
17 MDL in Context

In this chapter, we compare refined MDL to various other statistical infer-

ence methods. We start in Section 17.1, with a comparison between MDL

and various frequentist approaches. Section 17.2 considers the relation be-

tween MDL and Bayesian inference in great detail. Section 17.3 compares

MDLmodel selection to the two popular default model selection approaches

AIC and BIC. Section 17.4 compares MDL to the similar Minimum Message

Length Principle. Section 17.5 compares MDL to Dawid’s prequential ap-

proach. Sections 17.6 through 17.10 consider cross-validation, maximum en-

tropy, idealizedMDL, individual sequence prediction and statistical learning

theory, respectively. The latter two comparisons make clear that there do

exist some problems with the MDL approach at its current stage of develop-

ment. These are discussed in Section 17.11, in which I also suggest how the

MDL approach might or should develop in the future.

Unless mentioned otherwise, whenever we write “MDL,” we refer to the

individual-sequence version of MDL; see the introduction to Part III of this

book.

A Word of Warning Some of the differences between MDL and other ap-

proaches simply concern details of algorithms that are used for practical in-

ference tasks. Others concern the difference in underlying principles. Discus-

sion of such philosophical differences is inherently subjective, and therefore,

some comparisons (especially MDL-Bayes, Section 17.2) will be quite opin-

ionated. When referring to the underlying principles, I use phrases such as

“From an MDL perspective, . . .,” “the MDL view,” and so on. In those cases

where I strongly agree with the MDL perspective, I have permitted myself to

use first-person phrases such as “in my opinion.” I have tried to restrict the

use of phrases involving the word “we” (such as “we now see that”) to “ob-
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jective” facts, such as mathematical derivations. These safeguards notwith-

standing, it is inevitable that in this chapter, my personal viewpoints become

entangled with those of Rissanen and other MDL researchers.

17.1 MDL and Frequentist Paradigms

Against Principles? Frequentist or “orthodox” statisticians (Chapter 2, page 73)

are often suspicious of anything calling itself a “principle.”

I have heard several well-known statisticians say this. One well-known sta-

tistical learning theorist even told me that “MDL and Bayes are just recipes

for doing inferences; these may work in some, but not in other situations. In

contrast, in learning theory we design algorithms that are provably optimal.”

They argue that, when designing methods for learning, rather than dogmat-

ically adhering to principles, we should focus on what counts: making sure

that our algorithms learn a good approximation to the true distribution fast,

based on as few data as possible. Researchers who dismiss principles such

as MDL on such grounds tend to forget that they themselves strongly rely

on another principle, which one might call the frequentist principle: the idea

that it is realistic to view real-world data as sampled from some P ∗ in some

model class M. This is just as much a “principle” as the basic MDL idea
that “the more you can compress data, the more you have learned from the

data.” From an MDL perspective, there are at least three problems with the

frequentist principle:

1. Too unrealistic. The frequentist principle is often quite unrealistic in prac-

tice. In Section 17.1.1 we illustrate this using a detailed example, and we

emphasize that frequentist ideas can be used either as a sanity check for

algorithms based on other principles, or as a principle for designing learn-

ing algorithms. From the MDL stance, only the latter type of frequentist

principle is truly problematic.

2. Too restrictive. The frequentist design principle is unnecessarily restric-

tive. The reason is that frequentist procedures usually violate the prequen-

tial principle, which we discuss in Section 17.1.2.

3. Too much work. Designing optimal frequentist procedures involves a lot

of work, which may sometimes be unnecessary. This is explained in Sec-

tion 17.1.3.
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In the sections below we discuss each issue in turn. Before we start, we note

that the first issue (unrealistic probabilistic assumptions) is mostly resolved

in statistical learning theory, which we further discuss in Section 17.10. This

is a frequentist approach to learning from data that only makes very mild

assumptions about the data generating distribution. The price to pay is that

it can be applied only in restricted settings.

17.1.1 Frequentist Analysis: Sanity Check or Design Principle?

Frequentist Assumptions Are Unrealistic We already argued in Chapter 1,

Section 1.7, that frequentist assumptions are often unrealistic. It is sometimes

argued that the frequentist principle becomes more realistic if one takes a

nonparametric approach. Thus, one assumes that data are sampled from

some P ∗ in some large nonparametric classM∗. For example, as in Chap-

ter 13, Section 13.3, one could choose to “merely” assume that P ∗ has a

differentiable density f∗ on its support X = [0, 1], where f∗(x) is bounded

away from 0 and infinity. While this is evidently a weaker assumption than

the parametric requirement that P ∗ is a member of some finite-dimensional

model, it is still problematic from an MDL perspective. Namely, such non-

parametric modeling is often applied in settings where it is unclear whether

the assumption of a “true” P ∗ makes sense at all. And even if one does as-

sume that such a P ∗ exists, the assumption that its density be differentiable

is still very strong, and one would need an infinite amount of data to test

whether it truly holds. Often, it will simply not hold, as Example 17.1 illus-

trates: data may be sampled from a distribution P ∗ which has no density,

yetM∗ may contain distributions with differentiable densities that predict

data sampled from P ∗ very well. However, if we design our estimators so as

to be optimal from a frequentist perspective, we may end up with a brittle

algorithm that only works well (learns P ∗ fast) if P ∗ truly has a density, and

fails dramatically if P ∗ has no density.

For example, consider any learning algorithm for histogram density estimation

that achieves the minimax optimal convergence Hellinger rate (Chapter 13,

Chapter 16). We can always modify such an algorithm such that, if for some

n, n′ > n, xn = xn′ , then for all n′′ > n′, the algorithm outputs the uniform

distribution on X . Hence the algorithm breaks down as soon as two times the

same outcome is observed. Since such an event has probability 0 under any

P ∗ ∈ M∗, it will still achieve the minimax optimal convergence rate.

While most nonparametric estimators used in practice will not do anything

strange like this, and will be reasonably robust against P ∗ that do not admit
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a density, the point is that there is nothing in the frequentist paradigm which

requires one to avoid brittle algorithms like the one above.

To me, it seems a much better strategy to design a learning method which

leads to good predictions whenever some P ∈ M∗ leads to good predic-

tions, no matter what particular sequence is observed. By Theorem 15.1,

the resulting algorithms then also lead to consistent estimates, such that if

data are i.i.d. ∼ P ∗ according to some P ∗ ∈ M∗, then the estimator con-

verges to P ∗ at reasonably fast rate. This is a fantastic sanity check of such

an individual-sequence method; but one should never turn the world on its

head, and design estimators solely to converge fast if P ∗ ∈ M∗; for then

one cannot really say anything about their performance on the sequence that

actually arrives.

Example 17.1 [Models with, and Distributions without Densities]One often

adopts the normal family as one’s statistical model because one has reason to

believe that each outcome Xi is really the normalized sums of a number of

bounded i.i.d. random variables Yi,1, . . . , Yi,m. It then follows by the central

limit theorem that theXi are approximately normally distributed. However, if

the Yi,j are discrete (for example, Bernoulli) random variables, then theXi will

have a discrete rather than a continuous distribution. In particular, theXi will

not have a differentiable density. Modeling such data by a normal distribution

is harmless as long as one considers individual sequences: with high proba-

bility, θ̂(xn) will achieve small log loss − log fθ̂(xn)(x
n), and universal models

relative to the normal family will lead to good predictions of future data in the

log loss sense. Thus, even in a parametric context, a modelM of distributions

with densities can be a very good model for the data even though the “true”

distribution does not have a density, but only if the estimators based on such

models do not crucially rely on the existence of such a density. One would

expect that the same is the case for nonparametric models.

Summarizing, from an MDL perspective, the frequentist principle may very

well serve as a sanity check, but never as a design principle (an explicit ex-

ample of the frequentist design principle at work is given in Section 17.10).

To be fair, I should immediately add that many frequentist statisticians have

been working in a way consistent with the “weakly frequentist” sanity-check

view. They accept that some of the most clever statistical procedures in his-

tory have been suggested by external ideas or principles, and they make it

their business to analyze the frequentist behavior of such procedures. This

type of research, which may analyze methods such as moment-based estima-

tors, Bayes procedures, cross-validation, MDL, andmany others, is generally

illuminating and often quite sophisticated. However, one surprising aspect



17.1 MDL and Frequentist Paradigms 527

from an MDL point of view is that a substantial fraction of this research still

concentrates on the maximum likelihood method and its direct extensions.1

The Strange Focus on Maximum Likelihood Fisher’s ideas on maximum

likelihood estimation provided an enormous breakthrough in the 1920s and

1930s. While at that time, there was ample justification to study its frequen-

tist properties, I think that now, in 2006, it is time to move on. The ML

method suffers from a number of problems: (1) it does not protect against

overfitting; (2) in some quite simple problems (such as the Neyman-Scott

problem (Wallace 2005)), its performance is simply dismal; (3) even if one

analyzes its behavior for quite simple parametric families, it is sometimes

not “admissible” (Ferguson 1967). Finally, (4), it provides no clue as to why

there exist phenomena such as “superefficiency.” A superefficient estimator

relative to a parametric Θ is one which, like the ML estimator, achieves the

minimax (squared Hellinger) convergence rate O(n−1), but achieves much

faster rates on a subset of Θ of Lebesgue measure 0. None of these four is-

sues are a problem for MDL. Given this insight, it seems strange to focus

so much effort on proving consistency and convergence rate results for ML

estimators.

For example, overfitting is taken care of automatically by MDL, witness the

convergence results Theorem 15.1 and Theorem 15.3; its behavior on Neyman-

Scott is just fine (Rissanen 1989); admissibility is guaranteed for two-part MDL

estimators (Barron and Cover 1991), and finally, the superefficiency phenome-

non is easily explained from an MDL point of view (Barron and Hengartner

1998): as we already pointed out in Chapter 6, one can easily design a Bayesian

universal code relative to a parametric modelΘwith a discrete prior, that puts

nonzero prior mass on all rational-valued parameter values. One can define a

meta-universal code relative to this code, combinedwith the ordinary Bayesian

universal code based on a continuous prior. Such a meta-universal code will

achieve standard expected redundancy O(log n) if X1, X2, . . . ∼ Pθ for all

θ ∈ Θ, but it will achieve expected redundancyO(1) for θ with rational-valued

parameters. It follows that for rational parameters, the KL, and therefore, the

Hellinger risk, of the corresponding prequential Bayesian estimator must es-

sentially converge (Chapter 15, Corollary 15.1, page 473) at rate faster than

O(f(n)), where
P

i=1,2,... f(i) < ∞, so that f(n) = o(1/n).

1. To witness, I have once taken part in a discussion with several well-known non-Bayesian

statisticians, who simply could not believe (a) that in the MDL approach to histogram estima-

tion, histograms are determined by a Jeffreys’ or Laplace estimator, rather than an ML estimator

(Chapter 13, Section 13.3); and (b) that this matters.
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ML Is Fundamental - in a Different Sense The ML estimator plays a funda-

mental role in statistics: it pops up in a wide variety contexts, it has a natural

feel to it, and it has many pleasant properties. To give but one example of such

a property, in exponential families, it is equal to the average sufficient statistic

of the observed data. Because of its fundamental role, it is sometimes argued

that there is ample justification to continue studying the convergence proper-

ties of ML estimators. From an MDL point of view, the ML estimator is indeed

a most fundamental notion, so there is no contradiction here. But it is invari-

ably seen as a quantity that is optimal with hindsight. Thus, the MDL goal is

to design estimators or predictors that predict almost as well as the ML esti-

mator constructed with hindsight from the data that needs to be predicted. As

explained in Chapter 15, Section 15.4.1, this goal is not achieved by predicting

with, or estimating by, the ML estimator itself.

Of course, one can extend the ML method to deal with complex models by

adding complexity penalties, as is done, in, for example, the AIC model

selection criterion (Section 17.3.2). Such complexity penalties are typically

designed such as to achieve good rates of convergence in terms of (e.g.,

Hellinger) risk. Thus, they are designed so as to achieve good performance

in expectation, where the expectation is under one of the distributions in the

assumed model class. The problem with such extensions is that now the

frequentist paradigm is once more used as a design principle, rather than

merely as a sanity check.

17.1.2 The Weak Prequential Principle

Inference methods based on the frequentist design principle often violate

the weak prequential principle (WPP). The WPP was introduced in essence by

Dawid (1984), and investigated in detail by Dawid and Vovk (1999).

Let us consider a hypothesis P for data x1, . . . , xn that can be used for

sequentially predicting xi given xi−1. For example, P may be a probabilis-

tic source, or a universal code representing a set of probabilistic sources.

According to the WPP, the quality of P as an explanation for given data

xn = x1, . . . , xn should only depend on the actual outcomes x1, . . . , xn, as

well as the predictions that the distribution P makes on xn, i.e. on the set of

n conditional probabilities P (xi | xi−1), i = 1, ...n. It should not depend on

any other aspect of P . In particular, the conditional probability of any x ∈ X
conditioned on data yi−1 that did not occur in the sequence x1, . . . , xn should

not play any role at all.

There are at least two reasons why this might be a good idea: first, intu-
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itively, it would be strange or even irrational, if predictions that were never

made would somehow influence any decision about whether P is a suitable

model for the observed data. Second, we may sometimes want to consider

a “hypothesis” P whose predictions conditional on unseen data are simply

unknowable. A prototypical example is weather forecasting.

Example 17.2 [Weather Forecasters and the WPP] Here we let P represent a

weather forecaster, in the following sense: let data (x1, y1), . . . , (xn, yn) repre-

sent consecutive days. On each day i−1, based on previous data xi−1, yi−1, the

weather forecaster announces the probability that it will rain on day i. Thus,

yi ∈ Y indicates whether it rains (1) or not (0) on day i, and the weather

forecaster’s predictions can be thought of as conditional distributions P (Yi |

xi−1, yi−1). Here each xi can be thought of as a gigantic vector summarizing

all the observable data on day i that the forecaster makes use of in her pre-

diction algorithm. This may include air pressure, humidity, temperature and

other related quantities measured at various places around the world.

In the Netherlands we have two weather forecasters (one working for public

television, the other for commercial television). Both make daily predictions

about the precipitation probability for the next day. If we want to know who

of the two we should listen to, we would like to compare their predictions on

some sequence of days, say, the entire previous year. If we use a comparison

procedure which needs to look at their prediction for day yi in contexts that

have not taken place (i.e. for values of xi−1 and yi−1 different from those ob-

served), then we are in trouble, for it would be exceedingly hard to obtain this

information.

The WPP is violated by many classical statistical procedures, including stan-

dard null hypothesis testing. As a result, standard hypothesis testing cannot

be used to determine the quality of a weather forecaster, merely by watch-

ing her make predictions on television. Instead, one would need to know

what she would have predicted in all possible situations that might have, but

did not occur. The relation between the WPP and MDL is explored in Sec-

tion 17.5.

17.1.3 MDL vs. Frequentist Principles: Remaining Issues

As claimed by the frequentist in the beginning of this section, page 524, prin-

ciples like MDL and Bayes do provide recipes to “automatically” approach

all kinds of statistical problems. But unlike the frequentist, I think this is good

rather than bad. The alternative offered by the frequentist design principle is

to design separate, possibly entirely different algorithms for each of themany
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different types of inductive inference tasks, such as classification, regression,

sequential prediction, model selection, clustering, similarity analysis... For

each of these tasks, one should design an algorithm with good properties

for exactly that task. To me, such an approach seems neither very elegant

nor very robust. I’d much rather use a “principle” (such as MDL or Bayes)

that is widely applicable, always yields reasonable answers, even if in any

particular application, the method induced by the principle is not 100% op-

timal. For example, it is not clear to me whether one should be particularly

concerned about the fact that the risk of MDL inference with CUP model

classes in nonparametric contexts does not always converge at the optimal

rate (Chapter 16, Section 16.6). MDL sometimes needs an extra log n factor

in expectation compared to the minimax optimal algorithm, under some as-

sumptions on the true distribution P ∗. This may not be a very large price to

pay, given that we have designed our MDL algorithm without making any

assumptions about this P ∗ whatsoever!

However, the fact that I (and most other individual-sequence MDL adher-

ents) embrace the use of frequentist analysis as a sanity check, does imply the

following: suppose that an MDL procedure has really bad frequentist behav-

ior, e.g. suppose that it would be inconsistent under a wide variety of con-

ditions. Then I am in trouble: my basic principle suggested a method which

fails my sanity check. Luckily, the convergence results Theorem 15.1 and 15.3

guarantee that this never happens when the model class contains the true

data-generating distribution. However, such inconsistency can sometimes

occur if the model class is misspecified; see Section 17.10.2.

Expectation-Based vs. Individual-Sequence MDL As discussed in Chap-

ter 6, Section 6.5, a majority of information theorists works with stochastic

rather than individual-sequence universal codes, where usually, “universal-

ity” is defined in expectation with respect to some P in one of the models

under consideration. According to the individual-sequence MDL philoso-

phy, one really should not use expectation-based MDL procedures, which

are based on such expected-redundancy universal models. Nevertheless, I

have to admit that from a certain point of view, the use of such codes is quite

natural. To see this, first note that if we code data using the code correspond-

ing to a distribution P , then the codewould be optimal in expectation sense if

indeed the data were distributed∼ P . That is, we associate each distribution

P with the code Q achieving

min
Q

D(P‖Q),
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where Q ranges over all codelength functions. The Q achieving this mini-

mum happens to be equal to P . Starting from that consideration, if we want

to associate a code with a set of distributionsM, the natural extension seems
to be to require that the code would be optimal in expectation sense if indeed

the data were distributed ∼ P , in the worst-case over all P ∈ M. Thus, we
should pick the code minimizing

min
Q

max
P∈M

D(P‖Q).

This is exactly what we do if we base model selection on the minimax opti-

mal expected redundancy code ((6.41) on page 202) rather than the minimax

optimal individual-sequence regret code P̄nml.

Thus, one may reason that the proper type of universal code to use in

MDL inference is of the expected rather than the individual sequence kind.

In my own personal view, expectation-based MDL is an interesting varia-

tion of MDL where the frequentist principle is elevated from its sanity check

status, and put on the same footing as the compression principle. I prefer

the individual-sequence principle, but think it is reassuring that in practice,

individual-sequence MDL procedures are usually also minimax optimal in

an expectation sense, and intuitive2 expectation-based MDL procedures of-

ten also turn out to work well in an individual sequence sense; see, however,

the discussion in Chapter 11, the discussion below Example 11.12, page 326.

In the remainder of this chapter, the term “MDL” keeps referring to the

individual-sequence version.

17.2 MDL and Bayesian Inference

Bayesian statistics is one of the most well-known, frequently and success-

fully applied paradigms of statistical inference (Berger 1985; Bernardo and

Smith 1994; Lee 1997; Gelman et al. 2003). It is often claimed that “MDL

is really just a special case of Bayes.”3 Although there are close similarities,

this is simply not true. To see this quickly, consider the basic quantity in

refined MDL: the NML distribution P̄nml, (6.15) on page 181. There is no

mention of anything like this code/distribution in any Bayesian textbook!

2. The word “intuitive” is meant to rule out brittle procedures such as those described on

page 525 which, for example, crash if the same observation occurs twice.
3. The author has heard many people say this at many conferences. The reasons are probably

historical: while the underlying philosophy has always been different, until Rissanen intro-

duced the use of P̄nml, most actual implementations of MDL “looked” quite Bayesian.
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Thus, it must be the case that Bayes and MDL are somehow different. While

a Bayesian statistician may still think of NML as an approximation to the

log marginal likelihood (see below), this cannot be said for the “localized”

NML distribution (14.14) on page 427. While natural from an MDL point of

view, this version of NML cannot even be interpreted as an approximation to

any Bayesian quantity. The differences become more dramatic if one consid-

ers expectation-based MDL as well. In Section 17.3.2 below we describe an

expectation-based MDL method that combines the best of the AIC and BIC

model selection criteria, and that does not seem to resemble any Bayesian

procedure.

In the remainder of this section, we analyze the differences between MDL

and Bayes in considerable detail. We first give a high-level overview, empha-

sizing the difference in underlying principles. Then, in Section 17.2.1 through

17.2.3, we investigate the practical consequences of these underlying differ-

ences of principle.

TheMDL vs. the Bayesian Principles Two central tenets of modern Bayes-

ian statistics are: (1) probability distributions are used to represent uncer-

tainty, and to serve as a basis for making predictions, rather than merely

standing for some imagined “true state of nature”; and, (2), all inference and

decision-making is done in terms of prior and posterior distributions and

utility functions. MDL sticks with (1) (although here the “distributions” are

primarily interpreted as “codelength functions”), but not (2): MDL allows

the use of arbitrary universal models such as NML and prequential plug-in

universal models; the Bayesian universal model does not have a special sta-

tus among these. Such codes are designed according to the minimum com-

pression (or “maximum probability”) principle and the luckiness principle,

both of which have no direct counterpart in Bayesian statistics.

MDL’s Two Principles: Maximum Probability and Luckiness The first

central idea of MDL is to base inferences on universal codes that achieve

small codelength in a minimax sense, relative to some class of candidate

codes (“model”)M. This minimum codelength paradigm may be reinter-
preted as a maximum probability principle, where the maximum is relative to

some given models, in the worst case over all sequences (Rissanen (1987)

uses the phrase “global maximum likelihood principle”). Thus, whenever

the Bayesian universal model is used in an MDL application, a prior (usu-
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ally Jeffreys’) should be used that minimizes worst-case codelength regret,

or equivalently, maximizes worst-case relative probability.

In practice, the minimax optimal prior is often not well defined. Then

MDL approaches have to resort to a second idea: the luckiness principle.

The procedure now becomes “subjective,”4 just like a Bayesian approach.

Still, there remain some essential differences between MDL and Bayes. The

most important of these are:

1. Types of universal codes. MDL is not restricted to Bayesian universal co-

des; for example, LNML and plug-in codes may be used as well.

2. Hope vs. expectation. The luckiness-type subjectivity of MDL is of an in-

herently different, weaker type than the subjectivity in Bayesian approach-

es. This is explained in Section 17.2.1 below. As a consequence, many

types of inferences and decisions that are sometimes made in Bayesian

inference are meaningless from an MDL perspective. This is perhaps the

most crucial, yet least understood difference between MDL and Bayes.

3. Priors must compress. Even when luckiness functions are allowed, if a

Bayesian marginal likelihood is used in an MDL context, then it has to

be interpretable as a universal code, i.e. it has to compress data. This

rules out the use of certain priors. For example, the Diaconis-Freedman

type priors, which make Bayesian inference inconsistent, cannot be used

in MDL approaches, as explained in Section 17.2.2.

The first difference illustrates that in some respects, MDL is less restrictive

than Bayes.5 The second and third difference illustrate that in some respects,

MDL is more restrictive than Bayes; yet, as I argue below, the MDL-imposed

restrictions make eminent sense. In the remainder of this section, we first,

in Section 17.2.1, explain the differences between MDL’s luckiness approach

and the Bayesian prior approach. Section 17.2.2 explains how MDL’s insis-

tence on data compression helps avoid some problems and interpretation

difficulties with Bayesian inference. In Section 17.2.3 we discuss the relation

between MDL and various sub-brands of Bayesian inference.

4. It is sometimes claimed that MDL inference has no subjective aspects. This is wrong: sub-

jectivity enters MDL through the luckiness principle. This fact was somewhat hidden in earlier

treatments of MDL, because “luckiness functions” were not made explicit there.
5. From a Bayesian point of view, one may dismiss this difference by claiming that LNML, two-

part and plug-in codes should merely be viewed as approximations of the Bayesian universal

code, which is what really should be used. The other two differences cannot be dismissed on

such grounds.
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17.2.1 Luckiness Functions vs. Prior Distributions

Let Θ represent some parametric model {Pθ | θ ∈ Θ}. Suppose we are inter-
ested in parameter estimation relative to Θ, or in model selection between Θ

and some other parametric model Θ◦. To apply MDL inference, we impose

a luckiness function a(θ). While this is related to adopting a prior π(θ), we

now explain why it is really not the same. First of all, recall that the prior

π(θ) corresponding to a(θ) is in general not proportional to e−a(θ). Rather, it

is given by the luckiness-tilted Jeffreys’ prior π(θ) ∝
√

det I(θ)e−a(θ).

Three Reasons for Choosing a Particular Luckiness Function A second

and more important difference with Bayesian priors is that we may choose

a particular luckiness function for all kinds of reasons: first, it may indeed

be the case that we choose a particular a(θ) because we have prior beliefs

that data for which a(θ̂(xn)) is large are improbable. A second reason for im-

posing a certain luckiness function is that it may make our universal codes

mathematically simpler or more efficiently computable, so that our inference

problem becomes tractable. A third reason to impose a particular luckiness

function arises when we deal with an inference problem for which some re-

gionΘ′ ⊂ Θ is simply of no interest to us. We can then make the correspond-

ing model selection problem a lot easier by imposing a luckiness function

with large a(θ) for θ ∈ Θ′.

Example 17.3 Let Θ represent the Poisson model, given in the mean-value

parameterization. Suppose, for the sake of argument, that data are distributed

according to some µ∗ ∈ Θ. Let Θ′ = {µ | µ > 1000}. It may be that µ∗

represents the average time between two phone calls in a particular neigh-

borhood. A phone company may be interested in estimating µ∗ because it

can optimize its resources if it has a better idea of the length of phone calls. If

µ∗ is very large, than Pµ∗ also has large variance (the Poisson model satisfies

varµ∗ [X] = µ∗), and then knowing µ∗ or a good approximation thereof may

not be very useful, and will not save a lot of money. So, the company may be

interested in good estimates of µ∗, but only if µ∗ is small.

Only the first of these three reasons for using luckiness functions truly cor-

responds to the use of a prior in Bayesian statistics. The second reason –

choosing a luckiness function for computational reasons – corresponds to

the use of pragmatic priors, which, as explained further below, is standard

Bayesian practice, yet, in my view, cannot be justified by Bayesian theory.

From a Bayesian point of view, the third reason may seem strange, since
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it mixes up probability and utility considerations.6 From an MDL point of

view, this is as it should be, as we now explain.

The Rationale of Luckiness Suppose we have chosen a luckiness function

a(θ). We then observe data xn, and end up with a luckiness ML estima-

tor θ̂a(xn) which achieves a certain luckiness value a(θ̂a(xn)). What are the

consequences of this for decision-making? If a(θ̂a(xn)) is small, then our

universal code P̄ based on a(θ) achieved small regret. This means we are

lucky: because we were able to compress the observed data a lot, we have a

lot of confidence in any inferences we may draw from our universal code.

For example, if we use the predictive distribution P̄ (· | xn) as an estimator,

then small a(θ̂a(xn)) means high confidence that P̄ (· | xn) will lead to good

predictions of future data. This conclusion can also be motivated from a

frequentist perspective by Theorem 15.1, which relates good compression to

fast learning. On the other hand, if the data were such that a(θ̂a(xn)) is large,

then we were unlucky: we do not compress a lot, and we cannot trust pre-

dictions of future data based on our current predictive distribution P̄ (· | xn)

to be accurate. Another connection to frequentist analysis can be made in a

model selection context, when comparing the model (Θ, Pθ) to a point hy-

pothesis P0. In that case, observing data with small a(θ̂a(xn)) implies that

in a frequentist hypothesis test, we would have rejected P0. This is implied

by the no-hypercompression inequality, as we explained in Chapter 14, Ex-

ample 14.6, page 421. It is crucial to note that observing “lucky” data with

small a(θ̂a(xn)) implies large confidence in estimates and predictions irrespective of

whether our luckiness function corresponds to prior beliefs or not! This shows that

it is safe to choose a luckiness function completely at will – if it is chosen for

mathematical convenience, and the corresponding prior puts large mass at

parameter values that do not turn out to fit the data well, then wewill simply

conclude that we were “unlucky,” and not have any confidence in our future

predictions. Wewill see below that the same cannot be said for pragmatically

chosen Bayesian priors.

Pragmatic Priors vs. Luckiness Functions: Expectation vs. Hope Most

practical Bayesian inference is based on pragmatic priors, which, rather than

truly representing the statistician’s prior degree of belief, are chosen mostly

6. But see Rubin (1987), who mathematically shows that Bayesian prior and utility consider-

ations are, in a sense, logically inseparable. This is, however, not the way Bayesian theory is

usually presented.
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for their mathematical convenience. An example is the frequent adoption in

Bayesian practice of conjugate priors relative to exponential families (Berger

1985). One may argue that the use of such pragmatic priors corresponds

exactly to the use of luckiness function in MDL priors. There is, however, a

crucial difference. To see this, suppose we adopt some convenient, pragmatic

prior π on the model Θ. For example, let Θ be the Bernoulli model in its

standard parameterization, and suppose a pragmatic Bayesian adapts the

uniform prior for convenience. Now the prior probability that θ will fall

into the interval [0, 0.9], is nine times as large as the prior probability that θ

will fall in the region [0.9, 1.0]. Then strictly speaking, a Bayesian should be

prepared to pay up to ten dollars for a lottery ticket which pays 100 dollars if,

in a long sequence of outcomes, more than 90% ones are observed, andwhich

pays 0 dollars otherwise. But whywould this make sense if the uniform prior

has been chosen for pragmatic, e.g. computational reasons, and does not

truly and precisely reflect the Bayesian’s subjective prior belief? To me, it does

not make much sense. The same argument holds for most other decisions

that can be made on the basis of pragmatic priors and posteriors.

Note that MDL inference with luckiness functions is immune to this problem.

For example, suppose we use MDL with a Bayesian universal code relative

to the Bernoulli model. We decide to use Jeffreys’ prior (and use a uniform

luckiness function), because it achieves codelengths that are close to minimax

optimal. Now, once Jeffreys’ prior has been adopted, one can formally cal-

culate the prior probability that θ will fall into the interval [0.5, 0.51], and the

prior probability that θ will fall in the region [0.99, 1.0]. The latter probability

is more than 5 times the former, but this certainly does not mean that an MDL

statistician deems data with 99% or more 1s as a priori five times as likely than

data with about 50% ones; he or she would certainly not be willing to take part

in a betting game which would be fair if this proposition were true. From the

MDL viewpoint, Jeffreys’ prior has been adopted only because it leads to min-

imax optimal relative codelengths, no matter what the data is, and no statement

about which parameters are “more likely” than others can ever be based on it.

According to MDL, all decision-making should be directly based on the uni-

versal code, which is a distribution on sequences of data. Thus, we can use

the marginal likelihood P̄Bayes(x
n) as a basis for decisions in model selec-

tion problems, and the predictive distribution P̄Bayes(Xn+1 | xn) as a pre-

dictor of future data or as an estimator of θ. We are only willing to place

bets on events whose expected payoffs can be expressed directly in terms of
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P̄Bayes. The luckiness-Jeffreys’ posterior of θ has no meaning in and of itself.
7

Whereas in Bayesian inference, confidence in decisions is measured based on

the posterior, in MDL it is solely measured by the amount of bits by which

P̄Bayes(x
n) compresses data xn. Thus, with a very small sample, say, n = 1,

P̄Bayes(Xn+1 | xn), is of course still strongly dependent on the luckiness func-

tion, and hence very “subjective,” we are allowed to use it for prediction

of X2. But our confidence in the prediction is measured by the amount of

bits by which P̄Bayes(x
n) compresses data xn relative to some null modelM0

(Chapter 14, Example 14.3); for small n, this will usually give us very small

confidence. For n = 0 (no data observed, distribution fully determined by

luckiness function), it will give us no confidence at all — which is exactly

how it should be, according to the luckiness principle.

Summarizing and rephrasing the previous paragraphs:

Bayesian Priors vs. MDL Luckiness Functions

From a Bayesian point of view, adopting a prior π implies that we a pri-

ori expect certain things to happen; and strictly speaking, we should be

willing to accept bets which have positive expected pay-off given these

expectations. For example, we always believe that, for large n, with high

probability, the ML estimator θ̂(xn)will lie in a region Θ0 with high prior

probability mass. If this does not happen, a low-probability event will

have occurred and we will be surprised.

From an MDL point of view, adopting a luckiness function a implies that

we a priori hope certain things will happen. For example, we hope that

the ML estimator θ̂(xn) will lie in a region with small luckiness function

(i.e., high luckiness) a(θ), but we are not willing to place bets on this

event. If it does not happen, then we do not compress the data well, and

therefore, we do not have much confidence in the quality of our current

predictive distribution when used for predicting future data; but we will

not necessarily be surprised.

Bayes and Gzip In prequential MDL approaches, we predictXn+1 using P̄Bayes
(Xn+1 | xn). Our predictions would be optimal in posterior expectation, if

7. Note that P̄Bayes(x
n) and P̄Bayes(xn+1 | xn) can be written as expectations taken over the

prior and the posterior, respectively. Thus, we cannot say that MDL considers all expectations

over prior/posterior to be meaningless; the problematic ones are those which cannot be rewrit-

ten in terms of P̄Bayes only.
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data were really sampled by first sampling θ from the prior πa, and then sam-

pling data from θ. Does this imply that MDL secretly assumes that πa is a prior

in the Bayesian sense after all? Certainly not. To see why, consider the widely

used data compression program gzip. Gzip is really just a prefix code, and by

the Kraft inequality, there must be a (possibly defective) probability distribu-

tion P̄gzip such that for all files, represented as a string xn, the number of bits

needed to encode xn by gzip is given by − log P̄gzip(x
n). Thus, gzip would be

the optimal code in expectation to use if data were actually sampled according

to Pgzip or if, as a Bayesian would think of it, Pgzip would truly express our

subjective uncertainty about the data. But it would be absurd to assume that

either of these two is the case. This would imply that the entropyH(P
(n)
gzip) is a

reliable estimate of the number of bits we would need for encoding an actual

file xn. Now some people use gzip only for the compression of pdf files, and

others use gzip only for the compression of postscript files. These two groups

achieve different compression rates, so for at least one of them, H(P
(n)
gzip) must

be a very bad indicator of how well they can compress their files. Just like

gzip can compress well even if one does not believe that P̄gzip truly represents

one’s uncertainty, it is also the case that P̄Bayes based on prior πa can compress

well, even if one does not believe that P̄Bayes, or equivalently, πa truly repre-

sents one’s uncertainty. P̄Bayes may even be the best compressor one can think

of, in the limited computation time that one has available. Note that we are

really reiterating the “third-most important observation” of this book here, see

Chapter 3, page 107.

This difference between MDL and Bayesian inference is also brought out if

P̄Bayes(x
n) cannot be computed, and we have to use an approximation in-

stead. What constitutes a valid approximation? As we already described in

Section 14.6 on page 453, an approximation which performs well apart for

data with ML estimators that fall in a region with very small prior probabil-

ity is acceptable from a Bayesian point of view, but not from an MDL (and

not even from an expectation-based MDL) point of view.

Some Bayesians agree that, if a pragmatic convenience prior is used, then

expectations defined with respect to the prior are not very meaningful, and

even expectations over the posterior should be treated with some care. Yet

the point is that, in contrast to MDL, there is nothing in Bayesian statis-

tics which explicitly rules out taking such expectations. Moreover, many

Bayesian procedures are explicitly based on taking such expectations. We

give a particular example (DIC) below. Finally, even if a Bayesian admits that

her prior may be “wrong,” and only intends to use Bayes if the sample is so

large that the prior hardly matters, there remains a huge conceptual problem

if not just the prior, but the model itself is wrong. We very often want to use
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such models which we a priori know to be wrong; see Example 1.6. If we use

Bayes for such models, then we are forced to put a prior distribution on a

set of distributions which we know to be wrong - that is, we have degree-of-

belief 1 in something we know not to be the case. From an MDL viewpoint,

these priors are interpreted as tools to achieve short codelengths rather than

degrees-of-belief and there is nothing strange about the situation; but from

a Bayesian viewpoint, it seems awkward (but see Section 17.2.3 on purely

subjective Bayes).

DIC An example of a Bayesian procedure that explicitly relies on expectations

over the posterior, even when the sample is small, is the Bayesian deviance in-

formation criterion (DIC) for model selection (Spiegelhalter, Best, Carlin, and

van der Linde 2002). DIC is based on the posterior expected deviance

Eθ∼w(·|Xn)[− log Pθ(X
n) + log Pθ̂mean(Xn)(X

n)], (17.1)

where w(· | Xn) represents the posterior distribution of θ and θ̂mean is the

posterior mean estimator. The latter is arrived at by taking expectations over

the posterior (Chapter 15, Section 15.4.3). The examples in (Spiegelhalter et al.

2002) are based on standard, pragmatic priors (such as the normal prior for the

linear model), which may be called “weakly informative” or “essentially flat”

(see Bernardo’s comment on (Spiegelhalter et al. 2002, page 625)). Such priors

usually do not truly reflect the statistician’s beliefs. Therefore, expectations

taken over the posterior, and hence, the entire derivation leading up to the

DIC criterion, are essentially meaningless from an MDL perspective.

Note that we chose this particular example because it is recent and directly

related to model selection and regret; numerous other examples could be given

as well.

17.2.2 MDL, Bayes, and Occam

Bayesian model selection can be done in various ways. One of the most

straightforward and popular of these is the Bayes factor method (Kass and

Raftery 1995). The Bayes factor method automatically implements a form of

Occam’s razor. This “Occam factor” phenomenon has been independently

observed by several researchers; see (MacKay 2003, Chapter 28) for a detailed

account, and (Jeffereys and Berger 1992) for a list of references. Below we

shall see that in some other contexts such as nonparametric estimation and

prediction, Bayesian inference can sometimes become disconnected fromOc-

cam’s razor, and that this can cause trouble. Bayesian statisticians often view

Bayesian inference as the more fundamental concept, and use the Occam
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factor phenomenon to argue that a form of Occam’s razor is implied, and

therefore justified, by the deeper principle that rational learning and infer-

ence should be done in a Bayesian manner. In this subsection I argue that

one may just as well turn the argument on its head and view Occam’s razor,

formalized as MDL inference based on universal coding, as the deeper prin-

ciple. It justifies aspects of Bayesian inference by showing that they are im-

plied by MDL’s universal coding approach; but it also rules out some other,

problematic aspects of Bayesian inference which contradict MDL ideas.

Bayes Factors: Direct Occam As we showed in Chapter 14, Section 14.2.3,

page 418, Bayes factor model selection ends up being very similar to MDL

model selection. This is all the more remarkable since the motivation for

both methods is entirely different. Let us describe the motivation for the

Bayes factor method. For simplicity, we restrict to the simple case where

there are just two parametric modelsM1 andM2 under consideration. From

a Bayesian perspective, we can assign each of these a prior probability W .

Fortunately, the precise probabilities we assign will hardly affect the result,

unless they are very close to zero or one, or the sample is exceedingly small.

So, just for simplicity, we set W (M1) = W (M2) = 0.5. We now observe

some data xn and our task is to select a modelM1 orM2. In the Bayes factor

method, the goal of model selection is to find the true state of nature. This can

be formalized by using a 0/1-loss (minus utility) function L : {1, 2}2 → {0, 1}:
supposeMγ is the “true” model, and we select model with index γ̂. Then

L(γ, γ̂):=0 if γ = γ̂ (our guess is correct), and L(γ, γ̂):=1 if γ 6= γ̂ (our guess

is wrong). According to Bayesian statistics, upon observing data xn ∈ Xn,

we should take the decision γ̂ ∈ {1, 2} that minimizes the posterior expected
loss, i.e. we set

γ̂ = arg min
γ∈{1,2}

EZ∼W (·|xn)[L(Z, γ)], (17.2)

where

EZ∼W (·|xn)[L(Z, γ)] =
∑

γ′∈{1,2}

W (Mγ′ | xn)L(γ′, γ).

Evidently, γ̂ is achieved for the γ with the maximum posterior probability

W (Mγ | xn). This is exactly the γ picked by the Bayes factor method. In

Section 14.2.3 we explained how to calculate W (γ | xn), and why it usually

leads to the same results as MDL model selection.

The derivation makes clear why Bayes factors are sometimes criticized on

the grounds that they strongly depend on one of the models being true in the



17.2 MDL and Bayesian Inference 541

sense of being identical to the data generating process (Gelman et al. 2003),

and that they have no “predictive interpretation”(Spiegelhalter, Best, Carlin,

and van der Linde 2002).

Bayesian Model Selection and Prediction Our MDL analysis shows that both

criticisms are unjustified: Bayes factor model selection can be viewed as a form

of MDL model selection, which has a predictive (prequential) interpretation

that is valid no matter what sequence is observed, and which does not depend

on any underlying “true distribution.”

Intriguingly however, Bernardo and Smith (1994, Chapter 6) consider alterna-

tive utility functions that correspond to viewing model selection in predictive

rather than truth-hunting terms. They find that Bayesian model selection with

such alternative utility functions behaves quite differently from Bayes factor

model selection. More precisely, they replace the 0/1 loss function in (17.2)

by the log loss − log P̄Bayes(Xn+1 | xn,Mγ̂). Here P̄Bayes(Xn+1 | xn,Mγ̂)

is the Bayesian predictive distribution for the next outcome based on model

Mγ . Thus, they select the model γ̂ such that the Bayesian prequential estima-

tor based onMγ̂ has the smallest posterior expected log loss. Their analysis

suggests that asymptotically, the resulting “predictive Bayesian” model selec-

tion method will behave like leave-one-out cross-validation (Section 17.6) and

the AIC criterion (Section 17.3.2). Also, unlike the Bayes factor method, their

heuristic analysis still makes sense if the “true” data generating machinery is

unknown, and none of the models under consideration is true. In this case,

the modelsMγ are simply viewed as sets of predictors. More precisely, they

assume a “true” model classM∗ and a priorW ∗ onM∗, whereM∗ does not

necessarily contain any of theMγ . Their analysis suggests that, under some

conditions, asymptotically, someone who performs Bayesian model selection

based on the loss function − log P̄Bayes(Xn+1 | xn,Mγ̂) relative to model class

M∗ and priorW ∗, would select the same modelMγ̂ as would be selected by

leave-one-out cross-validation, which can be implementedwithout knowledge

ofM∗. Thus, while Bayes factor model selection has a sequential predictive in-

terpretation, the Bayesian method suggested by Bernardo and Smith (1994)

may have a leave-one-out style predictive interpretation.

Because of its correspondence to MDL model selection, it is clear that the

Bayes factor method “automatically” implements some form of Occam’s ra-

zor. If Bayes is used for estimation or prediction rather than model selection,

then this connection may sometimes be lost. For example, in nonparametric

estimation, the question whether or not Bayes has a built-in Occam’s razor

strongly depends on the chosen model and prior. Diaconis and Freedman

(1986) provide combinations of models and priors for which Bayesian infer-

ence becomes inconsistent. As we argue below, this is really implied by the
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fact that with such priors, the Bayesian universal code does not compress,

and hence, does not implement a form of Occam’s razor. On the other hand,

the Gaussian processes that we introduced in Chapter 13 define models and

priors for which the Bayesian universal code compresses very well, and, as a

consequence, the Bayesian predictive distribution predicts exceedingly well.

Taken together, these two facts illustrate why one might prefer the principles

underlying MDL over those underlying Bayesian inference.

Gaussian Processes: Hidden Occam In nonparametric contexts, Bayesian

prediction is sometimes based on a mixture of infinitely many arbitrarily

complex distributions. Yet, in many such cases, Bayesian methods predict

exceedingly well in practice. Therefore, it is sometimes argued that nonpara-

metric Bayes violates the spirit of Occam’s razor, but that also, this is as it

should be. Take, for example, the Gaussian processes with RBF kernel. Re-

gression based on such highly nonparametric models is very successful in

practice (Rasmussen and Williams 2006). As we described in Section 13.5,

such Gaussian process regression is based on a Bayesian predictive distribu-

tion which itself is essentially a mixture of infinitely many Gaussians. There-

fore, it seems to violate Occam’s razor.

I strongly disagree with this interpretation. When Gaussian processes are

combined with the RBF kernel, then the Bayesian marginal likelihood has

excellent, almost magical universal coding properties – the developments in

Chapter 13, Section 13.5.3 show that it can be viewed as an excellent data

compressor, with small coding regret even relative to high-dimensional re-

gression functions. Using the prequential MDL convergence theorem, The-

orem 15.1, this implies that, even if the data are distributed by some quite

complex process, the Gaussian process predictions converge to the optimal

predictions at a very fast (logarithmic) rate. Therefore, an MDL analysis of

the Gaussian process model shows that, when used to sequentially code the

data, it leads to very short descriptions thereof, and therefore does imple-

ment some form of Occam’s razor after all; because good compression im-

plies fast learning, it is exactly its good compression behavior which explains

why it works so well in practice (a related point is made by (Rasmussen and

Ghahramani 2000)).

In a nonparametric Bayesian modeling context, Neal (1996) states that:

“For problems where we do not expect a simple solution, the proper

Bayesian approach is therefore to use a model of a suitable type that is
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as complex as we can afford computationally, regardless of the size of

the training set.”

Our analysis suggests that this is true only if the chosen model has good

universal coding properties. We proceed to confirm this suggestion by re-

viewing an example with a model/prior combination that has bad universal

coding properties, and for which Bayesian inference leads to bad results.

Bayesian Inconsistency: No Occam For some nonparametric i.i.d. model

classesM, there exist priors such that the corresponding Bayesian marginal
likelihood P̄Bayes is not a universal model relative toM. More precisely, there
exists P ∗ ∈ M and c > 0 such that, if data are i.i.d. ∼ P ∗, then nomatter how

large the sample n, the expected redundancy EX∼P∗(n) [− log P̄Bayes(X
n) +

log P ∗(Xn)] > cn. Thus, P̄Bayes is not universal relative to P ∗. Since MDL is

defined as inference based on universal models, it is clear that from an MDL

point of view, such priors can never be used.

Now interestingly, there exist some (in)famous theorems by Diaconis and

Freedman (1986), which show that for some nonparametric contexts and

with some priors, Bayesian inference can be inconsistent, in the sense that for

some P ∗, if data are i.i.d. ∼ P ∗, then the posterior concentrates on (smaller

and smaller Hellinger neighborhoods of) a distribution P ′ with nonzero Hel-

linger distance to P ∗. Bayesians often dismiss these results as irrelevant,

since they are based on “silly” combinations of models and priors, that one

would never use in practice. There is, however, nothing in standard Bayesian

statistics which gives any clue about the conditions underwhich amodel/pri-

or combination is “silly.” MDL provides exactly such a clue: it turns out that

the combination of priors and true distributions used by Diaconis and Freed-

man are invariably such that the resulting P̄Bayes is not a universal code rela-

tive to P ∗. Thus, from an MDL point of view, one would never use such pri-

ors! To see this, note that Theorem 15.1 immediately implies the following: if

P̄Bayes is a universal code relative to P ∗, then Bayesmust be Césaro-consistent

in KL, and therefore, also in Hellinger distance. The Diaconis-Freedman re-

sults imply that with the Diaconis-Freedman prior, the Bayesian predictive

distribution P̄Bayes is not Césaro consistent in Hellinger distance. It follows

that under the Diaconis and Freedman prior, P̄Bayes cannot be universal. In

his comment on Diaconis and Freedman (1986), Barron (1986) already brings

up a related point.
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Bayesian vs. MDL Inconsistency

Suppose that data are sampled from a distribution P ∗ in the model class

M under consideration. As a direct consequence of its focus on data com-

pression, in prediction and estimation contexts, MDL is 100% immune to

inconsistency by Theorem 15.1 and Theorem 15.3. In contrast, Bayesian

inference can be inconsistent for some combinations of nonparametricM
with some priors. In model selection contexts, both MDL and Bayes can be

inconsistent in at least one case (Chapter 16, Section 16.4). If the model

class is wrong, then MDL and Bayes can both be inconsistent in the sense

of (Grünwald and Langford 2004).

17.2.3 MDL and Brands of Bayesian Statistics

In the previous subsections, we criticized the “pragmatic” version of Bayes-

ian statistics that is most often used in practice. But perhaps Bayes was never

intended to be used in such a pragmatic way; if we use Bayesian inference

as it was intended by its founding fathers, then maybe our criticisms be-

come invalid. Matters are complicated by the fact that there exist various

brands of pure, “nonpragmatic” Bayesian statistics. Here we examine the

main brands, (purely) subjective Bayes, mostly associated with the work of

De Finetti (1937) and Savage (1954), and objective Bayes, mostly associated

with Jeffreys (1961) and Jaynes (2003). We also look into Solomonoff’s (1964)

approach, a specific version of objective Bayes that forms a middle ground

between Bayes and MDL. Below, we characterize each brand by the type of

prior that it uses.

Nonpragmatic Subjective Priors If a decision-maker thinks about a prob-

lem long enough, then she may avoid pragmatic priors and instead use pri-

ors that truly reflect her degrees of belief that various events occur. Assuming

that the decision-maker can come up with such priors, some of the problems

with Bayes that we mentioned above will disappear. In particular, expecta-

tions taken over the prior will be meaningful, at least in a subjective sense.

Based on the “Dutch Book Argument” of De Finetti (1937), or on the ax-

iomatic approach of Savage (1954), one may claim that subjective Bayes is

the only rational (“coherent”) approach to decision-making and should be

preferred over MDL; in this view, the problems we mentioned are all due to

the use of pragmatic priors. I have two problems with this position. First,



17.2 MDL and Bayesian Inference 545

while I find De Finetti’s and Savage’s results very interesting, I am not at all

convinced that they imply that a rational decision-maker should act like a

Bayesian.8 Second, I do not think that humans have sufficient imaginative

power to come up with a prior distribution that truly represents their beliefs,

as the following example illustrates.

Example 17.4 [Mercury’s Perihelion Advance] Suppose that, after having ob-

served data xn, you selected some modelM0 as a best explanation of the data.

Later you learn that another research group found an entirely different expla-

nationM1 of the data, such that

− log P̄Bayes(x
n | M1) ≪ − log P̄Bayes(x

n | M0).

If you can be reasonably sure thatM1 has not been constructed with hind-

sight, after seeing data xn (so that there was no “cheating” going on), then

you may well want to abandon the model M0 in favor of M1, even if you

had put no prior probability on M1 in the first place. According to the subjec-

tive Bayesian viewpoint, this is not possible: if your prior probability ofM1

was 0, the posterior is 0, and you can never embraceM1. But how can you put

a prior on all possible modelsM1? Surely the imagination of individuals and

research groups is limited, and they cannot think of all possible explanations –

which may be provided by other research groups – in advance. For example,

it was discovered in the 19th century that Mercury’s perihelion does not ex-

actly follow the predictions of Newton’s theory of gravitation. As astronomers

gathered more and more data about this phenomenon, various explanations

(“models”) were suggested, such as the existence of an unknown planet “Vul-

can.” The matter was finally settled when it turned out that Einstein’s theory

of general relativity, discovered only in 1916, explained Mercury’s perihelion

perfectly well. If astronomers had been using subjective priors onmodels, then

it seems quite unlikely that, before 1916, anyone except Einstein would have

had a nonzero prior probability on the theory of general relativity. This im-

plies that they would not have believed this theory after 1916, no matter how

well it had accounted for the data. This problem is closely related to the “old

evidence” problem in Bayesian confirmation theory (Hutter 2006).

In the MDL approach, we can effectively avoid this “zero prior problem.” We

mentioned this possibility already in Chapter 14, Section 14.4.4, page 436; see

also Example 17.5. For example, suppose we want to select a modelMγ from

a CUP model classM = ∪γMγ , γ ∈ Γ. We can use a meta-two-part code in

which L̇(γ), the codelength function for γ, corresponds to a defective distribu-

tionW that sums to 1/2 rather than 1. If later somebody proposes a newmodel

8. To mention just one, of many, problems: in my opinion, the Ellsberg paradox convincingly

shows that sometimes uncertainty about an event cannot be represented by a single number;

see (Ellsberg 1961) and (Halpern 2003, Example 2.3.2).
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Ma, a 6∈ Γ for the data xn that we were trying to model, and we are confident

that that person has not peeked at xn, then we can assign a code word with

length L̇(a) = 1/4 toMa; now L̇ corresponds to a distribution W summing

to 3/4 rather than 1/2. Now if another trustworthy person comes along and

proposes some modelMb, b 6∈ Γ, we can set L̇(b) = 1/8; nowW sums to 7/8.

The process can be repeated infinitely often. From an MDL perspective, there

is nothing strange about this procedure. From a Bayesian point of view, how-

ever, it seems awkward: if we use a defective prior such as W before we are

told about any of the alternative modelsMa,Mb, . . ., then we are effectively

basing our decisions on the posterior W (Mγ | xn, γ 6∈ {a, b, . . .}). Thus, it

seems as if we have already decided that the true state of the world is a model

Mγ on the original list, with γ ∈ Γ. If we are then told to consider the newly

proposed modelMa, we would have to “decondition” and assume thatMa

may contain the true state of the world after all.

Solomonoff’s Nonpragmatic, “Universal” Priors In the earliest version of

what we called “idealized MDL” in Chapter 1, Section 1.4, Solomonoff (1964)

proposed a priorM on a countable setM that includes all computable prob-

abilistic sources. Broadly speaking, this prior assigns large mass to sources P

that can be implemented by a short computer program. More precisely, there

is some constant C such that for all computable sources P , − log M(P ) ≤
K(P ) + C, where K(P ) is the length of the shortest computer program that,

when input n, xn and precision d, outputs the first d bits of P (xn) and then

halts. It is natural to extend the definition of Kolmogorov complexity and

call K(P ) the Kolmogorov complexity of the distribution P (Li and Vitányi

1997). Here we consider Solomonoff’s approach from a Bayesian perspec-

tive. We will have more to say about its relation to (practical, nonidealized)

MDL in Section 17.8.

One can show that the Bayesian universal model P̄Solomonoff relative to

such a prior is O(1)-universal relative to any other computable probabilis-

tic source, including any other universal model (Li and Vitányi 1997). Since

we may assume that in practice, any universal model we will ever use in

MDL or Bayesian inference is computable, P̄Solomonoff may serve as a replace-

ment for any other universal model that we might be interested in. Similarly,

it may be reasonable for a decision-maker to use the priorM as a proxy of

the subjective prior that he would really like to use, but cannot formulate

for lack of time and imagination. IfM is used in this way, then the problem

of zero prior (Example 17.4) disappears: M assigns positive prior mass on

any computable theory that can be formulated at all. Hutter (2006) forcefully
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argues that M solves various other problems of subjective Bayesianism as

well.

Still, this approach is not without its problems. Asmentioned in Chapter 1,

Solomonoff’s and other idealized MDL approaches are inherently uncom-

putable, and it is not clear whether sufficiently general computable approxi-

mations exist. Second, if we apply it to small samples (as, in statistical prac-

tice, we often must),9 then the choice of programming language on which it

is based has a significant impact on the Bayesian predictive distribution. We

may choose the language that best suits the phenomenon that we are trying

to model, but then subjectivity enters again, and the problems of the strictly

subjective approach reappear.

Finally, it seems that using Solomonoff’s approach, we violate the weak

prequential principle. For example, it is not clear how we can use it for uni-

versal prediction in the weather forecasting example (Example 17.2), where

the Kolmogorov complexity of the various forecasters is unknowable.

The relation between MDL inference, subjective priors, and Solomonoff’s

objective priors, is discussed further in Example 17.5.

Other “Objective” Priors In the objective Bayesian approach, one replaces

subjective or pragmatic priors by more “objective” ones, which may be used

if no or very little prior knowledge is available. Examples are the Jeffreys’

prior (Jeffreys 1961), and Bernardo’s reference priors, which sometimes, but

not always, coincide with Jeffreys’ prior (Bernardo and Smith 1994). Various

other possibilities are explored by Berger and Pericchi (2001). In contrast to

Solomonoff’s approach, the focus here is usually on parametric estimation or

model selection between parametric models, and the priors are computable

in practice. It is generally recognized (even by Jeffreys and Bernardo) that

the choice of “objective” prior should depend on, for example, the loss func-

tion of interest: a prior which works as a good proxy for an unknown prior

in one context (e.g., model selection), may not be such a good proxy in an-

other context (e.g., parameter estimation). Some objective Bayes approaches

to Bayes factor model selection are almost identical to MDL approaches with

Bayesian universal codes.

In my view, there is still some advantage in interpreting these procedures

from an MDL universal coding point of view, rather than as Bayesian. When

9. Consider, for example, experiments where each subject has to be paid in order to take part.

In such experiments, one often has to make do with about 30 sample points. These are common

in, e.g., the field of psychology.



548 17 MDL in Context

Jim Berger recently (2005) gave an excellent tutorial on objective Bayes meth-

ods in Amsterdam, a member of the audience asked: “In both frequentist

methods and subjective Bayesian methods, the interpretation of probability

is clear, albeit very different. But how should we interpret the probabili-

ties appearing in objective Bayesian methods?” Berger answered: “In many

cases, both interpretations are valid.” My answer would have been: “In all

cases, these probabilities can be interpreted as codelengths!”

17.2.4 Conclusion: a Common Future after All?

In the previous section, I have criticized several aspects of the Bayesian ap-

proach. I do, however, see problems with the MDL approach as well —

such as the lack of a proper accompanying decision theory; see Section 17.11

— and I do recognize that the two approaches are often similar in prac-

tice. As said, MDL methods often resemble objective Bayes methods. I

should also mention that there is a nontrivial overlap between Rissanen’s

individual-sequence philosophy andDe Finetti’s original motivation for sub-

jective Bayesian analysis, which is still shared by some Bayesians. Such

subjectivists prefer not to speak about nonobservable things such as “θ, the

true probability, or long-term frequency of heads.” (Diaconis 2003). In fact,

the preface of the magnum opus (De Finetti 1974) opens with the following

memorable lines:

“My thesis, paradoxically, and a little provocatively, but nonetheless genuinely,

is simply this: PROBABILITY DOES NOT EXIST.

The abandonment of superstitious beliefs about the existence of Phlogiston,

the Cosmic Ether, Absolute Space and Time, . . ., or Fairies and Witches, was

an essential step along the road to scientific thinking. Probability, too, if re-

garded as something endowed with some kind of objective existence, is no

less a misleading misconception [. . .].”

Subjectivists such as De Finetti only want to speak about probabilities of

events that will eventually be observed (such as the probability that it will

rain tomorrow), and they interpret these as degrees of belief, operational-

ized as the amount of money one is willing to place on certain bets. This is

quite similar to Rissanen’s ideas, who also restricts probabilist statements to

observable events, and regards them as indicating the code one would use to

code the data if the goal were to compress data as much as possible.

In practice, subjective Bayesians then often speak about quantities like “θ, the

true bias of the coin” after all, motivated either by De Finetti’s exchangeabil-
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ity theorem, or by Savage’s treatment of subjective probability, which show

that under certain circumstances, a rational decision maker should act as if

data were distributed accorded to some Pθ ∈ M. From this point of view,

individual-sequence MDL is like De Finetti-type subjectivist Bayesian statis-

tics, but even more radical: any talk of a true θ is now truly avoided, and no

inference is based on the presumption that such a θ exists.

Given these considerations, it may certainly be possible that one day, Bayesian

and MDL approaches to statistics will merge into one. In such a joint ap-

proach, the contribution of MDL theory could be a proper interpretation of

probabilities and expectations when pragmatic priors (now viewed as luck-

iness functions) are used, as well as some restrictions on the priors in non-

parametric problems.

17.3 MDL, AIC and BIC

In this section, we specialize to MDL model selection. We compare it to two

popular benchmark model selection methods: the Bayesian Information Cri-

terion (BIC) and the Akaike Information Criterion, both of which we already

encountered in Chapter 14, Example 14.4, page 417, and, in a regression con-

text, in Section 14.5.4 on page 450.

17.3.1 BIC

In the first paper on MDL, Rissanen (1978) used a two-part code and showed

that, asymptotically, and under regularity conditions, the two-part code-

length of xn based on a parametric model Mγ = {Pθ | θ ∈ Θγ} with kγ

parameters, using an optimally discretized parameter space is given by

− log Pθ̂γ(xn)(x
n) +

kγ

2
log n, (17.3)

where θ̂γ is the ML estimator within Θγ , and O(1)-terms (depending on kγ ,

but not on n) are ignored. As we have discussed in Chapter 14, these terms

can be quite important in practice. In the same year Schwarz (1978), ignor-

ing O(1)-terms as well, showed that, for large enough n, Bayes factor model

selection between two exponential families amounts to selecting the model

minimizing (17.3). As a result of Schwarz’s paper, model selection based on

(17.3) became known as the BIC (Bayesian Information Criterion). Not taking

into account the functional form of the modelM, it often does not work very
well in practical settings with small or moderate samples.
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Consistency BIC does tend to perform well if the sample size gets really

large: Suppose BIC is used to select a modelMγ coming from some CUP

model classM = ∪γ∈ΓMγ (Case 1(c) of Chapter 16, Section 16.1.1). Then

BIC is asymptotically consistent under a wide variety of conditions on the

model class M. Here we refer to consistency in the sense of Chapter 16,
Section 16.3.1. Often, consistency will hold for all P ∗ in allMγ : there is no

need to exclude subsets of measure 0, as there waswithMDLmodel selection

based on CUP(2-p,Bayes)-codes (Barron, Rissanen, and Yu 1998; Csiszár and

Shields 2000).

On the other hand, consider the nonparametric context where data are dis-

tributed according to some P ∗ ∈ M∗, P ∗ 6∈ M, whereM∗ is some smooth

subset of 〈M〉 (Case 2(a) of Chapter 16, Section 16.1.1). Then BIC model se-
lection combined with maximum likelihood inference in the chosen model

often does not achieve the minimax rate of convergence (Speed and Yu 1993;

Yang 2005a; Yang 2005b). More precisely, the model selection-based estima-

tor based on BIC and ML (defined analogously to (16.2) on page 509) typi-

cally does converge in terms of Hellinger risk for all P ∗ ∈ M∗, but the rate of

convergence exceeds the minimax rate by a factor of ORDER(log n); see (Yang

2005b, Section 4) and (Shao 1997). Here the “minimax rate” is the minimax

optimal rate where the minimum is over all estimators, i.e. all functions from

X ∗ toM, and the maximum is over all P ∗ ∈ M. This minimax rate is often of
the form n−2s/(2s+1), where s is the degree of smoothness of the distributions

in P ∗; see Chapter 16, Example 16.4.

17.3.2 AIC

The Akaike Information Criterion was introduced and developed by Akaike in

a series of papers starting with (Akaike 1973). It can be used for model selec-

tion with finite or countably infinite CUP model classesM = ∪γ∈ΓMγ . For

given data xn, it tells us to select the model with index γaic that minimizes,

over all γ ∈ Γ,

− log Pθ̂γ(xn)(x
n) + kγ . (17.4)

IfM is countably infinite, then for large n, this criterion tends to select more

complex models than BIC, the reason being that the complexity penalty does

not depend on n.

Consistency The consistency properties of AIC are quite different from

those of BIC. In the case where data are distributed according to some P ∗ ∈
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Mγ∗ for some γ∗ ∈ Γ (Case 1(c) of Chapter 16, Section 16.1.1), AIC is often

inconsistent (Shibata 1976; Hannan 1980; Woodroofe 1982). Recall from the

previous subsection that BIC is typically consistent in such cases. On the

other hand, consider the nonparametric context where data are distributed

according to some P ∗ ∈ M∗, P ∗ 6∈ M, whereM∗ is some smooth subset of

〈M〉 (Case 2(a) of Chapter 16, Section 16.1.1). Then, under a variety of condi-
tions onM∗, AIC combined with maximum likelihood estimation is not only

consistent; it also converges at the minimax rate of convergence (Speed and

Yu 1993; Yang 2005a; Yang 2005b). Relatedly, when used for predictions, the

AIC-MDL squared prediction error converges to 0 at the minimax optimal

rate (Shao 1997; Li 1987). Recall that in such cases, BIC is often slower than

minimax by a factor of ORDER(log n). The upshot is that there exist cases for

which BIC is asymptotically optimal whereas AIC is not, and vice versa.

The reason why AIC achieves these optimal convergence rates can be seen

from a reinterpretation of Akaike’s original derivation of AIC. In this rein-

terpretation, AIC is really an easily computable approximation of another

criterion which we will call AIC∗. AIC∗ is defined as the model selection

criterion γ (see page 509) that, for each n, achieves

max
P∗∈M∗

min
γ:Xn→Γ

EXn∼P∗ [D(P ∗‖Pθ̂γ(Xn)
)]

where the minimum is over all model selection criteria, i.e. all functions

from X ∗ to Γ, andM∗ ⊂ 〈M〉 is a subset ofM’s information closure that
satisfies some smoothness conditions. By definition, AIC∗ attains the mini-

max optimal KL risk among all model selection-based estimators that use the

ML estimator within the selected model. This makes it plausible (but by no

means proves) that, under some conditions onM andM∗, AIC, which can

be seen to be an approximation of AIC∗, achieves the minimax convergence

rate among all (and not just model-selection based) estimators.

AIC achieves the minimax optimal convergence rate under certain regularity

conditions onM = ∪γ∈ΓMγ andM∗. For example, these hold if, for each γ,

Mγ is a linear model (Chapter 12) with γ covariates, (Xi, Yi) are i.i.d., andM
∗

satisfies certain smoothness assumptions. They also hold for a wide variety

of other models, including some time series models. However, we do have

to restrictM∗, i.e. we have to make assumptions about the P ∗ ∈ 〈M〉 that

is supposed to have generated the data; see (Yang and Barron 1999). Various

modifications of AIC have been proposed for the case where such conditions

onM andM∗ are violated, or for the case of small samples. For the latter, see

(Burnham and Anderson 2002).
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We further note that if all the appropriate conditions hold, then the AIC-based

estimator achieves the minimax optimal convergence rates both if (a) data are

distributed according to some P ∗ ∈ Mγ∗ for finite γ∗ ∈ Γ (this holds even if Γ

is itself finite); and also if (b) P ∗ ∈ M∗, P ∗ 6∈ M. In case (a), the rate isO(1/n).

Also, under the same conditions, even though it achieves the minimax optimal

convergence rate, AIC is inconsistent if P ∗ ∈ Mγ∗ for some finite γ∗, both if

Γ is finite and if Γ is countably infinite. In both cases, the inconsistency is of

a curious type: as n increases, the P ∗-probability that γaic(X
n) > γ∗ goes to

some number p with 0 < p < 1. Thus, AIC is only inconsistent with a certain

probability; this probability neither tends to 1 nor to 0.

17.3.3 A Version of MDL that Combines the Best of AIC and BIC

AIC As Expectation-Based MDL From the expectation-basedMDL point of

view, the AIC idea makes a lot of sense. Indeed, it defines a prequential

coding system, given by

P̄mdl-aic(Xn+1 | xn):=P (Xn+1 | θ̂γaic(xn)(x
n)). (17.5)

Under the conditions for which AIC is a good approximation of AIC∗, P̄mdl-aic
will actually be a very good universal code relative to M∗. Namely, by

its definition, AIC∗ chooses the model index γ such that the worst-case ex-

pected codelength of encoding a new valueXn+1 using the codewith lengths

− log Pθ̂γ(xn)(X) is minimized. If we were to look for the prequential plugin

code relative toM, that, assuming P ∗ ∈ M∗, asymptotically achieves the

minimax optimal redundancy, and under the constraint that the estimator to

be used in the plugin code is model-selection based, then we would arrive

at almost the same estimator/universal code as (17.5), but with two differ-

ences: (1) γaic is replaced by γaic∗ ; and, (2), rather than predicting by the ML

estimator θ̂γ for the selected γ, it would be better to predict using a pre-

quential MDL estimator P̄ (· | Mγ) defined relative toMγ , for example, the

Bayesian universal code with the luckiness-tilted Jeffreys’ prior. Presumably

however, such amodification would not affect the minimax convergence rate

of P̄mdl-aic.

MDL Is Not BIC... It has sometimes been claimed that MDL = BIC; for ex-

ample, Burnham and Anderson (2002, page 286) write “Rissanen’s result is

equivalent to BIC.” This is wrong, even for the 1989 version of MDL that

Burnham and Anderson refer to – as pointed out by Foster and Stine (2005),

the BIC approximation only holds if the number of parameters k is kept
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fixed and n goes to infinity. If we select between nested families of mod-

els where the maximum number of parameters k considered is either infi-

nite or grows with n, then model selection based on both CUP(2-p,Bayes)

and CUP(2-p,nml) tends to select quite different models than BIC; if k gets

closer to n, the contribution to COMP(n)(M) of each additional parameter

becomes much smaller than (1/2) log n (Foster and Stine 2005). Similarly, in

CUP(2-p, 2-p)-MDL, if the discretized value of a parameter chosen by two-

part MDL is close to 0, then, at least for some models, again the MDL pro-

cedure may actually behave more like AIC than BIC; see Foster and Stine

(1999). Similarly, Hansen and Yu (2001) show that some versions of MDL

model selection in linear regression punish even less for complexity thanAIC

(Chapter 14, page 450) for some data and models, and Hansen and Yu (2002)

conjecture that their gMDL procedure actually combines the strengths of AIC

and BIC. They prove gMDL consistent for the situation that P ∗ ∈ Mγ∗ (Case

1(c) of Chapter 16), thus showing it has the strength of BIC; but the statement

about AIC is only based on experimental results.

We note that researchers who claim MDL = BIC do have an excuse: in early

work, Rissanen himself has used the phrase “MDL criterion” to refer to (17.3),

and, unfortunately, the phrase has stuck.

Sometimes, MDL Is Asymptotically BIC After All We just indicated that

in many situations, at least some variations of CUP(2-p, ·)-code MDL model
selection seem to behave more like AIC than BIC. But unfortunately, the fact

remains that in other situations, asymptotically CUP(2-p,Bayes)-code MDL

model selection does not achieve the minimax optimal rate of convergence,

whereas AIC does. As we remarked in Chapter 16, in some nonparamet-

ric contexts such as histogram density estimation (Case 2(a) of Chapter 16),

prequential MDL estimation based on the CUP(Bayes,Bayes)-codes, as well

as MDL model selection based on CUP(2-p,Bayes)-codes, does not achieve

the minimax rate of convergence. Like BIC, it is too slow by a factor of

ORDER(log n).

Open ProblemNo. 17Although this log-factor is probably not that relevant for

practical applications, we do consider this a serious issue: the fact that univer-

sal codes designed in standard ways such as CUP(2-p,Bayes) are sometimes

not asymptotically optimal, is not so surprising. What is more worrying is that

nobody knows how to design an alternative individual-sequence universal code

based onM∗, that, when used for model selection and analyzed in expecta-

tion under some P ∗ ∈ M, does achieve the minimax optimal rate. It seems
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that the common strategies for designing universal codes – NML, two-part,

Bayes, plugin – all fail here, and something entirely new is needed.

Although there is no known individual-sequence based universal code that

achieves theminimax optimal rate in all cases where AIC is known to achieve

this rate, there does exist an expectation-based universal code that achieves

it. This is just the code P̄mdl-aic that we described above. Using this code for

prequential estimation will lead to an estimator that, like AIC, is sometimes

inconsistent if P ∗ ∈ M. On the other hand, CUP(2-p,Bayes)-estimators,
which may not achieve the minimax optimal rate, are consistent if P ∗ ∈ M
(Section 16.3). We now sketch a variation of MDL that is likely to combine

the best of both worlds – although we have not formally proven that it does.

Let, for the given model classM, P̄mdl-aic be the universal code that embod-
ies AIC, as described above. Let P̄CUP(2-p,Bayes) be a CUP(2-p,Bayes)-universal

code, where P̄Bayes(· | γ) is a Bayesian universal code relative to some given

luckiness function or prior. We define a new, nonprequential code as fol-

lows. For any data sequence xn, we first encode whether − log P̄mdl-aic(x
n)

or − log P̄CUP(2-p,Bayes) is smaller. This takes one bit. We then encode xn using

whichever of the two codes compresses xn more. The first bit can be thought

of as part of our hypothesis: if − log P̄mdl-aic(x
n) < − log P̄CUP(2-p,Bayes), this

can interpreted as stating the hypothesis that “we are in a nonparametric sit-

uation; AIC is better.” If the reverse inequality holds, this can be interpreted

as stating the hypothesis “parametric situation; CUP(2-p, ·)-MDL is better.”
In the first case, model selection should proceed by AIC; in the second case,

it should proceed by our CUP(2-p, ·)-MDL code. In essence, we are doing
MDL model selection between two-universal codes, just as in Chapter 14.

But the two universal codes now represent the hypotheses P ∗ ∈ M∗ \M vs.

P ∗ ∈ M.
We do not regard this new universal code as a perfect solution to the AIC-

BIC dilemma, since it only has an expectation-based, and not an individual-

sequence MDL interpretation. It does illustrate, however, the power of bas-

ing learning on universal data compression – we simply use the fact that

any two universal codes (in this case, the MDL-AIC code, which is optimal

in nonparametric settings, and the CUP(2-p,Bayes)-code, which is optimal

in parametric settings) can be trivially combined into a new universal code

that, on any given sequence performs essentially as well as the code that is

best on that sequence.

It is sometimes claimed that the question whether to prefer AIC or BIC is ir-

relevant, since the two procedures have been developed with different goals
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in mind – optimal prediction of future data vs. hunting for the true model,

containing P ∗; see, for example, (Forster 2001, page 90) and (Sober 2004, page

649). From this perspective, it may seem to be impossible or irrelevant to craft

newmethods that combine the strengths of AIC and BIC. Yet, BIC is an approx-

imation of Bayes factor model selection, and as we showed in Section 17.2.2,

Bayes factor model selection has a very clear predictive interpretation as well

– it can be thought of as a prequential MDL method. Thus, both AIC and

BIC are approximations to procedures with predictive interpretations and this

suggests that it may be both possible and desirable to combine the strengths

of both procedures after all. We are not the first to notice this: De Luna and

Skouras (2003) propose a somewhat similar model meta-selection method which

holds promise to asymptotically combine the best of both methods. Such a

method was used earlier by Clarke (1997), and was extended by Clarke (2003),

who also provides a theoretical analysis. Yang (2005b) uses a form of cross-

validation to select between AIC and BIC and proves that, in a certain sense, it

achieves the best of both worlds. This is a subtle issue though – Yang (2005a)

shows that it is only possible to “combine the strengths of AIC and BIC” under

a restricted definition of what exactly onemeans by “combining the strengths.”

17.4 MDL and MML

MDL shares some ideas with the Minimum Message Length (MML) Principle

which predates MDL by 10 years. Some key references are (Wallace and

Boulton 1968; Wallace and Boulton 1975; Wallace and Freeman 1987) and

(Wallace 2005); a long list of references is in (Comley and Dowe 2005). Just

as in MDL, MML chooses the hypothesis minimizing the code-length of the

data. But the codes that are used are quite different from those in MDL. First

of all, in MML one always uses two-part codes, so that, like two-part code

MDL, MML automatically selects both a model family and parameter val-

ues. Second, while MDL codes such as P̄nml minimize worst-case (minimax),

expected or individual sequence, relative code-length (i.e. redundancy or re-

gret), the two-part codes used by MML are designed to minimize a priori

expected absolute code-length. Here the expectation is taken over a subjective

prior distribution on the collection of models and parameters under consid-

eration; see the summary in Figure 17.1 on page 562. Note that such an

approach flagrantly contradicts Rissanen’s individual-sequence MDL phi-

losophy: first, it is based on expectation rather than individual sequences;

second, it is based on expectations taken over a prior distribution, which, as

we explained in Section 17.2.1, cannot be justified from an MDL perspective

— nevertheless, in practice it often leads to similar results.
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Indeed, Wallace and his co-workers stress that their approach is fully (sub-

jective) Bayesian. Strictly speaking, a Bayesian should report his findings by

citing the full posterior distribution. But, as we explained in Chapter 15, Sec-

tion 15.4.2, sometimes one is interested in a single model, or hypothesis for

the data. In that case, Bayesians often use the MAP (Maximum A Posteri-

ori) hypothesis; or the posterior mean parameter vector; or the posterior me-

dian. The first two approaches were described in Chapter 15, Section 15.4.3.

As explained by Wallace (2005), all three approaches have some unpleasant

properties. For example, the MAP and the mean approach are parameteriza-

tion dependent. The posterior mean and median approaches cannot be used

if different model families are to be compared with each other. The MML

method provides a method for Bayesian estimation that avoids most of the

problems of these standard methods.

Below we describe the main ideas behind MML in more detail, and we

compare them to corresponding notions in MDL.

17.4.1 Strict MinimumMessage Length

Let M be some given model class of probabilistic sources. MML takes a

subjective Bayesian approach, and assumes that the statistician is able to for-

mulate a subjective prior distribution W on the given model classM, rep-
resenting his subjective beliefs about the domain under consideration. M is

usually either a parametric model or a CUP model class ∪γ∈ΓMγ . In the lat-

ter case,W will be a hierarchical prior, consisting of a discrete distribution on

Γ, and, for each γ ∈ Γ, a prior on the parametric modelMγ = {Pθ | θ ∈ Θγ},
given by some density w(θ | γ).

The basic idea behind MML modeling is then to find (a) a two-part de-

scription method and (b) an associated estimator, minimizing the expected

two-part description length of the data. Here the expectation is taken ac-

cording to the statistician’s subjective distribution of Xn, which is just the

Bayesianmarginal likelihood P̄Bayes, definedwith respect to the priorW . For-

mally, let L̇ be the set of partial codes forM. If for some L̇ ∈ L̇, some P ∈ M
cannot be encoded under L̇, then we write L̇(P ) = ∞. For each n, for each

code(length function) L̇ in the set L̇, we can examine the expected length of
the corresponding two-part code, where the two-part code is defined just as

in Chapter 10, (10.1), page 272 (ifM is parametric), and more generally, in
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Chapter 15, (15.14), page 477:

EP∼W EXn∼P [ min
P̈∈M

{ L̇(P̈ ) − log P̈ (Xn) } ] =

EXn∼P̄Bayes [ min
P̈∈M

{ L̇(P̈ ) − log P̈ (Xn) } ] =

∑

xn∈Xn

P̄Bayes(x
n)( min

P̈∈M
{ L̇(P̈ ) − log P̈ (xn) } ). (17.6)

We define L̇smml,n to be the code in L̇ that minimizes (17.6). In the sequel we
shall simply assume that there is a unique L̇smml,n achieving the minimum

in (17.6). Let M̈smml,n denote the domain of L̇smml,n. M̈smml,n is a countable

subset of the setM. M̈smml,n is the analogue of the discretized parameter set

Θ̈n defined in Chapter 10, but it contains distributions rather than parame-

ters. For each individual xn, the two-part codelength obtained when using

the expectation-optimal code L̇smml,n,

min
P∈M̈smml,n

{L̇smml,n(P ) − log P (xn)},

is achieved for a particular P ∈ M̈smml,n. For simplicity, we shall assume

that for each xn there is a unique such P , and denote it by P̈smml,n. Thus,

P̈smml,n : Xn → M̈smml,n is a function mapping data sequences xn to cor-

responding elements of M. The function P̈smml,n is called the strict MML

(SMML) estimator. Note that it once again depends on the sample size n. It

was introduced in this form by Wallace and Boulton (1975).

It is of some interest to determine a more explicit relation between L̇smml,n and

P̈smml,n. For this, note first that the SMML estimator achieves the minimum a

priori expected two-part codelength

min
P̈n:Xn→M

min
L̇∈L̇

EP∼W EXn∼P [L̇(P̈n) − log P̈n(Xn)] =

min
M̈

min
P̈n:Xn→M̈

min
L̇∈L̇

EXn∼P̄Bayes
[L̇(P̈n) − log P̈n(Xn)(Xn)] =

min
M̈

min
P̈n:Xn→M̈

{EXn∼P̄Bayes
[− log P̈n(Xn)] + min

L̇∈L̇
EXn∼P̄Bayes

[L̇(P̈n)]}.

(17.7)

Here the leftmost minimum in the first line is over all estimators, i.e. functions

from samples to elements ofM. P̈n(Xn) should be read as “the probability

of Xn under the distribution to which Xn is mapped by the estimator P̈n.”
10

10. IfM had been parametric, we could have used the clearer notation P
θ̈(Xn)(X

n).
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The leftmost minimum in the second line is over all countable subsets ofM,

and the second minimum in the second line is over all “discretized” estimators

mapping samples to elements of M̈. The right-hand side of the final expression

in (17.7) shows that the first-stage SMML codelength function L̇smml,n must be

equal to the L̇ ∈ L̇ achieving

min
L̇∈L̇

EXn∼P̄Bayes
[L̇(P̈smml,n)] = min

L̇∈L̇

X

P

P̄Bayes(P̈smml,n = P ) · L̇(P ). (17.8)

It now follows by the information inequality that L̇smml,n is given by

L̇smml,n(P ) = − log P̄Bayes(P̈smml,n = P ) = − log
X

xn:P̈smml,n=P

P̄Bayes(x
n). (17.9)

Given amodel classM, theMMLmethod ideally proceeds by (i) formulating
a subjective prior W onM, (ii) determining the corresponding strict MML
code L̇smml,n and corresponding strict MML estimator, P̈smml,n, and, (iii) for

the given data sequence xn, compute the value of the corresponding P̈smml,n.

It can be seen that this coincides with the P that, among all P ∈ M̈smml,n,

minimizes the two-part codelength L̇smml,n(P ) − log P (xn) of the actually

given data.

17.4.2 Comparison to MDL

There are three immediate differences with MDL codelength design: first,

whereas MDL universal codes need not be two-part, the SMML code is al-

ways a two-part code, explicitly encoding a single distribution inM. Sec-
ond, whereas MDL codes are designed to minimize a worst-case quantity,

the SMML code minimizes an expected quantity.11 Third, whereas MDL uni-

versal codes seek to minimize luckiness redundancy or regret (relative code-

length), the SMML code directly minimizes absolute codelengths. Of these

three differences, only the first two are essential. Namely, given the fact that

in SMML we take expectations over a prior (the second difference), the third

difference disappears.

The Second Difference Makes the Third Disappear To see this, note that the

strict MML code achieves

min
L̇∈L̇

EP∼W EXn∼P [ min
P̈∈M

( L̇(P̈ ) − log P̈ (Xn) ) ], (17.10)

11. Even in expectation-based MDL, one takes the worst-case expected regret or redundancy,

where the worst-case is over all distributions in the given model. SMML is based on a double

expectation instead: the prior-expectation of the expected codelength.
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whereas a two-part code minimizing expected (relative) redundancy rather

than (absolute) log loss would achieve

min
L̇∈L̇

EP∼W EXn∼P [ min
P̈∈M

( L̈(P̈ ) − log P̈ (Xn) ) − [− log P (Xn)]] =

min
L̇∈L̇

EP∼W EXn∼P [ min
P̈∈M

( L̇(P̈ ) − log P̈ (Xn) ) ] − EP∼W [H(P (n))],

(17.11)

whereH(P (n)) is the entropy of the restriction of the source P to the first n out-

comes. The last equality, which follows by the linearity of expectation, shows

that the L̇ achieving the minimum in (17.11) is identical to the L̇ achieving

the minimum in (17.10), which is just the SMML codelength function L̇smml,n.

Thus, the two-part code achieving minimum expected codelength is also the

code that achieves minimum expected redundancy. It then immediately fol-

lows that the two-part estimator minimizing expected two-part codelength

(the SMML estimator) is identical to the two-part estimator minimizing ex-

pected redundancy. Whereas in the minimax framework, minimizing code-

length vs. the redundancy leads to wildly different codes, in the prior expecta-

tion framework, the resulting codes coincide.

Philosophical Differences In my view, both the MDL and the MML philo-

sophies are internally consistent, but much more different than is usually

thought. This has caused a lot of confusion in debates about the merits of

either approach. To give but one example, Rissanen (1989, page 56) writes

“[Wallace and Freeman] advocate the principle ofminimizing themean

codelength [with respect to the prior] . . . which strictly speaking does

not allow it to be used to select the model class. Indeed, take a model

class which assigns the probability 1 − ǫ to the string consisting of 0s

only and the rest equally to all remaining strings. For a small enough ǫ

the mean relative to a model can be made as small as we like.”

This remark has caused some bewilderment in the MML camp, but from

Rissanen’s strict MDL point of view it makes sense: Rissanen views a prior

on hypotheses as a purely pragmatic tool to be used when designing codes.

In this book, we have made this view on priors more precise by introducing

the more fundamental concept of a “luckiness function” in Chapter 11. The

luckiness function indicates how much codelength regret you are willing to

accept if your data falls in a certain region. If your data are aligned with

the prior/luckiness function you chose, then you will make good inferences

already for small samples and you are “lucky.” From this point of view, it
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makes no sense to design a code that minimizes prior-expected codelength:

since you are free to choose the prior, you will always pick a point prior on a

low entropy distribution, allowing for an expected codelength approaching

0. Of course, from the subjective Bayesian MML point of view, the prior is

seen as something that cannot be chosen at will; it has to seriously reflect

one’s personal beliefs.

17.4.3 Approximating SMML by the Wallace-Freeman (MML) Estimator

Although (17.7) represents a well-defined optimization problem, in practice,

the SMML estimator is very hard to find, and various approximations have

been suggested. The most well-known of these is theWallace-Freeman estima-

tor (15.43), also simply known as “(nonstrict) MML estimator.” We already

defined this estimator in Chapter 15, Section 15.4.3. Because I find the deriva-

tion of this estimator in Wallace and Freeman (1987) almost impossible to

comprehend, I will give a simplified heuristic derivation based on the two-

part MDL codes of Chapter 10, Section 10.1. I do this for the special case

whereM is a k-dimensional exponential family given in a diffeomorphic pa-

rameterization (Pθ,Θ). Note that this is a severe restriction to the general

setup, in whichM is often a CUP rather than a parametric model class.

Let W be a prior and let Θ0 be an arbitrary ineccsi subset of Θ. Theo-

rem 10.1 (see, in particular, (10.4) below the theorem), showed that there

exists a 2-part code L̄2-p such that uniformly for every sequence xn with

θ̂(xn) ∈ Θ0 for n larger than some n0,

L̄2-p(x
n) ≤ − log P̄Bayes(x

n) + g(k) + o(1),

where g(k) is bounded by 1.05k and converges to 0 for large k. Since this

holds for every sequence in an arbitrary compact set, we may reasonably

conjecture that it also holds in expectation over P̄Bayes. Assuming this is in-

deed the case, and using the information inequality, it follows that

EP̄Bayes [L̄
(n)
2-p (X

n)] ≤ EP̄Bayes [− log P̄Bayes(X
n)] + 1.05k + o(1) ≤

EP̄Bayes [L̄
(n)
smml(X

n)] + 1.05k + o(1). (17.12)

Here L̄smml represents the codelength function corresponding to the two-part

SMML code, i.e. L̄
(n)
smml(x

n) = L̇n(θ̈smml,n) − log Pθ̈smml,n(xn)(x
n). Here, for

convenience, we switched to the parametric notation of Chapter 10, where

we denote distributions Pθ by their parameter θ.
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(17.12) shows that asymptotically the two-part code of Chapter 10, Sec-

tion 10.1 is indeed a reasonably good approximation to L̄smml, and in par-

ticular that L̄smml must exhibit the familiar (k/2 log n) asymptotics shared by

both− log P̄Bayes and L̄2-p. As a consequence, asymptotically, the two-part es-

timator θ̈n achieving the minimum codelength in L̄2-p should behave about

as well as the two-part estimator θ̈smml,n based on L̄smml.

The essential difference between L̄2-p and L̄smml is as follows. L̄2-p encodes the

discretized values θ̈ ∈ Θ̈n using the code based on the prior density w, so that

L̇n(θ̈) ≈ − log
R

θ∈R(θ̈)
w(θ)dθ, where R(θ̈) is the rectangle with center point θ̈,

see Section 10.1. In contrast, from (17.9) we see that L̄smml encodes θ̈ based on

the probability that some data sequence xn occurs with θ̈smml,n(xn) = θ̈.

Wallace and Freeman (1987) were looking, essentially, for an approximation

to the SMML estimator that is a continuous function of some statistic of the

data, and that would be easy to compute. While the two-part estimator θ̈n is

a good approximation of the SMML estimator, it still lacks these two prop-

erties. One way to obtain an easily computable continuous estimator is to

do a second approximation, and replace θ̈n by its continuum limit. From

the proof of Theorem 10.1 ((10.17), page 280), we see that θ̈n is essentially a

“discretized MAP estimator,” with a priorWn given by

Wn(θ̈) ∝ w(θ̈)
√

det I(θ̈)

(

n−k/2
)

, (17.13)

where we ignore (1 + o(1))-factors. Because for large n, the grid from which

the values θ̈ are taken becomes dense, we see from (17.13) that the continuum

limit of the two-part estimator must be given by

θ̂wf(x
n):= arg max

θ∈Θ

Pθ(x
n)w(θ)

√

det I(θ)
, (17.14)

Here we reason in exactly the same way as we did when showing that the

luckiness ML estimator is the continuum limit of the parametric two-part

estimator (Chapter 15, Section 15.4.1). (17.14) is just the Wallace-Freeman

estimator θ̂wf that we defined in Section 15.4.3.

An Apologetic Remark The conference paper (Kontkanen, Myllymäki, Silan-

der, Tirri, and Grünwald 1998) as well as my Ph.D. thesis (Grünwald 1998)

contained a theoretical and experimental comparison betweenMDL andMML

approaches. There were two serious mistakes in both works, and in both cases
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Figure 17.1 Rissanen’s MDL, Wallace’s MML and Dawid’s Prequential Approach

these were caused by myself. First, it was wrongfully claimed that the contin-

uum limit of the two-part code MDL estimator (with uniform luckiness func-

tion) would be given by the Bayesian MAP estimator with Jeffreys’ prior. This

is false: if there is a uniform luckiness function, then the limiting two-part

MDL estimator is just the ML estimator, and the ML estimator is not equal

to the MAP estimator with Jeffreys prior, except in a parameterization where

Jeffreys’ prior is uniform; see Section 15.4.1.

Second, while it was correctly claimed that the basic Wallace-Freeman esti-

mator provided silly results when used in combination with the naive Bayes

model and small data sets, we did not realize at the time that, in exactly this

case, the basicWallace-Freeman estimator is actually a very bad approximation

of the SMML estimator. The latter certainly does provide reasonable estimates.

Wallace (2005) explicitly addresses the problems with theWallace-Freeman ap-

proximation for the naive Bayes model. Briefly, even though the naive Bayes

model is an exponential family, the sample sizes at which the asymptotics start

to play any meaningful role whatsoever are thoroughly unrealistic. Wallace

(2005, page 227) shows how the problem can be circumvented by approxi-

mating the SMML estimator in a slightly different manner. The problem of

unrealistic asymptotics also arises if one replaces the two-part MDL estimator

for the naive Bayes model by its continuum limit, the LML estimator.

17.5 MDL and Prequential Analysis

In a series of papers, A.P. Dawid (1984, 1992, 1997) put forward a method-

ology for probability and statistics based on sequential prediction which he

called the prequential approach. When applied to model selection problems, it

is closely related to MDL: Dawid proposes to construct, for each modelM(j)
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under consideration, a “probability forecasting system” (a sequential predic-

tion strategy) where the i + 1-st outcome is predicted based on either the

Bayesian posterior P̄Bayes(θ|xi) or on some estimator θ̂(xi). Then the model

is selected for which the associated sequential prediction strategy minimizes

the accumulated prediction error. Related ideas were put forward by Hjorth

(1982) under the name forward validation.. From Chapter 15, Section 15.2.1

we see that this is just a form of MDL: every universal code can be thought

of as as prediction strategy, and therefore, in this strict sense, every instance

of MDL model selection is also an instance of prequential model selection. It

would, however, be strange to call two-part MDL or NML model selection

an instance of the prequential approach, since for these methods, in general

the horizon n needs to be known in advance; see page 196. Dawid mostly

talks about Bayesian and the plug-in universal models for which the horizon

does not need to be known, so that the prequential interpretation is much

more natural (Chapter 6, Section 6.4). For this reason, I call such codes “pre-

quential” in this book. The terminology is mine: Dawid reserves the term

“prequential” for the general framework.

The Infinite-Horizon Prequential Principle From a prequential viewpoint,

one may view codes that are neither prequential nor semiprequential as un-

natural (Chapter 6, page 196). This may lead one to insist that the only “rea-

sonable” applications of refined MDL are those based on (semi-) prequential

codes. One may call this the infinite-horizon prequential principle. The termi-

nology is ours; it is different from the weak prequential principle introduced

in Section 17.1.2. Note that MDL model selection as defined in Chapter 14

satisfies the infinite-horizon prequential principle, as long as it is based on

CUP(2-p,Bayes) or CUP(2-p,plug-in) codes (the use of a meta-two part code

does no harm, since we insisted such codes to be independent of the sample

size, which makes them semiprequential). CUP(2-p, 2-p) codes only satisfy the

infinite horizon principle if the two-part code L̄(· | Mγ) relative to modelMγ

is sample size independent. CUP(2-p,nml) codes cannot be used in general

– except for the linear regression case where the CNML and NML codes are

prequential.

Thus, prequential analysis is usually understood to be “infinite horizon” pre-

quential analysis, and in this sense, it is less general than MDL. On the other

hand, Dawid’s framework allows for adjusting the sequential prediction loss

to be measured in terms of arbitrary loss functions, not just the log loss. In

this sense, it is more general than MDL, and is related to the individual se-

quence prediction literature; see Section 17.9.
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There is also a “prequential approach” to probability theory developed

by Dawid (Dawid and Vovk 1999) and Shafer and Vovk (2001). Prequential

probability and prequential statistics are based on a set of underlying ideas,

which one might call the prequential “paradigm” or “philosophy.” The pre-

quential philosophy has a lot in common with Rissanen’s MDL philosophy,

especially the focus on individual sequences rather than ensemble averages.

One of its central tenets is the weak prequential principle, which we already

introduced in Section 17.1.2. The similarities and difference between MDL

and the prequential approach are summarized in Figure 17.1.

MDL and TheWeak Prequential Principle TheWPPmakes eminent sense

from the individual-sequence MDL point of view, being reminiscent of Ris-

sanen’s tenet that there is no such thing as a true distribution, and “we only

have the data,” page 28. In a sense it is evenmore radical, saying that, indeed,

when judging the quality of our model, performance of the model on other

data than the data at hand may play no role whatsoever. Indeed, MDL infer-

ence based on two-part, Bayesian and prequential plug-in universal codes or

combinations thereof satisfies the WPP. MDLmodel selection based on NML

codes, however, violates the WPP: since

− log P̄nml(x
n | M) = − log Pθ̂(xn)(x

n) + log
∑

yn∈Xn

Pθ̂(yn)(y
n),

in order to assess the quality of themodelM (viewed as a prediction strategy

with finite horizon P̄nml), one needs to know the distributions Pθ̂(yn)(y
n) for

yn 6= xn.

Two-Part codes and the WPP Even though sample-size dependent two-part

codes, in our terminology, are neither prequential nor semiprequential, they

satisfy the WPP. To see this, letM be some model class, let xn be the data and

suppose we do MDL model or hypothesis selection using a sample-size de-

pendent two-part code. If we consider n to be fixed, we can think of them as

defining a sequential prediction strategy with finite horizon (Chapter 6, Sec-

tion 6.4.1). The log loss of this strategy is the two-part codelength, and to

calculate it we only need to know P (xn) for all P ∈ M. In particular, we

do not need to know P (yn) for any yn 6= xn.

Thus, if wewant to applyMDL and adhere to theweak prequential principle,

we are forced to use two-part codes or (indeed) prequential universal codes

such as Bayes and plug-in.

I myself am not sure whether there are any truly undesirable consequences of

violating the WPP (except in the situation where P (yn) for unobserved yn is
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simply unknowable, such as the weather forecasting example), so I have no

problems in using (luckiness) NML codes. However, I can sympathize with

people who think they should be avoided, and in all cases be replaced by

semiprequential universal codes.

17.6 MDL and Cross-Validation

It is well known that one cannot confirm a hypothesis by testing on the data

that led one to adopt the hypothesis in the first place. Thus, if Θ represents

some complex model with many degrees of freedom, and − log Pθ̂(xn)(x
n) is

small (achieving a good fit on data xn), this does not mean anything by itself.

To investigate whether Θ is really a good hypothesis for the data, we must

either somehow correct for its inherent complexity (as we do in NML model

selection), or we must test its behavior on a distinct set of data coming from

the same source, say y1, . . . , ym. This is the rationale for model selection by

cross-validation (CV) (Stone 1974). In this section we briefly consider CV for

selecting between a set of candidate i.i.d. models for the data D = xn. For

simplicity, assume n is even. In its simplest form, CV amounts to splitting

the data into a training set D1 and a test set D2, both of size n/2. D1 is con-

structed by randomly selecting n/2 elements of D. We then determine the

ML estimator θ̂(D1) based on the training set and use it to sequentially pre-

dict the outcomes in D2. We record the total prediction error θ̂(D1)made on

D2. To make the procedure more robust, we repeat it a few, say M , times,

each time making a new random split into training and test set. TheM test

set prediction errors obtained in this way are then averaged. This procedure

is repeated for all modelsMγ under consideration. Finally, one selects the

model with the smallest average test set prediction errors.

Leave K-out CV In variations of the CV scheme, one may use estimators

other than the ML estimator, or loss functions other than log loss. Here we

will restrict to (luckiness) ML estimators and log loss. Even with this restric-

tion, the procedure can be substantially varied by changing the relative sizes

of training and test set. In leave-K-out CV, the size of each test set is set to

K outcomes. The simple case we just described corresponds to leave n/2-

out CV. The consistency and rate of convergence properties of CV strongly

depend on whether or not K is allowed to grow with n, and if so, how fast

(Shao 1993). For example, in the case we just described, K grows linearly

with n. Here we study the case where K remains constant in n, since, as we
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now show, this case is most closely related to MDL. The most extreme and

most popular version of this case is leave-one-out cross validation (LOO CV).

Here, the test set consists of only one outcome. The procedure is usually re-

peated for all n splits of xn into a training set with n − 1 and a test set with 1

outcome. Thus, each modelMγ is associated with its leave-one-out error

n
∑

i=1

[

− log Pθ̂(xn\xi)
(xi)

]

, (17.15)

where θ̂ is the ML estimator withinMγ , and xn \ xi is the sequence xn with

outcome xi removed. Model selection proceeds by picking the γ for which

(17.15) is minimized. This is obviously related to prequential model selec-

tion, as well as to MDL model selection based on the prequential plug-in

model, in which we select a modelMγ based on the accumulated prediction

error

n
∑

i=1

[

− log Pθ̂(xi−1)(xi)
]

. (17.16)

The main difference is that in MDL, all predictions are done sequentially: the

future is never used to predict the past.

Shao (1993) shows that LOO CV can be inconsistent for selection between

linear models. On the other hand, Li (1987) shows that, under weak con-

ditions, LOO achieves the asymptotically optimal convergence rate for CUP

linear models. Thus, in both cases, LOO CV asymptotically behaves like

AIC. This was already suggested by Stone (1977), who shows that, under

some conditions on the models under consideration, AIC and leave-one-out

CV asymptotically select the same model when the number of models under

consideration is finite. As we already discussed in Section 17.3.2, the con-

vergence properties of MDL model selection are quite different: it is usually

consistent, but not always minimax optimal in terms of the rate.

One underlying reason for this different behavior seems to be the following.

It is clear that, if we let training set and test set fully overlap and the model is

complex, then a good fit on the test set (small− log Pθ̂(yn)(y
n)) is meaningless.

This is just the overfitting phenomenon. If the test set partially overlaps with

the training set, then the larger the overlap, the less meaningful a good fit on

the test set is.

If we do not have additional data available, then we can sequentially test the

xi based on θ̂(xi−1) and add the n resulting prediction errors; this is the pre-

quential idea. Just like with a separate test set, we still have the property that
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we can test xi before we see it. But with leave-one out cross-validation, for

j < i, xi is used in the prediction of xj and vice versa. This means that no

matter how we order the data, one of the two predictions is made on data that

has already been seen and used for other predictions. Thus we cannot main-

tain that we always test on unseen data: in the words of Rissanen (1987), the

cross-validation prediction errors are not “honest.” Indeed, with a prequential

scheme, at the time we predict xi we have no information at all on how good

our prediction for xi will be; but with a leave-one-out scheme, the prediction

errors are correlated: the size of the prediction error for each xj involves all

xi, i 6= j, and therefore does give us some information (albeit admittedly not

much) about the prediction errors we will make for xi with i 6= j. Thus, there

is some very indirect type of “overlap” between training set and test set after

all, which apparently can cause a mild form of overfitting.

17.7 MDL and Maximum Entropy

There are some intriguing connections between MDL and theMaximum En-

tropy Principle (“MaxEnt”) for inductive inference, which was first proposed

by E.T. Jaynes (1957, 2003). Such connections have been observed by a num-

ber of researchers; we mention (Feder 1986; Li and Vitányi 1997; Grünwald

1998) and (Grünwald 2000). Here we follow and extend the observations

of (Grünwald 2000). We explain MaxEnt and its relation to minimax code-

lengths in detail in Chapter 19, Section 19.5. In this section we assume that

the reader is familiar with that material. MaxEnt is very frequently applied

in practice. To explore the connection to MDL, we need to distinguish be-

tween two types of applications. First, MaxEnt can be applied directly on the

data; second, it can be applied to select a prior distribution.

1. MaxEnt on the data. This type of application is popular in, for example,

computational linguistics (Rosenfeld 1996). Here one has a large sequence of

data x1, . . . , xn (for example, a long text written in English), and one records

certain statistics of the data (for example, for each pair of words w1, w2 ap-

pearing in the text, one records the number of times that w1 is followed

by w2). These statistics are then reformulated as a list of constraints, ex-

pressed in terms of a large number of functions φ1, . . . , φk, each mapping

X ∗ to R. For each j = 1, . . . , k, the corresponding constraint is of the form
∑n

i=1 φj(x
i) = tj . This can be written as one equation in vector form by
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defining φ = (φ1, . . . , φk)⊤ and t = (t1, . . . , tk)⊤ and writing

n
∑

i=1

φ(xi) = t. (17.17)

In our natural language example, there would be one φj for each pair of

words w1, w2, such that φj(x
i) = 1 if xi−1xi = w1w2, and φj(x

i) = 0 oth-

erwise. Then tj would be set to the number of times w1w2 occurred as a

subsequence in xn. This leads to a long list of constraints (on the data) of

form (17.17). In the next step, these are reinterpreted as constraints on the

underlying distribution P ∗, by rewriting them as

EXn∼P∗

[

n
∑

i=1

φ(Xi)

]

= t. (17.18)

Such a step may be justifiable if n is large and the functions φ only depend

on a few of the Xi.

An important special case arises if for each j, there exists a function φ′
j : X → R

so that n−1Pn

i=1 φj(x
i) = t/n can be rewritten as n−1Pφ′

j(xi) = t/n. Then

(17.18) can be rewritten as EP∗ [φ′(X)] = t/n, and the rewriting step amounts

to replacing a time average over the data by an ensemble average, which is

intuitively reasonable. This makes it plausible that the rewrite (17.18) remains

reasonable if φj does not depend on just one, but only a few of the xi.

As a “best guess” for the underlying distribution P ∗, one now adopts the dis-

tribution Pme that maximizes the entropy among all distributions that satisfy

all given constraints (17.18). As explained in Section 19.5, the maximum en-

tropy will typically be achieved for a distribution Pme = Pβ that is a member

of the exponential family with sufficient statistic φ = (φ1, . . . , φk)⊤. Within

this family, the maximum entropy is achieved for the β̂ that maximizes the

likelihood of xn. Thus, one may reinterpret this form of MaxEnt as consist-

ing of two steps: first, a kind of model “selection,” where the set of models

to be selected from contains allmodels (sets of probabilistic sources) that can

be defined on X . This is followed by maximum likelihood estimation within
the chosen model.

We explain in Section 19.5 that Pme is the distribution minimizing worst-

case expected absolute codelength. As explained in Chapter 15, Section 15.4,

MDL estimation for a given modelM can be viewed as sequential coding

with the goal of minimizing worst-case individual sequence relative code-

length (regret). There is clearly a relation. To clarify this relation, we first
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note that at least if X is finite, thenPme also has an individual sequence in-
terpretation. Namely, in that case, the conditional limit theorem (Csiszár 1984;

Cover and Thomas 1991; Grünwald 2001) implies that, under regularity con-

ditions, the maximum entropy distribution is, in a sense, almost identical to

the distribution P ′
me on Xn that minimizes absolute codelength of individual

sequences, in the worst-case over all sequences xn that satisfy (17.17). Note

that P ′
me is just the uniform distribution on the set of all x

n that satisfy (17.17).

With this new insight, we can connect MDL and MaxEnt more closely.

Both MDL estimators12 relative to a modelM and ME distributions rela-

tive to constraints (17.17) may be thought of as (approximations to) codes on

Xn. The MDL estimator is the code that tries to achieve codelength L̄(xn) as

close as possible to the shortest expected codelength Lθ̂(x
n) that is obtain-

able by a code withinM, in the worst-case over all sequences on Xn. The

maximum entropy distribution is the code that tries to achieve codelength

Lme(x
n) as close as possible to the shortest expected codelength L̂(xn) = 0

that is obtainable by a codewithin the set of all codes onXn, in theworst-case

over all sequences on Xn that satisfy (17.17).

Thus, in MDL inference, we restrict the class of comparison codes to those

that lie within a given model or model class, and we do not restrict the data.

In MaxEnt inference, we do not restrict the class of comparison codes at all,

so that absolute and relative log loss coincide, but we do restrict the data.

Essentially the same story can be told if X is infinite and the constraints are
such that no MaxEnt distribution Pme exists. In that case, MaxEnt adherents

often assume some “default” or “background” distribution Q on Xn, and

adopt the distribution Pmre that, among all distributions satisfying (17.17)

minimizes the relative entropy relative to Q. Whether such maximum en-

tropy and minimum relative entropy inferences on the data can be justified

on external grounds or not seems to depend on the situation one uses them

in; see (Grünwald 2000) and (Grünwald and Halpern 2003).

2. MaxEnt on the prior: open problem No. 18. Supposemaximum entropy

we are given a model (Pθ,Θ) equipped with some prior density w. Suppose

that before we apply this model, we are given some additional information

about θ, namely that θ ∈ Θ0 for some convex set Θ0 ⊂ Θ. As an example,

Θmay represent the normal family of distributions, and Θ0 is the subfamily

with mean µ ≥ 4. How should we update our prior given this information?

According to the MaxEnt principle, we should now adopt the prior w′ that,

12. For simplicity, we consider MDL estimators restricted to samples of length less than n here.
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among all w′ satisfying the constraint θ ∈ C, is closest to w in relative entropy

(KL) distance. This type of MaxEnt application is often interpreted as a tool

for objective Bayesian inference (Berger 1985): it tells the Bayesian how to ad-

just his or her prior given additional information about this prior. Its formal

relation to MDL inference has not been investigated. However, if the original

prior is a (luckiness-adjusted) Jeffreys’ prior, then it seems that the resulting

prior will be the luckiness-adjusted prior relative to the set of Θ that satisfy

the given constraint. If this is true, then minimum relative entropy inference

on the prior would be perfectly consistent with MDL inference. Determin-

ing whether something like this is really the case seems an interesting open

problem.

17.8 Kolmogorov Complexity and Structure Function; Ideal MDL

Kolmogorov complexity (Li and Vitányi 1997) has played a large but mostly

inspirational role in Rissanen’s development of MDL. Over the last fifteen

years, several “idealized” versions of MDL have been proposed, which are

more directly based on Kolmogorov complexity theory. These include ex-

tensions of Solomonoff’s (1964) original work (Hutter 2003; Hutter 2004), as

well as extensions of Kolmogorov’s (1965,1974a,1974b) approach (Barron and

Cover 1991; Li and Vitányi 1997; Gács, Tromp, and Vitányi 2001; Vereshcha-

gin and Vitányi 2002; Vereshchagin and Vitányi 2004; Vitányi 2005). In both

Solomonoff’s and Kolmogorov’s approaches, hypotheses are described us-

ing a universal programming language such as C or PASCAL. Solomonoff’s

work and its extensions are based on prequential one-part codes, and was

discussed in Section 17.2.3 on page 546. Here we very briefly describe Kol-

mogorov’s work and its extensions, which are invariably based on two-part

codes. At the end of the section, in Example 17.5, we further investigate

the essential difference between coding hypotheses by using a programming

language (idealized MDL) and coding hypotheses by implicitly giving their

index in some predefined list (two-part MDL as described in this book).

Kolmogorov’s Minimum Sufficient Statistic Barron and Cover (1991) de-

scribe what is perhaps the most straightforward variation of Kolmogorov’s

proposal. Given data D, they pick the distribution minimizing

K(P ) − log P (D), (17.19)
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where the minimum is taken over all computable probability distributions,

and K(P ) is the length of the shortest computer program that, when input

(x, d), outputs P (x) to d bits precision and halts. While such a procedure is

mathematically well-defined, it cannot be used in practice. The reason is that

in general, the P minimizing (17.19) cannot be effectively computed. Kol-

mogorov himself used a variation of (17.19) in which one adopts, among

all P with K(P ) − log P (D) ≈ K(D), the P with smallest K(P ). Here

K(D) is the Kolmogorov complexity of D, that is, the length of the short-

est computer program that prints D and then halts. This P is known as

the Kolmogorov minimum sufficient statistic. The resulting method is called

the Kolmogorov structure function approach (Kolmogorov 1974a,b). As ex-

plained by Vitányi (2005), it has several advantages over merely minimizing

(17.19). In the structure function approach, the idea of separating data and

noise (Section 14.2.1) is taken as basic, and the hypothesis selection proce-

dure is defined in terms of it. The selected hypothesis may now be viewed

as capturing all structure inherent in the data; given the hypothesis, the data

cannot be distinguished from random noise. Therefore, it may be taken as

a basis for lossy data compression: rather than sending the whole sequence,

we only send the hypothesis representing the “structure” in the data. The

receiver can then use this hypothesis to generate “typical” data for it - this

data should then look just the same as the original data D. Rissanen views

this separation idea as perhaps the most fundamental aspect of “learning by

compression.” Therefore, in recent work with I. Tabus he has tried to define

an analogue of the Kolmogorov structure function for hypotheses that, as in

refined MDL, are encoded in a way that is designed to achieve minimax op-

timal (luckiness) regret. In this way, he connects refined MDL — originally

concerned with lossless compression only — to lossy compression, thereby,

as he puts it, “opening up a new chapter in the MDL theory” (Vereshchagin

and Vitányi 2002; Vitányi 2005; Rissanen and Tabus 2005). Another connec-

tion between refined and Kolmogorov-style MDL is due to Poland and Hut-

ter (2005,2006), who consider two-part MDL under the assumption that the

data are distributed according to some P in a countable set. They study the

predictive properties of two-part MDL estimators, and define variations of

two-part estimators with improved prediction quality.

Practical MDL is sometimes seen merely as an approximation to idealized

MDL, hampered by the use of less powerful codes to encode hypotheses. The

following example shows that the difference is really more subtle than that.

Example 17.5 [Does MDL Allow Cheating?] Suppose we want to do model
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selection or universal prediction relative to two singletonmodelsM0 = {P0}
andM1 = {P1}. Suppose that P0 has low, but P1 has very high Kolmogorov

complexity. For concreteness, imagine that P0 represents aweather forecaster

(Example 17.2) who always predicts that the probability that it will rain to-

morrow is 1/3, whereas P1 is the weather forecaster appearing on Dutch TV,

whose predictions are based on ameteorological theory that cannot be imple-

mented by a program of length less than 100 megabytes. From a “practical”

MDL perspective, we can design a two-part code relative to {P0, P1} where
both P0 and P1 are encoded using just 1 bit. Based on data xn, we then select

the Pj minimizing the two-part codelength, which is just the Pj maximizing

the likelihood of the sequence. To some adherents of idealized MDL, this is

unacceptable: they argue that instead, we should choose the Pj minimizing

K(Pj) − log Pj(x
n). As a consequence, for small samples, we would never

select the complex weather forecaster. This reasoning is incorrect: when we

do model selection between two hypotheses such as the weather forecasters,

the predictions of the hypotheses can be regarded as given, and we can se-

quentially code data using a “conditional” code (Chapter 3), conditioned on

the predictions of the individual hypotheses.

Idealized MDL adherents sometimes dismiss this counterargument on the

grounds that practical MDL would then allow for cheating: given data xn,

one first looks at the data, then one designs a distribution P1 that assigns

probability 1 to the data xn, then one performsmodel selection between {P1}
and some other modelM0, using a uniform code on the model index {0, 1}.
In this way one would always choose {P1}, now matter how large its Kol-
mogorov complexityK(P1) ≈ K(xn) is. Worse, one would even have a large

confidence in the result!

Again, the reasoning is not correct: if we design P1 after seeing data xn,

then P1 depends on xn, and therefore − log P1(x
n) cannot be interpreted as

a codelength function. In the two-stage coding setup, in the sender-receiver

interpretation of coding (Chapter 3), this can be seen as follows: when a

receiver receives index 1 in the first stage of the code, he cannot decode the

remainder of the message, since to decode xn, he needs to know what P1 is,

and to know what P1 is, he already needs to know what x
n is.

Concluding, in some cases one can encode hypotheses P1 with high Kol-

mogorov complexity using only a few bits, but only if the predictions (prob-

ability assignments) of such hypotheses are given in advance (available to

both encoder and decoder).

This line of thought does show, however, that there is a crucial difference be-
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tween practical MDL on the one hand, and both idealized MDL and purely

subjective Bayes on the other hand: suppose that we observe data xn about

an entirely unknown phenomenon, for which we initially have no idea how

to model it (see also Example 17.4). In this case, from a practical MDL per-

spective, it seems a good idea to split the data in two parts, say x1, . . . , xm and

xm+1, . . . , xn, withm ≈ n/2. Then, based on the first part, one starts thinking

and exploring what might be a good model class for the data at hand. Having

determined a model class (set of candidate models)M, one proceeds to de-

sign a universal code L̄(· | M) relative toM, to be used to encode the second

part of the data xm+1, . . . , xn. MDL inference then proceeds as usual, and the

confidence in any decision one might make is determined by the amount by

which L(xm+1, . . . , xn | M) compresses data xm+1, . . . , xn relative to some

null modelM0 (Chapter 14, Example 14.3). Since the modelM is used to en-

code only a part of the data, the number of bits by which it compresses data

relative toM0will be smaller than it would have been if the full data x1, . . . , xn

had been taken into account. Thus, there will be less confidence in the result of

the model selection than there would have been if the full data had been used,

but this is how it should be: we used x1, . . . , xm to construct the modelM,

so then x1, . . . , xm should of course not be used to test the quality ofM as a

model for the phenomenon at hand. The first half of the data must be ignored,

otherwise cheating would be possible after all. In contrast, in idealized MDL

and purely subjective Bayesian approaches, one’s prior for the models under

consideration is fixed once and for all, before seeing any data. Therefore, with

these approaches, one can always use the full data sequence x1, . . . , xn, and

there is a never a need to remove an initial part of it for exploratory purposes.

Another way to say this is that the premise “we observe data about which we

initially have no idea how to model it” cannot be true from a subjective Bayes

or idealized MDL perspective.

17.9 MDL and Individual Sequence Prediction

In its prequential guise, MDL may be viewed as being based on sequential

prediction with respect to the logarithmic loss function. In the computa-

tional learning and game-theoretic communities, one also studies universal

prediction with loss functions other than log loss. Here we compare MDL to

this generalized notion of universal prediction; for an overview of the exten-

sive research in this field, see the excellent recent textbook (Cesa-Bianchi and

Lugosi 2006).

Suppose one sequentially observes x1, x2, . . ., where each xi ∈ X . At each
point in time, one wants to predict xi based on the previous data xi−1. The

prediction quality is measured by some loss function L : X × A → [0,∞].
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Here A is a space of actions or predictions. A prediction algorithm is a (com-
putable) function h : X ∗ → A which maps each initial sequence xi to an

action h(xi) used to predict xi+1. The loss a prediction algorithm incurs on a

sequence xn is defined to be the sum of the individual losses, i.e. it is given

by L(xn, h):=
∑n

i=1 L(xi, h(xi−1)).

If the goal is to compress x1, x2, . . . ,, then the logarithmic loss function

L(x, P ) = − log P (x) is appropriate. In many other situations, one may be

more interested in, say, the squared loss function, where A = X = R and

L(y, a) = (y−a)2, or, if X is discrete, the 0/1-loss or classification loss function.

The latter is defined by setting A = X , and

L(x, a) =

{

1 if x 6= a

0 if x = a.
(17.20)

Whereas the log loss is based on probabilistic predictions (A = P , the set of
distributions on X ), the squared and the 0/1-loss correspond to point pre-
diction. As an example of a 0/1-loss problem, one may think of a weather

forecaster who, at each day, only says “it will rain tomorrow” or “it will not

rain tomorrow,” and one measures her performance by observing how often

she predicts correctly.

Let H be a set of sequential predictors with respect to some known loss
function L. The predictors may be hypotheses, but they may also be “ex-

perts,” such as in the weather forecasting example. Our goal is to design a

prediction algorithm h̄ that is universal with respect to these predictors for

the given loss function L. That is, for all h ∈ H, the algorithm should satisfy

max
xn∈Xn

n
∑

i=1

L(xi, h̄(xi−1)) ≤
n

∑

i=1

L(xi, h(xi−1)) + o(n). (17.21)

Entropification It may seem that the type of universal prediction expressed

by (17.21) is beyond the scope of MDL approaches, as soon as L is not the log

loss. It turns out, however, that there is a method to “transform” arbitrary

sequential prediction problems to log loss sequential prediction problems.

Namely, one fixes some β > 0, say, β = 1, and, for each action a ∈ A, one
defines the distribution Pa on X by

Pa(x):=
1

Z(β)
e−βL(x,a), (17.22)

where Z(β) =
∑

x∈X e−βL(x,a). Note that we implicitly assume here that

Z(β) does not depend on a. Loss functions for which this holds were called
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simple by Grünwald (1998) and Rissanen (2001). Examples of simple loss

functions are the 0/1-loss and other symmetric loss functions such as the

squared error loss. Assuming then that H is a set of predictors to be used
against a simple loss function L. We use (17.22) to define, for each h ∈ H, a
corresponding probabilistic source Ph, by

Ph(xi | xi−1):=Ph(xi−1)(xi) =
1

Z(β)
e−βL(xi,h(xi−1)). (17.23)

Using Ph(xn) =
∏

Ph(xi | xi−1) (Chapter 2, page 54), the code Lh corre-

sponding to Ph satisfies

Lh(xn) = − ln Ph(xn) = β

n
∑

i=1

L(xi, h(xi−1)) + n ln Z(β). (17.24)

We see that the codelength (log loss) of xn under Lh is an affine (linear plus

constant) function of the loss that h makes on xn, as measured in the loss function

L of interest. Such a transformation of predictors h into probabilistic predic-

tion strategies Ph was suggested by Rissanen (1989), and studied in detail by

Grünwald (1998,1999), who called it “entropification.” We note that it usu-

ally does not make sense to think of Ph as candidates for sources that might

have generated the data. They should first and foremost be thought of as log

loss prediction strategies or, equivalently, codes. In Section 17.10 we connect

entropification to the correspondence between least-squares estimation and

ML estimation under the assumptions of Gaussian noise, and we consider

what happens if β is allowed to vary, or to be learned from the data.

It turns out that one can also construct codes Lh with a linear relation to the

original loss L for nonsimple loss functions for which Z(β) does depend on

h(xi−1), but the construction is more complicated (Grünwald 2007).

If we “entropify” each h ∈ H, we end up with a model of “sources”MH:=

{Ph | h ∈ H}, where Ph is given by (17.24). Now suppose we have designed

a prequential plug-in universal model P̄plug-in relative toMH, that satisfies,

for each Ph ∈ MH, for all n, x
n,

− ln P̄plug-in(x
n) ≤ − ln Ph(xn) + f(n), (17.25)

for some slowly growing function f(n), say, f(n) = O(lnn). Then P̄plug-in
is f(n)-universal relative toMH. Now note that, while until now we used

(17.23) to construct sources corresponding to given predictors h, we can also
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apply it the other way around: starting from P̄plug-in, we can construct a pre-

diction algorithm h̄ such that we have P̄plug-in = Ph̄, i.e. for each n, xn,

Ph̄(xn) = P̄plug-in(· | xn). It then follows immediately from (17.24) and (17.25)

that for all h ∈ H,
n

∑

i=1

L(xi, h̄(xi−1)) ≤
n

∑

i=1

L(xi, h(xi−1)) + β−1f(n),

so that h̄ is O(f(n))-universal relative toH. It seems that we have succeeded
to translate arbitrary-loss universal prediction problems to log loss universal

prediction, and that MDL is a more general idea than we thought!

The Catch Unfortunately though, there is a catch: it is crucial in the reason-

ing above that we looked at a plug-in universal model P̄plug-in, or equivalently,

an “in-model estimator” (Chapter 15, Section 15.2). For many probabilistic

model classesM, the best universal models relative toM are not of the plug-

in type. For example, the prediction P̄Bayes(Xn+1 | xn) corresponding to the

Bayesian universal code is a mixture of elements ofM, which often does not
lie itself inM. As already indicated in Chapter 9, for universal prediction
in the individual sequence sense, there seems to be an inherent advantage if

one is allowed to predict with mixtures. Thus, to get good universal predic-

tion schemes, one would often want to use Bayesian universal models rather

than plug-in universal models relative toMH. But now there is a problem:

if the Bayesian prediction P̄Bayes(Xn+1 | xn) is not an element ofMH, there

may be no action (prediction) a ∈ A such that (17.22) holds, i.e. such that for
all xn+1 ∈ X ,

− ln P̄ (xn+1 | xn) = βL(xn+1, a) + lnZ(β). (17.26)

In that case, we cannot translate the universal code P̄ “back” to a universal

prediction algorithm h̄ with respect to the original model and loss. At first

sight, it seems that the correspondence (17.22) has become useless. In some

cases though, entropification can still be useful. Whether or not this is the

case, depends on whether the loss function of interest is mixable. The con-

cept of mixable loss functions was introduced and developed by V. Vovk

and his coworkers in a remarkable series of papers; some highlights are

(Vovk 1990; Vovk 2001; Kalnishkan and Vyugin 2002); see also (Littlestone

and Warmuth 1994). Roughly speaking, if the loss function is mixable, then

a variation of the entropification method can still be used, and the existence

of an f(n)-universal model forMH relative to log loss implies the existence
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of an O(f(n)) universal model for H relative to loss function L. For exam-
ple, the squared loss function is mixable as long as it is defined relative to a

compact set of outcomes X = [−R,R] rather than the full real line. Unfortu-

nately, the important 0/1-loss is not mixable. Indeed, if H consists of a fixed
number of N experts, and if we allow the prediction algorithm to random-

ize (i.e. use a biased coin to determine whether to predict 0 or 1), then the

optimal universal 0/1-loss predictor has worst-case regret (in the worst-case

over all types of experts and all sequences xn) of ORDER(
√

n), whereas the

log loss predictor has a much smaller worst-case regret lnN , independently

of n and xn (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and War-

muth 1997). The latter fact can be seen by noting that the worst-case regret

of P̄Bayes(· | MH) with the uniform prior is bounded by lnN . The upshot is

that there exist important nonmixable loss functions L such as the 0/1-loss,

which have the property that universal prediction with respect to L cannot be

seen as universal prediction with respect to log loss.13

MixabilityWe now give an informal definition of mixability.14 As we shall see,

mixability cannot be obtained for simple loss functions. Thus, let L be a loss

function that is not simple, so that Z(β) = Za(β), defined as below (17.23),

depends on a. We now define a function C(β):= supa∈A Za(β) and use this to

define a defective distribution (Chapter 3, page 94)

Pa(x) :=
1

C(β)
e−βL(x,a). (17.27)

Now set, for fixed β, PA as the set of distributions Pa on X given by (17.27),

so that PA contains one distribution for each a ∈ A. Now let PA be the con-

vex closure of PA, i.e. the set of all distributions on X that can be written as

mixtures of elements of PA.

We say that L is mixable if we can choose a β > 0 such that for any mixture

Pmix ∈ PA, there exists an a ∈ A such that for all x ∈ X ,

− ln Pmix(x) ≥ βL(x, a) + ln C(β). (17.28)

Since Pmix(x) = C(β)−1
R

e−βL(x,a)w(a)da for some prior w on A, (17.28) can

be rewritten in the following more common form: for every prior w, there

should be an a such that for all x,

−
1

β
ln

Z

e−βL(x,a)w(a)da ≥ L(x, a).

13. Nevertheless, some universal predictors that achieve the minimax optimal 0/1-regret to

within a constant, are still based on entropification-related ideas. The important difference is

that in such algorithms, the β used in (17.23) varies as a function of n. To get good worst-case

performance, one needs to take β = O(1/
√

n).
14. Vovk’s technical definition is more complicated.
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Note that if L were simple, this would be impossible to achieve since then

C(β) = Z(β) and (17.28) expresses that for all x, Pa(x) ≥ Pmix(x), which

cannot hold if Pa(x) 6= Pmix(x). Since for nonsimple loss functions, we have

C(β) > Z(β), there sometimes does exist a β for which (17.28) holds after all.

Now define Ph as before, but with Z(β) replaced by C(β), and for a given set

of predictorsH, defineMH = {Ph | h ∈ H}. If the mixability condition (17.28)

holds, we can modify an f(n)-universal code P̄ for MH into an O(f(n))-

universal prediction strategy h̄ for the loss function L, as long as the predictions

P̄ (· | xn) can be written as mixtures over the elements ofMH. Thus, unlike in

the original entropification approach, we can now also use Bayesian universal

codes P̄Bayes. To see this, suppose that P̄ is an f(n)-universal code forMH such

that for all n, xn, P̄ (· | xn) ∈ PA. For each n, xn, we first set Pmix in (17.28) to

P̄ (· | xn), and then we set h̄(xn) equal to the a for which (17.28) holds. From

(17.28) it is immediate that, for each n, xn, each h ∈ H,

β
n
X

i=1

L(xi, h̄(xi−1)) + n ln C(β) ≤ −
n
X

i=1

ln P̄ (xi | xi−1) =

− ln P̄ (xn) ≤

− ln Ph(xn) + f(n) ≤ β

n
X

i=1

L(xi, h(xi−1)) + n ln C(β) + f(n), (17.29)

from which it follows that

n
X

i=1

L(xi, h̄(xi−1)) ≤

n
X

i=1

L(xi, h(xi−1)) + β−1f(n).

As an example, if X = {0, 1}, A = [0, 1] and the squared loss is used, then the

best achievable β is given by β = 1/2, and an f(n)-universal model relative

to PH with respect to log loss becomes a 2f(n)-universal model relative to H

with respect to squared loss. This type of correspondence was initiated by

Vovk (1990). Further examples of such correspondences, as well as many other

relations between log loss and general universal prediction, are discussed by

Yamanishi (1998) in the context of his notion of extended stochastic complexity.

MDL Is Not Just Prediction The analysis above suggests that MDL should

simply be thought of as the special case of the sequential universal predic-

tion framework, instantiated to log loss, and that all references to data com-

pression may be dropped. This reasoning overlooks three facts. First, Theo-

rem 15.1 tells us that in statistical contexts, there is something special about

log loss: in contrast to many other loss functions, with probabilistic predic-

tions, it leads to consistent (prequential) estimators P̄ (· | Xn). Thus, if a
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“true” distribution P ∗ exists, the KL divergence between P̄ (· | Xn) and P ∗

will quickly tend to 0 as n increases. This suggests that, even if we are inter-

ested in loss functions L that are not equal to the log loss, predicting Xn+1

by arg mina∈A EXn+1∼P̄ (·|Xn)[L(Xn+1, a)] will still be a good idea, at least if

n is large enough, at least if the data are actually distributed according to a

distribution in our model class.

Viewing MDL simply as a special case of universal prediction also ignores

the existence of two-part MDL estimation. This form of MDL also has ex-

cellent frequentist properties (Theorem 15.3), and is just as fundamental as

the other ones. Nevertheless, it is purely based on “nonpredictive” data

compression, and interpreting it prequentially is a bit far-fetched. The third

problem with the exclusive universal prediction view is model selection. If

we compare a finite number of models, and our end goal is to predict future

data using a loss function L that is not equal to the log loss, then it makes

perfect sense to judge each model based on accumulated prediction error of

an estimator for the model in terms of L rather than log loss. This is explicitly

advocated by the prequential approach, see Section 17.5. It is indeed prob-

lematic that MDL does not account for this. However, what if we want to

compare an infinite number of models? Then MDL proceeds by adding the

codelength needed to encode the models themselves, and we have seen in

Chapter 14 that this is sometimes essential. It is not clear how the prequential

non-log-loss approach can be extended to deal with this situation.

17.10 MDL and Statistical Learning Theory

Statistical learning theory (Vapnik 1998) is an “agnostic” approach to classifi-

cation, regression and other conditional prediction problems. One observes

a sample D = (x1, y1), . . . , (xn, yn) where each xi ∈ X and each yi ∈ Y . In
regression problems, Y = R; in classification, Y is finite; the goal is to match
each feature X (for example, a bit map of a handwritten digit) with its cor-

responding label or class (e.g., a digit); in other words, we want to predict y

assuming that x is given. Just as in the individual-sequence prediction frame-

work of the previous section, the prediction quality is measured in terms of

a loss function L : Y × A → [0,∞]. One usually starts out with a hypothesis

class H consisting of functions h : X → A mapping input values x to cor-

responding actions a. A standard loss function for regression is the squared

loss, A = Y and L(y, a) = (y − a)2. A standard loss for classification is the

0/1-loss, defined as in (17.20), with X replaced by Y . Based on a sample D,
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one wants to learn a h ∈ H that makes good predictions on future data. In
learning theory, this is formalized by assuming that data (Xi, Yi) are jointly

i.i.d. according to some unknown source P ∗. In the basic framework, one

makes no assumptions at all about P ∗, except that data are i.i.d. according to

P ∗. Thus, just like inMDL, one takes an “agnostic” stance, but this is realized

in a totally different way.

We may view P ∗ as a joint distribution on X × Y and define the risk of a
hypothesis h as EX,Y ∼P∗ [L(Y, h(X))]. In the machine learning community,

the risk is often called “error function,” and the risk of h is called the gen-

eralization error of h. By the law of large numbers, a hypothesis with small

generalization error will, with very high probability, make good predictions

on future data from P ∗. For a given hypothesis classH, we further define

L∗:= inf
h∈H

EX,Y ∼P∗ [L(Y, h(X))]. (17.30)

L∗ is the best expected loss that can be obtained by a hypothesis in H. Thus,
the goal of learning theory can now be rephrased as: find a good learning

algorithm mapping, for each n, data (x1, y1), . . . , (xn, yn) to hypotheses ḣn ∈
H such that EP∗ [L(Y, ḣn(X))] → L∗, no matter what the distribution P ∗ is.

Here the convergence may be in P ∗-expectation, or with high P ∗-probability.

If H is sufficiently simple, then this goal can be achieved by empirical risk
minimization (ERM): for sample (x1, y1), . . . , (xn, yn), we simply pick any ĥ ∈
Hγ minimizing the empirical risk n−1

∑n
i=1 L(Yi, h(Xi)). This is just the ĥ that

achieves the smallest error on the sample.

Example 17.6 [Polynomial Regression] Let X = Y = R and letHγ be the set

of polynomials of degree γ. For simplicity, assume that γ = 2. Suppose we

are interested in predicting y given x against the square loss. Given points

(x1, y1), . . . , (xn, yn), ERM tells us to pick the polynomial ĥn that achieves the

optimal least-squares fit minh∈Hγ

∑

(yi − h(xi))
2. The optimal polynomial

h̃ ∈ H is the polynomial achieving minh∈Hγ
EP∗ [(Y − h(X))2] = L∗. By the

uniform law of large numbers (Vapnik 1998), it holds that ĥn → h̃, in the sense

that

EP∗ [(Y − ĥn(X))2] → L∗.

in P ∗-probability and in P ∗-expectation. This holds no matter what P ∗ is, so

that ERM can be used to learn a good approximation of h̃, no matter what P ∗

is. P ∗ may of course be such that even the optimal h̃ ∈ H predicts Y quite

badly. This happens, for example, if P ∗(Y | X) is essentially flat (has fat tails)

and does not depend on X . So we cannot always guarantee that, based on a
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small sample, we will learn, with high probability, a ĥn which predicts well.

We can guarantee however that, based on a small sample, we will learn a ĥn

which predicts almost as well as the best predictor h̃ ∈ H.
Now consider the model P(γ+1) (Example 2.9, page 64). This is the linear

model corresponding toHγ , i.e. it assumes that Yi are independent givenXi,

and normally distributed with mean h(Xi) for some h ∈ Hγ , and some fixed

variance σ2. As we pointed out in Chapter 12, Section 12.3, least-squares es-

timation for Hγ , which is what ERM amounts to in this case, corresponds to

ML estimation for P(γ+1). Yet there is an important interpretation difference:

rather than modeling the noise as being normally distributed, ERM seeks to

learn functions h ∈ Hγ in a way that leads to good predictions of future data

with respect to the squared loss, even if P ∗ is such that the noise is very different

from the normal distribution, i.e. even if P ∗(Y |X) is not normal at all. Imple-

menting this goal leads to algorithms that differ significantly with MDL and

Bayes once we consider larger classes of hypotheses such as the set of all

polynomials considered. This is the topic of the next subsection.

17.10.1 Structural Risk Minimization

If H contains predictors of arbitrary complexity, then ERM will fail. For ex-
ample, this happens ifH is the set of all polynomials of each degree. Then for
a sample of size n, ERM will tend to select a polynomial of degree n − 1 that

perfectly fits the data. As we already saw in Chapter 1, Example 1.3, such a

polynomial will severely overfit the data and will not lead to good general-

ization performance. This is of course analogous to the maximum likelihood

estimator for the linear model defined relative to the set of all polynomials,

which also corresponds to a polynomial of degree n − 1. For this situation,

Vapnik (1982,1998) proposed the structural risk minimization (SRM) method;

see also (Bartlett, Boucheron, and Lugosi 2001). The idea is to carve up a

hypothesis class H into subsets H1,H2, . . . such that
⋃

γ Hγ = H. The sub-
classes Hγ are typically nested, Hγ ⊂ Hγ+1, and correspond to what we call

“models” in this book. In our polynomial example, Hγ would be the set of

polynomials of degree γ. The idea is to first select a model Hγ̇ for the given

data (x1, y1), . . . , (xn, yn) byminimizing some tradeoff between the complex-

ity of Hγ and if the fit of ĥγ , the best-fitting predictor within Hγ . In the

simplest forms of SRM, this tradeoff is realized by picking the γ̇n achieving

min
γ∈Γ

fn(L̂γ ,COMPsrm(Hγ)). (17.31)
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Here

L̂γ := inf
h∈Hγ

1

n

n
∑

i=1

L(yi, h(xi))

measures the empirical error that is achieved by the h ∈ Hγ that minimizes

this empirical error; note that this is analogous to the quantity− log Pθ̂(xn)(x
n)

appearing in MDL complexity tradeoffs. fn : R × R → R is some function

that is increasing in both arguments. COMPsrm(Hγ) is some function that

measures the complexity of the set of predictors Hγ . Intuitively, the more

patterns for which there is an h ∈ Hγ that fits them well, the larger the com-

plexity. As we show below, the complexity measures used in SRM are often

directly or indirectly related to the number of bits needed to describe an ele-

ment of Hγ using a worst-case optimal code. Thus, (17.31) is reminiscent of

two-part code MDL: we pick the Hγ optimizing a tradeoff between loss on

the data and hypothesis class complexity. Different forms of SRM use differ-

ent definitions of COMPsrm; some of these definitions are data-dependent, in

the sense that COMPsrm(Hγ) is really a function not just of Hγ but also of

xn. Again this is reminiscent of MDL, where the parametric complexity of

regression models also depends on the design matrixX.

In two-part MDL, both the loss and the complexity are measured in bits,

and they are simply added to one another. In SRM, the loss and the com-

plexity are measured in different units, and rather than just adding them,

the tradeoff is in terms of a more complicated function fn which depends on

the sample size n, and which increases both if the empirical loss L̂ and if the

complexity COMPsrm(Hγ) increase. We postpone giving explicit examples

of fn until the next subsection, where we discuss a variation of SRM that is

more closely related to MDL. The tradeoff (17.31), the complexity measures

COMPsrm and the function fn are all designed so as to make sure that ĥγ̇

converges to the best hypothesis inH as fast as possible, in the sense that

EP∗ [L(Y, ĥγ̇n
)] → L∗,

with high P ∗-probability, or in P ∗-expectation. Here L∗ is defined as in

(17.30). Again, this will be explained in detail in Section 17.10.2, where we

give an explicit example. The “best possible” choices for COMPsrm may de-

pend on the hypothesis classH under consideration.

Complexity Measures for Classification We now give some examples of

complexity measures COMPsrm that have been used in the SRM literature.

We concentrate on classification settings with Y = {0, 1} and the 0/1-loss
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function as defined by (17.20). This is the type of SRM application that has

most often been studied in practice.

For a given sample xn, we may partition any given H into N equivalence

classes {H1, . . .HN}, where hypotheses fall into the same classHj if and only

if they agree on all given xi. That is, for all j ∈ {1, . . . , N}, for all h, h′ ∈ Hj ,

for all xi with 1 ≤ i ≤ n, h(xi) = h′(xi); and for each h ∈ Hj , h
′ ∈ H \ Hj ,

there is an xi with h(xi) 6= h′(xi). N = N(xn) depends on the input data

xn, and must satisfy N(xn) ≤ 2n, since yn can only take on 2n distinct val-

ues. The Vapnik-Chervonenkis (VC) dimension of H is defined as the largest n
for which there exists a sample xn with N(xn) = 2n (Vapnik and Chervo-

nenkis 1971). This is the largest n for which there exists a sample that can

be classified in all 2n possible ways by elements of H. Clearly, this measures
something like the “richness” of H. The VC dimension was historically the
first complexity notion used in SRM approaches. These were based on ap-

plications of (17.31) with COMPsrm(H) instantiated to the VC dimension of

H.
According to Sauer’s lemma (Vapnik and Chervonenkis 1971), ifH has VC-

dimension d, then for all n, xn, N(xn) is bounded by
∑d

j=0

(

n
j

)

, so that, for

n > 1,N(xn) ≤ nd. Thus, suppose there is a h ∈ H that fits the data perfectly,
i.e. h(xi) = yi for i = 1, . . . , n. Then h ∈ Hj for some j, and in order to

encode yn given xn and hypothesis classH, it suffices to describe the number
j. This takes at most d log n bits, since we must have j ∈ {1, . . . , N(xn)} and
by Sauer’s lemma, N(xn) ≤ nd.

More Relations between Complexities in Learning Theory and in MDL In-

terestingly, the VC-dimension was originally introduced to provide a distribu-

tion-independent upper bound for what Vapnik calls the annealed entropy, de-

fined, for givenH, as log EXn∼P∗ [N(Xn)]. This quantity cannot be computed

directly because it depends on the unknown distribution P ∗, but by Sauer’s

lemma, it is bounded, for all n > 1, by d log n, where d is the VC-dimension

of H. Most other authors call the annealed entropy simply “entropy,” which

I think is less fortunate because, unlike the Shannon entropy, it does not have

a direct expected codelength interpretation. However, it would have such an

interpretation if we exchanged log and expectation, just like Rényi entropy (no

direct coding interpretation) becomes equal to Shannon entropy (direct coding

interpretation) if we exchange log and expectation.

Open Problem No. 19: Rademacher vs. Parametric Complexity The empirical

Rademacher complexity (Bartlett, Boucheron, and Lugosi 2001; Boucheron, Bous-

quet, and Lugosi 2005) is a more recent complexity notion used in SRM ap-

proaches. It bears a resemblance to the parametric complexity COMP(n)(M)
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although it is unclear whether it can be given a coding interpretation. The em-

pirical Rademacher complexity is used in classification problems where Y ∈

{−1, 1}, and H consists of real-valued predictors h : X → R. Many classifica-

tion models used in practice employ such h to predict y against the 0/1-loss,

and then h(x) > 0 is interpreted as a prediction of 1, and h(x) < 0 is inter-

preted as a prediction of −1. This is the case in, for example, feedforward

neural networks and in support vector machines (SVMs; see (Schölkopf and

Smola 2002)). To simplify definitions, we will assume that for each h ∈ H,

there is a h′ ∈ H such that for all x, h(x) = −h′(x). This condition is satis-

fied for SVMs and feedforward neural networks. In such cases, the empirical

Rademacher complexity ofH, relative to inputs x1, . . . , xn, is defined as

R̂(n)(H):=n−12−n+1
X

yn∈{−1,1}

sup
h∈H

n
X

i=1

yih(xi)

Just like COMP(n)(M) in regression problems (Chapter 14, Section 14.5), this

quantity is data-dependent: it depends on the input values x1, . . . , xn. Let us

compare it more closely to the parametric complexity of an i.i.d. conditional

probabilistic modelM = {Pθ(Y | X) | Θ} for Y , which, for given xn, may be

written (Chapter 7) as

COMP(n)(M) = log
X

yn∈{−1,1}

sup
P∈M

e−
Pn

i=1[− log P (yi|xi)].

In both cases, one takes the sum over all possible realizations of the data yn, of

the best fit that can be achieved for that particular yn. In the MDL case, the fit

is measured in terms of the exponent of minus log loss . In the structural risk

minimization case, the fit is measured in terms of a “smoothed” version of the

0/1-loss.

A final connection between complexity notions in learning theory for classifi-

cation and MDL is provided by the so-called compression schemes (Floyd and

Warmuth 1995). Here, one focuses on hypothesis classes H such that each

h ∈ H can be uniquely identified by a finite number of input values xi. For

example, we may have X = R
2 and Y is the class of ‘rectangles’ on X . That

is, each h ∈ H has h(x) = 1 if and only if x falls in some rectangle with sides

running parallel to the axis of X . Then each hmay be identified by two points

in the plane (its lower left and upper right corner). Given a sample of input

points x1, . . . , xn, one can now “encode” a hypothesis h by giving the indices

(j1, j2) of two of the xi-points, which are interpreted as the lower left and up-

per right corner of h. Thus, one needs log
`

n

2

´

bits to encode a rectangle. Such

a method of representing h is called a compression scheme; the complexity of

a class H may be measured by the number of x-values that must be provided

in order to identify an element of h uniquely.
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Such relations between learning and coding complexity notions notwith-

standing, there is usually no direct interpretation of (17.31) in terms of mini-

mizing a codelength. This is due to the fact that the function fn depends on

n, L̂γ and COMPsrm in a complicated manner. Below we clarify this issue in

the context of the PAC-Bayesian approach to learning theory, a variation of

SRM which has complexity penalties that resemble those of MDL even more

closely.

17.10.2 PAC-Bayesian Approaches

In the PAC-Bayesianmethod ofMcAllester (1998,1999,2002), complexity pen-

alties are measured by a user-supplied prior distributionW , or equivalently,

a codelength function L, on hypotheses H. Although this prior distribution
may be chosen subjectively, its interpretation is quite different from that of

a subjective prior in Bayesian statistics. It is (much) more closely related to

MDL’s luckiness interpretation of codelength functions.15 For our purposes,

it is sufficient to discuss a simplified version of the method, with a level of

sophistication inbetween that of the so-called “Occam’s Razor bound” (a pre-

cursor to PAC-Bayes due to Blumer, Ehrenfeucht, Haussler, and Warmuth

(1987)) and the PAC-Bayes method itself. Below we describe this simplifi-

cation and its rationale, highlighting similarities and differences with MDL.

For simplicity we restrict to hypothesis selection in a classification setting,

Y = {0, 1} with the 0/1-loss function, and a countable set of hypotheses H.
The set of hypotheses may be arbitrarily complex though, in the sense of hav-

ing infinite VC-dimension; for example,Hmay be the set of all decision trees
with an arbitrary depth and arbitrary number of leaves, and with decision

functions based on rational numbers. See (McAllester 2003) for extensions

to uncountable hypothesis classes, stochastic hypothesis “averaging,” and

other loss functions.

Simplified PAC-Bayes Hypothesis Selection Let L be the 0/1-loss func-

tion. In the remainder of this section, we abbreviate n−1
∑n

i=1 L(Yi, h(Xi)) to

eemp(h), and EX,Y ∼P∗ [L(Y, h(X))] to e(h).

In order to apply the PAC-Bayesian method, we must first fix some confi-

dence level δ, the meaning of which will become clear later. For concreteness,

we could take δ = 0.05. We could also choose δ as a function of the sample

15. Indeed, some of the bounds on which PAC-Bayesian model selection and averaging are

based have been called PAC-MDL bounds in the literature (Blum and Langford 2003).
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size n, say, δ = 1/n. With this choice, the influence of δ becomes almost neg-

ligible for large n. We must also fix a “prior”W on the countable set H, and
define the codelength function (measured in nats) L(h) = − lnW (h). Now

suppose we are given data (x1, y1), . . . , (xn, yn). Then according to simplified

PAC-Bayes, we should pick the hypothesis ḧminimizing, over all h ∈ H,

neemp(h) + 2L(h) +
√

n ·
√

eemp(h)(8L(h) − ln δ). (17.32)

Why would this be a good idea? The hypothesis selection rule (17.32) is

based on a generalization bound expressed in Proposition 17.1 below. As we

will see below, the best performance guarantee on the generalization error

e(h) given by that bound is achieved for the ḧ minimizing (17.32). This is a

typical instance of what we called the frequentist design principle and criticized

in Section 17.1.1: one proves a certain frequentist property of sets of classi-

fiers, and then one designs a hypothesis selection algorithm that is optimal

relative to the proven property. In the case of PAC-Bayes and other statistical

learning methods, I have not much objections against this principle, since the

sole assumption on which it is based is that the data are i.i.d. Indeed, this is

one of the few examples of a modeling assumption which may actually be

quite realistic in some situations.

Proposition 17.1 Let H be an arbitrary countable set of classifiers. Assume
(X1, Y1), . . . , (Xn, Yn) are i.i.d. P ∗. Then no matter what P ∗ is, for all h ∈ H,
in particular, for the ḧ minimizing (17.32), we have, with P ∗-probability at

least 1 − δ, that

ne(h) ≤ neemp(h) + 2L(h) − ln δ +
√

n ·
√

8eemp(h)(L(h) − ln δ).

Results of this type, but with cruder notions of complexity, were originally

called probably approximately correct (PAC) generalization bounds. This ex-

plains the term “PAC-Bayes.” The bound says that, simultaneously for all

hypotheses h ∈ H, their generalization error is not much larger than their
error on the training set plus a slack, which depends on the prior on h: the

bound holds for all h at the same time, but is stronger for h with a large

“prior” W (h):=e−L(h). This means that, for each hypothesis h, with high

P ∗-probability, if L(h) is small, then its performance on a future test set is

not much worse than its performance on the training set. Since our goal is to

find a hypothesis with small generalization error e(h), it may be a good idea

to pick the h for which Proposition 17.1 provides the smallest upper bound on

the generalization error. This is exactly the h we pick in the PAC-Bayesian



17.10 MDL and Statistical Learning Theory 587

method. Note that there is an analogy to our luckiness approach: if there

exists a h with small empirical error eemp(h) and large “prior” W (h), then

we were lucky and get a good (small) upper bound on future performance.

If there exists no such h, than we are not lucky, but, by Proposition 17.1, we

know in that case that the h chosen in (17.32) may predict badly in the future.

Themain difference to our notion of “luckiness” is that here it refers to gener-

alization error for future data (an expected quantity), whereas in individual-

sequence MDL, it refers to individual sequence codelength of the given data;

although we do use it as an indication of how much confidence we have in

the prediction quality (codelength) that we achieve on future data.

Proof: For each h ∈ H, let Zh,i:=|Yi − h(Xi)|. Then Zh,1, Zh,2, . . . are i.i.d.

Bernoulli distributed, with mean µ∗
h = P ∗(Zh,1 = 1). Let µ̂h be the corre-

sponding ML estimator based on data Zn. It follows from Theorem 19.2 in

Chapter 19 that, for allK > 0,

P ∗(nD(µ̂h‖µ
∗
h) ≥ K) ≤ e−K .

Therefore,

P ∗(∃h ∈ H : nD(µ̂h‖µ
∗
h) ≥ L(h) − ln δ) ≤

X

h∈H

P ∗(nD(µ̂h‖µ
∗
h) ≥ L(h) − ln δ) ≤

X

h∈H

e−L(h)eln δ ≤ δ. (17.33)

where the first inequality is the union bound, the final inequality is Kraft’s, and

we set K = L(h) − ln δ. Now if Z1, . . . , Zn are i.i.d. Bernoulli with mean µ∗

and µ̂ represents the ML estimator, then we must have

D(µ̂‖µ∗) ≥
(µ̂ − µ∗)2

2µ∗
.

This follows by a Taylor approximation of the type we performed in Chap-

ter 4, Section 4.3, using the fact that the Fisher information is given by I(µ∗) =

1/(µ∗(1 − µ∗)). Using the fact that µ∗
h = e(h) and µ̂h = eemp(h), together with

(17.33), taking square roots, and rearranging terms, we get

P ∗

 

∃h ∈ H :
|e(h) − eemp(h)|

p

e(h)
≥

r

2(L(h) − ln δ)

n

!

≤ δ. (17.34)

If eemp(h) < e(h), then eemp(h)/
p

e(h) <
p

eemp(h). With this observation,

(17.34) implies that

P ∗

 

∃h ∈ H :
p

e(h) −
q

eemp(h) ≥

r

2(L(h) − ln δ)

n

!

≤ δ.
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The result now follows by moving
p

eemp(h) to the right of the inequality in-

side the probability, and squaring both sides inside the probability. 2

Relation to SRM The overall strategy to arrive at the hypothesis selection

criterion (17.32) was to first derive a uniform generalization bound, relating

empirical error to generalization error, that holds for all h ∈ H simultane-
ously. This bound then motivates an algorithm that selects the h which, for

the given data, gives, with high probability, the smallest upper bound on

generalization error. The SRM method which we described further above is

invariably based on exactly the same idea: one first proves a generalization

bound which holds for all h ∈ H simultaneously; this bound may depend
on complexity notions such as VC-dimension applied to subclassesHγ ⊂ H.
One then designs an algorithm that selects theHγ containing the h for which

the bound is optimal.

17.10.3 PAC-Bayes and MDL

MDL and learning theory approaches may seem to be very different: in the

former, hypotheses are probability models; in the latter, they are (sets of)

predictors relative to arbitrary loss functions (most often, the 0/1-loss). In the

former, no probabilistic assumptions aremade; in the latter, it is assumed that

data are sampled from an i.i.d., but otherwise arbitrary, unknown source.

The first difference is less essential than it seems: the probabilistic sources

appearing inMDL are first and foremost interpreted not as probability distri-

butions but rather as codes or equivalently, predictors relative to the log loss

function. Just as we did for the individual sequence prediction (Section 17.9),

we may “entropify” any arbitrary hypothesis class H together with a loss
function L, so that it becomes a model class PH consisting of conditional

i.i.d. sources such that for some β > 0, for each h ∈ H, there is exactly one
ph ∈ PH satisfying, for all n, x

n, yn,

− ln Ph(yn | xn) = β

n
∑

i=1

L(yi, h(xi)) + n lnZ(β). (17.35)

Thus, the log loss that Ph achieves on any sequence of data is a fixed affine

(linear plus constant) function of the loss achieved by h as measured in the

original loss function L. To construct Ph, we use an analogue of (17.23):

Ph(xi | yi):=
1

Z(β)
e−βL(xi,h(yi)), (17.36)
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where Z(β) =
∑

x∈X e−βL(x,h(yi)). Ph is extended to a conditional source

by taking product distributions. Note that Ph is an i.i.d. conditional source

here, whereas in the individual sequence prediction, Ph(xi | xi−1) strongly

depended on xi−1. The difference arises because in the present setup, the

predictors h only use side information xi rather than information about the

past. In the casewhereH is a set of functions fromX toR and L is the squared

error loss function,PH is just the linear regressionmodel with Gaussian noise

with fixed variance σ2 = 1/2β−1.

Now suppose we have a countable set of classifiers H. Equation (17.35)
suggests the following MDL approach to hypothesis selection for classifi-

cation: first, we fix some β > 0 and we transform each h ∈ H into the
corresponding source (or, more appropriately, log loss prediction strategy)

Ph. Second, we perform two-part code MDL on the resulting model PH, us-

ing some code L(h) for encoding hypotheses in H (Of course, we may use
minimax and luckiness principles to guide our choice of L(h), but the de-

tails of this choice do not matter below). Using the abbreviations for 0/1-loss

introduced above, this amounts to selecting the ḧ minimizing the two-part

codelength

nβeemp(h) + n ln Z(β) + L(h).

This is closely related to, but much simpler than, the PAC-Bayes hypothesis

selection as embodied by (17.32). If we set β = 1 and, as suggested in Chap-

ter 15, Section 15.3, Theorem 15.3, we use α-two part MDL for α = 2, then

we are effectively picking the hminimizing

neemp(h) + 2L(h). (17.37)

Comparing this to (17.32), we see that the only difference is the additional

term in (17.32) involving the square root of n. To illustrate the difference,

suppose X = [0, 1], and P ∗ is such that P ∗(Y = 1 | X = x) = 1 if x ∈ [0, 0.1],

whereas for each h ∈ H, h(x) = 0 if x ∈ [0.0.1]. If P ∗(X ∈ [0, 0.1]) = 1/10,

then on approximately 10% of the sample, all h ∈ H will make a wrong pre-
diction of Yi. Then in a typical run, no h ∈ H will achieve empirical error
eemp(h) much smaller than 0.1, and then the second term in (17.32) becomes

dominant: it is nonzero, and multiplied by
√

n. In such cases, hypothesis se-

lection based on (17.32) will bemuchmore conservative than model selection

based on MDL, since in the former the weight of the “complexity” L(h) of

hypothesis h is multiplied by
√

n, and in the latter, it remains constant.

From an MDL point of view, one may now think that this additional com-

plexity penalty implicit in PAC-Bayes is not really necessary. Indeed, the
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two-part MDL consistency result Theorem 15.3 suggests that two-part MDL

will be consistent. If this were the case, then it might be advantageous to

drop the additional term in PAC-Bayes and use MDL instead: if all hypothe-

ses h with smallest generalization error have large complexity L(h), then

PAC-Bayeswill only start selecting good approximations of h formuch larger

sample size than two-part MDL.

Unfortunately though, Theorem 15.3 does not apply in the present situa-

tion. The reason is that the entropified model classMH will in general be

severely misspecified: it has been artificially constructed, and there is no rea-

son at all why it should contain the assumed true distribution P ∗. Indeed,

Grünwald and Langford (2007) show that the two-part MDL approach to

classification (17.37) can be inconsistent: they give an example of a true dis-

tribution P ∗, a hypothesis class H and a codelength function L such that

there exists a h̃ ∈ H with small codelength L(h̃) and with generalization

error e(h̃) = ǫ close to 0 relative to P ∗; yet with P ∗-probability 1, as n in-

creases, the two-part MDL criterion (17.37) will keep selecting h with larger

and larger L(h), and all of these h will have generalization error e(h) ≫ ǫ.

The difference between e(h̃) and the generalization error for all of the h se-

lected by MDL can be as large as 0.15. One consequence of this phenomenon

is that MDL as well as Bayesian inference can be inconsistent under misspec-

ification, even with countable model classes; see (Grünwald and Langford

2007). The underlying reason for the inconsistency is, once again, the non-

mixability of the 0/1-loss. In the individual sequence prediction framework

with finite H, this nonmixability implied worst-case regrets of ORDER(√n).

This implies that MDL based on the entropification procedure (which, if it

worked, would promise worst-case regrets of constant order) cannot be ap-

plied on all sequences. In the statistical learning framework (data i.i.d. P ∗,

P ∗ unknown), the nonmixability implies that consistent hypothesis selection

algorithms need
√

n-factors in front of the hypothesis complexities. Thus,

MDL based on the entropification procedure (which would promise com-

plexity penalties without sample-size dependent multiplicative factors) does

not converge for all P ∗.

Not surprisingly then, earlier approaches that try to combine learning the-

ory and MDL-type inference for classification (Barron 1990; Yamanishi 1998)

also end up with a factor in front of the hypothesis complexity L(h) that can

be as large as
√

n, and the resulting criteria have no natural coding interpre-

tation any more; see also Meir andMerhav (1995), who do classification with

one-part universal codes based on the entropification–construction (17.36).

By now, the reader may have come to wonder why we chose β = 1. From
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an MDL point of view, a much more natural approach is to try to learn β

from the data. This idea was investigated by Grunwald (1998,1999), who

showed that the β learned from the data has an interesting interpretation as

a 1-to-1 transformation of an unbiased estimate of the generalization error of

the h selected by MDL. Adjusting (17.37) to learn β as well, (17.37) becomes:

minimize, over h ∈ H,

nH(eemp(h)) + 2L(h) +
1

2
log n, (17.38)

where the (1/2) log n term is used to encode β. It plays no role in the min-

imization and can be dropped. The value of β that is adopted is given by

β̈ = ln(1 − eemp(ḧ)) + ln(eemp(ḧ)); its occurrence in (17.38) is not visible be-

cause we have rewritten eemp(h) in terms of β. Grünwald (1998) shows that

several versions of MDL for classification that have been proposed in the lit-

erature (Quinlan and Rivest 1989; Rissanen 1989; Kearns, Mansour, Ng, and

Ron 1997) can all be reduced to variations of (17.38). Unfortunately though,

learning β from the data does not solve the serious inconsistency problem

mentioned above. In fact, in their main result Grünwald and Langford (2007)

show that (17.38) can be inconsistent; the inconsistency for fixed β follows as

a corollary.

Summary: MDL and Learning Theory We have seen that the algorithms

used in learning theory are based on the frequentist design principle, which

we criticized in Section 17.1. Nevertheless, the approach is quite “agnostic,”

in the sense that very few assumptions are made about the underlying P ∗.

Therefore, it is worrying that MDL approaches to learning classifiers relative

to the 0/1-loss can fail asymptotically when investigated within the learning

theory framework. The underlying reason seems to be the nonmixability of

the 0/1-loss function that we discussed in Section 17.9.

MDL and Learning Theory

In learning theory, complexity of a class of functions H is usually still
measured in terms of quantities related to bits; in the PAC-Bayesian ap-

proach, it is directly measured in bits. But to get algorithms with guaran-

teed consistency, one needs to combine the complexity with the empirical

loss in a more subtle way than by merely adding them.

Apart from the advantage of guaranteed consistency, the learning theory ap-

proach also has significant drawbacks compared to MDL. One problem is
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that its domain of application is quite limited. For example, if the xi are

set by humans (as they often are in regression problems, viz. the term “de-

sign matrix”), then the learning theory analysis is not valid anymore, since

it requires the Xi to be i.i.d. In practice, MDL and Bayesian approaches to

classification often work just fine, even under misspecification. In contrast,

approaches based on learning bounds such as (17.32) often need a lot more

data before they produce a reasonable hypothesis than either MDL or Bayes.

In 2002, I attended a workshop called “Generalization Bounds < 1.” The title

says it all: researchers at this workshop presented some of the rare cases where

bounds such as those in Proposition 17.1 actually produced a nontrivial bound

(e(h) < 1) on some real-world data set. At the workshop, it turned out that

in some cases, the bound was still larger than 0.5 — larger than the trivially

obtained bound by randomly guessing Y using a fair coin flip!

It seems that learning theory approaches are often too pessimistic, whereas

the MDL approach can sometimes be too optimistic.

17.11 The Road Ahead

Problems with MDL In this chapter we argued that from a theoretical per-

spective, MDL approaches compare favorably to existing approaches in sev-

eral respects. In many cases, MDL methods also perform very well in prac-

tice. Some representative examples are Hansen and Yu (2000,2001), who re-

port excellent behavior of MDL in regression contexts; the studies in (Allen,

Madani, and Greiner 2003; Kontkanen, Myllymäki, Silander, and Tirri 1999;

Modha and Masry 1998) demonstrate excellent behavior of prequential cod-

ing in Bayesian network model selection and regression; many more such

examples could be given. Also, “objective Bayesian” model selection meth-

ods are frequently and successfully used in practice (Kass and Wasserman

1996). Since these are based on noninformative priors such as Jeffreys’, they

often coincide with a versions of “refined” MDL and thus indicate successful

performance of MDL.

Yet there is also practical work in which MDL is not competitive with

other methods (Kearns, Mansour, Ng, and Ron 1997; Clarke 2004; Pednault

2003).16 Not surprisingly then, there are also some problems with MDL from

16. But see (Viswanathan., Wallace, Dowe, and Korb 1999) who point out that the problem of

(Kearns, Mansour, Ng, and Ron 1997) disappears if a more reasonable coding scheme is used.

Clarke (2004) actually considers Bayesian methods, but MDL methods would work similarly in

his examples.
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a theoretical perspective. These are mostly related to MDL’s behavior under

frequentist assumptions. A related problem is that in its current state of de-

velopment, MDL lacks a proper decision theory. Let us discuss each of these

in turn.

MDL Consistency Peculiarities In Chapter 16 we showed that the three

main applications of MDL, prediction, hypothesis selection and model se-

lection, generally have very good consistency properties: the prequential,

two-part or model-selection based MDL estimator typically converges to the

true distribution at near optimal rate. In Section 17.2.2 of this chapter we

even saw that in nonparametric settings, consistency of predictive MDL es-

timators is guaranteed, even in cases where Bayesian inference can be incon-

sistent. Yet, as we also argued in Chapter 16, each of the three versions of

MDL has its own peculiarity: for prequential MDL, we get consistency in

terms of Césaro rather than ordinary KL risk; for two-part MDL, we have

the α > 1-phenomenon; and for MDL model selection, there is the curious

Csiszár-Shields inconsistency result. It seems that in nonparametric cases,

straightforward implementations of all three versions of MDL sometimes in-

cur an additional log n-factor compared to the risk of the minimax optimal

estimation procedure. All this may not be of too much practical interest, but

from a theoretical perspective, it does show that some aspects of MDL are

currently not fully understood.

The problem ismore serious, and presumably, muchmore relevant in prac-

tice, if the true distribution P ∗ is not in the (information closure of) the model

classM; indeed, this seems to be the main cause of the suboptimal behavior
reported by (Clarke 2004; Pednault 2003). As explained in the previous sec-

tion, in that case, MDL (and Bayes) may be inconsistent, nomatter howmany

data are observed (Grünwald and Langford 2007). This is a bit ironic, since

MDL was explicitly designed not to depend on the untenable assumption

that some P ∗ ∈ M generates the data. Indeed, if we consider the accumu-

lated log loss of the prequential MDL estimator in the inconsistency example

of Grünwald and Langford (2007), we find that MDL behaves remarkably

well. In fact, the problem is caused because for large n, the prequential

MDL estimator P̄Bayes(Xn+1 | Xn) is a distribution on X that is closer to P ∗

in KL divergence than the P̃ ∈ M that achieves minP∈M D(P ∗‖P ). While

P̄Bayes(Xn+1 | Xn) is a better predictor than P̃ in terms of expected log loss

(KL divergence), it is a mixture of P ∈ M each of which is extremely far

from P ∗ in terms of KL divergence. Therefore, the posterior puts nearly all
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its mass on very bad approximations of P ∗, and we cannot say that P̄Bayes
is consistent. Also, if P̄Bayes(Xn+1 | xn) is used for 0/1-loss prediction, then

it will become much worse than P̃ ; see (Grünwald and Langford 2007) for a

thorough explanation of why this is problematic. The strange phenomenon

that inconsistency is caused by P̄Bayes(Xn+1 | Xn) predicting too well is re-

lated to what I see as the second main problem of MDL: the lack of a proper

decision theory.

Lack ofMDLDecision Theory It is sometimes claimed that MDL is mostly

like Bayesian inference, but with a decision theory restricted to using the

logarithmic utility function.17 This is not true: via the entropification device,

it is possible to convert a large class of loss functions to the log loss, so that

predicting data well with respect to log loss becomes equivalent to predicting

data well with respect to the loss function of interest. Nevertheless, as we

discussed in the previous section, this is not without its problems. It can

only be used if the loss function is given in advance; and it can fail for some

important loss functions that may be defined on the data, such as the 0/1-

loss.

More generally speaking, in Section 17.2.1 we made clear that parts of

Bayesian statistical decision theory (maximize expected utility according to

the posterior) are unacceptable from an MDL perspective. But this was a

negative statement only: we did not give a general MDL rule of exactly how

one should move from inferences based on the data (two-part MDL or pre-

quential MDL estimators) to decisions relative to some given loss or utility

function. The entropification idea gives a partial answer, but we do not know

how this should be done in general. To me, it seems that what is really lack-

ing here is a general MDL decision theory.

Conclusion Personally, I feel that the two problems mentioned above are

strongly interrelated. The main challenge for the future is to modify and

extend the MDL ideas in a non-ad hoc manner, in a way that avoids these

problems. I am confident that this can be done — although the resulting

theory may perhaps become a merger of MDL, the most agnostic brands of

Bayesian statistics, prequential analysis, and some types of universal indi-

vidual sequence prediction, and those statistical learning theory approaches

in which complexity is measured in bits. All these alternative methods have

17. Again, I have heard people say this at several conferences.
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some overlap with MDL, and they may all have something to offer that cur-

rent MDL theory cannot account for. One aspect of MDL that I do not suffi-

ciently recognize in any of the alternative approaches, is the view thatmodels

can be thought of as languages, and the consequence that noise relative to a

model should be seen as the number of bits needed to describe the data once

the model is given.

As a final note, I strongly emphasize that none of the problems mentioned

above invalidates the fundamental idea behind the MDL Principle: any reg-

ularity in a given set of data can be used to compress the data, i.e. to describe it

using fewer symbols than needed to describe the data literally. The problems men-

tioned above suggest that this statement cannot be strengthened to “every

good learning algorithm should be based on data compression.” But, mo-

tivated by Theorem 15.3 and the entropification idea, I firmly believe the

following, weaker statement: “every statistical estimation algorithm, every

sequential prediction algorithm with respect to any given loss function, and

every learning algorithm of the type considered in statistical learning theory,

can be transformed into a sequential data compression algorithm. If this al-

gorithm does not compress the given data at all, it hasn’t really learned any

useful properties about the data yet, and one cannot expect it to make good

predictions about future data from the same source. Only when the algo-

rithm is given more data, and when it starts to compress this data, can one

expect better predictive behavior. Summarizing:

Concluding Remark on The MDL Philosophy

One cannot say: “all good learning algorithms should be based on data

compression.” Yet one can say: if one has learned something of interest, one

has implicitly also compressed the data.


