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Abstract. We survey the emerging area of compression-based, parameter-free,
similarity distance measures useful in data-mining, pattern recognition, learning
and automatic semantics extraction. Given a family of distances on a set of ob-
jects, a distance is universal up to a certain precision for that family if it minorizes
every distance in the family between every two objects in the set, up to the stated
precision (we do not require the universal distance to be an element of the fam-
ily). We consider similarity distances for two types of objects: literal objects that
as such contain all of their meaning, like genomes or books, and names for ob-
jects. The latter may have literal embodyments like the first type, but may also
be abstract like “red” or “christianity.” For the first type we consider a family of
computable distance measures corresponding to parameters expressing similarity
according to particular features between pairs of literal objects. For the second
type we consider similarity distances generated by web users corresponding to
particular semantic relations between the (names for) the designated objects. For
both families we give universal similarity distance measures, incorporating all
particular distance measures in the family. In the first case the universal distance
is based on compression and in the second case it is based on Google page counts
related to search terms. In both cases experiments on a massive scale give evi-
dence of the viability of the approaches.

1 Introduction

Objects can be given literally, like the literal four-letter genome of a mouse, or the
literal text of War and Peace by Tolstoy. For simplicity we take it that all meaning of
the object is represented by the literal object itself. Objects can also be given by name,
like “the four-letter genome of a mouse,” or “the text of War and Peace by Tolstoy.”
There are also objects that cannot be given literally, but only by name and acquire their
meaning from their contexts in background common knowledge in humankind, like
“home” or “red.” In the literal setting, objective similarity of objects can be established
by feature analysis, one type of similarity per feature. In the abstract “name” setting,
all similarity must depend on background knowledge and common semantics relations,
which is inherently subjective and “in the mind of the beholder.”
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1.1 Compression Based Similarity

All data are created equal but some data are more alike than others. We and others
have recently proposed very general methods expressing this alikeness, using a new
similarity metric based on compression. It is parameter-free in that it doesn’t use any
features or background knowledge about the data, and can without changes be applied
to different areas and across area boundaries. Put differently: just like ‘parameter-free’
statistical methods, the new method uses essentially unboundedly many parameters, the
ones that are appropriate. It is universal in that it approximates the parameter expressing
similarity of the dominant feature in all pairwise comparisons. It is robust in the sense
that its success appears independent from the type of compressor used. The clustering
we use is hierarchical clustering in dendrograms based on a new fast heuristic for the
quartet method. The method is available as an open-source software tool, [7].

Feature-Based Similarities: We are presented with unknown data and the question
is to determine the similarities among them and group like with like together. Com-
monly, the data are of a certain type: music files, transaction records of ATM machines,
credit card applications, genomic data. In these data there are hidden relations that we
would like to get out in the open. For example, from genomic data one can extract letter-
or block frequencies (the blocks are over the four-letter alphabet); from music files one
can extract various specific numerical features, related to pitch, rhythm, harmony etc.
One can extract such features using for instance Fourier transforms [39] or wavelet
transforms [18], to quantify parameters expressing similarity. The resulting vectors cor-
responding to the various files are then classified or clustered using existing classifica-
tion software, based on various standard statistical pattern recognition classifiers [39],
Bayesian classifiers [15], hidden Markov models [9], ensembles of nearest-neighbor
classifiers [18] or neural networks [15, 34]. For example, in music one feature would be
to look for rhythm in the sense of beats per minute. One can make a histogram where
each histogram bin corresponds to a particular tempo in beats-per-minute and the as-
sociated peak shows how frequent and strong that particular periodicity was over the
entire piece. In [39] we see a gradual change from a few high peaks to many low and
spread-out ones going from hip-hip, rock, jazz, to classical. One can use this similarity
type to try to cluster pieces in these categories. However, such a method requires spe-
cific and detailed knowledge of the problem area, since one needs to know what features
to look for.

Non-Feature Similarities: Our aim is to capture, in a single similarity metric, ev-
ery effective distance: effective versions of Hamming distance, Euclidean distance, edit
distances, alignment distance, Lempel-Ziv distance, and so on. This metric should be so
general that it works in every domain: music, text, literature, programs, genomes, exe-
cutables, natural language determination, equally and simultaneously. It would be able
to simultaneously detect all similarities between pieces that other effective distances
can detect seperately.

The normalized version of the “information metric” of [32, 3] fills the requirements
for such a “universal” metric. Roughly speaking, two objects are deemed close if we can
significantly “compress” one given the information in the other, the idea being that if
two pieces are more similar, then we can more succinctly describe one given the other.
The mathematics used is based on Kolmogorov complexity theory [32].



1.2 A Brief History

In view of the success of the method, in numerous applications, it is perhaps useful to
trace its descent in some detail. Let K(x) denote the unconditional Kolmogorov com-
plexity of x, and let K(x|y) denote the conditional Kolmogorov complexity of x given
y. Intuitively, the Kolmorov complexity of an object is the number of bits in the ul-
timate compressed version of the object, or, more precisely, from which the object
can be recovered by a fixed algorithm. The “sum” version of information distance,
K(x|y) + K(y|x), arose from thermodynamical considerations about reversible compu-
tations [25, 26] in 1992. It is a metric and minorizes all computable distances satisfying
a given density condition up to a multiplicative factor of 2. Subsequently, in 1993, the
“max” version of information distance, max{K(x|y),K(y|x)}, was introduced in [3].

Up to a logarithmic additive term, it is the length of the shortest binary program that
transforms x into y, and y into x. It is a metric as well, and this metric minorizes all
computable distances satisfying a given density condition up to an additive ignorable
term. This is optimal. But the Kolmogorov complexity is uncomputable, which seems to
preclude application altogether. However, in 1999 the normalized version of the “sum”

information distance (K(x]y) + K(y|x))/K(xy) was introduced as a similarity distance
and applied to construct a phylogeny of bacteria in [28], and subsequently mammal
phylogeny in 2001 [29], followed by plagiarism detection in student programming as-
signments [6], and phylogeny of chain letters in [4]. In [29] it was shown that the nor-
malized sum distance is a metric, and minorizes certain computable distances up to
a multiplicative factor of 2 with high probability. In a bold move, in these papers the
uncomputable Kolmogorov complexity was replaced by an approximation using a real-
world compressor, for example the special-purpose genome compressor GenCompress.
Note that, because of the uncomputability of the Kolmogorov complexity, in principle
one cannot determine the degree of accuracy of the approximation to the target value.
Yet it turned out that this practical approximation, imprecise though it is, but guided by
an ideal provable theory, in general gives good results on natural data sets. The early use
of the “sum” distance was replaced by the “max” distance in [30] in 2001 and applied to

mammal phylogeny in 2001 in the early version of [31] and in later versions also to the
language tree. In [31] it was shown that an appropriately normalized “max” distance is

metric, and minorizes all normalized computable distances satisfying a certain density
property up to an additive vanishing term. That is, it discovers all effective similarities
of this family in the sense that if two objects are close according to some effective sim-
ilarity, then they are also close according to the normalized information distance. Put
differently, the normalized information distance represents similarity according to the
dominating shared feature between the two objects being compared. In comparisons of
more than two objects, different pairs may have different dominating features. For every
two objects, this universal metric distance zooms in on the dominant similarity between
those two objects out of a wide class of admissible similarity features. Hence it may
be called “the” similarity metric. In 2003 [12] it was realized that the method could be
used for hierarchical clustering of natural data sets from arbitrary (also heterogenous)
domains, and the theory related to the application of real-world compressors was devel-
oped, and numerous applications in different domains were given, Section 3. In [19] the
authors use a simplified version of the similarity metric, which also performs well. In



[2], and follow-up work, a closely related notion of compression-based distances is pro-
posed. There the purpose was initially to infer a language tree from different-language
text corpora, as well as do authorship attribution on basis of text corpora. The distances
determined between objects are justified by ad-hoc plausibility arguments and represent
a partially independent development (although they refer to the information distance ap-
proach of [27, 3]). Altogether, it appears that the notion of compression-based similarity
metric is so powerful that its performance is robust under considerable variations.

2 Similarity Distance

We briefly outline an improved version of the main theoretical contents of [12] and
its relation to [31]. For details and proofs see these references. First, we give a precise
formal meaning to the loose distance notion of “degree of similarity” used in the pattern
recognition literature.

2.1 Distance and Metric

Let Q be a nonempty set and R+ be the set of nonnegative real numbers. A distance
function on Q is a function D : Q x Q — R T. It is a metric if it satisfies the metric
(in)equalities:

- D(x,y) =0iffx=y,
- D(x,y) = D(y,x) (symmetry), and
- D(x,y) < D(x,z) 4+ D(z,y) (triangle inequality).

The value D(x,y) is called the distance between x,y € Q. A familiar example of a dis-
tance that is also metric is the Euclidean metric, the everyday distance e(a,b) between
two geographical objects a,b expressed in, say, meters. Clearly, this distance satisfies
the properties e(a,a) = 0, e(a,b) = e(b,a), and e(a,b) < e(a,c) +e(c,b) (for instance,
a = Amsterdam, b = Brussels, and ¢ = Chicago.) We are interested in a particular
type of distance, the “similarity distance”, which we formally define in Definition 4.
For example, if the objects are classical music pieces then the function D defined by
D(a,b) =0 if a and b are by the same composer and D(a,b) = 1 otherwise, is a sim-
ilarity distance that is also a metric. This metric captures only one similarity aspect
(feature) of music pieces, presumably an important one that subsumes a conglomerate
of more elementary features.

2.2 Admissible Distance

In defining a class of admissible distances (not necessarily metric distances) we want to
exclude unrealistic ones like f(x,y) = 3 for every pair x # y. We do this by restricting
the number of objects within a given distance of an object. As in [3] we do this by only
considering effective distances, as follows.

Definition 1. Let Q = 3*, with X a finite nonempty alphabet and > the set of finite
strings over that alphabet. Since every finite alphabet can be recoded in binary, we



choose Z = {0,1}. In particular, “files” in computer memory are finite binary strings. A
function D: Q x Q — R " is an admissible distance if for every pair of objects x,y € Q
the distance D(x,y) satisfies the density condition

T 270 <1, &)
y

is computable, and is symmetric, D(x,y) = D(y, X).

If D is an admissible distance, then for every x the set {D(x,y) :y € {0,1}*} is the
length set of a prefix code, since it satisfies (1), the Kraft inequality. Conversely, if a
distance is the length set of a prefix code, then it satisfies (1), see for example [27].

2.3 Normalized Admissible Distance

Large objects (in the sense of long strings) that differ by a tiny part are intuitively closer
than tiny objects that differ by the same amount. For example, two whole mitochondrial
genomes of 18,000 bases that differ by 9,000 are very different, while two whole nuclear
genomes of 3 x 10° bases that differ by only 9,000 bases are very similar. Thus, absolute
difference between two objects doesn’t govern similarity, but relative difference appears
to do so.

Definition 2. A compressor is a lossless encoder mapping Q into {0,1}* such that
the resulting code is a prefix code. “Lossless” means that there is a decompressor that
reconstructs the source message from the code message. For convenience of notation
we identify “compressor” with a “code word length function” C : Q — A/, where A( is
the set of nonnegative integers. That is, the compressed version of a file x has length
C(x). We only consider compressors such that C(x) < |x| + O(log |x|). (The additive
logarithmic term is due to our requirement that the compressed file be a prefix code
word.) We fix a compressor C, and call the fixed compressor the reference compressor.

Definition 3. Let D be an admissible distance. Then D" (x) is defined by D (x) =
max{D(x,z) :C(z) <C(x)},and DT (x,y) is defined by D" (x,y) = max{D™ (x),D*(y)}.
Note that since D(x,y) = D(y,x), also D (x,y) = D*(y,x).

Definition 4. Let D be an admissible distance. The normalized admissible distance,
also called a similarity distance, d(x,y), based on D relative to a reference compressor
C, is defined by

_ Dxy)
- DF(xy)

d(x,y)

It follows from the definitions that a normalized admissible distance is a function
d:QxQ— [0,1] that is symmetric: d(x,y) = d(y,x).

Lemma 1. For every x € Q, and constant e € [0,1], a normalized admissible distance
satisfies the density constraint

[{y:d(xy) <e, C(y) SC(x)}| <2 0+, )



We call a normalized distance a “similarity” distance, because it gives a relative
similarity according to the distance (with distance 0 when objects are maximally similar
and distance 1 when they are maximally dissimilar) and, conversely, for every well-
defined computable notion of similarity we can express it as a metric distance according
to our definition. In the literature a distance that expresses lack of similarity (like ours)
is often called a “dissimilarity” distance or a “disparity” distance.

2.4 Normal Compressor

We give axioms determining a large family of compressors that both include most (if
not all) real-world compressors and ensure the desired properties of the NCD to be
defined later.

Definition 5. A compressor C is normal if it satisfies, up to an additive O(logn) term,
with n the maximal binary length of an element of Q involved in the (in)equality con-
cerned, the following:

1. Idempotency: C(xx) = C(x), and C(A\) = 0, where A is the empty string.
2. Monotonicity: C(xy) > C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) +C(z) < C(xz) +C(yz).

Remark 1. These axioms are of course an idealization. The reader can insert, say O(+/n),
for the O(logn) fudge term, and modify the subsequent discussion accordingly. Many
compressors, like gzip or bzip2, have a bounded window size. Since compression of
objects exceeding the window size is not meaningful, we assume 2n is less than the
window size. In such cases the O(logn) term, or its equivalent, relates to the fictitious
version of the compressor where the window size can grow indefinitely. Alternatively,
we bound the value of n to half te window size, and replace the fudge term O(logn) by
some small fraction of n. Other compressors, like PPMZ, have unlimited window size,
and hence are more suitable for direct interpretation of the axioms.

Idempotency: A reasonable compressor will see exact repetitions and obey idem-
potency up to the required precision. It will also compress the empty string to the empty
string.

Monotonicity: A real compressor must have the monotonicity property, at least up
to the required precision. The property is evident for stream-based compressors, and
only slightly less evident for block-coding compressors.

Symmetry: Stream-based compressors of the Lempel-Ziv family, like gzip and
pkzip, and the predictive PPM family, like PPMZ, are possibly not precisely symmet-
ric. This is related to the stream-based property: the initial file x may have regularities
to which the compressor adapts; after crossing the border to y it must unlearn those
regularities and adapt to the ones of x. This process may cause some imprecision in
symmetry that vanishes asymptotically with the length of x,y. A compressor must be
poor indeed (and will certainly not be used to any extent) if it doesn’t satisfy symmetry
up to the required precision. Apart from stream-based, the other major family of com-
pressors is block-coding based, like bzip2. They essentially analyze the full input block



by considering all rotations in obtaining the compressed version. It is to a great extent
symmetrical, and real experiments show no departure from symmetry.

Distributivity: The distributivity property is not immediately intuitive. In Kol-
mogorov complexity theory the stronger distributivity property

C(xyz) +C(2) < C(x2) +C(yz) ®)

holds (with K = C). However, to prove the desired properties of NCD below, only the
weaker distributivity property

C(xy)+C(z) <C(xz) +C(yz) 4)

above is required, also for the boundary case were C = K. In practice, real-world com-
pressors appear to satisfy this weaker distributivity property up to the required precision.

Definition 6. Define
C(y[x) = C(xy) —C(x). ©)

This number C(y|x) of bits of information in y, relative to x, can be viewed as the excess
number of bits in the compressed version of xy compared to the compressed version of
X, and is called the amount of conditional compressed information.

In the definition of compressor the decompression algorithm is not included (unlike the
case of Kolmorogov complexity, where the decompressing algorithm is given by defi-
nition), but it is easy to construct one: Given the compressed version of x in C(x) bits,
we can run the compressor on all candidate strings z—for example, in length-increasing
lexicographical order, until we find the compressed string z = x. Since this string de-
compresses to x we have found x = zg. Given the compressed version of xy in C(xy)
bits, we repeat this process using strings xz until we find the string xz of which the
compressed version equals the compressed version of xy. Since the former compressed
version decompresses to xy, we have found y = z;. By the unique decompression prop-
erty we find that C(y|x) is the extra number of bits we require to describe y apart from
describing x. It is intuitively acceptable that the conditional compressed information
C(x|y) satisfies the triangle inequality

C(xly) <C(x]z) +C(z]y). (6)
Lemma 2. Both (3) and (6) imply (4).

Lemma 3. A normal compressor satisfies additionally subadditivity: C(xy) < C(x) +
C(y)-

Subadditivity: The subadditivity property is clearly also required for every viable
compressor, since a compressor may use information acquired from x to compress y.
Minor imprecision may arise from the unlearning effect of crossing the border between
x and y, mentioned in relation to symmetry, but again this must vanish asymptotically
with increasing length of x,y.



2.5 Normalized Information Distance

Technically, the Kolmogorov complexity of x given y is the length of the shortest binary

program, for the reference universal prefix Turing machine, that on input y outputs
x; it is denoted as K(x|y). For precise definitions, theory and applications, see [27].
The Kolmogorov complexity of x is the length of the shortest binary program with

no input that outputs x; it is denoted as K(x) = K(x|A) where A denotes the empty

input. Essentially, the Kolmogorov complexity of a file is the length of the ultimate
compressed version of the file. In [3] the information distance E(x,y) was introduced,
defined as the length of the shortest binary program for the reference universal prefix
Turing machine that, with input x computes y, and with input y computes x. It was shown

there that, up to an additive logarithmic term, E(x,y) = max{K(x|y),K(y|x)}. It was

shown also that E(x,y) is a metric, up to negligible violations of the metric inequalties.

Moreover, it is universal in the sense that for every admissible distance D(x,y) as in

Definition 1, E(x,y) < D(x,y) up to an additive constant depending on D but not on
x and y. In [31], the normalized version of E(x,y), called the normalized information

distance, is defined as

NID(x.y) — MK 0. K0} -

max{K (x),K(y)}

It too is a metric, and it is universal in the sense that this single metric minorizes up to
an negligible additive error term all normalized admissible distances in the class con-
sidered in [31]. Thus, if two files (of whatever type) are similar (that is, close) according
to the particular feature described by a particular normalized admissible distance (not
necessarily metric), then they are also similar (that is, close) in the sense of the normal-
ized information metric. This justifies calling the latter the similarity metric. We stress
once more that different pairs of objects may have different dominating features. Yet
every such dominant similarity is detected by the NID . However, this metric is based
on the notion of Kolmogorov complexity. Unfortunately, the Kolmogorov complexity
is non-computable in the Turing sense. Approximation of the denominator of (7) by a
given compressor C is straightforward: it is max{C(x),C(y)}. The numerator is more
tricky. It can be rewritten as

max{K(x,y) — K(x), K(x,y) —K(y)}, (8)

within logarithmic additive precision, by the additive property of Kolmogorov complex-
ity [27]. The term K(x, ) represents the length of the shortest program for the pair (x,y).
In compression practice it is easier to deal with the concatenation xy or yx. Again, within
logarithmic precision K(x,y) = K(xy) = K(yx). Following a suggestion by Steven de
Rooij, one can approximate (8) best by min{C(xy),C(yx)} —min{C(x),C(y)}. Here,
and in the later experiments using the CompLearn Toolkit [7], we simply use C(xy)
rather than min{C(xy),C(yx)}. This is justified by the observation that block-coding
based compressors are symmetric almost by definition, and experiments with various
stream-based compressors (gzip, PPMZ) show only small deviations from symmetry.
The result of approximating the NID using a real compressor C is called the nor-
malized compression distance ( NCD ), formally defined in (10). The theory as devel-
oped for the Kolmogorov-complexity based NID in [31], may not hold for the (possibly




poorly) approximating NCD . It is nonetheless the case that experiments show that the
NCD apparently has (some) properties that make the NID so appealing. To fill this
gap between theory and practice, we develop the theory of NCD from first principles,
based on the axiomatics of Section 2.4. We show that the NCD is a quasi-universal
similarity metric relative to a normal reference compressor C. The theory developed in
[31] is the boundary case C = K, where the “quasi-universality” below has become full
“universality”.

2.6 Compression Distance

We define a compression distance based on a normal compressor and show it is an ad-
missible distance. In applying the approach, we have to make do with an approximation
based on a far less powerful real-world reference compressor C. A compressor C ap-
proximates the information distance E(x,y), based on Kolmogorov complexity, by the
compression distance Ec(x,y) defined as

Ec(x,y) = C(xy) —min{C(x),C(y)}. ©)

Here, C(xy) denotes the compressed size of the concatenation of x and y, C(x) denotes
the compressed size of x, and C(y) denotes the compressed size of y.

Lemma 4. IfC is a normal compressor, then Ec(x,y) 4+ O(1) is an admissible distance.

Lemma 5. If C is a normal compressor, then Ec(x,y) satisfies the metric (in)equalities
up to logarithmic additive precision.

Lemma 6. If C is a normal compressor, then EZ (x,y) = max{C(x),C(y)}.

2.7 Normalized Compression Distance

The normalized version of the admissible distance Ec(x,y), the compressor C based ap-
proximation of the normalized information distance (7), is called the normalized com-
pression distance or NCD:

xy) —min{C(x),C(y)}
max{C(x),C(y)}
This NCD is the main concept of this work. It is the real-world version of the ideal

notion of normalized information distance NID in (7). Actually, the NCD is a family
of compression functions parameterized by the given data compressor C.

NCD(x,y) = C( (10)

Remark 2. In practice, the NCD is a non-negative number 0 < r < 1+ € representing

how different the two files are. Smaller numbers represent more similar files. The € in
the upper bound is due to imperfections in our compression techniques, but for most

standard compression algorithms one is unlikely to see an € above 0.1 (in our experi-

ments gzip and bzip2 achieved NCD ’s above 1, but PPMZ always had NCD at most

1).



There is a natural interpretation to NCD(x,y): If, say, C(y) > C(x) then we can
rewrite
Cxy) —C(¥)

C(y)

That is, the distance NCD(x,y) between x and y is the improvement due to compress-
ing y using x as previously compressed “data base,” and compressing y from scratch,
expressed as the ratio between the bit-wise length of the two compressed versions.
Relative to the reference compressor we can define the information in x about y as
C(y) —C(y|x). Then, using (5),

NCD(x,y) =

C(y) —C(ylx)
Cly)

That is, the NCD between x and y is 1 minus the ratio of the information x about y and
the information in y.

NCD(x,y) =1—

Theorem 1. If the compressor is normal, then the NCD is a normalized admissible
distance satsifying the metric (in)equalities, that is, a similarity metric.

Quasi-Universality: We now digress to the theory developed in [31], which formed
the motivation for developing the NCD . If, instead of the result of some real compres-
sor, we substitute the Kolmogorov complexity for the lengths of the compressed files in
the NCD formula, the result is the NID as in (7). It is universal in the following sense:
Every admissible distance expressing similarity according to some feature, that can be
computed from the objects concerned, is comprised (in the sense of minorized) by the
NID . Note that every feature of the data gives rise to a similarity, and, conversely, ev-
ery similarity can be thought of as expressing some feature: being similar in that sense.
Our actual practice in using the NCD falls short of this ideal theory in at least three
respects:

(i) The claimed universality of the NID holds only for indefinitely long sequences
X, Y. Once we consider strings x, y of definite length n, it is only universal with respect to
“simple” computable normalized admissible distances, where “simple” means that they
are computable by programs of length, say, logarithmic in n. This reflects the fact that,
technically speaking, the universality is achieved by summing the weighted contribution
of all similarity distances in the class considered with respect to the objects considered.
Only similarity distances of which the complexity is small (which means that the weight
is large), with respect to the size of the data concerned, kick in.

(ii) The Kolmogorov complexity is not computable, and it is in principle impossible
to compute how far off the NCD is from the NID . So we cannot in general know
how well we are doing using the NCD of a given compressor. Rather than all “simple”
distances (features, properties), like the NID , the NCD captures a subset of these
based on the features (or combination of features) analyzed by the compressor. For
natural data sets, however, these may well cover the features and regularities present
in the data anyway. Complex features, expressions of simple or intricate computations,
like the initial segment of Tt= 3.1415..., seem unlikely to be hidden in natural data.
This fact may account for the practical success of the NCD , especially when using
good compressors.



(iii) To approximate the NCD we use standard compression programs like gzip,
PPMZ, and bzip2. While better compression of a string will always approximate the
Kolmogorov complexity better, this may not be true for the NCD . Due to its arithmetic
form, subtraction and division, it is theoretically possible that while all items in the
formula get better compressed, the improvement is not the same for all items, and the
NCD value moves away from the NID value. In our experiments we have not observed
this behavior in a noticable fashion. Formally, we can state the following:

Theorem 2. Let d be a computable normalized admissible distance and C be a nor-
mal compressor. Then, NCD(x,y) < ad(x,y) + €, where for C(x) > C(y), we have
o =D7"(x)/C(x) and € = (C(x|y) — K(x]y))/C(x), with C(x]y) according to (5).

Remark 3. Clustering according to NCD will group sequences together that are simi-
lar according to features that are not explicitly known to us. Analysis of what the com-
pressor actually does, still may not tell us which features that make sense to us can
be expressed by conglomerates of features analyzed by the compressor. This can be
exploited to track down unknown features implicitly in classification: forming automat-
ically clusters of data and see in which cluster (if any) a new candidate is placed.

Another aspect that can be exploited is exploratory: Given that the NCD is small
for a pair x,y of specific sequences, what does this really say about the sense in which
these two sequences are similar? The above analysis suggests that close similarity will
be due to a dominating feature (that perhaps expresses a conglomerate of subfeatures).
Looking into these deeper causes may give feedback about the appropriateness of the
realized NCD distances and may help extract more intrinsic information about the
objects, than the oblivious division into clusters, by looking for the common features in
the data clusters.

2.8 Hierarchical Clustering

Given a set of objects, the pairwise NCD ’s form the entries of a distance matrix.
This distance matrix contains the pairwise relations in raw form. But in this format
that information is not easily usable. Just as the distance matrix is a reduced form of
information representing the original data set, we now need to reduce the information
even further in order to achieve a cognitively acceptable format like data clusters. The
distance matrix contains all the information in a form that is not easily usable, since for
n > 3 our cognitive capabilities rapidly fail. In our situation we do not know the num-
ber of clusters a-priori, and we let the data decide the clusters. The most natural way to
do so is hierarchical clustering [16]. Such methods have been extensively investigated
in Computational Biology in the context of producing phylogenies of species. One the
most sensitive ways is the so-called ‘quartet method. This method is sensitive, but time
consuming, running in quartic time. Other hierarchical clustering methods, like parsi-
mony, may be much faster, quadratic time, but they are less sensitive. In view of the fact
that current compressors are good but limited, we want to exploit the smallest differ-
ences in distances, and therefore use the most sensitive method to get greatest accuracy.
Here, we use a new quartet-method (actually a new version [12] of the quartet puzzling
variant [35]), which is a heuristic based on randomized parallel hill-climbing genetic



programming. In this paper we do not describe this method in any detail, the reader
is referred to [12], or the full description in [14]. It is implemented in the CompLearn
package [7].

We describe the idea of the algorithm, and the interpretation of the accuracy of the
resulting tree representation of the data clustering. To cluster n data items, the algorithm
generates a random ternary tree with n — 2 internal nodes and n leaves. The algorithm
tries to improve the solution at each step by interchanging sub-trees rooted at internal
nodes (possibly leaves). It switches if the total tree cost is improved. To find the opti-
mal tree is NP-hard, that is, it is infeasible in general. To avoid getting stuck in a local
optimum, the method executes sequences of elementary mutations in a single step. The
length of the sequence is drawn from a fat tail distribution, to ensure that the prob-
ability of drawing a longer sequence is still significant. In contrast to other methods,
this guarantees that, at least theoretically, in the long run a global optimum is achieved.
Because the problem is NP-hard, we can not expect the global optimum to be reached
in a feasible time in general. Yet for natural data, like in this work, experience shows
that the method usually reaches an apparently global optimum. One way to make this
more likely is to run several optimization computations in parallel, and terminate only
when they all agree on the solutions (the probability that this would arises by chance
is very low as for a similar technique in Markov chains). The method is so much im-
proved against previous quartet-tree methods, that it can cluster larger groups of objects
(around 70) than was previously possible (around 15). If the latter methods need to clus-
ter groups larger than 15, they first cluster sub-groups into small trees and then combine
these trees by a super-tree reconstruction method. This has the drawback that optimizing
the local subtrees determines relations that cannot be undone in the supertree construc-
tion, and it is almost guaranteed that such methods cannot reach a global optimum. Our
clustering heuristic generates a tree with a certain fidelity with respect to the underlying
distance matrix (or alternative data from which the quartet tree is constructed) called
standardized benefit score or S(T) value in the sequel. This value measures the qual-
ity of the tree representation of the overall oder relations between the distances in the
matrix. It measures in how far the tree can represent the quantitative distance relations
in a topological qualitative manner without violating relative order. The S(T) value
ranges from O (worst) to 1 (best). A random tree is likely to have S(T) = 1/3, while
S(T) = 1 means that the relations in the distance matrix are perfectly represented by
the tree. Since we deal with n natural data objects, living in a space of unknown metric,
we know a priori only that the pairwise distances between them can be truthfully rep-
resented in n — 1-dimensional Euclidian space. Multidimensional scaling, representing
the data by points in 2-dimensional space, most likely necessarily distorts the pairwise
distances. This is akin to the distortion arising when we map spherical earth geography
on a flat map. A similar thing happens if we represent the n-dimensional distance ma-
trix by a ternary tree. It can be shown that some 5-dimensional distance matrices can
only be mapped in a ternary tree with S(T) < 0.8. Practice shows, however, that up to
12-dimensional distance matrices, arising from natural data, can be mapped into a such
tree with very little distortion (S(T) > 0.95). In general the S(T ) value deteriorates for
large sets. The reason is that, with increasing size of natural data set, the projection of
the information in the distance matrix into a ternary tree gets necessarily increasingly



distorted. If for a large data set like 30 objects, the S(T ) value is large, say S(T) > 0.95,
then this gives evidence that the tree faithfully represents the distance matrix, but also
that the natural relations between this large set of data were such that they could be
represented by such a tree.

3 Applicationsof NCD

The compression-based NCD method to establish a universal similarity metric (10)
among objects given as finite binary strings, and, apart from what was mentioned in the
Introduction, has been applied to objects like music pieces in MIDI format, [11], com-
puter programs, genomics, virology, language tree of non-indo-european languages,
literature in Russian Cyrillic and English translation, optical character recognition of
handwrittern digits in simple bitmap formats, or astronimical time sequences, and com-
binations of objects from heterogenous domains, using statistical, dictionary, and block
sorting compressors, [12]. In [19], the authors compared the performance of the method
on all major time sequence data bases used in all major data-mining conferences in the
last decade, against all major methods. It turned out that the NCD method was far
superior to any other method in heterogenous data clustering and anomaly detection
and performed comparable to the other methods in the simpler tasks. We developed
the CompLearn Toolkit, [7], and performed experiments in vastly different application
fields to test the quality and universality of the method. In [40], the method is used to an-
alyze network traffic and cluster computer worms and virusses. Currently, a plethora of
new applications of the method arise around the world, in many areas, as the reader can
verify by searching for the papers “the similarity metric’ or ‘clustering by compression,’
and look at the papers that refer to these, in Google Scholar.

3.1 Heterogenous Natural Data

The success of the method as reported depends strongly on the judicious use of en-
coding of the objects compared. Here one should use common sense on what a real
world compressor can do. There are situations where our approach fails if applied in a
straightforward way. For example: comparing text files by the same authors in differ-
ent encodings (say, Unicode and 8-bit version) is bound to fail. For the ideal similarity
metric based on Kolmogorov complexity as defined in [31] this does not matter at all,
but for practical compressors used in the experiments it will be fatal. Similarly, in the
music experiments we use symbolic MIDI music file format rather than wave-forms.
We test gross classification of files based on heterogenous data of markedly different
file types: (i) Four mitochondrial gene sequences, from a black bear, polar bear, fox,
and rat obtained from the GenBank Database on the world-wide web; (ii) Four excerpts
from the novel The Zeppelin’s Passenger by E. Phillips Oppenheim, obtained from the
Project Gutenberg Edition on the World-Wide web; (iii) Four MIDI files without further
processing; two from Jimi Hendrix and two movements from Debussy’s Suite Berga-
masque, downloaded from various repositories on the world-wide web; (iv) Two Linux
x86 ELF executables (the cp and rm commands), copied directly from the RedHat 9.0
Linux distribution; and (v) Two compiled Java class files, generated by ourselves. The



Fig. 1. Classification of different file types. Tree agrees exceptionally well with NCD distance
matrix: S(T) = 0.984.

compressor used to compute the NCD matrix was bzip2. As expected, the program cor-

rectly classifies each of the different types of files together with like near like. The result
is reported in Figure 1 with S(T) equal to the very high confidence value 0.984. This
experiment shows the power and universality of the method: no features of any specific
domain of application are used. We believe that there is no other method known that

can cluster data that is so heterogenous this reliably. This is borne out by the massive

experiments with the method in [19].

3.2 Literature

The texts used in this experiment were down-loaded from the world-wide web in orig-
inal Cyrillic-lettered Russian and in Latin-lettered English by L. Avanasiev. The com-
pressor used to compute the NCD matrix was bzip2. We clustered Russian literature in
the original (Cyrillic) by Gogol, Dostojevski, Tolstoy, Bulgakov, Tsjechov, with three or
four different texts per author. Our purpose was to see whether the clustering is sensitive
enough, and the authors distinctive enough, to result in clustering by author. In Figure 2
we see an almost perfect clustering according to author. Considering the English trans-
lations of the same texts, we saw errors in the clustering (not shown). Inspection showed
that the clustering was now partially based on the translator. It appears that the translator
superimposes his characteristics on the texts, partially suppressing the characteristics of
the original authors. In other experiments, not reported here, we separated authors by
gender and by period.
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Fig. 2. Clustering of Russian writers. Legend: 1.S. Turgenev, 1818-1883 [Father and Sons, Rudin,
On the Eve, A House of Gentlefolk]; F. Dostoyevsky 1821-1881 [Crime and Punishment, The
Gambler, The Idiot; Poor Folk]; L.N. Tolstoy 1828-1910 [Anna Karenina, The Cossacks, Youth,
War and Piece]; N.V. Gogol 1809-1852 [Dead Souls, Taras Bulba, The Mysterious Portrait, How
the Two Ivans Quarrelled]; M. Bulgakov 1891-1940 [The Master and Margarita, The Fatefull
Eggs, The Heart of a Dog]. S(T) = 0.949.

ChopPrel 22

ChopPrel 24

BachWwTK2P1
BachwTK2P2

Fig.3. Output for the 12-piece set. Legend: J.S. Bach [Wohltemperierte Klavier II: Pre-
ludes and Fugues 1,2— BachWTK2{F,P}{1,2}]; Chopin [Préludes op. 28: 1, 15, 22, 24 —
ChopPrel{1,15,22,24}]; Debussy [Suite Bergamasque, 4 movements—DebusBerg{1,2,3,4}].
S(T) =0.968.



3.3 Music

The amount of digitized music available on the internet has grown dramatically in recent
years, both in the public domain and on commercial sites. Napster and its clones are
prime examples. Websites offering musical content in some form or other (MP3, MIDI,
...) need a way to organize their wealth of material; they need to somehow classify
their files according to musical genres and subgenres, putting similar pieces together.
The purpose of such organization is to enable users to navigate to pieces of music they
already know and like, but also to give them advice and recommendations (“If you like
this, you might also like. . ."). Currently, such organization is mostly done manually by
humans, but some recent research has been looking into the possibilities of automating
music classification. For details about the music experiments see [11, 12].

3.4 Bird-Flu Virii—H5N1

Fig. 4. Set of 24 Chicken Examples of H5N1 Virii. S(T) = 0.967.

In Figure 4 we display classification of bird-flu virii of the type H5N1 that have been
found in different geographic locations in chicken. Data downloaded from the National
Center for Biotechnology Information (NCBI), National Library of Medicine, National
Institutes of Health (NIH).



4 Google-Based Similarity

To make computers more intelligent one would like to represent meaning in computer-
digestable form. Long-term and labor-intensive efforts like the Cyc project [23] and
the WordNet project [36] try to establish semantic relations between common objects,
or, more precisely, names for those objects. The idea is to create a semantic web of
such vast proportions that rudimentary intelligence and knowledge about the real world
spontaneously emerges. This comes at the great cost of designing structures capable
of manipulating knowledge, and entering high quality contents in these structures by
knowledgeable human experts. While the efforts are long-running and large scale, the
overall information entered is minute compared to what is available on the world-wide-
web.

The rise of the world-wide-web has enticed millions of users to type in trillions
of characters to create billions of web pages of on average low quality contents. The
sheer mass of the information available about almost every conceivable topic makes
it likely that extremes will cancel and the majority or average is meaningful in a low-
quality approximate sense. We devise a general method to tap the amorphous low-grade
knowledge available for free on the world-wide-web, typed in by local users aiming at
personal gratification of diverse objectives, and yet globally achieving what is effec-
tively the largest semantic electronic database in the world. Moreover, this database is
available for all by using any search engine that can return aggregate page-count esti-
mates like Google for a large range of search-queries.

The crucial point about the NCD method above is that the method analyzes the
objects themselves. This precludes comparison of abstract notions or other objects that
don’t lend themselves to direct analysis, like emations, colors, Socrates, Plato, Mike
Bonanno and Albert Einstein. While the previous NCD method that compares the
objects themselves using (10) is particularly suited to obtain knowledge about the sim-
ilarity of objects themselves, irrespective of common beliefs about such similarities,
we now develop a method that uses only the name of an object and obtains knowledge
about the similarity of objects by tapping available information generated by multitudes
of web users. The new method is useful to extract knowledge from a given corpus of
knowledge, in this case the Google database, but not to obtain true facts that are not
common knowledge in that database. For example, common viewpoints on the creation
myths in different religions may be extracted by the Googling method, but contentious
questions of fact concerning the phylogeny of species can be better approached by using
the genomes of these species, rather than by opinion.

Googling for Knowledge: Let us start with simple intuitive justification (not to be
mistaken for a substitute of the underlying mathematics) of the approach we propose
in [13]. While the theory we propose is rather intricate, the resulting method is simple
enough. We give an example: At the time of doing the experiment, a Google search
for “horse”, returned 46,700,000 hits. The number of hits for the search term “rider”
was 12,200,000. Searching for the pages where both “horse” and “rider” occur gave
2,630,000 hits, and Google indexed 8,058,044,651 web pages. Using these numbers in
the main formula (13) we derive below, with N = 8,058,044, 651, this yields a Normal-



ized Google Distance between the terms “horse” and “rider” as follows:
NGD(horse, rider) ~ 0.443.

In the sequel of the paper we argue that the NGD is a normed semantic distance be-
tween the terms in question, usually in between 0 (identical) and 1 (unrelated), in the
cognitive space invoked by the usage of the terms on the world-wide-web as filtered by
Google. Because of the vastness and diversity of the web this may be taken as related to
the current objective meaning of the terms in society. We did the same calculation when
Google indexed only one-half of the current number of pages: 4,285,199,774. It is in-
structive that the probabilities of the used search terms didn’t change significantly over
this doubling of pages, with number of hits for “horse” equal 23,700,000, for “rider”
equal 6,270,000, and for “horse, rider” equal to 1,180,000. The NGD(horse,rider) we
computed in that situation was ~ 0.460. This is in line with our contention that the rela-
tive frequencies of web pages containing search terms gives objective information about
the semantic relations between the search terms. If this is the case, then the Google
probabilities of search terms and the computed NGD ’s should stabilize (become scale
invariant) with a growing Google database.

Related Work: There is a great deal of work in both cognitive psychology [22],
linguistics, and computer science, about using word (phrases) frequencies in text cor-
pora to develop measures for word similarity or word association, partially surveyed
in [37, 38], going back to at least [24]. One of the most successful is Latent Semantic
Analysis (LSA) [22] that has been applied in various forms in a great number of appli-
cations. As with LSA, many other previous approaches of extracting meaning from text
documents are based on text corpora that are many order of magnitudes smaller, using
complex mathematical techniques like singular value decomposition and dimensional-
ity reduction, and that are in local storage, and on assumptions that are more restricted,
than what we propose. In contrast, [41, 8, 1] and the many references cited there, use
the web and Google counts to identify lexico-syntactic patterns or other data. Again, the
theory, aim, feature analysis, and execution are different from ours, and cannot mean-
ingfully be compared. Essentially, our method below automatically extracts meaning
relations between arbitrary objects from the web in a manner that is feature-free, up to
the search-engine used, and computationally feasible. This seems to be a new direction
altogether.

4.1 The Google Distribution

Let the set of singleton Google search terms be denoted by S. In the sequel we use
both singleton search terms and doubleton search terms {{x,y} : X,y € S}. Let the set
of web pages indexed (possible of being returned) by Google be Q. The cardinality of
Q is denoted by M = |Q|, and at the time of this writing 8-10° < M < 9-10° (and
presumably greater by the time of reading this). Assume that a priori all web pages
are equi-probable, with the probability of being returned by Google being 1/M. A sub-
set of Q is called an event. Every search term x usable by Google defines a singleton
Google event x C Q of web pages that contain an occurrence of x and are returned
by Google if we do a search for x. Let L : Q — [0, 1] be the uniform mass probability



function. The probability of such an event x is L(x) = |x|/M. Similarly, the doubleton
Google event x(y C Q is the set of web pages returned by Google if we do a search
for pages containing both search term x and search term y. The probability of this event
isL(xNy) = [xNy|/M. We can also define the other Boolean combinations: —x = Q\x
and xJy = —(—x(\—y), each such event having a probability equal to its cardinality
divided by M. If e is an event obtained from the basic events x,y, ..., corresponding
to basic search terms x,y, ..., by finitely many applications of the Boolean operations,
then the probability L(e) = |e|/M. Google events capture in a particular sense all back-
ground knowledge about the search terms concerned available (to Google) on the web.
The Google event x, consisting of the set of all web pages containing one or more oc-
currences of the search term x, thus embodies, in every possible sense, all direct context
in which x occurs on the web.

Remark 4. It is of course possible that parts of this direct contextual material link to
other web pages in which x does not occur and thereby supply additional context. In
our approach this indirect context is ignored. Nonetheless, indirect context may be im-
portant and future refinements of the method may take it into account.

The event x consists of all possible direct knowledge on the web regarding x. There-
fore, it is natural to consider code words for those events as coding this background
knowledge. However, we cannot use the probability of the events directly to determine
a prefix code, or, rather the underlying information content implied by the probabil-
ity. The reason is that the events overlap and hence the summed probability exceeds
1. By the Kraft inequality, see for example [27], this prevents a corresponding set of
code-word lengths. The solution is to normalize: We use the probability of the Google
events to define a probability mass function over the set {{x,y} : x,y € S} of Google
search terms, both singleton and doubleton terms. There are |S| singleton terms, and

(‘g‘) doubletons consisting of a pair of non-identical terms. Define

N="5 Ixl

{xy}cs

counting each singleton set and each doubleton set (by definition unordered) once in
the summation. Note that this means that for every pair {x,y} C S, with x # y, the web
pages z € x(y are counted three times: once in X = X[ X, once iny =y(y, and once in
XY Since every web page that is indexed by Google contains at least one occurrence
of a search term, we have N > M. On the other hand, web pages contain on average not
more than a certain constant a search terms. Therefore, N < aM. Define

g(x) =g(x,x), g(x,y) =LX[y)M/N = |x(y|/N. (11)

Then, 3 (xyycs9(X,y) = 1. This g-distribution changes over time, and between differ-
ent samplings from the distribution. But let us imagine that g holds in the sense of an
instantaneous snapshot. The real situation will be an approximation of this. Given the
Google machinery, these are absolute probabilities which allow us to define the asso-
ciated prefix code-word lengths (information contents) for both the singletons and the
doubletons. The Google code G is defined by

G(x) = G(x,x), G(x,y) =log1/g(xy). (12)



In contrast to strings x where the complexity C(x) represents the length of the com-
pressed version of x using compressor C, for a search term x (just the name for an ob-
ject rather than the object itself), the Google code of length G(x) represents the shortest
expected prefix-code word length of the associated Google event x. The expectation is
taken over the Google distribution p. In this sense we can use the Google distribution as
a compressor for Google “meaning” associated with the search terms. The associated
NCD , now called the normalized Google distance ( NGD ) is then defined by (13),
and can be rewritten as the right-hand expression:

G(x,y) —min(G(x),G(y)) _ max{log f(x),log f(y)} —log f (x,y)

max(G(x),G(y)) ~ logN —min{log f(x),log f (y)} (’ )

13

where f(x) denotes the number of pages containing x, and f(x,y) denotes the number
of pages containing both x and y, as reported by Google. This NGD is an approxima-
tion to the NID of (7) using the prefix code-word lengths (Google code) generated by
the Google distribution as defining a compressor approximating the length of the Kol-
mogorov code, using the background knowledge on the web as viewed by Google as
conditional information. In practice, use the page counts returned by Google for the fre-
guencies, and we have to choose N. From the right-hand side term in (13) it is apparent
that by increasing N we decrease the NGD , everything gets closer together, and by
decreasing N we increase the NGD , everything gets further apart. Our experiments
suggest that every reasonable (M or a value greater than any f(x)) value can be used as
normalizing factor N, and our results seem in general insensitive to this choice. In our
software, this parameter N can be adjusted as appropriate, and we often use M for N.

Universality of NGD: In the full paper [13] we analyze the mathematical properties
of NGD, and prove the universality of the Google distribution among web author based
distributions, as well as the universality of the NGD with respect to the family of the
individual web author’s NGD ’s, that is, their individual semantics relations, (with high
probability)—not included here for space reasons.

NGD(x,y) =

5 Applications

5.1 Colors and Numbers

The objects to be clustered are search terms consisting of the names of colors, numbers,
and some tricky words. The program automatically organized the colors towards one
side of the tree and the numbers towards the other, Figure 5. It arranges the terms which
have as only meaning a color or a number, and nothing else, on the farthest reach of
the color side and the number side, respectively. It puts the more general terms black
and white, and zero, one, and two, towards the center, thus indicating their more am-
biguous interpretation. Also, things which were not exactly colors or numbers are also
put towards the center, like the word “small”. We may consider this an example of auto-
matic ontology creation. As far as the authors know there do not exist other experiments
that create this type of semantic meaning from nothing (that is, automatically from the
web using Google). Thus, there is no baseline to compare against; rather the current
experiment can be a baseline to evaluate the behavior of future systems.
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Fig. 5. Colors and numbers arranged into a tree using NGD .

5.2 Names of Literature

Another example is English novelists. The authors and texts used are:

William Shakespeare: A Midsummer Night’s Dream; Julius Caesar; Love’s Labours
Lost; Romeo and Juliet .

Jonathan Swift: The Battle of the Books; Gulliver’s Travels; Tale of a Tub; A Mod-
est Proposal;

Oscar Wilde: Lady Windermere’s Fan; A Woman of No Importance; Salome; The
Picture of Dorian Gray.

As search terms we used only the names of texts, without the authors. The clustering
is given in Figure 6; it automatically has put the books by the same authors together. The
S(T) value in Figure 6 gives the fidelity of the tree as a representation of the pairwise
distances in the NGD matrix (1 is perfect and 0 is as bad as possible. For details see
[7,12]). The question arises why we should expect this. Are names of artistic objects
so distinct? (Yes. The point also being that the distances from every single object to all
other objects are involved. The tree takes this global aspect into account and therefore
disambiguates other meanings of the objects to retain the meaning that is relevant for
this collection.) Is the distinguishing feature subject matter or title style? (In these ex-
periments with objects belonging to the cultural heritage it is clearly a subject matter.
To stress the point we used “Julius Caesar” of Shakespeare. This term occurs on the
web overwhelmingly in other contexts and styles. Yet the collection of the other ob-
jects used, and the semantic distance towards those objects, determined the meaning
of “Julius Caesar” in this experiment.) Does the system gets confused if we add more
artists? (Representing the NGD matrix in bifurcating trees without distortion becomes
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Fig. 6. Hierarchical clustering of authors. S(T) = 0.940.

more difficult for, say, more than 25 objects. See [12].) What about other subjects, like
music, sculpture? (Presumably, the system will be more trustworthy if the subjects are
more common on the web.) These experiments are representative for those we have
performed with the current software. For a plethora of other examples, or to test your
own, see the Demo page of [7].

5.3 Systematic Comparison with WordNet Semantics

WordNet [36] is a semantic concordance of English. It focusses on the meaning of
words by dividing them into categories. We use this as follows. A category we want to
learn, the concept, is termed, say, “electrical”, and represents anything that may pertain

to electronics. The negative examples are constituted by simply everything else. This
category represents a typical expansion of a node in the WordNet hierarchy. In an ex-
periment we ran, the accuracy on the test set is 100%: It turns out that “electrical terms”

are unambiguous and easy to learn and classify by our method. The information in the
WordNet database is entered over the decades by human experts and is precise. The
database is an academic venture and is publicly accessible. Hence it is a good base-
line against which to judge the accuracy of our method in an indirect manner. While
we cannot directly compare the semantic distance, the NGD , between objects, we
can indirectly judge how accurate it is by using it as basis for a learning algorithm. In
particular, we investigated how well semantic categories as learned using the NGD —
SV M approach agree with the corresponding WordNet categories. For details about the
structure of WordNet we refer to the official WordNet documentation available online.
We considered 100 randomly selected semantic categories from the WordNet database.



For each category we executed the following sequence. First, the SVM is trained on 50
labeled training samples. The positive examples are randomly drawn from the WordNet
database in the category in question. The negative examples are randomly drwan from
a dictionary. While the latter examples may be false negatives, we consider the proba-
bility negligible. Per experiment we used a total of six anchors, three of which are ran-
domly drawn from the WordNet database category in question, and three of which are
drawn from the dictionary. Subsequently, every example is converted to 6-dimensional
vectors using NGD . The ith entry of the vector is the NGD between the ith anchor
and the example concerned (1 <i < 6). The SVM is trained on the resulting labeled
vectors. The kernel-width and error-cost parameters are automatically determined us-
ing five-fold cross validation. Finally, testing of how well the SVM has learned the
classifier is performed using 20 new examples in a balanced ensemble of positive and
negative examples obtained in the same way, and converted to 6-dimensional vectors in
the same manner, as the training examples. This results in an accuracy score of correctly
classified test examples. We ran 100 experiments. The actual data are available at [10].
A histogram of agreement accuracies is shown in Figure 7. On average, our method
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Fig. 7. Histogram of accuracies over 100 trials of WordNet experiment.

turns out to agree well with the WordNet semantic concordance made by human ex-
perts. The mean of the accuracies of agreements is 0.8725. The variance is =~ 0.01367,
which gives a standard deviation of ~ 0.1169. Thus, it is rare to find agreement less than
75%. The total number of Google searches involved in this randomized automatic trial
is upper bounded by 100 x 70 x 6 x 3 = 126,000. A considerable savings resulted from
the fact that we can re-use certain google counts. For every new term, in computing its
6-dimensional vector, the NGD computed with respect to the six anchors requires the
counts for the anchors which needs to be computed only once for each experiment, the
count of the new term which can be computed once, and the count of the joint occur-
rence of the new term and each of the six anchors, which has to be computed in each
case. Altogether, this gives a total of 6 + 70 + 70 x 6 = 496 for every experiment, so
49,600 google searches for the entire trial.
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