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Kolmogorov’s Structure Functions
and Model Selection

Nikolai K. Vereshchagin and Paul M. B. Vitányi

Abstract—In 1974, Kolmogorov proposed a nonprobabilistic ap-
proach to statistics and model selection. Let data be finite binary
strings and models be finite sets of binary strings. Consider model
classes consisting of models of given maximal (Kolmogorov) com-
plexity. The “structure function” of the given data expresses the re-
lation between the complexity level constraint on a model class and
the least log-cardinality of a model in the class containing the data.
We show that the structure function determines all stochastic prop-
erties of the data: for every constrained model class it determines
the individual best fitting model in the class irrespective of whether
the “true” model is in the model class considered or not. In this set-
ting, this happens with certainty, rather than with high probability
as is in the classical case. We precisely quantify the goodness-of-fit
of an individual model with respect to individual data. We show
that—within the obvious constraints—every graph is realized by
the structure function of some data. We determine the (un)com-
putability properties of the various functions contemplated and of
the “algorithmic minimal sufficient statistic.”

Index Terms— Computability, constrained best fit model sel-
ection, constrained maximum likelihood (ML), constrained min-
imum description length (MDL), function prediction, Kolmogorov
complexity, Kolmogorov structure function, lossy compression,
minimal sufficient statistic, nonprobabilistic statistics, sufficient
statistic.

I. INTRODUCTION

AS perhaps the last mathematical innovation of an extraor-
dinary scientific career, A. N. Kolmogorov [17], [16] pro-

posed to found statistical theory on finite combinatorial prin-
ciples independent of probabilistic assumptions. Technically,
the new statistics is expressed in terms of Kolmogorov com-
plexity, [15], the information in an individual object. The rela-
tion between the individual data and its explanation (model) is
expressed by Kolmogorov’s structure function. This function,
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its variations, and its relation to model selection, have obtained
some notoriety [22], [3], [27], [6], [14], [23], [28], [10], [13],
[9], [4], but it has not before been comprehensively analyzed
and understood. It has often been questioned why Kolmogorov
chose to focus on the the mysterious function below, rather
than on the more evident variant below. The only written
record by Kolmogorov himself is the following abstract [16]
(translated from Russian by L.A. Levin):

“To each constructive object corresponds a function
of a natural number —the log of minimal cardinality of

-containing sets that allow definitions of complexity at
most . If the element itself allows a simple definition,
then the function drops to even for small . Lacking
such definition, the element is “random” in a negative
sense. But it is positively “probabilistically random”
only when function having taken the value at a
relatively small , then changes approximately as

.”

These pregnant lines will become clear on reading this
paper, where we use “ ” for the structure function “ .”
Our main result establishes the importance of the structure
function: For every data item, and every complexity level,
minimizing a two-part code, one part model description and
one part data-to-model code (essentially a constrained two-part
minimum description length (MDL) estimator [19]), over the
class of models of at most the given complexity, with cer-
tainty (and not only with high probability) selects models
that in a rigorous sense are the best explanations among the
contemplated models. The same holds for minimizing the
one-part code consisting of just the data-to-model code (es-
sentially, a constrained maximum-likelihood (ML) estimator).
The explanatory value of an individual model for particular
data, its goodness of fit, is quantified by by the randomness
deficiency (II.6) expressed in terms of Kolmogorov com-
plexity: minimal randomness deficiency implies that the data
is maximally “random” or “typical” for the model. It turns
out that the minimal randomness deficiency of the data in a
complexity-constrained model class cannot be computationally
monotonically approximated (in the sense of Definition VII.1)
up to any significant precision. Thus, while we can monoton-
ically approximate (in the precise sense of Section VIII) the
minimal length two-part code, or the one-part code, and thus
monotonically approximate implicitly the best fitting model,
we cannot monotonically approximate the number expressing
the goodness of this fit. But this should be sufficient: we
want the best model rather than a number that measures its
goodness.

0018-9448/04$20.00 © 2004 IEEE



3266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

A. Randomness in the Real World

Classical statistics investigates real-world phenomena using
probabilistic methods. There is the problem of what probability
means, whether it is subjective, objective, or exists at all.
Laplace conceived of the probability of a physical event as
expressing lack of knowledge concerning its true deterministic
causes [12]. Einstein rejected physical random variables as
well “I do not believe that the good Lord plays dice.” But even
if true physical random variables do exist, can we assume that
a particular phenomenon we want to explain is probabilistic?
Supposing that to be the case as well, we then use a probabilistic
statistical method to select models. In this situation, the proven
“goodness” of such a method is so only in a probabilistic sense.
But for current applications, the total probability concentrated
on potentially realizable data may be negligible, for example,
in complex video and sound data. In such a case, a model
selection process that is successful with high probability may
nonetheless fail on the actually realized data. Avoiding these
difficulties, Kolmogorov’s proposal strives for the firmer and
less contentious ground of finite combinatorics and effective
computation.

B. Statistics and Modeling

Intuitively, a central task of statistics is to identify the true
source that produced the data at hand. But suppose the true
source is 100 000 fair coin flips and our data is the outcome

. A method that identifies flipping a fair coin as the cause
of this outcome is surely a bad method, even though the source
of the data it came up with happens to be the true cause. Thus,
for a good statistical method to work well we assume that the
data are “typical” for the source that produced the data, so that
the source “fits” the data. The situation is more subtle for data
like . Here, the outcome of the source has an equal
frequency of ’s and ’s, just as we would expect from a fair
coin. But again, it is virtually impossible that such data are pro-
duced by a fair coin flip, or indeed, independent flips of a coin
of any particular bias. In real-world phenomena, we cannot be
sure that the true source of the data is in the class of sources con-
sidered, or, worse, we are virtually certain that the true source
is not in that class. Therefore, the real question is not to find the
true cause of the data, but to model the data as well as possible.
In recognition of this, we often talk about “models” instead
of “sources,” and the contemplated “set of sources” is called
the contemplated “model class.” In traditional statistics, “typi-
cality” and “fitness’ are probabilistic notions tied to sets of data
and models of large measure. In the Kolmogorov complexity
setting, we can express and quantify “typicality” of individual
data with respect to a single model, and express and quantify the
“fitness” of an individual model for the given data.

II. PRELIMINARIES

Let , where denotes the natural numbers and
we identify and according to the correspondence

Here denotes the empty word. The length of is the number
of bits in the binary string , not to be confused with the cardi-
nality of a finite set . For example, and ,
while and . The emphasis is on binary
sequences only for convenience; observations in any alphabet
can be so encoded in a way that is “theory neutral.” In what
follows, we will use the natural numbers and the binary strings
interchangeably.

A. Self-Delimiting Code

A binary string is a proper prefix of a binary string if we
can write for . A set is
prefix free if for any pair of distinct elements in the set neither
is a proper prefix of the other. A prefix-free set is also called a
prefix code and its elements are called codewords. An example
of a prefix code, that is useful later, encodes the source word

by the codeword

This prefix-free code is called self-delimiting, because there is
a fixed computer program associated with this code that can
determine where the codeword ends by reading it from left
to right without backing up. This way, a composite code mes-
sage can be parsed in its constituent codewords in one pass, by
the computer program. (This desirable property holds for every
prefix-free encoding of a finite set of source words, but not for
every prefix-free encoding of an infinite set of source words.
For a single finite computer program to be able to parse a code
message, the encoding needs to have a certain uniformity prop-
erty like the code.) Since we use the natural numbers and the
binary strings interchangeably, where is ostensibly an in-
teger, means the length in bits of the self-delimiting code of the
binary string with index . On the other hand, where is
ostensibly a binary string, means the self-delimiting code of the
binary string with index the length of . Using this code we
define the standard self-delimiting code for to be . It
is easy to check that and . Let

denote a standard invertible effective one–one encoding from
to a subset of . For example, we can set

or . We can iterate this process to define ,
and so on.

B. Kolmogorov Complexity

For precise definitions, notation, and results see the text [14].
Informally, the Kolmogorov complexity, or algorithmic entropy,

of a string is the length (number of bits) of a shortest
binary program (string) to compute on a fixed reference uni-
versal computer (such as a particular universal Turing machine).
Intuitively, represents the minimal amount of informa-
tion required to generate by any effective process. The con-
ditional Kolmogorov complexity of relative to is
defined similarly as the length of a shortest program to compute

, if is furnished as an auxiliary input to the computation. For
technical reasons, we use a variant of complexity, the so-called
prefix complexity, which is associated with Turing machines for
which the set of programs resulting in a halting computation is
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prefix free. We realize prefix complexity by considering a spe-
cial type of Turing machine with a one-way input tape, a sep-
arate work tape, and a one-way output tape. Such Turing ma-
chines are called prefix Turing machines. If a machine halts
with output after having scanned all of on the input tape,
but not further, then and we call a program for .
It is easy to see that is a prefix
code. Let be a standard enumeration of all prefix
Turing machines with a binary input tape, for example, the lex-
icographical length-increasing ordered syntactic prefix Turing
machine descriptions, [14], and let be the enumera-
tion of corresponding functions that are computed by the respec-
tive Turing machines ( computes ). These functions are the
partial recursive functions or computable functions (of effec-
tively prefix-free encoded arguments). The Kolmogorov com-
plexity of is the length of the shortest binary program from
which is computed.

Definition II.1: The prefix Kolmogorov complexity of is

(II.1)

where the minimum is taken over and
. For the development of the theory we ac-

tually require the Turing machines to use auxiliary (also called
conditional) information, by equipping the machine with a
special read-only auxiliary tape containing this information at
the outset. Then, the conditional version of the prefix
Kolmogorov complexity of given (as auxiliary information)
is defined similarly as before, and the unconditional version is
set to .

One of the main achievements of the theory of computa-
tion is that the enumeration contains a machine, say

, that is computationally universal in that it can simu-
late the computation of every machine in the enumeration when
provided with its index: for all .
We fix one such machine and designate it as the reference uni-
versal prefix Turing machine. Using this universal machine it is
easy to show .

A prominent property of the prefix-freeness of is that
we can interpret as a probability distribution since
is the length of a shortest prefix-free program for . By the fun-
damental Kraft’s inequality, see for example [6], [14], we know
that if are the codeword lengths of a prefix code, then

. Hence,

(II.2)

This leads to the notion of universal distribution—a rigorous
form of Occam’s razor—which implicitly plays an important
part in the present exposition. The functions and ,
though defined in terms of a particular machine model, are
machine independent up to an additive constant and acquire
an asymptotically universal and absolute character through
Church’s thesis, from the ability of universal machines to
simulate one another and execute any effective process. The
Kolmogorov complexity of an individual object was introduced

by Kolmogorov [15] as an absolute and objective quantifi-
cation of the amount of information in it. The information
theory of Shannon [21], on the other hand, deals with average
information to communicate objects produced by a random
source. Since the former theory is much more precise, it is sur-
prising that analogs of theorems in information theory hold for
Kolmogorov complexity, be it in a somewhat weaker form. An
example is the remarkable symmetry of information property
used later. Let denote the shortest prefix-free program
for a finite string , or, if there are more than one of these, then

is the first one halting in a fixed standard enumeration of all
halting programs. Then, by definition, . Denote

. Then

(II.3)

Remark II.2: The information contained in in the condi-
tional above is the same as the information in the pair ,
up to an additive constant, since there are recursive functions

and such that for all we have and
. On input , the function computes

and ; and on input the function
runs all programs of length simultaneously, round-robin
fashion, until the first program computing halts—this is by
definition .

C. Precision

It is customary in this area to use “additive constant ” or
equivalently “additive term” to mean a constant, ac-
counting for the length of a fixed binary program, independent
from every variable or parameter in the expression in which
it occurs. In this paper, we use the prefix complexity variant
of Kolmogorov complexity for convenience. Actually some
results, especially Theorem D.1, are easier to prove for plain
complexity. Most results presented here are precise up to an
additive term that is logarithmic in the length of the binary
string concerned, which means that they are valid for plain
complexity as well—prefix complexity of a string exceeds the
plain complexity of that string by at most an additive term that
is logarithmic in the length of that string. Thus, our use of prefix
complexity is important for “fine details” only.

D. Meaningful Information

The information contained in an individual finite object
(such as a finite binary string) is measured by its Kolmogorov
complexity—the length of the shortest binary program that
computes the object. Such a shortest program contains no
redundancy: every bit is information; but is it meaningful in-
formation? If we flip a fair coin to obtain a finite binary string,
then with overwhelming probability that string constitutes its
own shortest program. However, also with overwhelming prob-
ability all the bits in the string are meaningless information,
random noise. On the other hand, let an object be a sequence
of observations of heavenly bodies. Then can be described
by the binary string , where is the description of the laws
of gravity, and the observational parameter setting: we can
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divide the information in into meaningful information and
accidental information . The main task for statistical inference
and learning theory is to distil the meaningful information
present in the data. The question arises whether it is possible to
separate meaningful information from accidental information,
and if so, how. The essence of the solution to this problem is
revealed when we rewrite (II.1) as follows:

(II.4)

Here, the minima are taken over and
. The last equalities are obtained by using the uni-

versality of the fixed reference universal prefix Turing machine
with . The string is a shortest self-de-

limiting program of bits from which can compute ,
and subsequent execution of the next self-delimiting fixed pro-
gram will compute from . Altogether, this has the effect that

. This expression emphasizes the two-part
code nature of Kolmogorov complexity. In the example

we can encode by a small Turing machine printing a specified
number of copies of the pattern “ ” which computes from the
program “ .” This way, is viewed as the shortest length
of a two-part code for , one part describing a Turing machine,
or model, for the regular aspects of , and the second part de-
scribing the irregular aspects of in the form of a program to
be interpreted by . The regular, or “valuable,” information in

is constituted by the bits in the “model” while the random or
“useless” information of constitutes the remainder.

E. Data and Model

To simplify matters, and because all discrete data can be bi-
nary coded, we consider only finite binary data strings . Our
model class consists of Turing machines that enumerate a fi-
nite set, say , such that on input we have
with the th element of ’s enumeration of , and is a
special undefined value if . The “best fitting” model for

is a Turing machine that reaches the MDL in (II.4). Such
a machine embodies the amount of useful information con-
tained in , and we have divided a shortest program for into
parts such is a shortest self-delimiting program
for . Now suppose we consider only low complexity finite-set
models, and under these constraints, the shortest two-part de-
scription happens to be longer than the shortest one-part descrip-
tion. Does the model minimizing the two-part description still
capture all (or as much as possible) meaningful information?
Such considerations require study of the relation between the
complexity limit on the contemplated model classes, the shortest
two-part code length, and the amount of meaningful information
captured.

Fig. 1. Structure functions h (�); � (�); � (�), and minimal sufficient
statistic.

F. Kolmogorov’s Structure Functions

We will prove that there is a close relation between functions
describing three, a priori seemingly unrelated, aspects of mod-
eling individual data by models of prescribed complexity: op-
timal fit, minimal remaining randomness, and length of shortest
two-part code, respectively (Fig. 1). We first need a definition.
Denote the complexity of the finite set by —the length
(number of bits) of the shortest binary program from which
the reference universal prefix machine computes a listing of
the elements of and then halts. That is, if ,
then . The shortest pro-
gram , or, if there is more than one such shortest program, then
the first one that halts in a standard dovetailed running of all pro-
grams, is denoted by . The conditional complexity
of given is the length (number of bits) in the shortest bi-
nary program from which the reference universal prefix ma-
chine computes from input given literally. In the sequel,
we also use , defined as the length of the shortest
program that computes from input . Just like in Remark
II.2, the input has more information, namely, all informa-
tion in the pair , than just the literal list . Further-
more, is defined as the length of the shortest pro-
gram that computes from input , and similarly we can define

. For every finite set con-
taining we have

(II.5)

Indeed, consider the self-delimiting code of consisting of its
bit long index of in the lexicographical ordering of

. This code is called a data-to-model code. Its length quanti-
fies the maximal “typicality,” or “randomness,” data (possibly
different from ) can have with respect to this model. The lack
of typicality of with respect to is measured by the amount
by which falls short of the length of the data-to-model
code. The randomness deficiency of in is defined by

(II.6)

for , and otherwise.
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“Best Fit” Function: The minimal randomness deficiency
function is

(II.7)

where we set . The smaller is, the more
can be considered as a typical member of . This means that
a set for which incurs minimal deficiency, in the model
class of contemplated sets of given maximal Kolmogorov com-
plexity, is a “best fitting” model for in that model class—a
most likely explanation, and can be viewed as a con-
strained best fit estimator. If the randomness deficiency is close
to , then there are no simple special properties that single it out
from the majority of elements in . This is not just terminology:
If is small enough, then satisfies all properties of low
Kolmogorov complexity that hold with high probability for the
elements of . To be precise: Consider strings of length and
let be a subset of such strings. A property represented by
is a subset of , and we say that satisfies property if .
Often, the cardinality of a family of sets we consider de-
pends on the length of the strings in . We discuss properties
in terms of bounds . (The following lemma can
also be formulated in terms of probabilities instead of frequen-
cies if we are talking about a probabilistic ensemble .)

Lemma II.3: Let .

i) If is a property satisfied by all with
, then holds for a fraction of at least of

the elements in .
ii) Let and be fixed, and let be any property that holds

for a fraction of at least of the elements of
. There is a constant such that every such holds

simultaneously for every with
.

Proof:

i) There are only programs of length not
greater than and there are elements in

.
ii) Suppose does not hold for an object and the

randomness deficiency satisfies

Then we can reconstruct from a description of , which
can use , and ’s index in an effective enumeration of
all objects for which does not hold. There are at most

such objects by assumption, and therefore there
are constants such that

Hence, by the assumption on the randomness deficiency
of , we find , which contradicts
the necesssary nonnegativity of if we choose

.

Example II.4. Lossy Compression: The function is
relevant to lossy compression (used, for instance, to compress
images). Assume we need to compress to bits where

. Of course, this implies some loss of information present
in . One way to select redundant information to discard is as
follows: Find a set with and with small

, and consider a compressed version of . To recon-

struct an , a decompresser uncompresses to and selects
at random an element of . Since with high probability the
randomness deficiency of in is small, serves the purpose
of the message as well as does itself. Let us look at an ex-
ample. To transmit a picture of “rain” through a channel with
limited capacity , one can transmit the indication that this is a
picture of the rain and the particular drops may be chosen by the
receiver at random. In this interpretation, indicates how
“random” or “typical” is with respect to the best model at
complexity level —and hence, how “indistinguishable” from
the original the randomly reconstructed can be expected to
be. The relation of the structure function to lossy compression
and rate-distortion theory is the subject of an upcoming paper
by the authors.

“Structure” Function: The original Kolmogorov structure
function [17], [16] for data is defined as

(II.8)

where is a contemplated model for , and is a non-
negative integer value bounding the complexity of the contem-
plated ’s. Clearly, this function is nonincreasing and reaches

for where is the number of bits
required to change into . The function can also be viewed
as a constrained maximum-likelihood (ML) estimator, a view-
point that is more evident for its version for probability models
(see Fig. 5 in Appendix B). For every we have

(II.9)

Indeed, consider the following two-part code for : the first
part is a shortest self-delimiting program of and the second
part is bit long index of in the lexicographical or-
dering of . Since determines this code is self-de-
limiting and we obtain (II.9) where the constant is the
length of the program to reconstruct from its two-part code.
We thus conclude that , that is,
the function never decreases more than a fixed indepen-
dent constant below the diagonal sufficiency line defined by

, which is a lower bound on and is
approached to within a constant distance by the graph of for
certain ’s (for instance, for ). For these ’s we
have and the associated model (wit-
ness for ) is called an optimal set for , and its description
of bits is called a sufficient statistic. If no confusion can re-
sult we use these names interchangeably. The main properties of
a sufficient statistic are the following: If is a sufficient statistic
for , then . That is, the two-part
description of using the model and as data-to-model code
the index of in the enumeration of in bits, is as con-
cise as the shortest one-part code of in bits. Since now

using straightforward inequalities (for example, given ,
we can describe self-delimitingly in bits) and
the sufficiency property, we find that
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Therefore, the randomness deficiency of in is constant, is a
typical element for , and is a model of best fit for . The data
item can have randomness deficiency about , and hence be
a typical element for models that are not sufficient statistics.
A sufficient statistic for has the additional property, apart
from being a model of best fit, that
and therefore by (II.3), we have : the suffi-
cient statistic is a model of best fit that is almost completely
determined by . The sufficient statistic associated with the least
such is called the minimal sufficient statistic. For more details
see [6], [10], and Section V.

“MDL” Function: The length of the minimal two-part code
for consisting of the model cost and the length of the
index of in , in the model class of sets of given maximal Kol-
mogorov complexity , the complexity of upper bounded by

, is given by the MDL function or constrained MDL estimator:

(II.10)

where is the total
length of two-part code of with help of model . Apart from
being convenient for the technical analysis in this work,
is the celebrated two-part Minimum Description Length code
length (Section V-B) as a function of , with the model class
restricted to models of code length at most .

III. OVERVIEW OF RESULTS

A. Background and Related Work

There is no written version, apart from the few lines which we
reproduced in Section I, of Kolmogorov’s initial proposal [16],
[17] for a nonprobabilistic approach to statistics and model se-
lection. We thus have to rely on oral history, see Appendix A.
There, we also describe an early independent related result of
Levin [13]. Related work on so-called “nonstochastic objects”
(where drops to only for large ) is [22],
[27], [23]–[25]. In 1987, V’yugin [27], [28], established that,
for , the randomness deficiency function can
assume all possible shapes (within the obvious constraints). In
the survey [5] of Kolmogorov’s work in information theory,
the authors preferred to mention , because it by defini-
tion optimizes “best fit,” rather than the usefulness and
meaningfulness of which was uncertain. But Kolmogorov had
an intuition that seldom erred: we will show that his original
proposal in the proper sense incorporates all desirable prop-
erties of , and in fact is superior. In [3], [6], [5], a notion of
“algorithmic sufficient statistics,” derived from Kolmogorov’s
structure function, is suggested as the algorithmic approach to
the probabilistic notion of sufficient statistic [7], [6] that is cen-
tral in classical statistics. The paper [10] investigates the algo-
rithmic notion in detail and formally establishes such a rela-
tion. The algorithmic (minimal) sufficient statistic is related in
[24], [11] to the “MDL” principle [19], [2], [30] in statistics
and inductive reasoning. Moreover, it was observed in [10] that

, establishing a one-sided
relation between (II.7) and (II.8), and the question was raised
whether the converse holds.

B. This Work

When we compare statistical hypotheses and to ex-
plain data of length , we should take into account three pa-
rameters: and . The first parameter is
the simplicity of the theory explaining the data. The differ-
ence (the randomness defi-
ciency) shows how typical the data is with respect to . The sum

tells us how short the two-part code of
the data using theory is, consisting of the code for and a
code for simply using the worst case number of bits possibly
required to identify in the enumeration of . This second part
consists of the full-length index ignoring savings in code length
using possible nontypicality of in (such as being the first
element in the enumeration of ). We would like to define that

is not worse than (as an explanation for ), in symbols:
, if

• ;
• ; and
• .

To be sure, this is not equivalent to saying that

(The latter relation is stronger in that it implies but not
vice versa.) The algorithmic statistical properties of a data string

are fully represented by the set of all triples
such that , together with a component wise

order relation on those triples. The complete characterization
of how this set may look like (with -accuracy) is now
known in the following sense.

Our results (Theorems IV.4, IV.8, IV.11) describe completely
(with -accuracy) possible shapes of the closely related
set consisting of all triples such that there is a set

with , , . That is,
and and have the same minimal triples. Hence,

we can informally say that our results describe completely pos-
sible shapes of the set of triples for
nonimprovable hypotheses explaining . For example, up to

accuracy, and denoting and

i) For every minimal triple in we have
, .

ii) There is a triple of the form in (the min-
imal such is the complexity of the minimal sufficient
statistic for ). This property allows us to recover the com-
plexity of from .

iii) There is a triple of the form in with
.

Previously, a limited characterization was obtained by
V’yugin [27], [28] for the possible shapes of the projec-
tion of on -coordinates but only for the case when

. Our results describe possible shapes of the en-
tire set for the full domain of (with -accuracy).
Namely, let be a nonincreasing integer-valued function such
that , for all and

For every of length and complexity there is such that

(III.1)
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where

for some universal constant . Conversely, for every and
every such there is of length such that (III.1) holds for

Our results imply that the set is not computable given
but is computable given and , the complexity of minimal
sufficient statistic.

Remark III.1: There is also the fourth important parameter,
, reflecting the determinacy of model by the data

. However, the equality

shows that this parameter can be expressed in . The main
result (III.2) establishes that is logarithmic for every
set witnessing . This also shows that there are at most
polynomially many such sets.

C. Technical Details

The results are obtained by analysis of the relations between
the structure functions. The most fundamental result in this
paper is the equality

(III.2)

which holds within additive terms, that are logarithmic in the
length of the string , in argument and value. Every set that
witnesses the value (or ), also witnesses the value

(but not vice versa). It is easy to see that and
are upper semi-computable (Definition VII.1); but we

show that is neither upper nor lower semi-computable.
A priori there is no reason to suppose that a set that witnesses

(or ) also witnesses , for every . But the fact
that they do, vindicates Kolmogorov’s original proposal and es-
tablishes ’s pre-eminence over . The result can be taken
as a foundation and justification of common statistical princi-
ples in model selection such as ML or MDL ([19], [2], and our
Sections V-B and V-C). We have also addressed the fine struc-
ture of the shape of (especially for below the minimal suffi-
cient statistic complexity) and a uniform (noncomputable) con-
struction for the structure functions.

The possible (coarse) shapes of the functions and
are examined in Section IV. Roughly stated, the structure func-
tions and can assume all possible shapes over their
full domain of definition (up to additive logarithmic precision
in both argument and value). As a consequence, the so-called
“nonstochastic” strings for which stabilize on
for large are common. This improves and extends V’yugin’s
result [27], [28] above; it also improves the independent related
result of Levin [13] in Appendix A; and, applied to “snooping
curves” extends a recent result of V’yugin, [29], in Section V-A.
The fact that can assume all possible shapes over its full do-
main of definition establishes the significance of (III.2), since
it shows that indeed happens for some
pairs. In that case, the more or less easy fact that

for is not applicable, and a priori there is no
reason for (III.2): Why should minimizing a set containing
plus the set’s description length also minimize ’s randomness
deficiency in the set? But (III.2) shows that it does! We de-
termine the (fine) details of the function shapes in Section VI.
(Non-)computability properties are examined in Section VII, in-
cidentally proving a first to our knowledge natural example
of a function that is not semi-computable but computable with
an oracle for the halting problem. In Section VIII, we exhibit a
uniform construction for sets realizing for all .

D. Probability Models

Following Kolmogorov, we analyzed a canonical setting
where the models are finite sets. As Kolmogorov himself
pointed out, this is no real restriction: the finite sets model class
is equivalent, up to a logarithmic additive term, to the model
class of probability density functions, as studied in [22], [10],
and the model class of total recursive functions, as studied in
[25], see Appendix B.

E. All Stochastic Properties of the Data

The result (III.2) shows that the function yields all sto-
chastic properties of data in the following sense: for every ,
the class of models of maximal complexity has a best model
with goodness-of-fit determined by the randomness deficiency

—the equality being taken up to log-
arithmic precision. For example, for some value , the minimal
randomness deficiency may be quite large for
(so the best model in that class has poor fit), but an infinites-
simal increase in model complexity may cause to drop to
zero (and hence the marginally increased model class now has
a model of perfect fit), see Fig. 1. Indeed, the structure function
quantifies the best possible fit for a model in classes of every
complexity.

F. Used Mathematics

Kolmogorov’s proposal for a nonprobabilistic statistic is
combinatorial and algorithmic, rather than probabilistic. Similar
to other recent directions in information theory and statistics,
this involves notions and proof techniques from computer
science theory rather than from probability theory. But the
contents matter and results are about traditional statistic—and
information theory notions like model selection, information,
and compression; consequently, the treatment straddles fields
that are not traditionally intertwined. For convenience of
the reader who is unfamiliar with algorithmical notions and
methods we have taken pains to provide intuitive explanations
and interpretations. Moreover, we have delegated almost all
proofs to Appendix C, and all precise formulations and proofs
of the (non)computability and (non)approximability of the
structure functions to Appendix D.

IV. COARSE STRUCTURE

In classical statistics, unconstrained ML is known to perform
badly for model selection, because it tends to want the most
complex models possible. A precise quantification and explana-
tion of this phenomenon, in the complexity-constrained model
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class setting, is given in this section. It is easy to see that un-
constrained maximization will result in the singleton set model

of complexity about . We will show that the struc-
ture function tells us all stochastic properties of data .
From complexity up to the complexity where the graph hits
the sufficiency line, the best fitting models do not represent all
meaningful properties of . The distance between and
the sufficiency line is a measure, expressed
by , of how far the best fitting model at complexity
falls short of a sufficient fitting model. The least complex suf-
ficient fitting model, the minimal sufficient statistic, occurs at
complexity level where hits the sufficiency line. There,

. The minimal sufficient statistic model
expresses all meaningful information in , and its complexity
is the number of bits of meaningful information in the data .
The remaining bits of the bits of information in
data is the “noise,” the meaningless randomness, contained in
the data. When we consider the function at still higher com-
plexity levels , the function hugs the sufficiency
line , which means that stays
constant at . The best fitting models at these complexities
start to model more and more noise,
bits, in the data : the added complexity in the sufficient
statistic model at complexity level over that of the minimal
sufficient statistic at complexity level is completely used to
model the increasing part of the noise in the data. The worst
overfitting occurs when we arrive at complexity , at which
point we model all noise in the data apart from the meaningful
information. Thus, our approach makes the fitting process of
constrained ML, first underfitting at low-complexity levels of
the models considered, then the complexity level of optimal fit
(the minimal sufficient statistic), and subsequently the overfit-
ting at higher levels of complexity of models, completely and
formally explicit in terms of fixed data and individual models.

A. All Shapes are Possible

Let be defined as in (II.7) and be defined as in
(II.8). Both functions are ( may be ) for all

where is a constant. We represent the coarse shape
of these functions for different by functions characteristic of
that shape. Informally, represents means that the graph of
is contained in a strip of logarithmic (in the length of ) width
centered on the graph of , Fig. 2.

Intuition: follows up to a prescribed precision.
For formal statements we rely on the notion in Definition IV.1.

Informally, we obtain the following results ( is of length and
complexity ).

• Every nonincreasing function represents for some ,
and for every the function is represented by some ,
provided , .

• Every function , with nonincreasing , represents
for some , and for every the function is repre-

sented by some as above, provided ,
(and by the nonincreasing property ).

• represents , and conversely, for
every .

Fig. 2. Structure function h (�) in strip determined by h(�), that is,
h (�) = E(h(�)).

• For every and , every minimal size set of com-
plexity at most , has randomness defi-
ciency .

To provide precise statements we need a definition.

Definition IV.1: Let be functions defined on
with values in . We say that is

-close to (in symbols: ) if

for every . If and we write
.

Here are small values like when we
consider data of length . Note that this definition is not sym-
metric and allows to have arbitrary values for
However, it is transitive in the following sense: if is

-close to and is -close to
then is -close to . If
and is linear continuous, meaning that
for some constant , then the difference between and
is bounded by for every .

This notion of closeness, if applied unrestricted, is not always
meaningful. For example, take as the function taking value
for all even and for all odd . Then for every
function on with we have for

, . But if and is nonincreasing then
indeed gives much information about .

It is instructive to consider the following example. Let be
equal to for and to for .
Let be constant. Then a function may take
every value for , every value in for

, every value in for ,
and every value in for (see Fig. 2).
Thus, the point of discontinuity of gives an interval of size
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of large ambiguity of . Loosely speaking, the graph of can
be any function contained in the strip of radius whose middle
line is the graph of . For technical reasons, it is convenient to
use, in place of , the MDL function (II.10).The definition
of immediately implies the following properties: is
nonincreasing, for all .

The next lemma shows that properties of translate directly
into properties of since is always “close” to .

Lemma IV.2: For every we have

for all . Hence, for ,
.

Intuition: The functions (the ML code length plus
the model complexity) and (the MDL code length) are
essentially the same function.

Remark IV.3: The lemma implies that the same set wit-
nessing also witnesses up to an additive term of

. The converse is only true for the smallest cardinality set
witnessing . Without this restriction, a counterexample
is as follows: for random the set
witnesses but does not witness

. (If , then every set of
complexity witnessing also witnesses

.)

The next two theorems state the main results of this work in a
precise form. By we mean the minimum length of a
program that outputs , and computes given any in the
domain of . We first analyze the possible shapes of the structure
functions.

Theorem IV.4:

i) For every and every string of length and com-
plexity there is an integer-valued nonincreasing func-
tion defined on such that , ,
and for .

ii) Conversely, for every and nonincreasing integer-valued
function whose domain includes and such that

and , there is of length and
complexity such that
for .

Intuition: The MDL code length , and therefore by Lemma
IV.2 also the original structure function , can assume essen-
tially every possible shape as a function of the contemplated
maximal model complexity.

Remark IV.5: The theorem implies that for every function
defined on such that the function

satisfies the conditions of item ii) there is an such that
with .

Remark IV.6: The proof of the theorem shows that for every
function satisfying the conditions of item ii) there is such
that with where
the conditional structure function

Consequently, for every function such that the function
satisfies the conditions of item ii) there is an

such that with
where the conditional structure function

Remark IV.7: In the proof of item ii) of the theorem we can
consider every finite set with in place of the set
of all strings of length . Then we obtain a string such
that with .

B. Selection of Best Fitting Model

Recall that in classical statistics a major issue is whether a
given model selection method works well if the “right” model
is in the contemplated model class, and what model the method
selects if the “right” model is outside the model class. We have
argued earlier that the best we can do is to look for the “best
fitting” model. But both “best fitting” and “best fitting in a con-
strained model class” are impossible to express classically for
individual models and data. Instead, one focusses on proba-
bilistic definitions and analysis. It is precisely these issues that
can be handled in the Kolmogorov complexity setting.

For the complexity levels at which coincides with
the diagonal sufficiency line , the model class
contains a “sufficient” (the “best fitting”) model.

For the complexity levels at which is above the
sufficiency line, the model class does not contain a “sufficient”
model. However, our results say that equals
the minimal randomness deficiency that can be achieved by a
model of complexity , and hence, quantifies rigorously the
properties of the data such a model can represent, that is, the
level of “fitness” of the best model in the class.

Semi-computing from above, together with the model
wittnessing this value, automatically yields the objectively most
fitting model in the class, that is, the model that is closest to the
“true” model according to an objective measure of representing
most properties of data .

The following central result of this paper shows that the
(equivalently , by Lemma IV.2) and can be expressed in
one another but for a logarithmic additive error.

Theorem IV.8: For every of length and complexity it
holds for .

Intuition: A model achieving the MDL code length , or
the ML code length , essentially achieves the best possible
fit .

Corollary IV.9: For every of length and complexity
there is a nonincreasing function such that ,

, and for . Conversely,
for every nonincreasing function such that ,

there is of length and complexity such that
for .

Proof: The first part is more or less immediate. Or use the
first part of Theorem IV.4 and then let . To
prove the second part, use the second part of Theorem IV.8, and
the second part of Theorem IV.4 with .
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Remark IV.10: From the proof of Theorem IV.8, we see that
for every finite set , of complexity at most
and minimizing , we have .
Ignoring terms, at every complexity level, every best
hypothesis at this level with respect to is also a best one
with respect to typicality. This explains why it is worthwhile to
find the shortest two-part descriptions for given data : this is
the single known way to find an with respect to which
is as typical as possible at that complexity level. Note that the
set is not enumerable so we
are not able to generate such ’s directly (Section VII).

The converse is not true: not every hypothesis, consisting of
a finite set, witnessing also witnesses or .
For example, let be a string of length with . Let

where is a string of length such that
and let . Then both witness

but

while

However, for every such that decreases when
with , a witness set for is also a witness set for

and . We will call such critical (with respect
to ): these are the model complexities at which the two-part
MDL code length decreases, while it is stable in between such
critical points. The next theorem shows, for critical , that for
every with and , we
have and . More specifically,
if and but or

then there is with and
.

Theorem IV.11: For all there is such that

and

where all inequalities hold up to additive term.

Intuition: Although models of best fit (witnessing ) do
not necessarily achieve the MDL code length or the ML
code length , they do so at the model complexities where
the MDL code length decreases, and, equivalently, the ML code
length decreases at a slope of more than .

C. Invariance Under Recoding of Data

In what sense is the structure function invariant under re-
coding of the data? Osamu Watanabe suggested the example of
replacing the data by a shortest program for it. Since is
incompressible, it is a typical element of the set of all strings of
length , and hence drops to the sufficiency
line already for some , so
almost immediately (and it stays within logarithmic distance of
that line henceforth). That is, up to loga-
rithmic additive terms in argument and value, irrespective of the

(possibly quite different) shape of . Since the Kolmogorov
complexity function is not recursive, [15], the
recoding function is also not recursive. Moreover,
while is one–one and total it is not onto. But it is the partiality
of the inverse function (not all strings are shortest programs)
that causes the collapse of the structure function. If one restricts
the finite sets containing to be subsets of ,
then the resulting structure function is within a logarithmic
strip around . However, the structure function is invariant
under “proper” recoding of the data.

Lemma IV.12: Let be a recursive permutation of the set of
finite binary strings (one-one, total, and onto). Then,

for .
Proof: Let be a witness of . Then,

satisfies and
. Hence,

Let be a witness of . Then,
satisfies and

. Hence,

(since ).

D. Reach of Results

In Kolmogorov’s initial proposal, as in this work, models are
finite sets of finite binary strings, and the data is one of the
strings (all discrete data can be binary encoded). The restriction
to finite set models is just a matter of convenience: the main re-
sults generalize to the case where the models are arbitrary com-
putable probability density functions, [22], [1], [23], [10], and to
the model class consisting of arbitrary total recursive functions
[25]. We summarize the proofs of this below. Since our results
hold only within additive precision that is logarithmic in the bi-
nary length of the data, and the equivalences between the model
classes hold up to the same precision, the results hold equally
for the more general model classes.

The generality of the results is at the same time a restriction.
In classical statistics, one is commonly interested in model
classes that are partially poorer and partially richer than the
ones we consider. For example, the class of Bernoulli pro-
cesses, or -state Markov chains, is poorer than the class of
computable probability density functions of moderate maximal
Kolmogorov complexity , in that the latter may contain
functions that require far more complex computations than
the rigid syntax of the former classes allows. Indeed, the class
of computable probability density functions of even moderate
complexity allows implementation of a function mimicking a
universal Turing machine computation. On the other hand, even
the lowly Bernoulli process can be equipped with a noncom-
putable real bias in , and hence the generated probability
density function over trials is not a computable function. This
incomparability of the here studied algorithmic model classes,
and the traditionally studied statistical model classes, means
that the current results cannot be directly transplanted to the
traditional setting. They should be regarded as pristine truths
that hold in a platonic world that can be used as a guideline to
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develop analogs in model classes that are of more traditional
concern, as in [20]. The questions to be addressed are: Can these
platonic truths say anything usable? If we restrict ourselves to
statistical model classes, how far from optimal are we? Note
that in themselves the finite set models are not really that far
from classical statistical models.

V. PREDICTION AND MODEL SELECTION

A. Best Prediction Strategy

In [29], the notion of a snooping curve of was in-
troduced, expressing the minimal logarithmic loss in predicting
the consecutive elements of a given individual string , in each
prediction using the preceding sequence of elements, by the best
prediction strategy of complexity at most .

Intuition: The snooping curve quantifies the quality of the
best predictor for a given sequence at every possible predictor
complexity.

Formally

The minimum is taken over all prediction strategies of com-
plexity at most . A prediction strategy is a mapping from the
set of strings of length less than into the set of rational num-
bers in the segment . The value is regarded as
our belief (or probability) that after we have observed

. If the actual bit is , the strategy suffers the loss
otherwise . The strategy is a finite object

and may by defined as the complexity of this object, or
as the minimum size of a program that identifies and
given finds . The notation indicates the total
loss of on , i.e., the sum of all losses

Thus, the snooping curve gives the minimal loss suf-
fered on all of by a prediction strategy, as a function of the
complexity at most of the contemplated class of prediction
strategies. The question arises what shapes these functions can
have—for example, whether there can be sharp drops in the loss
for only minute increases in complexity of prediction strategies.

A result of [29] describes possible shapes of but only for
where is the length of . Here, we show that for

every function and every there is a data sequence
such that

provided , is nonincreasing on , and
for .

Lemma V.1: for
every and . Thus, Lemma IV.2 and Theorem IV.4 describes
also the coarse shape of all possible snooping curves.

Proof: ( ) A given finite set of binary strings of length
can be identified with the following prediction strategy :

Having read the prefix of it outputs where
stands for the number of strings in having prefix .

It is easily seen, by induction, that

for every . Therefore, for every .
Since corresponds to in the sense that ,
we obtain . The term is
required, because the initial set of complexity might contain
strings of different lengths while we need to know to get rid
of the strings of lengths different from .

( ) Conversely, assume that . Let

Since (proof by induction on ), and
for every , we can conclude that

has at most elements. Since , we
obtain .

Thus, within the obvious constraint of the function
being nonincreasing, all shapes for the minimal total loss
as a function of the allowed predictor complexity are possible.

B. Foundations of MDL

i) Consider the following algorithm based on the MDL prin-
ciple. Given , the data to explain, and , the maximum allowed
complexity of explanation, we search for programs of length at
most that print a finite set . Such pairs are possible
explanations. The best explanation is defined to be the for
which is minimal. Since the function is not
computable, we cannot find the best explanation. The programs
use unknown computation time and thus we can never be cer-
tain that we have found all possible explanations.

To overcome this problem, we use the indirect method of
MDL: We run all programs in dovetailed fashion. At every com-
putation step consider all pairs such that program has
printed the set containing by time . Let stand for
the pair such that is minimal among all these
pairs . The best hypothesis changes from time to time
due to the appearance of a better hypothesis. Since no hypothesis
is declared best twice, from some moment onwards the expla-
nation which is declared best does not change anymore.

Compare this indirect method with the direct one: after step
of dovetailing select for which is

minimum among all programs that up to this time have printed
a set containing , where is the approximation of

obtained after steps of dovetailing, that is,

on input prints in at most steps

Let represent that model. This time, the same hypoth-
esis can be declared best twice. However, from some moment
onwards the explanation which is declared best does
not change anymore.

Why do we prefer the indirect method to the direct one? The
explanation is that we have a comparable situation in the prac-
tice of the real-world MDL, in the analogous process of finding
the MDL code. There, we deal often with ’s that are much less
than the time of stabilization of both and . For small , the
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model is better than in the following respect: has some
guarantee of goodness, as we know that

That is, we know that the sum of deficiency of in and
is less than some known value. In contrast, the model has no
guarantee of goodness at all: we do not know any upper bound
neither for nor for .

Theorem IV.8 implies that the indirect method of MDL gives
not only some garantee of goodness but also that, in the limit,
that guarantee approaches the value it upper bounds, that is, ap-
proaches , and itself is not much
greater than (assuming that is not critical). That is,
in the limit, the method of MDL will yield an explanation that
is only a little worse than the best explanation.

ii) If is a smallest set such that , then
can be converted into a best strategy of complexity at most

, to predict the successive bits of given the preceding ones,
(Section V-A). Interpreting “to explain” as “to be able to predict
well,” MDL in the sense of sets witnessing gives indeed
a good explanation at every complexity level .

iii) In statistical applications of MDL [19], [2], the minimum
message length (MML) [30], and related methods, one selects
the model in a given model class that minimizes the sum of
the model code length and the data-to-model code length; in
modern versions [2], one selects the model that minimizes just
the data-to-model code length (ignoring the model code length).
For example, one uses data-to-model code for data

with respect to probability (density function) model . For ex-
ample, if the model is the uniform distribution over -bit strings,
then the data-to-model code for is ,
even though we can compress to about bits, without even
using the model. Thus, the data-to-model code is the worst case
number of bits required for data of given length using the model,
rather than the optimal number of bits for the particular data at
hand. This is precisely what we do in the structure function ap-
proach: the data-to-model cost of with respect to model
is , the worst case number of bits required to specify an
element of rather than the minimal number of bits required
to specify in particular. In contrast, ultimate compression of
the two-part code, which is suggested by the “MDL” phrase,
[24], means minimizing over all models

in the model class. In Theorem IV.8, we have essentially
shown that the “worst case” data-to-model code is the approach
that guarantees the best fitting model. In contrast, the “ultimate
compression” approach can yield models that are far from best
fit. (It is easy to see that this happens only if the data are “not
typical” for the contemplated model, [24].) For instance, let
be a string of length and complexity about for which

. This means that the best
model at a very low complexity level (essentially level within
the “logarithmic additive precision” which governs our tech-
niques and results) has significant randomness deficiency and
hence is far from “optimal” or “sufficient.” Such strings exist
by Corollary IV.9. These strings are not the strings of maximal
Kolmogorov complexity, with , such as most likely
result from flips with a fair coin, but strings that must have
a more complex cause since their minimal sufficient statistic

has complexity higher than . Consider the model class
consisting of the finite sets containing at complexity level

. Then for the model we have
and thus

the sum

is minimal up to a term . However, the randomness def-
ficiency of in is about , which is much bigger than the
minimum . For the model witnessing

we also have and
. However, it has smaller cardi-

nality: which causes the smaller
randomness deficiency.

The same happens also for other model classes, such as prob-
ability models, see Appendix B. Consider, for instance, the class
of Bernoulli processes with rational bias for outcome “ ”

to generate binary strings of length . Suppose
we look for the model minimizing the codelength of the model
plus data given the model: . Let the data
be . Then the probability model (the uniform
distribution) with corresponding to probability

compresses the data code to bits
since we can describe by the program “ ’s,” and,
hence, need only bits apart from . We also trivially have

. But we cannot distin-
guish between the probability model hypothesis based on
and the probability model with (singular distri-
bution) hypothesis based on in terms of tthese code lengths:
we find the same code length bits and

if we replace by in these
expressions. Thus, we have no basis to prefer hypothesis or
hypothesis , even though the second possibility is overwhelm-
ingly more likely. This shows that ultimate compression of the
two-part code, here for example resulting in

, may yield a (probability) model based on for
which the data has the maximal possible randomness deficiency

and hence is atypical.
However, in the structure functions and the

data-to-model code for the model is
bits, while results in

bits. Choosing the shortest data-to-model code
results in the minimal randomness deficiency, as in (the gener-
alization to probability distributions of) Theorem IV.8.

iv) Another question arising in MDL or ML estimation is its
performance if the “true” model is not part of the contemplated
model class. Given certain data, why would we assume they
are generated by probabilistic or deterministic processes? They
have arisen by natural processes most likely not conforming
to mathematical idealization. Even if we can assume the data
arose from a process that can be mathematically formulated,
such situations arise if we restrict modeling of data arising from
a “complex” source (conventional analog being data arising
from -parameter sources) by “simple” models (conventional
analog being -parameter models). Again, Theorem IV.8 shows
that, within the class of models of maximal complexity , these
constraints we still select a simple model for which the data
is maximally typical. This is particularly significant for data
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if the allowed complexity is significantly below the com-
plexity of the Kolmogorov minimal sufficient statistic, that is, if

. This situation is potentially common,
for example, when we have a small data sample generated by a
complex process. Then, the data will typically be nonstochastic
in the sense of Section V-E. For a data sample that is very large
relative to the complexity of the process generating it, this will
typically not be the case and the structure function will drop to
the sufficiency line early on.

C. Foundations of ML

The algorithm based on the ML principle is similar to the
algorithm of the previous example. The only difference is that
the currently best is the one for which is minimal.
In this case, the limit hypothesis will witness and we
obtain the same corollary

D. Approximation Improves Models

Assume that in the MDL algorithm, as described in
Section V-B, we change the currently best explanation
to the explanation only if is much less
than , say

for a constant . It turns out that if is large enough and
is a shortest program of , then is much less than

. That is, every time we change the explanation we
improve its goodness unless the change is just caused by the
fact that we have not yet found the minimum length program
for the current model.

Lemma V.2: There is a constant such that if
, then .

Proof: Assume the notation of Theorem IV.8. By (C4), for
every pair of sets we have

with

As

we need to prove that . Note
that , are consecutive explanations in the algo-
rithm and every explanation may appear only once. Hence, to
identify we only need to know and . Since may
be found from and length as the first program computing

of length , obtained by running all programs dovetailed
style, we have

Hence, we can choose . (Continued in Section VI-D.)

E. Nonstochastic Objects

Let be natural numbers. A string is called
-stochastic by Kolmogorov if . In

[22], it is proven that for some for all and all
with there is a string of length

that is not -stochastic. Corollary IV.9 strengthens
this result of Shen: for some for all and all with

there is a string of length
that is not -stochastic. Indeed, apply Corollary IV.9 to

(we will choose later) and the
function for and for . For
the existing by Corollary IV.9 we have

(The first inequality is true if ;
thus, let . For the last inequality to be
true let and .) That is, is not

-stochastic.

VI. FINE STRUCTURE AND SUFFICIENT STATISTIC

Above, we looked at the coarse shape of the structure func-
tion, but not at the fine detail. We show that coming from
infinity drops to the sufficiency line defined by

. It first touches this line for some . It
then touches this line a number of times (bounded by a universal
constant) and in between moves slightly (logarithmically) away
in little bumps. There is a simple explanation why these bumps
are there: It follows from (II.3) and (II.5) that there is a constant

such that for every , we have

If, moreover, , then
. This was already observed in [10]. Consequently, there

are fewer than distinct such sets . Suppose the graph
of drops within distance of the sufficiency line at , then
it cannot be within distance on more than points.
By the pigeon-hole principle, there is such that

So if is of order , then we obtain the loga-
rithmic bumps, or possibly only one logarithmic bump, on the
interval . However, we will show later that cannot
move away more than from the sufficiency
line on the interval . The intuition here is that a data
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sequence can have a simple satisfactory probabilistic explana-
tion, but we can also explain it by many only slightly more
complex explanations that are slightly less satisfactory but also
model more accidental random features—models that are only
slightly more complex but significantly overfit the data sequence
by modeling noise.

A. Initial Behavior

Let be a string of complexity . The structure func-
tion defined by (II.8) rises sharply above the sufficiency
line for very small values of with for close to .
To analyze the behavior of near the origin, define a function

(VI.1)

the minimum complexity of a string greater than —that is,
is the greatest monotonic nondecreasing function that

lower-bounds . The function tends to infinity as
tends to infinity, very slowly—slower than any computable

function.
For every we have . To

see this, we reason as follows: For a set with
with in the above range we can consider the largest element

of . Then has complexity , that is,
, which implies that . But then

which is a contradiction.

B. Sufficient Statistic

A sufficient statistic of the data contains all information in the
data about the model. In introducing the notion of sufficiency in
classical statistics, Fisher [7] stated: “The statistic chosen should
summarize the whole of the relevant information supplied by the
sample. This may be called the Criterion of Sufficiency … In
the case of the normal curve of distribution it is evident that the
second moment is a sufficient statistic for estimating the stan-
dard deviation.” For the classical (probabilistic) theory see, for
example, [6]. In [10], an algorithmic theory of sufficient statistic
(relating individual data to individual model) was developed and
its relation with the probabilistic version established. The algo-
rithmic basics are as follows: Intuitively, a model expresses the
essence of the data if the two-part code describing the data con-
sisting of the model and the data-to-model code is as concise as
the best one-part description. Formally, we have the following.

Definition VI.1: A finite set containing is optimal for
if

(VI.2)

Here, is some small value, constant or logarithmic in ,
depending on the context. An MLD of such an optimal set
is called a sufficient statistic for . To specify the value of we
will say -optimal and -sufficient.

If a set is -optimal with constant, then by (II.9) we have
. Hence, with respect to the

structure function , we can state that all optimal sets and
only those, cause the function to drop to its minimal possible
value . We know that this happens for at least one set,
of complexity .

We are interested in finding optimal sets that have low com-
plexity. Those having minimal complexity are called minimal
optimal sets (and their programs minimal sufficient statistics).
The less optimal the sets are, the more additional noise in the
data they start to model, see the discussion on overfitting in the
initial paragraphs of Section IV. To be rigorous, we should say
minimal among -optimal. We know from [10] that the com-
plexity of a minimal optimal set is at least , up to a
fixed additive constant, for every . So for smaller arguments the
structure function definitively rises above the sufficiency line.
We also know that for every there are so-called nonstochastic
objects of length that have optimal sets of high complexity
only. For example, there are of complexity

such that every optimal set has also complexity
, hence, by the conditional version

of (VI.2) we find is bounded by a fixed universal constant.
As (this is proven in the beginning of this
section), for every we have

Roughly speaking for such there is no other optimal set than
the singleton .

Example VI.2: Bernoulli Process: Let us look at the coin
toss example of Item iii) in Section V-B, this time in the sense
of finite-set models rather than probability models. Let be a
number in the range of complexity
given and let be a string of length having ones of com-
plexity given . This can be viewed
as a typical result of tossing a coin with a bias about .
A two-part description of is given by the number of ’s in

first, followed by the index of in the set of
strings of length with ’s. This set is optimal, since

Example VI.3: Hierarchy of Sufficient Statistics: Another
possible application of the theory is to find a good summa-
rization of the meaningful information in a given picture. All
the information in the picture is described by a binary string

of length as follows. Chop into substrings
of equal length each. Let denote the number

of ones in . Each such substring metaphorically represents a
patch of, say, color. The intended color, say “cobalt blue,” is
indicated by the number of ones in the substring. The actual
color depicted may be typical cobalt blue or less typical cobalt
blue. The smaller the randomness deficiency of substring in
the set of all strings of length containing precisely ones,
the more typical is, the better it achieves a typical cobalt blue
color. The metaphorical “image” depicted by is , defined
as the string over the alphabet , the set
of colors available. We can now consider several statistics for .

Let (the set of possible realizations of
the target image), and let for be a set of
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binary strings of length with ones (the set of realizations of
target color ). Consider the set

for all

One possible application of these ideas are to gauge how good
the picture is with respect to the given summarizing set . As-
sume that . The set is then a statistic for that captures
both the colors of the patches and the image, that is, the total
picture. If is a sufficient statistic of then perfectly ex-
presses the meaning aimed for by the image and the true color
aimed for in everyone of the color patches. Clearly, summa-
rizes the relevant information in since it captures both image
and coloring, that is, the total picture. But we can distinguish
more sufficient statistics.

The set

is a statistic that captures only the image. It can be sufficient
only if all colors used in the picture are typical. The set

for all

is a statistic that captures the color information in the picture. It
can be sufficient only if the image is a random string of length

over the alphabet , which is surely not the case
for all the real images. Finally, the set

is a statistic that captures only the color of patch in the
picture. It can be sufficient only if and all the other
color applications and the image are typical.

C. Bumps in the Structure Function

Consider with and the
conditional variant

of (II.8). Since is a set containing and can be
described by bits (given ), we find
for . For increasing , the size of a
set , one can describe in bits, decreases monotonically
until for some we obtain a first set witnessing

Then, is a minimal-complexity
optimal set for , and is a minimal sufficient statistic for .
Further increase of halves the set for each additional bit of

until . In other words, for every increment we
have

provided the right-hand side is nonnegative, and otherwise.
Namely, once we have an optimal set we can subdivide it
in a standard way into parts and take as new set the part
containing . The term is due to the fact that we have
to consider self-delimiting encodings of . This additive term
is there to stay, it cannot be eliminated. For
obviously the smallest set containing that one can describe
using bits (given ) is the singleton set . The same
analysis can be given for the unconditional version of the

Fig. 3. Kolmogorov structure function.

structure function, which behaves the same except for possibly
the small initial part where the complexity is
too small to specify the set , see the initial part of
Section VI.

The little bumps in the sufficient statistic region
in Fig. 3 are due to the boundedness of the

number of sufficient statistics.

D. “Positive” and “Negative” Randomness

(Continued from Section V-E.) In [10], the existence of
strings was shown for which essentially the singleton set
consisting of the string itself is a minimal sufficient statistic.
While a sufficient statistic of an object yields a two-part code
that is as short as the shortest one-part code, restricting the
complexity of the allowed statistic may yield two-part codes
that are considerably longer than the best one-part code (so
the statistic is insufficient). This is what happens for the non-
stochastic objects. In fact, for every object there is a complexity
bound below which this happens—but if that bound is small
(logarithmic) we call the object “stochastic” since it has a
simple satisfactory explanation (sufficient statistic). Thus,
Kolmogorov in [16] (full text given in Section I) makes the
important distinction of an object just being random in the
“negative” sense by having high Kolmogorov complexity,
and an object having high Kolmogorov complexity but also
being random in the “positive, probabilistic” sense of having a
low-complexity minimal sufficient statistic. An example of the
latter is a string of length with , being typical for
the set , or the uniform probability distribution over that
set, while this set or probability distribution has complexity

. We depict the distinction in Fig. 4.



3280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

Fig. 4. Data string x is “positive random” or “stochastic” and data string y is only “negative random” and “nonstochastic.”

Corollary IV.9 establishes that for some constant , for every
length , for every complexity , and every ,
there are ’s of length and complexity such that
the minimal randomness deficiency
for every and for every

. Fix and define for all
the set of all -length strings of com-

plexity and such that the min-
imal randomness deficiency for every

and for every . Corol-
lary IV.9 implies that every is nonempty (let ,

). Note that are pairwise disjoint. Indeed, if
then and are disjoint as the corresponding strings
have different complexities. And if , say , then
and are disjoint, as the corresponding strings have
different value of deficiency function in the point

Letting , we see that there are -length
nonstochastic strings of almost maximal complexity

having significant randomness defi-
ciency with respect to or, in fact, every other finite set
of complexity less than !

VII. COMPUTABILITY QUESTIONS

How difficult is it to compute the functions ,
and the minimal sufficient statistic? To express the properties
appropriately, we require the notion of functions that are not
computable, but can be approximated monotonically by a
computable function.

Definition VII.1: A function is upper semi-
computable if there is a Turing machine computing a total
function such that and

. This means that can be computably approximated from
above. If is upper semi-computable, then is lower semi-
computable. A function is called semi-computable if it is either
upper semi-computable or lower semi-computable. If is both
upper and lower semi-computable, then we call computable
(or recursive if the domain is integer or rational).

Semi-computability gives no speed-of-convergence guar-
anties: even though the limit value is monotonically approx-
imated we know at no stage in the process how close we are
to the limit value. The functions have
finite domain for given and hence can be given as a table—so
formally speaking they are computable. But this evades the
issue: there is no algorithm that computes these functions for
given and . Considering them as two-argument functions
we show the following (we actually quantify these).

• The functions and are upper semi-com-
putable but they are not computable up to any reasonable
precision.

• Moreover, there is no algorithm that given and finds
or .

• The function is not upper- or lower semi-com-
putable, not even to any reasonable precision, but we can
compute it given an oracle for the halting problem.

• There is no algorithm that given and finds a
minimal sufficient statistic for up to any reasonable
precision.

Intuition: the functions and (the ML estimator and
the MDL estimator, respectively) can be monotonically approxi-
mated in the upper semi-computable sense. But the fitness func-
tion cannot be monotonically approximated in that sense,
nor in the lower semi-computable sense, in both cases not even
up to any relevant precision.

The precise forms of these quite strong noncomputability and
nonapproximability results are given in Appendix D.

VIII. REALIZING THE STRUCTURE FUNCTION

It is straightforward that we can monotonically approximate
and its witnesses (similarly ) in the sense that there ex-

ists a nonhalting algorithm that given any outputs a fi-
nite sequence of pairwise different computer
programs each of length at most ( is a con-
stant) such that each program prints a model such that

. This way of computing or
is called upper semi-computable, formally defined in Definition
VII.1. By the results of Section IV, the last model is “near”
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the best possible model according to the randomness deficiency
criterion: There is no program of length at most that prints
a model such that the randomness deficiency of for is

less than that of for . Note that we are not able to
identify given , since the algorithm is nonhalting and
thus we do not know which program will be output last. This
way we obtain a model of (approximately) best fit at each com-
plexity level , but nonuniformly.

The question arises whether there is a uniform construction
to obtain the models that realize the structure functions at given
complexities. Here we present such a construction. (In view of
the noncomputability of structure functions, Section VII, the
construction is of course not computable.)

We give a general uniform construction of the finite sets wit-
nessing , , and , at each argument (that is, level of model
complexity), in terms of indexes of in the enumeration of
strings of given complexity, up to the “coarse” equivalence pre-
cision of Section IV. This extends a technique introduced in [10].

Definition VIII.1: Let denote the number of strings of
complexity at most , and let denote the length of the bi-
nary notation of . For let stand for most sig-
nificant bits of binary notation of . Let denote the set of
all pairs . Fix an enumeration of and
denote by the minimum index of a pair with in
that enumeration, that is, the number of pairs enumerated be-
fore (if then ). Let denote the max-
imal common prefix of binary notations of and , that is,

and (we assume here that
binary notation of is written in exactly bits with leading
zeros if necessary).

(In [10], the notation is used for with .)

Theorem VIII.2: For every , the number is algorith-
mically equivalent to , that is,

Before proceeding to the main theorem of this section, we
introduce some more notation.

Definition VIII.3: For let denote the set of all strings
such that the binary notation of has the form

(we assume here that binary notations of indexes are written
using exactly bits.)

Let denote a constant such that for every
. The following theorem shows that sets form a uni-

versal family of statistics for .

Theorem VIII.4:

i) If the th most significant bit of is , then
and is algorithmically equivalent to , that

is, .

ii) For every and every , let and
. Then , ,

, and
(that is, is not worse than , as a model

explaining ).

iii) If is critical then every witnessing is algo-
rithmically equivalent to . That is, if and

but or
then there is with and .
More specifically, for all either

and , or there is such
that and

where all inequalities hold up to additive
term.

Note that Item iii) of the theorem does not hold for noncritical
points. For instance, for a random string of length there are
independent witnessing : let be the set of
all of length having the same prefix of length as and
be the set of all of length having the same suffix of length

as .

Corollary VIII.5: Let be a string of length and com-
plexity . For every there is

such that the set both contains
and witnesses , , and , up to an ad-
ditive term in the argument and value.

APPENDIX I
ORAL HISTORY

Since there is no written version of Kolmogorov’s initial
proposal [16], [17], which we argued is a new approach to a
“nonprobabilistic statistics,” apart from a few lines [16] which
we reproduced in Section I, we have to rely on the testimony
of witnesses [9], [4], [13]. Says Tom Cover [4]: “I remember
taking many long hours trying to understand the motivation
of Kolmogorov’s approach.” According to Peter Gács, [9]:
“Kolmogorov drew a picture of as a function of
monotonically approaching the diagonal (sufficiency line).
Kolmogorov stated that it was known (proved by L.A. Levin)
that in some cases it remained far from the diagonal line till
the very end.” Leonid A. Levin [13]: “Kolmogorov told me
(about) (or its inverse, I am not sure) and asked how
this could behave. I proved that is
monotone but otherwise arbitrary within accuracy; it
stabilizes on when exceeds . (Actually,
this expression for accuracy was Kolmogorov’s rewording, I
gave it in less elegant but equivalent terms— where

is the number of ”jumps”.) I do not remember Kolmogorov
defining or suggesting anything like your result. I never
published anything on the topic because I do not believe strings

with significant could exist in the world.”
( is the information in about .
By (II.3) we have , with equality holding
up to a constant additive term indepennedent of and , and
hence, we call this quantity the algorithmic mutual informa-
tion. Above, ”Halting” stands for the infinite binary “halting
sequence” defined as follows: The th bit of halting is iff the
th program for the reference universal prefix machine halts,

and otherwise.)

Remark A.1: Levin’s statement [13] quoted above appears to
suggest that strings such that stabilizes on only
for large may exist mathematically but are unlikely to occur in
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nature, because such ’s must have a lot of information about
the halting problem, and hence the analysis of their properties is
irrelevant. But the statement in question is imprecise. There are
two ways to understand the statement: i) stabilizes on

when exceeds or earlier; or ii)
stabilizes on when exceeds and not

earlier. It is not clear what “the information in about the halting
problem” is, since the “halting problem” is not a finite object
and thus the notion of information about halting needs a special
definition. The usual

does not make sense since both and
are infinite. The expression

looks better provided is understood as
relativized by the halting problem. In the latter interpretation
of , case i) is correct and case ii) is false. The
correctness of i) is implicit in Theorem V.4. A counterexample
to ii): Let be the halting program of length at most with
the greatest running time. It is easy to show that is about

, and therefore is a random string of length about . As a
consequence, the complexity of the minimal sufficient statistic

of is close to . On the other hand, is about
. Indeed, given the oracle for the halting problem and we can

find ; hence,

APPENDIX II
VALIDITY FOR EXTENDED MODELS

Following Kolmogorov, we analyzed a canonical setting
where the models are finite sets. As Kolmogorov himself
pointed out, this is no real restriction: the finite sets model class
is equivalent, up to a logarithmic additive term, to the model
class of probability density functions, as studied in [22], [10].
The analysis is valid, up to logarithmic additive terms, also for
the model class of total recursive functions, as studied in [25].
The model class of computable probability density functions
consists of the set of functions with

. “Computable” means here that there is a Turing
machine that, given and a positive rational , computes

with precision . The (prefix-) complexity of a
computable (possibly partial) function is defined by

Turing machine computes

A string is typical for a distribution if the randomness
deficiency is small.
The conditional complexity is defined as follows.
Say that a function approximates if

for every and every positive rational . Then
is the minimum length of a program that given every func-
tion approximating as an oracle prints . Similarly,
is -optimal for if . Thus,
instead of the data-to-model code length for finite set

Fig. 5. Structure function h (�) = min f� logP (x) : P (x) > 0;
K(P ) � �g with P a computable probability density function, with
values according to the left vertical coordinate, and the ML estimator
2 = maxfP (x) : P (x) > 0; K(P ) � �g, with values according to
the right-hand side vertical coordinate.

models, we consider the data-to-model code length
(the Shannon–Fano code). The value measures also
how likely is under the hypothesis and the mapping

where minimizes over with
is a constrained ML estimator, see Fig. 5. Our results thus

imply that such a constrained ML estimator always returns a
hypothesis with minimum randomness deficiency.

The essence of this approach is that we mean maximization
over a class of likelihoods induced by computable probability
density functions that are below a certain complexity level . In
classical statistics, unconstrained ML is known to perform badly
for model selection, because it tends to want the most complex
models possible. This is closely reflected in our approach: un-
constrained maximization will result in the computable proba-
bility distribution of complexity about that concentrates
all probability on . But the structure function tells us all
stochastic properties of data in the sense as explained in detail
at the start of Section IV for finite set models.

The model class of total recursive functions consists of the set
of computable functions . The (prefix-)
complexity of a total recursive function is defined by

Turing machine computes

In place of for finite set models we consider the data-to-
model code length . A string
is typical for a total recursive function if the randomness de-
ficiency is small. The conditional
complexity is defined as the minimum length of a pro-
gram that given as an oracle prints . Similarly, is -optimal
for if .

It is easy to show that for every data string and a contem-
plated finite set model for it, there is an almost equivalent com-
putable probability density function model and an almost equiv-
alent total recursive function model.

Proposition B.1: For every and every finite set there
are the following.
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a) A computable probability density function with
, , and

.
b) A total recursive function such that ,

, and .
Proof:

a) Define for and otherwise.
b) If , then define .

The converse of Proposition B.1 is slightly harder: for every
data string and a contemplated computable probability density
function model for it, as well as for a contemplated total recur-
sive function model for , there is a finite set model for that
has no worse complexity, randomness deficiency, and worst case
data-to-model code for , up to additive logarithmic precision.

Proposition B.2: There are constants , such that for every
string , the following holds.

a) For every computable probability density func-
tion , there is a finite set such that

and .
b) For every total recursive function , there is a finite set

with

and .
Proof:

a) Let , that is, .
Define . Then,

, which implies the claimed value for . To
list it suffices to compute all consecutive values of
to sufficient precision until the combined probabilities ex-
ceed . That is, .
Finally

The term can be upper-bounded as

which implies the claimed bound for .
b) Define

Then, . To list it suffices to compute
for every argument of length equal . Hence,

. The upper bound for
is derived just in the same way as in the proof of

Item a).

Remark B.3: How large are the nonconstant additive com-
plexity terms in Proposition B.2 for strings of length ? In
Item a), we are only interested in such that

and . Indeed, for every ,
there is such that

Such is defined as follows: If then
and for every ; otherwise,

where stands for the uniform distribution on .
Then the additive terms in Item a) are . In Item b),
we are commonly (?) only interested in such that

and . Indeed, for every there
is such that

Such is defined as follows: If then maps all
strings to ; otherwise, and . Then
the additive terms in Item b) are . Thus, in this sense, all
results in this paper that hold for finite set models extend, up to
a logarithmic additive term, to computable probability density
function models and to total recursive function models. Since
the results in this paper hold only up to additive logarithmic
term anyway, this means that all of them equivalently hold for
the model class of computable probability density functions, as
well as for the model class of total recursive functions.

APPENDIX III
PROOFS

Proof: Lemma IV.2: The inequality
is immediate. So it suffices to prove that

The proof of this inequality is based on the following claim.

Claim C.1: Ignoring additive terms the function
does not increase

(C1)

for .

Proof: Let be a finite set containing with
and . For every , we can partition

into equal-size parts and select the part containing .
Then, at the cost of increasing the com-
plexity of to

(we specify the part containing by its index among all the
parts). Choose

for a constant to be determined later. Note that
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for appropriate constants . The complexity of the resulting
set is thus at most

provided is chosen large enough. Hence,

and it suffices to prove that
. This follows from the bound

Let witness . Substituting , in
(C1) we obtain

Proof: Theorem IV.4: i) We first observe that for every
of length we have ,
as witnessed by . At the other extreme,

, as witnessed by .
Define by the equation

Then with , and satisfies
the requirements of Item i) of the theorem.

ii) Fix satisfying the conditions in the theorem. It suffices
to show that there is a string of length such that, for every

, we have and
for . Then, with , we have

And the inequality implies that
.

Claim C.2: For every length , there is a string of length
such that for every in the domain of .

Proof: Fix a length . If then belongs to
a set with . The total number of
elements in different such ’s is less than

where the second inequality follows by (II.2).

We prove Item ii) by demonstrating that the lexicographically
first , as defined in Claim C.2, also satisfies

, for for all . It
suffices to construct a set of cardinality and of
complexity at most , for every .

For every fixed we can run the following algorithm.

Algorithm: Let be a set variable initially containing all
strings of length , and let be a set variable initially containing

the first strings of in lexicographical order. Run all
programs of length at most dovetail style. Every time a pro-
gram of some length halts, is defined, and prints a set

of cardinality at most , we remove all the elements of
from (but not from ); we call a step at which this happens a

-step. Every time becomes empty at a -step, we replace
the contents of by the set of the first strings in lexi-
cographical order of (the current contents of) . Possibly, the
last replacement of is incomplete because there are less than

elements left in . It is easy to see that just
after the final replacement, and stays there permanently, even
though some programs in the dovetailing process may still be
running and elements from may still be eliminated.

Claim C.3: The contents of the set is replaced at most
times.

Proof: There are two types of replacements that will be
treated separately.

Case 1: Replacement of the current contents of where at
some -step with at least one element was
removed from the current contents . Trivially,
the number of this type of replacements is bounded
by the number of -steps with , and hence by
the number of programs of length less than , that
is, by .

Case 2: Replacement of the current contents of where
every one of the elements of the current con-
tents of is removed from by -steps with .
Let us estimate the number of this type of replace-
ments: Every element removed at a -step with

belongs to a set with
. The overall cumulative number of elements re-

moved from on -steps with is bounded by
, where the inequality fol-

lows by (II.2). Hence replacements of the second
type can happen at most times.

By Claim C.3, stabilizes after a certain number of -steps.
That number may be large. However, the number of replace-
ments of is small. The final set has cardinality ,
and can be specified by the number of replacements resulting in
its current contents (as in Claim C.3), and by . This shows
that .

Proof: Theorem IV.8: The statement of the theorem easily
follows from the following two inequalities that are valid for
every (where and ):

for every and (C2)

for every satisfying (C3)

It is convenient to rewrite the formula defining using
the symmetry of information (II.3) as follows:

(C4)

Ad (C2): This is easy, because for every set witnessing
we have

and .
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Ad (C3): This is more difficult. By (C4), and the obvious
, it suffices to prove that for

every there is an with

where . Indeed, for every witnessing the set
will witness (note

that

provided ). The preceding assertion is only
a little bit easier to prove than the one in Lemma C.4 that also
suffices. Since we need this lemma in any case in the proof of
Theorem IV.11, we state and prove it right now.

Lemma C.4: For every there is with
and (where

).
Proof: Fix some and let . Our task

is the following: Given , to enu-
merate a family of at most different
sets with that cover all ’s covered by
sets , with , , and

. Since the complexity of each enumer-
ated does not exceed

the lemma will be proved. The proof is by running the following
algorithm.

Algorithm: Given we run
all programs dovetail style. We maintain auxiliary set-variables

, all of them initially . Every time a new program of
length in the dovetailing process halts, with as output
a set with , we execute the following
steps.

Step 1: Update .

Step 2: Update

is covered by at least

different generated 's

where will be defined later.

Step 3: This step is executed only if there is that is
covered by at least different generated ’s. Enu-
merate as much new disjoint sets as are needed to
cover : we just chop into parts of size
(the last part may be incomplete) and name those
parts the new sets . Every time a new set is enu-
merated, update .

Claim C.5: The string is an element of some enu-
merated , and the number of enumerated ’s is at most

.
Proof: By way of contradiction, assume that is not

an element of the enumerated ’s. Then there are less than

different generated sets such that .
Every such therefore satisfies

if is chosen appropriately. Since was certainly generated
this is a contradiction.

It remains to show that we enumerated at most
different ’s. Step 3 is executed only

once per executions of Step 1, and Step 1 is executed at most
times. Therefore, Step 3 is executed at most

times. The number of ’s formed from incomplete parts of
’s in Step 3 is thus at most . Let us bound

the number of ’s formed from complete parts of ’s. The
total number of elements in different ’s generated is at most

counting multiplicity. Therefore, the number
of elements in their union, having multiplicity or
more, is at most . Every formed
from a complete part of a set in Step 3 accounts for
of them. Hence, the number of ’s formed from complete parts
of ’s is at most .

Proof: Theorem IV.11: By Lemma C.4, there is
with and

.
Let us upper-bound first . We have

(all inequalities are valid up to additive term). The
obtained upper bound is obviosly equivalent to the first upper
bound of in the theorem. As it gives
the upper bound of from the theorem. Finally, as

we obtain

(up to additive term).

Proof: Theorem VIII.2: We first show that
for every with . Indeed, given , , ,

and the least significant bits of we can find
: find by enumerating until a pair with

appears and then complete by using the most signifi-
cant bits of the binary representation of . Given and we
can find, using a constant-length program, the lexicographically
first string not in . By construction, this string has complexity
at least . Then

(use ). Thus, .
Let be the string of complexity at most with maximum .

Given and we can find all strings of complexity at
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most by enumerating until pairs with appear,
where is the number whose binary representation has prefix

and then zeros. Since ,
this proves . Since

we have .

Proof: Theorem VIII.4:

i) If the th most significant bit of is “ ,” then
all the numbers with binary representation of the form

are used as indexes of some with ,
that is, has exactly elements. We can find
given , , , and by enumerating all its elements.
On the other hand, can be found given and as
the first bits of for every .

ii) Since , the largest common prefix of binary rep-
resentation of and has the form and
the th most significant bit of is . In particular,

.
Let

As , we have . We can find given , , and
by finding and taking the first bits of . Given

we can find . Hence, . Therefore,
. By Item i) and by previous

theorem we have . Again by Item i)
we have .

iii) Let . We distinguish two cases.
Case 1: . Then

And

Case 2: . Let . As
we need to prove that

and

up to additive term. We have

and

APPENDIX IV
COMPUTABILITY PROPERTIES

A. Structure Function

It is easy to see that or , and the finite set that wit-
nesses its value, are upper semi-computable: run all programs of
length up to dovetailed fashion, check whether a halting pro-
gram produced a finite set containing , and replace the previous
candidate with the new set if it is smaller.

The next question is: Is the function , as a function of
two arguments, computable? Of course not, because if this were
the case, then we could find, given every large , a string of
complexity at least . Indeed, we know that there is a string
for which . Applying the algorithm to all strings in the
lexicographical order find the first such . Obviously,

. But it is known that we cannot prove that
for sufficiently large , [14].

Assume now that we are given also . The above argu-
ment does not work any more but the statement remains true:

is not computable even if the algorithm is given .
Assume first that the algorithm is required to output the cor-

rect answer given any approximation to . We show that no
algorithm can find that is close to for some

.

Theorem D.1: For every constant there is a constant such
the following holds. There is no algorithm that for infinitely
many , given and of length with

, always finds such that there is with
.

Proof: Fix . The value of will be chosen later. The proof
is by contradiction. Let be some algorithm. We want to fool
it on some pair .

Fix large . We will construct a set of cardinality
such that every string in has length and com-
plexity at most , and the algorithm halts on
and outputs . This is a contradiction. Indeed,
there is with . Hence, the output of

on is correct, that is, there is with
and . Then . On the other
hand, as witnessed by . Thus, we obtain

a contradiction.
Run in a dovetailed fashion all programs of length or less.

Start with equal to the first string of length and
with . Run on and include in all strings

such that either a program of length at most has halted
and output a set with ,
or we find out that . Once gets in we
change to the first string of length outside .
(We will show that at every step it holds .)

We proceed in this way until prints a number or
the number of changes of exceed . (Actually, we will
prove that the number of changes of does not exceed

.) Therefore, for all our ’s so
we eventually will find such that outputs a result . If

then include in and then change to



VERESHCHAGIN AND VITÁNYI: KOLMOGOROV’S STRUCTURE FUNCTIONS AND MODEL SELECTION 3287

the first string of length outside (the current version
of) . Otherwise, when , let be
the current approximation of . We know that is outside all
known sets with

Therefore, for every it holds
and hence . This implies that either

or differs from . So we are sure that at least one
more program of length or less still has to halt. We wait until
this happens, then include in and change to the first string
of length outside .

Once we get elements in we halt. Every change
of is caused by a halting of a new program of length at most

or by including in , thus, the total number of changes does
not exceed .

Note that at every step we have

provided that .

What if the algorithm is required to approximate only
if it is given the precise value of ? We are able to prove
that in this case the algorithm cannot compute too. It is
even impossible to approximate the complexity of minimal suf-
ficient statistic. To formulate this result precisely consider the
following promise problem.

Input: .
Output:
1, if ,
0, if .
If neither of two above cases occurs the algorithm may output
any value or no value at all.

Theorem D.2: There is no algorithm solving this promise
problem for all and .

Corollary D.3: There is no algorithm that given
finds an integer valued function on such that

for .
Indeed, if there were such an algorithm we could have solved

the above promise problem by answering when
and otherwise.

Proof: The proof is by contradiction. The idea is as
follows. Fix large . We consider points

that divide the segment into equal parts.
We lower-semicompute and for different ’s of
length about . We are interested in strings with

where is the current approximation
to . By counting arguments there are many such strings.
We apply the algorithm to for those ’s, where

stands for the currently known upper bound for .
Assume that halts. If the answer is then we
know that or and we
continue lower semicomputation until we get to know which
of two values or gets smaller. If the latter

is decreased we just remove (the total number of removed
will not increase and thus they form a small fraction

of strings of length ). If for many ’s the answer is
we make those answers incorrect by including those ’s in a
set of cardinality and complexity . Then for
all such ’s, and thus the algorithm’s
answer is incorrect. Hence, and we continue
lower semicomputation. For all those ’s for which is
decreased we repeat the trick with in place of . In this
way, we will force to decrease very fast for many ’s.
For most of ’s, will become much less than , which is
impossible.

Here is the detailed construction. Fix large . Let ,
(one third of the distance between consecutive

), , (the length of ). The value
of parameter is chosen to be slightly less than (we will need
that for large enough ).

We will run all the programs of length at most
and the algorithm on all possible inputs in a dovetailed

fashion.
We will define a set of strings of length . Our action

will be determined by only, hence,
for every provided is large enough. We will also define
some small sets for , the sets of “bad” strings
and will denote their union. Every will have at most
elements. We start with for .

We construct stages. At every stage consider the sets

for

Before and after every stage the following invariant will be true.

1) for every ; in particular .
2) For all and all it holds

.
3) For all and all it holds

.
4) the number of programs of length

at most that have halted so far

At the start, all ’s and ’s are empty so the invariant is
true. Each stage starts by including a new element in . This
element is the first string of length outside
such that for all . Thus, by the choice of

the assertions 3) and 4) remain true but 1) and 2) may not.
We claim that continuing the dovetailing and updating prop-

erly ’s we eventually make every one of 1)–4) true. During
the dovetailing, the sets change (an element can move from

to for and even to ). We will
denote by the version of at the beginning of the stage (and

) and keep the notations for current versions
of , respectively. The rule to update ’s is very simple:
once at some step of the dovetailing a new set of complexity
at most appears, we include in all the
elements of the set . As this keeps 3)
true. Moreover, this keeps true also the following assertion:

5) For all for all it holds
.
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And this also keeps 4) true since

We continue the dovetailing and update ’s as described
until both 1) and 2) are true. Let us prove that this happens even-
tually. It suffices to show that if 3)–5) are true but 2) is not, or
2)–5) are true but 1) is not then at least one program of length

will halt or is undefined for some and
some .

Consider the second case: 2)–5) are true but 1) is not. Pick
such that . If , that is, , we are
done, as . Otherwise, let consist of the first
elements in . We claim that

To prove the claim we will show that all obtained in
this way are pairwise disjoint, therefore, their number is at most

. Thus, may be identified by and its index among
all such .

Therefore, for all we have

and the value is not correct. This implies
that is not correct for all . We continue the dove-
tailing until all elements of move outside . Then becomes
disjoint with and therefore it will be disjoint with
all future versions of .

Consider the first case: 3–5) are true but 2) is not. Pick
and such that is undefined or

. If is undefined then we
are done: since

either or will decrease, or will get defined.
Consider the other case. Obviously, . By (5), we have

Therefore, or and we
are done.

After stages, the set has elements and we have a
contradiction. Indeed, all form a very small part of

because of 1). The sets together form also a very
small part of because of 4). Thus, for most strings it
holds which is a contradiction.

Remark D.4: Let us replace in the above promise problem
, the prefix complexity of , by , the plain complexity

of . For the modified problem we can strengthen the above
theorem by allowing where the constant depends
on the reference computer. Indeed, for every we have

: every can be described by its index
in in exactly bits and the value of may be retrieved from
the length of the description of . Therefore, we will need

to obtain a contradiction.

After a discussion of these results, Andrei A. Muchnik sug-
gested, and proved, that if we are also given an such that

but is much bigger than for
much less than (which is therefore the complexity of the min-
imal sufficient statistic), then we can compute over all of its
domain. This result underlines the significance of the informa-
tion contained in the minimal sufficient statistic.

Theorem D.5: There is a constant and an algorithm
that, given any with , finds a
nonincreasing function defined on such that
with and
where .

Proof: The algorithm is a follows. Let

Enumerate pairs until a pair appears and
form a list of all enumerated pairs. For , define to
be the minimum over all such that a pair
with is in the list. For let .

For every we have

and

For every , we have . So it remains to
show that for every we have .
We will prove a stronger statement: for every

provided is chosen appropriately. To prove this it
suffices to show that all for all with the pair

belongs to the list.
By Theorem VIII.4 Item i) we have

That is, if and

From the proof of Theorem VIII.2 we see that there is a con-
stant such that for every with the
index of in the enumeration of has less than
common bits with . Assuming that we obtain
that the indexes of all pairs with in
the enumeration of are less than .

B. Randomness Deficiency Function

The function is computable from given an oracle
for the halting problem: run all programs of length in dove-
tailed fashion and find all finite sets containing that are
produced. With respect to all these sets, determine the condi-
tional complexity and hence the randomness defi-
ciency . Taking the minimum we find . All these
things are possible using information from the halting problem
to determine whether a given program will terminate or not. It is
also the case that the function is upper semi-computable
from up to a logarithmic error: this follows from the
semi-computability of and Theorem IV.8. More subtle is
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that is not semi-computable, not even within a large margin
of error.

Theorem D.6: The function is

i) not lower semi-computable to within precision ; and
ii) not upper semi-computable to within precision

.
Proof: i) The proof is by contradiction. Assume Item i) is

false. Choose an arbitrary length . Let be a function defined
by for , and equal otherwise. Then the
function with of length , corresponding to , by Corollary
IV.9, has with satisfying
so that . Moreover,
for , and for

. Write the set of such ’s as . By dove-
tailing the lower approximation of for all of length
and some with , by assumption on lower semi-com-
putability of , we must eventually find an , if not
then , for which the lower semi-computation of
exceeds . But we know from Corollary IV.9
that for , and hence
we have determined that . Therefore,

. But this contradicts the well-known
fact [14] that there is no algorithm that for any given finds a
string of complexity at least where is a computable total
unbounded function.

ii) The proof is by contradiction. Assume Item ii) is false.
Fix a large length and let , so that

. Let be a string of length , let
be the number of halting programs of length at most , and let

be the set of all finite sets of complexity at
most . Since , the value is finite and

. Assuming is upper semi-computable,
we can run the following algorithm.

Algorithm: Given , , and

Step 1: Enumerate all finite sets of com-
plexity . Since we are given we
can list them exhaustively.

Step 2: Dovetail the following computations simultaneously:
Step 2.1: upper semi-compute , for all of length ;
Step 2.2: for all , lower semi-compute

.

We write the approximations at the th step as ,
, and , respectively. We continue the computation

until step such that

This exists by the assumption above. By definition

Let denote the set minimizing the right-hand side. (Here
we use that belongs to a set in .) Together, this shows that

and

Thus, we obtained an estimation of
with precision . We use that is a good
approximation to

where is a constant. Consequently

where the constant is the length of a program to reconstruct
and , and

combining this information with the conditional information ,
to compute . Observing
by [10], and substituting , there is a constant
such that

However, for every , we can choose an of length such
that by [8], which gives the
required contradiction.

Open question. Is there a nonincreasing (with respect
to ) upper semi-computable function such that, for
all , for (or for

)?
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