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of an O(f(n)) universal model for H relative to loss function L. For exam-
ple, the squared loss function is mixable as long as it is defined relative to a

compact set of outcomes X = [−R,R] rather than the full real line. Unfortu-

nately, the important 0/1-loss is not mixable. Indeed, if H consists of a fixed
number of N experts, and if we allow the prediction algorithm to random-

ize (i.e. use a biased coin to determine whether to predict 0 or 1), then the

optimal universal 0/1-loss predictor has worst-case regret (in the worst-case

over all types of experts and all sequences xn) of ORDER(
√

n), whereas the

log loss predictor has a much smaller worst-case regret lnN , independently

of n and xn (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and War-

muth 1997). The latter fact can be seen by noting that the worst-case regret

of P̄Bayes(· | MH) with the uniform prior is bounded by lnN . The upshot is

that there exist important nonmixable loss functions L such as the 0/1-loss,

which have the property that universal prediction with respect to L cannot be

seen as universal prediction with respect to log loss.13

MixabilityWe now give an informal definition of mixability.14 As we shall see,

mixability cannot be obtained for simple loss functions. Thus, let L be a loss

function that is not simple, so that Z(β) = Za(β), defined as below (17.23),

depends on a. We now define a function C(β):= supa∈A Za(β) and use this to

define a defective distribution (Chapter 3, page 94)

Pa(x) :=
1

C(β)
e−βL(x,a). (17.27)

Now set, for fixed β, PA as the set of distributions Pa on X given by (17.27),

so that PA contains one distribution for each a ∈ A. Now let PA be the con-

vex closure of PA, i.e. the set of all distributions on X that can be written as

mixtures of elements of PA.

We say that L is mixable if we can choose a β > 0 such that for any mixture

Pmix ∈ PA, there exists an a ∈ A such that for all x ∈ X ,

− ln Pmix(x) ≥ βL(x, a) + ln C(β). (17.28)

Since Pmix(x) = C(β)−1
R

e−βL(x,a)w(a)da for some prior w on A, (17.28) can

be rewritten in the following more common form: for every prior w, there

should be an a such that for all x,

−
1

β
ln

Z

e−βL(x,a)w(a)da ≥ L(x, a).

13. Nevertheless, some universal predictors that achieve the minimax optimal 0/1-regret to

within a constant, are still based on entropification-related ideas. The important difference is

that in such algorithms, the β used in (17.23) varies as a function of n. To get good worst-case

performance, one needs to take β = O(1/
√

n).
14. Vovk’s technical definition is more complicated.
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Note that if L were simple, this would be impossible to achieve since then

C(β) = Z(β) and (17.28) expresses that for all x, Pa(x) ≥ Pmix(x), which

cannot hold if Pa(x) 6= Pmix(x). Since for nonsimple loss functions, we have

C(β) > Z(β), there sometimes does exist a β for which (17.28) holds after all.

Now define Ph as before, but with Z(β) replaced by C(β), and for a given set

of predictorsH, defineMH = {Ph | h ∈ H}. If the mixability condition (17.28)

holds, we can modify an f(n)-universal code P̄ for MH into an O(f(n))-

universal prediction strategy h̄ for the loss function L, as long as the predictions

P̄ (· | xn) can be written as mixtures over the elements ofMH. Thus, unlike in

the original entropification approach, we can now also use Bayesian universal

codes P̄Bayes. To see this, suppose that P̄ is an f(n)-universal code forMH such

that for all n, xn, P̄ (· | xn) ∈ PA. For each n, xn, we first set Pmix in (17.28) to

P̄ (· | xn), and then we set h̄(xn) equal to the a for which (17.28) holds. From

(17.28) it is immediate that, for each n, xn, each h ∈ H,

β
n

X

i=1

L(xi, h̄(xi−1)) + n ln C(β) ≤ −
n

X

i=1

ln P̄ (xi | xi−1) =

− ln P̄ (xn) ≤

− ln Ph(xn) + f(n) ≤ β

n
X

i=1

L(xi, h(xi−1)) + n ln C(β) + f(n), (17.29)

from which it follows that

n
X

i=1

L(xi, h̄(xi−1)) ≤

n
X

i=1

L(xi, h(xi−1)) + β−1f(n).

As an example, if X = {0, 1}, A = [0, 1] and the squared loss is used, then the

best achievable β is given by β = 1/2, and an f(n)-universal model relative

to PH with respect to log loss becomes a 2f(n)-universal model relative to H

with respect to squared loss. This type of correspondence was initiated by

Vovk (1990). Further examples of such correspondences, as well as many other

relations between log loss and general universal prediction, are discussed by

Yamanishi (1998) in the context of his notion of extended stochastic complexity.

MDL Is Not Just Prediction The analysis above suggests that MDL should

simply be thought of as the special case of the sequential universal predic-

tion framework, instantiated to log loss, and that all references to data com-

pression may be dropped. This reasoning overlooks three facts. First, Theo-

rem 15.1 tells us that in statistical contexts, there is something special about

log loss: in contrast to many other loss functions, with probabilistic predic-

tions, it leads to consistent (prequential) estimators P̄ (· | Xn). Thus, if a


