < m then switch k and m in
A[1 . . . i− 1] until k ≥ m.

Floyd’s Method: {Initially, A[1] is empty.} Set j := 1;

while A[j] is not a leaf do:
if A[2j] > A[2j + 1] then j := 2j
else j := 2j + 1;

while k > A[j] do:
{back up the tree until the correct position for k} j := bj/2c;

move keys of A[j] and each of its ancestors one node upwards;
Set A[j] := k.

The difference between the two methods is as follows. Williams’s method
goes from the root at the top down the heap. It makes two comparisons with
the son nodes and one data movement at each step until the key k reaches
its final position. Floyd’s method first goes from the root at the top down
the heap to a leaf, making only one comparison each step. Subsequently,
it goes from the bottom of the heap up the tree, making one comparison
each step, until it finds the final position for key k. Then it moves the keys,
shifting every ancestor of k one step up the tree. The final positions in
the two methods are the same; therefore both algorithms make the same
number of key movements. Note that in the last step of Floyd’s algorithm,
one needs to move the keys carefully upward the tree, avoiding swaps that
would double the number of moves.

The heap is of height log n. If Williams’s method uses 2d comparisons,
then Floyd’s method uses d + 2δ comparisons, where δ = log n − d. Intu-
itively, δ is generally very small, since most elements tend to be near the
bottom of the heap. This makes it likely that Floyd’s method performs bet-
ter than Williams’s method. We analyze whether this is the case. Assume
a uniform probability distribution over the lists of n keys, so that all input
lists are equally likely.

Average-case analysis in the traditional manner suffers from the problem
that, starting from a uniform distribution on the lists, it is difficult to
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compute the distribution on the resulting initial heaps, and increasingly
more difficult to compute the distributions on the sequence of decreasing-
size heaps after subsequent heapsort steps. The sequence of distributions
seem somehow realated, but this is hard to express and exploit in the
traditional approach. In contrast, using Kolmogorov complexity we express
this similarity without having to be precise about the distributions.

Theorem 1. On average (uniform distribution), Heapsort makes n log n +
O(n) data movements. Williams’s method makes 2n log n − O(n) compar-
isons on average. Floyd’s method makes n log n + O(n) comparisons on
average.

Proof. Given n keys, there are n! (≈ nne−n
√

2πn by Stirling’s formula)
permutations. Hence we can choose a permutation p of n keys such that

(1) C(p | n) ≥ n log n− 2n,

justified by Theorem 1, page 212. In fact, most permutations satisfy Equa-
tion 1.

Claim 1. Let h be the heap constructed by the Heapify step with input p
that satisfies Equation 1. Then

(2) C(h | n) ≥ n log n− 6n.

Proof. Assume the contrary, C(h | n) < n log n−6n. Then we show how to
describe p, using h and n, in fewer than n log n−2n bits as follows. We will
encode the Heapify process that constructs h from p. At each loop, when
we push k = A[i] down the subtree, we record the path that key k traveled:
0 indicates a left branch, 1 means a right branch, 2 means halt. In total,
this requires (n log 3)

∑
j j/2j+1 ≤ 2n log 3 bits. Given the final heap h and

the above description of updating paths, we can reverse the procedure of
Heapify and reconstruct p. Hence, C(p | n) < C(h | n)+2n log 3+O(1) <
n log n− 2n, which is a contradiction. (The term 6n above can be reduced
by a more careful encoding and calculation.)

We give a description of h using the history of the n−1 heap rearrange-
ments during the Sort step. We only need to record, for i := n − 1, . . . , 2,
at the (n − i + 1)st round of the Sort step, the final position where A[i] is
inserted into the heap. Both algorithms insert A[i] into the same slot using
the same number of data moves, but a different number of comparisons.
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We encode such a final position by describing the path from the root to
the position. A path can be represented by a sequence s of 0’s and 1’s, with
0 indicating a left branch and 1 indicating a right branch. Each path i is
encoded in self-delimiting form by giving the value δi = log n−l(si) encoded
in self-delimiting binary form, followed by the literal binary sequence si

encoding the actual path. This description requires at most

(3) l(si) + 2 log δi

bits. Concatenate the descriptions of all these paths into sequence H.

Claim 2. We can effectively reconstruct heap h from H and n.

Proof. Assume H is known and the fact that h is a heap on n different
keys. We simulate the Sort step in reverse. Initially, A[1 . . . n] contains a
sorted list with the least element in A[1].

for i := 2, . . . , n− 1 do: {now A[1 . . . i − 1] contains the partially con-
structed heap and A[i . . . n] contains the remaining sorted list with
the least element in A[i]} Put the key of A[i] into A[1], while shifting
every key on the (n− i)th path in H one position down starting from
the root at A[1]. The last key on this path has nowhere to go and is
put in the empty slot in A[i].

termination {Array A[1 . . . n] contains heap h.}

It follows from Claim 2 that C(h | n) ≤ l(H) + O(1). Therefore, by
Equation 2, we have l(H) ≥ n log n− 6n. By the description in Equation 3,
we have

n∑

i=1

(l(si) + 2 log δi) =
n∑

i=1

(
(log n)− δi + 2 log δi

) ≥ n log n− 6n.

It follows that
∑n

i=1(δi − 2 log δi) ≤ 6n. This is only possible if
∑n

i=1 δi =
O(n). Therefore, the average path length is at least log n− c, for some fixed
constant c. In each round of the Sort step the path length equals the number
of data moves. The combined total path length is at least n log n− nc.

It follows that starting with heap h, Heapsort performs at least n log n−
O(n) data moves. Trivially, the number of data moves is at most n log n.
Together this shows that Williams’s method makes 2n log n − O(n) key
comparisons, and Floyd’s method makes n log n + O(n) key comparisons.
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Since most permutations are Kolmogorov random, these bounds for one
random permutation p also hold for all permutations on average. But we
can make a stronger statement. We have taken C(p | n) at least εn below
the possible maximum, for some constant ε > 0. Hence, a fraction of at
least 1− 2−εn of all permutations on n keys will satisfy the above bounds.

4. Shellsort

The question of a nontrivial general lower bound (or upper bound) on the
average complexity of Shellsort (due to D. L. Shell [26]) has been open for
about four decades [11, 25], and only recently such a general lower bound was
obtained. The original proof using Kolmogorov complexity [12] is presented
here. Later, it turned out that the argument can be translated to a counting
argument [13]. It is instructive that thinking in terms of code length and
Kolmogorov complexity enabled advances in this problem.

Shellsort sorts a list of n elements in p passes using a sequence of
increments h1, . . . , hp. In the kth pass the main list is divided in hk separate
sublists of length dn/hke, where the ith sublist consists of the elements
at positions j, where j mod hk = i − 1, of the main list (i = 1, . . . , hk).
Every sublist is sorted using a straightforward insertion sort. The efficiency
of the method is governed by the number of passes p and the selected
increment sequence h1, . . . , hp with hp = 1 to ensure sortedness of the
final list. The original log n-pass3 increment sequence bn/2c, bn/4c, . . . , 1
of Shell [26] uses worst case Θ(n2) time, but Papernov and Stasevitch [19]
showed that another related sequence uses O(n3/2) and Pratt [22] extended
this to a class of all nearly geometric increment sequences and proved this
bound was tight. The currently best asymptotic method was found by
Pratt [22]. It uses all log2 n increments of the form 2i3j < bn/2c to obtain
time O(n log2 n) in the worst case. Moreover, since every pass takes at
least n steps, the average complexity using Pratt’s increment sequence is
Θ(n log2 n). Incerpi and Sedgewick [5] constructed a family of increment
sequences for which Shellsort runs in O(n1+ε/

√
log n ) time using (8/ε2) log n

passes, for every ε > 0. B. Chazelle (attribution in [24]) obtained the same
result by generalizing Pratt’s method: instead of using 2 and 3 to construct

3“log” denotes the binary logarithm and “ln” denotes the natural logarithm.
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the increment sequence use a and (a+1) to obtain a worst-case running time
of n log2 n(a2/ ln2 a) which is O(n1+ε/

√
log n ) for ln2 a = O(log n). Poonen

[20], and Plaxton, Poonen and Suel [21], demonstrated an Ω(n1+ε/
√

p )
lower bound for p passes of Shellsort using any increment sequence, for
some ε > 0; taking p = Ω(log n) shows that the Incerpi–Sedgewick /
Chazelle bounds are optimal for small p and taking p slightly larger shows
a Θ

(
n log2 n/(log log n)2

)
lower bound on the worst-case complexity of

Shellsort. For the average-case running time Knuth [11] showed Θ(n5/3)
for the best choice of increments in p = 2 passes; Yao [30] analyzed the
average-case for p = 3 but did not obtain a simple analytic form; Yao’s
analysis was improved by Janson and Knuth [7] who showed O

(
n23/15

)
average-case running time for a particular choice of increments in p = 3
passes. Apart from this no nontrivial results are known for the average-
case; see [11, 24, 25]. In [12, 13] a general Ω(pn1+1/p) lower bound was
obtained on the average-case running time of p-pass Shellsort under uniform
distribution of input permutations, for every 1 ≤ p ≤ n/2.4 This is the first
advance on the problem of determining general nontrivial bounds on the
average-case running time of Shellsort [22, 11, 30, 5, 21, 24, 25].

A Shellsort computation consists of a sequence of comparison and in-
version (swapping) operations. In this analysis of the average-case lower
bound we count just the total number of data movements (here inversions)
executed. The same bound holds a fortiori for the number of comparisons.

Theorem 2. The average number of comparisons (and also inversions for
p = o(log n)) in p-pass Shellsort on lists of n keys is at least Ω

(
pn1+1/p

)
for every increment sequence. The average is taken with all lists of n items
equally likely (uniform distribution).

Proof. Let the list to be sorted consist of a permutation π of the elements
1, . . . , n. Consider a (h1, . . . , hp) Shellsort algorithm A where hk is the
increment in the kth pass and hp = 1. For every 1 ≤ i ≤ n and 1 ≤ k ≤ p,
let mi,k be the number of elements in the hk-increment sublist, containing
element i, that are to the left of i at the beginning of pass k and are larger
than i. Observe that

∑n
i=1 mi,k is the number of inversions in the initial

permutation of pass k, and that the insertion sort in pass k requires precisely

4The trivial lower bound is Ω(pn) comparisons since every element needs to be com-
pared at least once in every pass.
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∑n
i=1(mi,k + 1) comparisons. Let M denote the total number of inversions:

(4) M :=
p∑

k=1

n∑

i=1

mi,k.

Claim 3. Given all the mi,k’s in an appropriate fixed order, we can recon-
struct the original permutation π.

Proof. In general, given the mi,k’s and the final permutation of pass k, we
can reconstruct the initial permutation of pass k.

Let M as in (4) be a fixed number. There are n! permutations of n
elements. Let permutation π be an incompressible permutation having
Kolmogorov complexity

(5) C(π | n, A, P ) ≥ log n!− log n,

where P is the decoding program in the following discussion. There exist
many such permutations by lemma 1. Clearly, there is a fixed program
that on input A,P, n reconstructs π from the description of the mi,k’s as in
Claim 3. Therefore, the minimum length of the latter description, including
a fixed program in O(1) bits, must exceed the complexity of π:

(6) C(m1,1, . . . , mn,p | n,A, P ) + O(1) ≥ C(π | n,A, P ).

An M as defined by (4) such that every division of M in mi,k’s contradicts
(6) would be a lower bound on the number of inversions performed. Similar
to the reasoning Bubblesort example, Section 2, there are

(7) D(M) :=
(

M + np− 1
np− 1

)

distinct divisions of M into np ordered nonnegative integral summands
mi,k’s. Every division can be indicated by its index j in an enumeration
of these divisions. This is both obvious and an application of lemma 2.
Therefore, a description of M followed by a description of j effectively
describes the mi,k’s. Fix P as the program for the reference universal
machine that reconstructs the ordered list of mi,k’s from this description.
The binary length of this two-part description must by definition exceed the
Kolmogorov complexity of the described object.
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A minor complication is that we cannot simply concatenate two binary
description parts: the result is a binary string without delimiter to indicate
where one substring ends and the other one begins. Encoding the M part
of the description self-delimitingly we obtain:

log D(M) + log M + 2 log log M + 1 ≥ C(m1,1, . . . , mn,p | n, A, P ).

We know that M ≤ pn2 since every mi,k ≤ n. We can assume5 p < n.
Together with (5) and (6), we have

(8) log D(M) ≥ log n!− 4 log n− 2 log log n−O(1).

Estimate log D(M) by 6

log
(

M + np− 1
np− 1

)
= (np− 1) log

M + np− 1
np− 1

+ M log
M + np− 1

M

+
1
2

log
M + np− 1
(np− 1)M

+ O(1).

The second term in the right-hand side equals7

log
(

1 +
np− 1

M

)M

< log enp−1

for all positive M and np− 1 > 0. Since 0 < p < n and n ≤ M ≤ pn2,

1
2(np− 1)

log
M + np− 1
(np− 1)M

→ 0

for n →∞. Therefore, log D(M) is majorized asymptotically by

(np− 1)
(

log
(

M

np− 1
+ 1

)
+ log e

)

5Otherwise we require at least n2 comparisons.
6Use the following formula ([16], p. 10),

log

(
a

b

)
= b log

a

b
+ (a− b) log

a

a− b
+

1

2
log

a

b(a− b)
+ O(1).

7Use ea >
(
1 + a

b

)b
for all a > 0 and positive integer b.
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for n → ∞. Since the righthand-side of (8) is asymptotic to n log n for
n →∞, this yields

M = Ω(pn1+1/p),

for p = o(log n). (More precisely, M = Ω(pn1+(1−ε)/p) for p ≤ (ε/ log e) log n
(0 < ε < 1), see [13].) That is, the running time of the algorithm is as
stated in the theorem for every permutation π satisfying satisfying (5). By
lemma 1 at least a (1−1/n)-fraction of all permutations π require that high
complexity. Then the following is a lower bound on the expected number
of inversions of the sorting procedure:

(
1− 1

n

)
Ω

(
pn1+1/p

)
+

1
n

Ω(0) = Ω
(
pn1+1/p

)
,

for p = o(log n). For p = Ω(log n), the lower bound on the number of
comparisons is trivially pn = Ω

(
pn1+1/p

)
. This gives us the theorem.

Our lower bound on the average-case can be compared with the Plaxton–
Poonen–Suel Ω(n1+ε/

√
p ) worst case lower bound [21]. Some special cases

of the lower bound on the average-case complexity are:
1. For p = 1 our lower bound is asymptotically tight: it is the average

number of inversions for Insertion Sort.
2. For p = 2, Shellsort requires Ω(n3/2) inversions (the tight bound is

known to be Θ(n5/3) [11]);
3. For p = 3, Shellsort requires Ω(n4/3) inversions (the best known upper

bound is O(n23/15) in [7]);
4. For p = log n/ log log n, Shellsort requires Ω(n log2 n/ log log n) inver-

sions;
5. For p = log n, Shellsort requires Ω(n log n) comparisons on average.

This is of course the lower bound of average number of comparisons
for every sorting algorithm.

6. In general, for n/2 > p = p(n) > log n, Shellsort requires Ω
(
n · p(n)

)
comparisons (since every pass trivially makes n comparisons).

In [25] it is mentioned that the existence of an increment sequence
yielding an average O(n log n) Shellsort has been open for 30 years. The
above lower bound on the average shows that the number p of passes of
such an increment sequence (if it exists) is precisely p = Θ(log n); all the
other possibilities are ruled out: Is there an increment sequence for log n-
pass Shellsort so that it runs in average-case Θ(n log n)? Can we tighten
the average-case lower bound for Shellsort? The above bound is known to
be not tight for p = 2 passes.
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5. Dobosiewicz Sort and Shakersort

We look at some variants of Shellsort. Knuth [11], 1st Edition Exercise
5.2.1.40 on page 105, and Dobosiewicz [3] proposed to use only one pass
of Bubblesort on each subsequence instead of sorting the subsequences at
each stage. Incerpi and Sedgewick [6] used two passes of Bubblesort in each
stage, one going left-to-right and the other going right-to-left. This is called
Shakersort since it reminds one of shaking a cocktail. In both cases the
sequence may stay unsorted, even if the last increment is 1. A final phase,
a straight insertion sort, is required to guaranty a fully sorted list. Until
recently, these variants have not been seriously analyzed; in [3, 6, 28, 24]
mainly empirical evidence is reported, giving evidence of good running times
(comparable to Shellsort) on randomly generated input key sequences of
moderate length. The evidence also suggests that the worst-case running
time may be quadratic. Again, let n be the number of keys to be sorted
and let p be the number of passes. The Ω(n1+c/

√
p) worst-case lower bound

of Poonen [20] holds apart from Shellsort also for the variants of it. We also
have a worst-case lower bound of Ω(n2) on Dobosiewicz sort and Shaker
sort for the special case of almost geometric sequences of increments. But
recently Brejova [1] proved that Shaker sort runs in O(n3/2 log3 n) worst-case
time for a certain sequence of increments (the first non-quadratic worst-case
upper bound). Using the incompressibility method, she also proved lower
bounds on the average-case running times.

Theorem 3. There is an Ω(n2/4p) lower bound on the average-case running
time of Shaker sort, and a Ω(n2/2p) lower bound on the average-case running
time of Dobosiewicz sort. The avereges are taken with respect to the uniform
distribution.

Remark 1. These lower bounds (on the average-case) are better than the
Poonen [20] lower bounds of Ω(n1+c/

√
p ) on the worst-case.

Proof. Consider Dobosiewicz sorting algorithm A (the description of A
includes the number of passes p and the list of increments h1, . . . , hp). Every
comparison based sorting algorithm uses Ω(n log n) comparisons on average.
If p > log n − log log n then the claimed lower bound trivially holds. So
we can assume that p ≤ log n − log log n. Let π be the permutation of
{0, 1, . . . , n−1} to be sorted, and let π′ be the permutation remaining after
all p stages of the Dobsiewicz sort, but before the final insertion sort. If X
is the number of inversions in π′ then the final insertion sort takes Ω(X)
time.
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Claim 4. Let π be a permutation satisfying (5). Then X = Ω(n2/2p).

Proof. We can reconstruct π from π′ given p strings of lengths n defined
as follows: The jth bit of the ith string is “1” if xj was interchanged with
xj−hi in the ith phase of the algorithm (hi is the ith increment), and “0”
otherwise. Given π′ and these strings in appropriate order we can simply
run the p sorting phases in reverse.

Furthermore, π′ can be reconstructed from its inversion table a0, a2, . . . ,
an−1, where ai is the number of elements in list π′ left of the ith position that
are greater than the element in the ith position. Thus,

∑
i ai = X. There are

D(X) =
(
X+n−1

n−1

)
ordered partitions of X into n non-negative summands.

Hence, π′ can be reconstructed from X and an index of log D(X) bits
identifying the partition in question. Given n, we encode X self-delimiting
to obtain a total description of log X + 2 log log X + log D(X) bits.

Therefore, with P the reconstruction program, we have shown that

C(π | n,A, P ) ≤ np + log X + 2 log log X + log D(X).

Estimating asymptotically, similar to the part following (8),

log D(X) ≤ (n− 1) log
(

X

n− 1
+ 1

)
+ O(n).

Since π satisfies (5), we have np+(n−1) log ( X
n−1+1)+O(n) ≥ n log n−Θ(n).

Hence, X ≥ n2/(2p)Θ(1) = Ω(n2/2p), where the last equality holds since
p ≤ log n− log log n and hence n2/2p ≥ n log n.

By Lemma 1 at least a (1− 1/n)-fraction of all permutations π require
that high complexity. This shows that the running time of the Dobosiewicz
sort is as stated in the theorem. The lower bound on Shaker sort has a very
similar proof, with the proviso that we require 2n bits to encode one pass of
the algorithm rather than n bits. This results in the claimed lower bound
of Ω(n2/4p) (which is nan-vacuous only for for p ≤ 1

2(log n− log log n)).
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6. Sorting with queues and stacks

Knuth [11] and Tarjan [27] have studied the problem of sorting using a
network of queues or stacks. The main variant of the problem is as follows:
Given that the stacks or queues are arranged sequentially as shown in
Figure 1, or in parallel as shown in Figure 2. Question: how many stacks or
queues are needed to sort n elements with comparisons only? We assume
that the input sequence is scanned from left to right, and the elements follow
the arrows to go to the next stack or queue or output. In [12, 14] only the
average-case analyses of the above two main variants was given, although
the technique applies more in general to arbitrary acyclic networks of stacks
and queues as studied in [27].

Fig. 1. Six stacks/queues arranged in sequential order

Fig. 2. Six stacks/queues arranged in parallel order

6.1. Sorting with sequential stacks

The sequential stack sorting problem is given in [11] exercise 5.2.4–20. We
have k stacks numbered S0, . . . , Sk−1. The input is a permutation π of the
elements 1, . . . , n. Initially we push the elements of π on S0, at most one at
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a time, in the order in which they appear in π. At every step we can pop a
stack (the popped elements will move left in Figure 1) or push an incoming
element on a stack. The question is how many stack are needed for sorting
π. It is known that k = log n stacks suffice, and 1

2 log n stacks are necessary
in the worst-case [11, 27]. Here we prove that the same lower bound also
holds on the average, using a very simple incompressibility argument.

Theorem 4. On average (uniform distribution), at least 1
2 log n stacks are

needed for sequential stack sort.

Proof. Fix a random permutation π such that

C(π | n, P ) ≥ log n!− log n = n log n−O(n),

where P is an encoding program to be specified in the following.
Assume that k stacks are sufficient to sort π. We now encode such a

sorting process. For every stack, exactly n elements pass through it. Hence
we need perform precisely n pushes and n pops on every stack. Encode a
push as 0 and a pop as 1. It is easy to prove that different permutations
must have different push/pop sequences on at least one stack. Thus with
2kn bits, we can completely specify the input permutation π. Then, as
before,

2kn ≥ log n!− log n = n log n−O(n).

Therefore, we have k ≥ 1
2 log n−O(1) for the random permutation π.

Since most (a (1−1/n)th fraction) permutations are incompressible, we
calculate the average-case lower bound as:

1
2

log n · n− 1
n

+ 1 · 1
n
≈ 1

2
log n.

6.2. Sorting with parallel stacks

Clearly, the input sequence 2, 3, 4, . . . , n, 1 requires n − 1 parallel stacks
to sort. Hence the worst-case complexity of sorting with parallel stacks, as
shown in Figure 2, is n−1. However, most sequences do not need this many
stacks to sort in a parallel arrangement. The next two theorems show that
on average, Θ

(√
n

)
stacks are both necessary and sufficient. Observe that

the result is actually implied by the connection between sorting with parallel
stacks and longest increasing subsequences in [27], and the bounds on the
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length of longest increasing subsequences of random permutations given in
[9, 17, 8]. However, the proofs in [9, 17, 8] use deep results from probability
theory (such as Kingman’s ergodic theorem) and are quite sophisticated.
Here we give simple proofs using incompressibility arguments.

Theorem 5. On average (uniform distribution), the number of parallel
stacks needed to sort n elements is O

(√
n

)
.

Proof. Consider an incompressible permutation π satisfying

(9) C(π | n) ≥ log n!− log n.

We use the following trivial algorithm (described in [27]), to sort π with
stacks in the parallel arrangement shown in Figure 2. Assume that the
stacks are S0, S1, . . ., and the input sequence is denoted as x1, . . . , xn.

Algorithm Parallel-Stack-Sort

1. For i = 1 to n do

Scan the stacks from left to right, and push xi on the the first stack
Sj whose top element is larger than xi. If such a stack doesn’t
exist, put xi on the first empty stack.

2. Pop the stacks in the ascending order of their top elements.

We claim that algorithm Parallel-Stack-Sort uses O
(√

n
)

stacks on the
permutation π. First, we observe that if the algorithm uses m stacks on π
then we can identify an increasing subsequence of π of length m as in [27].
This can be done by a trivial backtracking starting from the top element of
the last stack. Then we argue that π cannot have an increasing subsequence
of length longer than e

√
n, where e is the natural constant, since it is

compressible by at most log n bits.

Suppose that σ is a longest increasing subsequence of π and m = |σ| is
the length of σ. Then we can encode π by specifying:

1. a description of this encoding scheme in O(1) bits;

2. the number m in log m bits;

3. the combination σ in log
(

n
m

)
bits;

4. the locations of the elements of σ in π in at most log
(

n
m

)
bits; and

5. the remaining π with the elements of σ deleted in log(n−m)! bits.
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This takes a total of

log(n−m)! + 2 log
n!

m!(n−m)!
+ log m + O(1) + 2 log log m

bits, where the last log log m term serves to self-delimitingly encode m.
Using Stirling’s approximation, and the fact that

√
n ≤ m = o(n), the

above expression is upper bounded by:

log n! + log
(n/e)n

(m/e)2m(
(n−m)/e

)n−m + O(log n)

≈ log n! + m log
n

m2
+ (n−m) log

n

n−m
+ m log e + O(log n)

≈ log n! + m log
n

m2
+ 2m log e + O(log n)

This description length must exceed the complexity of the permutation
which is lower-bounded in (9). Therefore, approximately m ≤ e

√
n, and

hence m = O
(√

n
)
. Hence, the average complexity of Parallel-Stack-Sort

is
O

(√
n

) · n− 1
n

+ n · 1
n

= O
(√

n
)
.

Theorem 6. On average (uniform distribution), the number of parallel
stacks required to sort a permutation is Ω

(√
n

)
.

Proof. Let A be a sorting algorithm using parallel stacks. Fix a random
permutation π with C(π | n, P ) ≥ log n!− log n, where P is the program to
do the encoding discussed in the following. Suppose that A uses T parallel
stacks to sort π. This sorting process involves a sequence of moves, and
we can encode this sequence of moves by a sequence of instructions of the
types:

• push to stack i,

• pop stack j,

where the element to be pushed is the next unprocessed element from the
input sequence, and the popped element is written as the next output
element. Each of these term requires log T bits. In total, we use precisely
2n terms since every element has to be pushed once and has to be popped
once. Such a sequence is unique for every permutation.
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Thus we have a description of an input sequence in 2n log T bits, which
must exceed C(π | n, P ) ≥ n log n − O(log n). It follows that T ≥ √

n =
Ω

(√
n

)
.

This yields the average-case complexity of A:

Ω
(√

n
) · n− 1

n
+ 1 · 1

n
= Ω

(√
n

)
.

6.3. Sorting with parallel queues

It is easy to see that sorting cannot be done with a sequence of queues. So
we consider the complexity of sorting with parallel queues. It turns out that
all the result in the previous subsection also hold for queues.

As noticed in [27], the worst-case complexity of sorting with parallel
queues is n, since the input sequence n, n − 1, . . . , 1 requires n queues to
sort. We show in the next two theorems that on average, Θ

(√
n

)
queues are

both necessary and sufficient. Again, the result is implied by the connection
between sorting with parallel queues and longest decreasing subsequences
given in [27] and the bounds in [9, 17, 8] (with sophisticated proofs). Our
proofs are trivial given the proofs in the previous subsection.

Theorem 7. On average (uniform distribution), the number of parallel
queues needed to sort n elements is upper bounded by O

(√
n

)
.

Proof. The proof is very similar to the proof of Theorem 5. We use a
slightly modified greedy algorithm as described in [27]:

Algorithm Parallel-Queue-Sort

1. For i = 1 to n do
Scan the queues from left to right, and append xi on the the first

queue whose rear element is smaller than xi. If such a queue
doesn’t exist, put xi on the first empty queue.

2. Delete the front elements of the queues in the ascending order.

Again, we claim that algorithm Parallel-Queue-Sort uses O
(√

n
)

queues
on every permutation π, that cannot be compressed by more than log n bits.
We first observe that if the algorithm uses m queues on π then a decreasing
subsequence of π of length m can be identified, and we then argue that π
cannot have a decreasing subsequence of length longer than e

√
n, in a way

analogous to the argument in the proof of Theorem 5.
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Theorem 8. On average (uniform distribution), the number of parallel
queues required to sort a permutation is Ω

(√
n

)
.

Proof. The proof is the same as the one for Theorem 6 except that we
should replace “push” with “enqueue” and “pop” with “dequeue”.
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